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Abstract

Patients with chronic obstructive pulmonary disease (COPD) are
still waiting for curative treatments. Considering its environmental
cause, we hypothesized that COPD will be associated with altered
epigenetic signaling in lung cells. We generated genome-wide DNA
methylation maps at single CpG resolution of primary human lung
fibroblasts (HLFs) across COPD stages. We show that the epigenetic
landscape is changed early in COPD, with DNA methylation
changes occurring predominantly in regulatory regions. RNA
sequencing of matched fibroblasts demonstrated dysregulation of
genes involved in proliferation, DNA repair, and extracellular
matrix organization. Data integration identified 110 candidate

regulators of disease phenotypes that were linked to fibroblast
repair processes using phenotypic screens. Our study provides
high-resolution multi-omic maps of HLFs across COPD stages. We
reveal novel transcriptomic and epigenetic signatures associated
with COPD onset and progression and identify new candidate reg-
ulators involved in the pathogenesis of chronic lung diseases. The
presence of various epigenetic factors among the candidates dem-
onstrates that epigenetic regulation in COPD is an exciting
research field that holds promise for novel therapeutic avenues for
patients.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a prevalent,

smoke-related disease characterized by persistent inflammation of

the lung epithelium, irreversible airway remodeling, and destruction

of the alveolar tissue (emphysema) (Barnes et al, 2015; Rabe &

Watz, 2017; GOLD, 2021). COPD-related mortality is increasing, and

it already affects more than 3 million people worldwide every year

(Safiri et al, 2022). However, despite its prevalence, there is cur-

rently no treatment to halt the progression of COPD, as none of the

existing drugs can modify the long-term decline in lung function.

COPD is a heterogeneous disease with variable clinical manifesta-

tions and responses to therapy where patient stratification remains

challenging (Woodruff et al, 2015; Agusti et al, 2017; Garudadri &

Woodruff, 2018; Barnes, 2019a).

Fibroblasts are ubiquitous mesenchymal cells found in the paren-

chyma and the outer layer of airways and vessels in the adult lung

(Phan, 2008). They have essential functions in lung homeostasis,

maintenance of stem cells, wound healing, and tissue repair. In

COPD, airway fibroblasts are the key cells contributing to the exces-

sive deposition of extracellular matrix, small-airway fibrosis, and

airway remodeling (Barnes, 2019b). In turn, parenchymal fibro-

blasts from patients with COPD/emphysema show reduced prolifer-

ation (Nobukuni et al, 2002; Holz et al, 2004), contractility and

migration in vitro (Togo et al, 2008), are senescent (Muller

et al, 2006), display altered growth factor response (Noordhoek

et al, 2003; Togo et al, 2008), and express increased levels of pro-

inflammatory cytokines (Zhang et al, 2012), indicative of a reduced

tissue-repair capacity. The altered function of alveolar fibroblasts

also contributes to epithelial progenitor dysfunction, establishing

fibroblasts as a critical cell type contributing to the development of

emphysema (Plantier et al, 2007; Kulkarni et al, 2016). However, it

remains unknown how these phenotypic changes in parenchymal

fibroblasts are encoded at the molecular level.

Numerous genetic loci have been associated with COPD and lung

function (Wilk et al, 2009; Hancock et al, 2010; Soler Artigas

et al, 2011; Cho et al, 2014; Wain et al, 2015; Hobbs et al, 2017;

Wyss et al, 2018; Sakornsakolpat et al, 2019), yet they explain only

a small fraction of COPD risk. Transcriptional programs in cells are

regulated by a landscape of epigenetic modifications that modulate

chromatin structure and thereby control gene expression. Smoking

is the most prominent risk factor for COPD, and its impact on epige-

netic landscape remodeling is well established (Belinsky et al, 2002;

Zeilinger et al, 2013; Wan et al, 2015). Earlier studies also provided

strong evidence for the association of dysregulated DNA methyla-

tion and COPD in the blood (Qiu et al, 2012; Busch et al, 2016; Car-

mona et al, 2018), sputum (Sood et al, 2010), oral mucosa (Wan

et al, 2015), lung tissue (Sood et al, 2010; Yoo et al, 2015; Morrow

et al, 2016; Sundar et al, 2017), bronchial brushings (Vucic

et al, 2014), fibroblasts (Clifford et al, 2018), and macrophages from

a mouse model of muco-obstructive disease (Hey et al, 2021).

Notably, DNA methylation changes were associated with altered

expression of genes and pathways important to COPD pathology.

However, these studies were either performed on material encom-

passing mixed cell populations or/and used low-resolution

approaches and could therefore not resolve differential gene expres-

sion and methylation changes caused by a specific cell type during

COPD development and progression. To date, the full epigenomic

landscape of purified COPD cells remains uncharted, and thus, the

precise epigenetic changes and their contribution to altered tran-

scriptional patterns in COPD are still unknown.

To identify the epigenetic and functional alterations associated

with COPD in parenchymal fibroblasts, we used tagmentation-based

whole-genome bisulfite sequencing (T-WGBS) to profile DNA meth-

ylation and RNA sequencing to measure gene expression changes in

primary fibroblasts from patients with COPD and matched ex-

smoker controls. Importantly, we hypothesized that epigenetic mod-

ifications would arise early during COPD development; thus, we

analyzed cells from patients at different COPD stages. Our data pro-

vide integrative epigenetic and transcriptomic maps of fibroblasts at

high resolution. It reveals pathways and novel candidate regulators,

including epigenetic factors, that might be involved in the pathogen-

esis of chronic respiratory diseases.

Results

Genome-wide epigenetic changes occur early in primary lung
fibroblasts during COPD

To assess the extent of epigenetic remodeling in COPD genome-

wide, we generated high-resolution DNA methylomes of primary

lung fibroblasts isolated from the lung parenchyma of well-matched

control donors (no COPD, n= 3) and patients with established

COPD (stage II–IV according to Global Initiative for Chronic

Obstructive Lung Disease; GOLD, 2021, n= 5), which can be classi-

fied based on lung function (Figs 1A and EV1A and B, Dataset EV1).

Isolated cells displayed a typical fibroblast morphology, and their

purity was confirmed by fluorescence-activated cell sorting (FACS)

and immunofluorescence (IF) staining (Fig EV1C and D). We used

T-WGBS for DNA methylation profiling, allowing genome-scale

assessment of DNA methylation at single CpG resolution from low

cell numbers (Wang et al, 2013) (Fig 1B). 17.9 million CpG sites

were covered at least 4× in all samples and used for further analysis,

illustrating the high resolution of our generated data set (Fig EV1E).

We first looked at global changes in DNA methylation by divid-

ing single CpG sites by their methylation level into lowly (< 20%),

medium (20–80%), and highly (> 80%) methylated sites (Fig 1C).

We observed no significant differences in the global levels of meth-

ylated cytosines between COPD and no COPD (control) samples,

suggesting that, in contrast to cancer cells (Esteller, 2008), COPD is

not associated with a global drop or gain of methylation in lung

fibroblasts. We have not performed differential analysis on individ-

ual CpG sites, but for further analysis, we focused on differentially

methylated regions (DMRs), which comprise at least three consecu-

tively methylated CpG sites, between no COPD and COPD (II–IV).
We decided to focus on larger regions rather than individual sites

when looking at differential methylation as DNA methylation is spa-

tially correlated and methylation changes in larger regions are more
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likely to have a biological function. Using CpG sites covered at least

4× in all samples and a≥ 10% methylation-difference cutoff, we

identified 6,279 DMRs (P-value < 0.1, see Materials and Methods

part for details; Fig 1D–F, Dataset EV2), indicating numerous meth-

ylation alterations in primary human lung fibroblasts of COPD

patients. We define hypomethylation as the state showing lower

DNA methylation levels in COPD samples as compared to no COPD

samples, whereas hypermethylation describes higher DNA methyla-

tion levels in COPD samples. The distribution of methylation differ-

ences across DMRs demonstrated a more prominent loss of

methylation, suggestive of a more permissive chromatin state in

COPD (58% of DMRs, 3,615 hypomethylated regions, Fig 1D). The

remaining 2,664 regions showed increased methylation (42% of the

DMRs, 2,664 hypermethylated regions, Fig 1D). Identified DMRs

contained eight CpG sites on average and showed a median size of

479 bp (Fig EV1F and G), indicating that specific larger regions are

altered. An earlier study used Illumina Infinium HumanMethyla-

tion450 BeadChip array to determine DMRs in parenchymal fibro-

blasts in COPD (Clifford et al, 2018). 76% of our identified DMRs

were not covered by any probe on the array illustrating the higher

resolution of T-WGBS data. To compare the results of both studies,

we selected DMRs from our study which were covered by at least

three CpG probes on the array (n= 136) and correlated the average

methylation differences in COPD (Fig EV1H). Despite the low cover-

age of CpGs overlapping with our DMRs, we observe a moderate

positive correlation between both data sets (R= 0.3, P-value=
0.0005), confirming the robustness of our DMR calling strategy.

To investigate whether DNA methylation changes occur early in

COPD development and identify alterations associated with disease

progression, we integrated into the analysis T-WGBS data of fibro-

blasts from mild COPD patients (GOLD I, n= 3), with noticeable

obstruction (FEV1/FVC< 70%) but preserved FEV1 (> 80%,

Fig EV1A, Dataset EV1). Notably, as demonstrated by the principal

component analysis (PCA) on all 6,279 previously identified DMRs,

COPD (I) samples grouped with the COPD (II-IV) samples on the

first principal component (Fig 1G), confirming the COPD-specific

DMR calling using independent test samples (as COPD (I) samples

were not used for the initial DMR selection). Furthermore, the COPD

(I) samples were separated from COPD (II–IV) on the second princi-

pal component, indicating that DNA methylation data might provide

information about disease progression (Fig 1G). Consistent with the

PCA, hierarchical clustering using the identified DMRs showed that

COPD (I) samples group with COPD (II–IV) samples, demonstrating

that COPD-associated methylation changes occur early in the dis-

ease pathogenesis (Fig EV1I). This important discovery suggests that

DNA methylation might provide a sensitive biomarker to separate

early COPD patients from smokers with preserved lung function but

needs to be validated in a larger cohort.

Since COPD is a progressive lung disease, we wanted to gain

more insights into the kinetics of DNA methylation changes between

the three donor groups with different disease severity (no COPD,

COPD (I), COPD (II–IV)). For this, we performed k-means clustering

on the 6,279 identified DMRs using all samples. This analysis

defined three main clusters displaying DNA methylation changes

that progressed with increasing disease severity denoted by the

decline of lung function of patients (decreasing FEV1, Fig 1H). Clus-

ters 1 and 3 showed loss of methylation at 1,951 DMRs and 1,665

DMRs, respectively, while cluster 2 (2,663 DMRs) displayed a

progressive gain of methylation in COPD. Cluster 1 reveals regions

with pronounced demethylation occurring already in COPD (I),

while cluster 3 shows gradual loss of methylation as disease severity

increases (Fig 1H and I).

To shed light on the cellular processes and pathways affected by

aberrant DNA methylation changes in COPD, we linked DMRs to

the nearest gene and performed gene ontology (GO) enrichment

analysis using the Genomic Regions Enrichment of Annotations

Tool (GREAT; McLean et al, 2010; Dataset EV3). All DMRs were

included in the enrichment pathway analysis, but we looked sepa-

rately for hypomethylated and hypermethylated DMRs. As hyper-

methylated DMRs did not reveal any significant enrichment with

our GREAT settings (see Materials and Methods), we focused on the

hypomethylated DMRs. Among the top categories, we identified cel-

lular response to hypoxia and oxygen levels, regulation of focal

adhesion assembly, negative regulation of transforming growth fac-

tor beta (TGFβ) receptor signaling, and epithelial-to-mesenchymal

transition (Fig EV1J). These biological processes are relevant for

COPD development and progression (Konigshoff et al, 2009; Barnes

et al, 2015, 2019; Rabe & Watz, 2017), indicating that DNA methyla-

tion changes occur near genes that are critically involved in COPD

pathogenesis and might therefore contribute to disease phenotypes

in lung fibroblasts. Specific examples include hypomethylation of

genes implicated in the negative regulation of the TGFβ receptor sig-

naling (e.g., SMAD6, SMAD7, VASN, SKI, PMEPA1, Dataset EV2)

(Miyazono, 2000), providing a potential mechanism for explaining

the reduced response to TGFβ and decreased repair capacity of lung

fibroblasts observed in emphysema (Togo et al, 2008). To further

characterize processes that are seen early in the disease versus those

that develop later, we extended the enrichment analysis by adding

the proportions of the identified DMR cluster to the respective path-

ways (Fig EV1J, right panel). Interestingly, DMRs from cluster 1

showing early methylation changes (Fig 1H) were associated with

the “regulation of chromatin organization (72.5%)” and “cell-

substrate adhesion (70,3%)” (Fig EV1J, right panel), indicating that

these cellular processes may be perturbed early in COPD

development.

In summary, DNA methylation profiling of COPD samples across

disease stages demonstrates that genome-wide epigenetic changes

occur already early in COPD development and many of them pro-

gress with disease development.

DNA methylation changes occur at regulatory regions in COPD
lung fibroblasts

Methylome analysis identified genome-wide changes in DNA meth-

ylation in primary HLFs of COPD patients. To better understand the

functional role of aberrant methylation in COPD, we investigated

the distribution of DMRs across the genome. We observed a differ-

ent distribution of regions displaying loss and gain of methylation,

with hypomethylated DMRs predominately located in intronic

sequences and hypermethylated DMRs preferentially found in inter-

genic regions (Fig 2A). Notably, both types of DMRs were overrepre-

sented at regulatory and gene coding sequences compared to the

genomic background (Fig 2B), with a stronger enrichment observed

for hypomethylated DMRs. Thus, hypomethylated DMRs are located

four times more often at promoter sequences than expected by

chance (Fig 2B). Further intersection with known regulatory
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genomic features annotated by the ENCODE Chromatin States (Ernst

et al, 2011) revealed strong enrichment of hypomethylated DMRs in

active promoters and enhancers, indicating their potential regula-

tory role (Fig 2C and D, Dataset EV2). The significant association

with active enhancer elements was confirmed by the local increase

of enhancer-defining chromatin marks (H3K4me1 and H3K27ac)

(Heintzman et al, 2009; Rada-Iglesias et al, 2010) in the center of

the hypomethylated DMRs (Fig 2D and E). Conversely, the hyper-

methylated DMRs were overrepresented at Polycomb-repressed

regions, defined by the presence of H3K27me3 (Fig 2C and E).

Since we detected an enrichment of hypomethylated DMRs resid-

ing in regions broadly marked by H3K4me1 and H3K27ac (Fig 2D

and E), we used the intensity of the H3K4me1 and H3K27ac signals

in the ENCODE ChIP-seq data (Davis et al, 2018) to classify super-

enhancers (SE) in human lung fibroblasts. Next, we tested the over-

lap of the identified SE with the DMRs identified in COPD HLFs.

About a quarter of all SE contained at least one DMR (Fig 2F, right

panel, Fig EV2A, examples shown in Figs 2D and EV2B and C). Con-

sistent with the chromatin state analysis, hypomethylated DMRs

were preferentially associated with SE and coincided with the best

scoring SE (Fig 2F, purple bar and labels), indicating that these SE

may become differentially regulated in COPD. Finally, SE were

assigned to nearby genes that they may regulate. SMAD3, GRK5,

ERGIC1, CREB3L2, and RASA2 genes were associated with the most

active super-enhancers overlapping with hypomethylated DMRs

(Fig 2F, hockey plot, purple labels, and Fig EV2B and C).

We conclude that methylation changes identified in COPD HLFs,

especially hypomethylation, occur at regulatory regions, including

strong enhancers.

DMRs in COPD show enrichment of binding motifs for key lung
transcription factors

The hypomethylated regions identified in WGBS data might reflect

the binding of transcription factors and can be therefore used for

foot-printing their binding sites (Stadler et al, 2011). We observed a

significant enrichment of binding motifs of several transcription fac-

tors in the hypomethylated DMRs at strong enhancers, with the

highest enrichment of TCF21 motif in the early DMR cluster (cluster

1, P-value: 1 × 10−17) and FOSL2/FRA2 in the progressive DMR clus-

ter (cluster 3, P-value: 1 × 10−8) (Fig 2G). TCF21 mediates fibroblast

fate specification in multiple organs and is required for alveolar

development (Quaggin et al, 1999). In turn, FOSL2/FRA2 is a

known regulator of wound repair and TGFβ-mediated fibrosis (Eferl

et al, 2008). Our data indicate that TCF21 and FOSL2/FRA2 may be

potential mediators of aberrant epigenetic changes at strong

enhancers in COPD fibroblasts.

Since DNA methylation can also directly interfere with the bind-

ing of transcriptional regulators to DNA (Yin et al, 2017), we

performed motif analysis in the identified hypo- and hypermethy-

lated DMRs to identify transcription factors reported to change their

binding affinity upon methylation of their motifs (Yin et al, 2017).

At hypomethylated DMRs, which are overrepresented at regulatory

sites, numerous methylation-sensitive transcription-factor motifs

were significantly enriched, suggesting either increased (methyl-

minus, red dots) or attenuated (methyl-plus, blue triangles) DNA

binding in COPD (Fig 2H). Among the transcription factors exhi-

biting higher binding affinities toward methylated DNA (methyl-

plus, blue triangles), we identified motifs of nuclear receptors,

known regulators of cellular homeostasis, development, and metab-

olism (Fig 2H). Our data suggest that their DNA binding might be

abrogated at regulatory sites in COPD due to loss of methylation,

but this prediction needs to be experimentally validated. A few

motifs of methylation-sensitive transcription factors were enriched

in the hypermethylated DMRs, consistent with their location in

repressive regions of the genome. The strongest enrichment was

observed for ZBTB7A, a known repressor associated with the TGFβ
signaling pathway (Shen et al, 2017). ZBTB7A preferentially binds

unmethylated DNA (Yin et al, 2017) (methyl-minus, Fig 2H) indicat-

ing that its DNA binding in COPD might be hindered due to motif

◀ Figure 1. Genome-wide DNA methylation changes occur early in human lung fibroblasts during COPD and progress with disease development.

A Lung function data of COPD (II-IV) and no COPD (ex-smoker controls) donors used in this study. The lung function between the two groups is significantly different.
B Schematic diagram illustrating the experimental approach used for epigenetic (T-WGBS) and transcriptomic (RNA-seq) profiling of purified primary parenchymal

lung fibroblasts.
C–I T-WGBS data of primary fibroblasts from no COPD and COPD (II–IV) patients were analyzed at single CpGs level (C) and on DMRs (D–I).
C Genome wide CpG methylation statistics. Bar plot showing the fraction of high (> 80%), moderate (20–80%), and low (< 20%) methylated CpGs in no COPD and

COPD (II–IV) samples.
D Number of hyper- or hypomethylated DMRs in COPD (II-IV).
E Detailed view of a representative hypo- (top) and hypermethylated (bottom) DMR (gray box). CpG methylation levels of each individual donor (dots) and the group

average (lines) methylation profile of three no COPD (blue) and five COPD (II–IV) (dark green) donors are displayed. RefSeq annotated genes and CpG islands are
indicated.

F Heatmap of 6,279 DMRs identified in COPD (II-IV). Statistically significant DMRs (at significance level= 0.1; see methods for DMR calling details) with at least three
CpGs and a mean difference in methylation between no COPD and COPD (II–IV) of ≥ 10% were selected. Color shades indicate low (light) or high (dark) DMR
methylation.

G PCA of COPD (II–IV) (dark green), no COPD (blue), and mild COPD (I) (light green, samples not used for initial DMR calling) on identified 6,279 DMRs.
H K-means clustering of all DMRs identified between no COPD and COPD (II–IV) across all samples, including COPD (I). Three clusters were identified. Cluster 1 shows

early hypomethylation in COPD (I), clusters 2 and 3, gradual hyper- and hypomethylation, respectively. Donors are sorted according to their FEV1 value as indicated
at the bottom.

I Representative methylation profiles at selected DMRs from each cluster. Group median CpG methylation is shown for no COPD (blue), COPD (I) (light green), and
COPD (II–IV) (dark green). RefSeq annotated genes and CpG islands are indicated.

Data information: In (A), data points represent each donor values and horizontal bars the group median. An unpaired non-parametric t-test (Mann–Whitney test,
GraphPad Prism software, version 8.0.1) was employed to compare the lung function (FEV1 and FEV1/FVC values) between control (no COPD, n = 3) and COPD II-IV donors
(n = 5), *P-value< 0.05. Exact P-values are: FEV1, P-value = 0.0357; FEV1/FVC, P-value = 0.0357. FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; T-WGBS,
tagmentation-based whole-genome bisulfite sequencing; DMR, differentially methylated regions; PCA, principal component analysis.
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hypermethylation. To validate our motif enrichment, we used tran-

scription factor footprints in active chromatin elements (TRACE)

data from human lung fibroblasts available in ENCODE (Ouyang &

Boyle, 2020) for TCF21, FOSL2, and ZBTB7A. Indeed, TCF21 and

FOS2L binding was significantly enriched at strong enhancer DMRs

and ZBTB7A at hypermethylated DMRs, respectively (P-value<
0.001, one-sided hypergeometric test).

In summary, our data suggest that aberrant DNA methylation in

COPD fibroblasts may be linked to imbalanced transcription factor

binding, providing insights into potentially disturbed regulatory net-

works in COPD.

Gene expression changes accompany epigenetic modifications in
COPD

Our genome-wide DNA methylation analysis identified methylation

changes at promoter and enhancer regions, suggesting that DMRs

may have regulatory effects on gene expression. To assess whether

epigenetic changes are associated with gene expression changes in

COPD, we performed RNA-seq analysis on fibroblast samples

matching those used for T-WGBS (Fig 1B). This analysis identified

333 up-regulated and 287 down-regulated genes between no COPD

(n= 3) and COPD (II–IV) (n= 5; FDR< 0.05 and |log2(fold-change)|
> 0.5, Fig 3A, Dataset EV4), including several long non-coding RNAs

(Fig 3A orange labels, Fig EV3A), providing the transcriptional sig-

nature of COPD. Enrichment analysis of the differentially expressed

genes (DEGs) revealed that genes up-regulated in COPD are

involved in cell cycle regulation, DNA replication, and DNA repair

(Fig EV3B). In turn, down-regulated genes are associated with extra-

cellular matrix (ECM) organization and cholesterol biosynthesis

(Fig EV3C). An earlier study in a larger cohort of samples (n= 198)

used RNA seq to identify differentially expressed genes in lung tis-

sue of smokers and COPD patients (Kim et al, 2015). Expression

changes associated with COPD in whole tissue did not correlate with

the changes we observed in isolated fibroblasts. In the GSEA analy-

sis (log2FC sorted), we could not find a significant overlap of our

differentially up-regulated genes. In contrast, although we observed

a significant enrichment of our down-regulated genes in the Kim

study, the expression change was reversed for most genes, and they

were up-regulated (Fig EV3D). This may reflect the depletion of

fibroblasts in emphysema, as the fibroblasts show reduced prolifera-

tion in COPD/emphysema (Nobukuni et al, 2002; Holz et al, 2004).

As COPD (I) samples (n= 3) were not used to identify differen-

tially expressed genes, we used them as an independent test set to

validate the obtained results and gain insights into gene expression

kinetics in disease progression. Hierarchical clustering and PCA of

all samples on the identified DEGs or 500 most variable genes,

respectively, revealed that COPD (I) samples cluster together and

show higher similarity to the no COPD group (Figs 3B and EV3E).

To further resolve gene expression signatures of COPD states, we

performed self-organizing map (SOM) clustering (Wehrens & Kruis-

selbrink, 2018) using all DEGs (n= 620). We identified six clusters

showing different kinetics related to COPD progression (Fig 3C–E,
Dataset EV4). Clusters 1 and 6 encompass genes whose expression

is not yet changed in COPD (I) but gets dysregulated at later stages

of COPD development (Fig 3C). Here, multiple genes involved in

DNA replication (e.g., MCM10, ORC5, GINS3) or DNA double-

strand break repair (e.g., BRCA1, FANCM, USP1, RAD51) are

present (Fig 3E). Clusters 2, 3, 4, and 5 feature gene subsets

already dysregulated in COPD (I) and may serve as early disease

markers (Fig 3C, examples displayed in Fig 3D). Notably, the iden-

tification of early gene expression changes associated with COPD

development is of high clinical relevance, as it might offer a

unique advantage for the future development of disease-modifying

therapies.

To assess the extent of epigenetic remodeling in COPD, we ana-

lyzed the expression changes of epigenetic enzymes and readers

(Medvedeva et al, 2015). Thirty eight epigenetic factors were differ-

entially expressed, with the majority (76%) showing up-regulation

in COPD (Dataset EV4). Examples of dysregulated epigenetic players

include histone methyltransferases (e.g., SETD1B, SUV39H2,

KMT2D, EZH2), histone demethylases (KDM6B), and chromatin

remodeling factors (e.g., CHAF1A, ATAD2 CHAF1B), indicating that

in addition to DNA methylation and histone acetylation (Ito

◀ Figure 2. DNA methylation changes occur at regulatory regions in primary human lung fibroblasts cells during COPD.

A, B Genomic location of identified DMRs. (A) Distribution of genomic features overlapping with hypo- (left) and hypermethylated (right) DMRs. (B) Enrichment of geno-
mic features at hypo- (purple) and hypermethylated (cyan) DMRs compared to a sampled background of 10,000 regions exhibiting no significant change in
methylation.

C Distribution of human lung fibroblast specific chromatin states (ENCODE accession: ENCFF001TDQ) at hypo- and hypermethylated DMRs. Fraction of DMRs over-
lapping with specific chromatin states is shown on the left panel. The genome background was sampled using 10,000 regions with matching GC content exhibiting
no significant change in methylation. Chromatin state enrichment relative to the genome background is illustrated in the right panel.

D Genome browser view of an examplary DMR at a putative enhancer region. Group median CpG methylation is shown for no COPD (blue), COPD (I) (light green), and
COPD (II–IV) (dark green). At the bottom the level of enhancer marks is depicted as fold-change over control: H3K4me1 (ENCODE accession: ENCFF102BGI) and
H3K27ac (ENCODE accession: ENCFF386FDQ).

E Alterations of DNA methylation and selected histone marks around DMRs. Solid lines represent the mean profile and shaded lines the standard error of the mean
across all summarized regions. Dashed lines indicate the expected signal value at sites, which are not changed, i.e. 0 for methylation difference in COPD (II–IV) to
no COPD and 1 for the fold change to input in ChIP-seq experiments.

F Ranking of enhancer elements, defined by the co-occurrence of H3K4me1 and H3K27ac signals in human lung fibroblasts. The horizontal line defines the signal and
corresponding rank threshold used to identify super enhancers (SE). Selected SE overlapping with DMRs are annotated and the nearest gene to the SE is indicated.
The fraction of SEs overlapping with hypo- (purple), hypermethylated (cyan) or both (gray) is illustrated in the bar plot on the right panel.

G Transcription factor motifs most enriched at DMRs overlapping with strong enhancers (ENCODE chromatin states) from cluster 1 and 3 (see Fig 1H).
H Enrichment of methylation-sensitive transcription factor motifs at hypo- (right) and hypermethylated (left) DMRs. Methylation-sensitive motifs were derived from

the study of Yin et al (2017). Transcription factors, whose binding affinity was impaired upon methylation of their corresponding DNA motif are shown in red
(MethylMinus) and transcription factors, whose binding affinity was increased, in blue (MethylPlus). TTS, transcription termination site.

Data information: In G and H, Motif enrichment was calculated using HOMER, which uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the
hypergeometric enrichment calculations.
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et al, 2005; Szulakowski et al, 2006) other epigenetic layers may

also be dysregulated in COPD.

Integrative data analysis reveals epigenetically regulated genes
in COPD fibroblasts

To further dissect the association between alterations in DNA

methylation and changes in gene expression, we assigned DMRs to

genes in their proximity. In total, we detected 4,059 genes associ-

ated with at least one DMR (in total 4,424 DMRs) within 4 kb

upstream of the transcriptional start site (TSS) to 4 kb downstream

of the transcriptional termination site (TTS; Fig 4A). About 45% of

the gene-associated DMRs are located close to the TSS, mainly in

the promoter and first intron (Figs 4B and EV4A and B). To further

decipher the interplay between gene expression and DNA methyla-

tion changes in COPD, we focused our analysis on DMRs within 4

kb surrounding the TSS (Fig 4C). We observed an overrepresenta-

tion of DMRs at the promoter of differentially expressed genes

compared to genes whose expression is not significantly changed

in COPD (Fisher’s exact test: P-value= 1.3 × 10−7, Fig EV4C). In

total, 77 DEGs were associated with at least one DMR (Fig 4C,

Dataset EV5), which was mainly located around or downstream of

the TSS (Fig EV4B). In contrast to unchanged genes which exhib-

ited the expected normal distribution (Fig 4D, blue line), differen-

tially expressed genes displayed a bimodal curve with an

enrichment at high positive and negative correlation rates,

suggesting that some genes might be dysregulated by aberrant

methylation in COPD (Fig 4D, red line). Pathway enrichment anal-

ysis of the DMR-associated DEGs (DMR:DEG) revealed genes

involved in diseases of DNA repair (FDR= 4 × 10−5) and cell cycle

checkpoints (FDR= 0.0008) (Fig EV4D). To identify common tran-

scription factors at DMR:DEGs, we conducted a motif enrichment

analysis. PAX5 (found in 6 DMR:DEGs) and TEAD2 (found in 15

DMR:DEGs) motifs were significantly enriched (P-value= 0.01,

one-sided hypergeometric test). Additionally, we checked for the

binding of TCF21, ZBTB7A and FOS2L, which we found enriched

in our initial DMR motif analyses (Fig 2G and H). Here, we used

TRACE data in human lung fibroblasts available in ENCODE

(Ouyang & Boyle, 2020). For TCF21 and ZBTB7A, enriched in

distal regulatory elements, we did not find any overlap between

their putative binding sites and our DMR:DEGs. In contrast, FOSL2

binding was detected at GLI4, NEIL3, and BRCA1-associated

DMRs.

We observed that early hypomethylated DMRs (Fig 1H, cluster

1) are enriched among the set of DMR:DEGs (P-value= 0.00007,

one-sided hypergeometric test). To further investigate the relation-

ship between gene expression and methylation changes, we classi-

fied DMR:DEGs using k-means clustering (Fig 4E, Dataset EV5).

This analysis provides a direct connection between DNA methyla-

tion changes and accompanied expression changes in proximity. In

clusters 2, 4, and 5, changes in methylation and expression occur at

the same time. Interestingly, in clusters 1 and 3, we can already

detect methylation changes in COPD (I) samples, whereas the

expression is not changed yet, suggesting that some methylation

changes may precede transcriptional changes. Next, we focused on

DMR:DEGs pairs, which are directly correlated (as indicated by

clusters 4 and 5 in Fig 4E) and exhibited an absolute correlation

coefficient≥ 0.5 (Fig 4D). Examples of genes showing correlation

between DNA methylation and gene expression include UMPS,

STEAP3, GABRR1, GLI4, AQP3, and LPXN (Figs 4F and EV4E),

suggesting potential regulation of their expression by DNA

methylation.

Functional siRNA screens identify novel regulators of COPD
phenotypes in lung fibroblasts

Integration of DNA methylation and gene expression data, together

with upstream regulator analysis using Ingenuity Pathway Analysis

(Kramer et al, 2014) (https://digitalinsights.qiagen.com/products-

overview/discovery-insights-portfolio/analysis-and-visualization/

qiagen-ipa/) allowed us to select candidate regulators of the

observed epigenetic and transcriptional changes in COPD HLFs. Spe-

cifically, depending on the data and analysis type used, we divided

the candidates into six categories (as detailed in Dataset EV6, selec-

tion criteria). These included the following: (i) top 10 upregulated

and top 10 downregulated genes with the strongest log2 fold change

(and FDR< 0.05) between no COPD and COPD (II–IV) samples in

RNA-seq, (ii) top 4 dysregulated long non-coding RNAs with the

◀ Figure 3. DNA methylation changes in primary human lung fibroblasts are accompanied by gene expression changes in COPD.

A Volcano plot of differentially expressed genes (DEGs) (red dots; FDR< 0.05 and |log2(fold change)| > 0.5) in COPD (II–IV, n= 3) compared to no COPD controls (n = 5).
Protein-coding (blue) and lincRNA (orange) with the highest expression change or lowest P-values are labeled.

B Unsupervised hierarchical clustering of all samples, including COPD (I) based on DEGs (n= 620) identified between no COPD and COPD (II–IV) samples.
C Self-organizing maps (SOM) clustering based on the scaled median expression level per group of the 620 DEG identified between COPD (II–IV) and no COPD samples.

DEGs were grouped into six distinct clusters showing different kinetics in COPD progression: Clusters 1 and 6 show late changes. Clusters 2 and 5 display changes
gradually progressing with disease severity. Clusters 3 and 4 correspond to early changes observed already in COPD (I). Left panel shows the row scaled (z-scores)
expression levels per group as heatmap; right panel illustrates the distribution of the scaled expression levels in each group across all cluster as boxplots. The box rep-
resents the interquartile range (IQR). The line inside the box represents the median of the dataset. The whiskers extend from the edges of the box to the first and third
quartiles, but no further than 1.5 times of the IQR. Any data points outside this range are plotted individually as dots. The dashed line connects the medians of the
groups in each cluster. The number of each genes within the corresponding cluster is indicated on the right.

D Selected examples of DEG across disease stages from clusters 2–5 defined in (C).
E DEGs associated with altered biological processes (gray bubbles) in COPD. DEG nodes are colored according to their corresponding gene expression kinetic in COPD

(clusters defined in C).

Data information: In (A), data points represent each gene, DEGs are indicated in red and defined by the following cutoffs: FDR< 0.05 and |log2(fold-change)| > 0.5. In (D)
each donor is represented by an individual point (no COPD n= 3, COPD I n = 3, COPD II-IV n = 5), the group mean is shown as a black dot and the error bar represents
the standard deviation. In (A) and (D) FDRs and log2(fold-changes) (in A) were calculated using DESeq2, which uses a negative binominal GLM (generalized linear model)
and Wald statistics. *FDR < 0.05; **FDR < 0.01; ***FDR < 0.001. The specific statistically significant FDR values are the following: RAD18 in COPD II–IV= 0.000434;
ADAMTSL1 in COPD II–IV= 0.02771; STEPA3 in COPD I= 0.04219 and in COPD II-IV = 0.001272; BMP4 in COPD II-IV= 0.0000535.
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strongest log2 fold change (and FDR< 0.05) in RNA-seq, (iii) epige-

netic factors that showed significant dysregulation in RNA-seq (FDR

< 0.05), (iv) top 4 transcription factors with the strongest enrich-

ment of their binding sites motifs in the identified DMRs, (v) top dif-

ferentially expressed genes (FDR< 0.05) containing DMRs in

promoters with the strongest Spearman correlation (> 0.5 or

<−0.5), and (vi) strongest upstream epigenetic regulators from the

Ingenuity Pathway Analysis. Three genes (TGFBR1, ACTA2, and

BRD4) were used as positive controls for the redouts of the

phenotypic assays. Overall, 110 candidates were manually selected

for characterization using phenotypic screens (Fig EV5A,

Dataset EV6), and 78% of them were not linked to COPD before. To

determine the function of the selected candidates in key fibroblast

processes related to COPD, high-content image-based phenotypic

assays using small-interfering RNAs (siRNA)-mediated gene knock-

down (KD) were carried out in primary human lung fibroblasts iso-

lated from two normal healthy (NHLFs) and three COPD (DHLFs)

donors (Fig 5A).

D E

F

A B C

Figure 4.
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In COPD/emphysema, reduced proliferation, migration, and

response to TGFβ1 of lung fibroblasts have been documented

(Nobukuni et al, 2002; Holz et al, 2004; Muller et al, 2006; Togo

et al, 2008), indicating the impaired tissue-repair capacity of fibro-

blasts in the COPD lung. Reduced fibroblast activity in the injured

alveolar microenvironment has been proposed as a critical mecha-

nism driving the development of emphysema (Plantier et al, 2007;

Kulkarni et al, 2016). Thus, to evaluate fibroblast response to

TGFβ1 upon candidate gene knockdown, we performed a TGFβ1-
induced fibroblast-to-myofibroblast transition assay (FMT) (Weigle

et al, 2019). High-content image-based quantification of collagen 1

deposition (col1) and α-smooth-muscle fibers (αSMA), two TGFβ1-
responsive genes, were used as readouts. Additionally, to assess the

proliferation capacity of primary fibroblasts upon candidate gene

knockdown, we quantified the number of nuclei upon fibroblast

growth factor 2 (FGF2) stimulation (Fig 5A and B).

The technical performance of the assays was demonstrated by

the robust effect of the siRNAs targeting assay controls. As expected,

siRNA targeting TGFβ receptor 1 (TGFβR1) showed a strong impact

on the FMT assay (on both αSMA and col1 readouts) (Fig 5B),

whereas the siRNA against ACTA2 (which encodes αSMA) showed

a specific effect only in the αSMA readout.

To evaluate the differences between the non-targeting siRNA

controls (NTC) and gene-targeted knockdowns, we calculated

strictly standardized mean differences (SSMD) (Zhang, 2007; Zhang

et al, 2007). Overall, a high hit rate was observed, as 61 out of the

selected 110 candidates showed an effect in at least one assay after

applying the strict cutoff of |SSMD| > 3 and 87 when using a cutoff

of 2, demonstrating the power of multimodal analysis in identifying

candidates with regulatory potential (Figs 5C and E, and EV5C,

Dataset EV7). Furthermore, the strong correlation between the

results obtained from different donors among normal fibroblasts

(e.g., R= 0.95, P-value: 3.4 × 10−64 for αSMA) and fibroblasts

derived from COPD patients (e.g., R= 0.91, P-value: 2.7 × 10−48 for

αSMA) confirmed the robustness of the assays (Figs 5D and EV5B).

Three genes, leupaxin (LPX), aquaporin 3 (AQP3), and GLI4,

showed strong effects in all three readouts in both normal and dis-

eased cells, indicating their critical function in fibroblast biology

(Figs 5B, C, and E). Their knockdown efficiency was validated by

RT–qPCR (Fig EV5E). Notably, among the positive hits, multiple epi-

genetic factors were also present (Figs 5C and EV5C, Dataset EV7).

For example, we observed strong effects on lung fibroblast prolifera-

tion and differentiation upon targeted knockdown of different

epigenetic enzymes (DNA methyltransferase DNMT3B, histone

methyltransferases KMT2A, MKT2B, KMT3C, SETD1B, and EZH2,

histone acetyltransferase EP300), chromatin remodeling factors

(CHAF1A and CHAF1B) as well as epigenetic readers (BAZ2, CBX3),

identifying these factors as key regulators of fibroblasts and COPD

repair phenotypes.

Interestingly, we observed potential disease-specific effects for

some of the tested candidates that were preserved between different

donors. Here, the effect after siRNA-mediated gene knockdown var-

ied between normal and diseased fibroblasts (Figs 5F and EV5D).

For example, the knockdown of CHAF1A increased, while the

knockdown of CHAF1B reduced the expression of αSMA, respec-

tively, and both effects were stronger in diseased fibroblasts com-

pared to normal cells. In turn, the knockdown of AQP3 in normal

fibroblasts had a larger effect on αSMA levels upon TGFβ1 stimula-

tion compared to diseased cells (Fig 5F). All three genes were dysre-

gulated in our RNA-seq in COPD (CHAF1A and CHAF1B were

upregulated, whereas AQP3 was downregulated in COPD,

Dataset EV4), indicating that their dysregulation may be linked to

COPD phenotypes in fibroblasts.

The cell-based assays in primary normal and COPD fibroblasts

confirmed the functional role of numerous candidates identified

from profiling data, indicating that integrating genome-wide epige-

netic and transcriptomic profiling of purified normal and diseased

human lung cells is a powerful approach for the identification of

novel regulators of disease phenotypes. In addition, the presence of

various epigenetic factors among the positive hits demonstrates that

epigenetic regulation in COPD is an exciting research field that

should be explored in-depth, as it may hold promise for novel thera-

peutic avenues for patients with COPD.

Discussion

In this study, we reveal novel transcriptomic and epigenetic signa-

tures associated with COPD onset and progression, establishing a

roadmap for further dissection of molecular mechanisms driving

COPD phenotypes in lung fibroblasts.

Earlier studies using various patient materials consisting of

mixed-cell populations provided evidence of dysregulated DNA

methylation patterns in COPD and identified CpG sites and path-

ways associated with smoking and COPD (Sood et al, 2010; Qiu

et al, 2012; Vucic et al, 2014; Wan et al, 2015; Yoo et al, 2015;

◀ Figure 4. Integrative data analysis reveals epigenetically regulated genes in COPD fibroblasts.

A DMRs located in the proximity of annotated protein-coding and lincRNA genes. DMRs within � 4 kb from gene body were assigned to their corresponding gene. TSS,
transcription start site; TTS, transcription termination site.

B Gene features of gene-associated DMRs. Promoter is defined as the region of −1 kb to +100 bp around the TSS.
C DMRs located in the proximity of the TSS of DEGs. DMRs within � 4 kb from TSS of DEG were assigned to their corresponding gene.
D Spearman correlation between gene expression and DMR methylation. DMRs within � 4 kb from TSS were considered. Gene-DMR pairs were split into DEGs (red) and

not significantly changed genes (no DEG, blue).
E K-means clustering of DMRs and associated DEGs. The heatmaps show the z-scores of either rlog normalized expression counts (gene expression) or beta values (DNA

methylation). Line diagram on the right side depicts the cluster centroids of each sample for gene expression (salmon) and DNA methylation data (turquoise).
F Scatter plots showing examples of correlations between gene expression and methylation of promoter associated DMRs. Each dot represents an individual donor.

Dots are color coded according to disease state. Gene expression is illustrated as normalized counts. Methylation is illustrated as average beta value of the
corresponding DMR.

Data information: In (F) linear regression analysis was performed (black line) and the 95% confidence interval is indicated (gray area). Correlation coefficients and P-
values were calculated by the Spearman correlation method.

� 2023 The Authors The EMBO Journal 42: e111272 | 2023 11 of 23

Uwe Schwartz et al The EMBO Journal

 14602075, 2023, 12, D
ow

nloaded from
 https://w

w
w

.em
bopress.org/doi/10.15252/em

bj.2022111272 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [08/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



C D

A B

E

F

Figure 5.

12 of 23 The EMBO Journal 42: e111272 | 2023 � 2023 The Authors

The EMBO Journal Uwe Schwartz et al

 14602075, 2023, 12, D
ow

nloaded from
 https://w

w
w

.em
bopress.org/doi/10.15252/em

bj.2022111272 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [08/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Busch et al, 2016; Morrow et al, 2016; Sundar et al, 2017; Carmona

et al, 2018). Two recent publications also suggested that DNA meth-

ylation changes may originate in early life (Kachroo et al, 2020) and

be linked to the severity of airflow limitation (Casas-Recasens

et al, 2021). However, all these studies used low-resolution

approaches, covering a representation of the genome only, mostly

gene promoters. Hence, the full epigenomic landscape of COPD cells

remained uncharted. Overall, there has been a limited consistency

between different studies, likely coming from the cellular heteroge-

neity of the starting material, diverse donor selection criteria and

different statistical models used. The dissection of cell-type specific

mechanisms associated with COPD requires epigenetic profiling of

defined cell populations. Only one study investigated DNA methyla-

tion changes in COPD patients with cell-type resolution (Clifford

et al, 2018). Using Illumina 450 K BeadChip Array (focusing on gene

promoters), Clifford et al identified 887 and 44 differentially methyl-

ated CpG sites in parenchymal and airway fibroblasts of COPD

patients, respectively (Clifford et al, 2018). Our study, providing a

much higher resolution of previously unexplored regions (e.g.,

enhancers) significantly extends these observations and demon-

strates pronounced, genome-wide DNA methylation and gene

expression changes in parenchymal fibroblasts in COPD, in both

mild and severe disease. Direct comparison between both studies

revealed a moderate positive correlation between the two data sets,

which we interpret as validation considering the differences in both

CpG detection technologies.

Little is known about the correlation of DNA methylation with

disease severity. Methylation changes in 13 genes have been iden-

tified in the lung tissue of COPD GOLD I and II patients compared

to non-smoker controls (Casas-Recasens et al, 2021). However, it

is unclear whether they represent smoking- or COPD-related

changes, as ex-smoker controls were not investigated in this study

(Casas-Recasens et al, 2021). Our data reveal that genome-wide

DNA methylation changes are present in lung fibroblasts of COPD

(I) patients compared to controls with matched smoking status and

history (all ex-smokers), demonstrating that epigenetic changes

occur early in disease development. We cannot exclude that time

since quitting smoking may have contributed to the methylation

changes in our donors, as noted in previous studies (Zeilinger

et al, 2013; Guida et al, 2015); however, there was no systematic

and statistically significant difference between the three groups

with regards to time since quitting; hence, it is unlikely that this

factor would bias our identification of COPD-related methylation

changes. Notably, COPD (I) samples clustered with COPD (II-IV)

rather than no COPD samples, indicating that DNA methylation

may provide a sensitive biomarker for early disease detection. As

our analysis was performed in a small number of samples, this

hypothesis awaits further replication and validation in larger

patient cohorts.

Currently, it is unclear how altered DNA methylation patterns in

COPD translate into biological effects in COPD fibroblasts. DNA

methylation in regulatory regions can modulate the binding of tran-

scriptional factors to DNA (Stadler et al, 2011); hence, methylation

profiling allows for identifying transcriptional regulators potentially

mediating the epigenetic alterations. We detected a significant

enrichment of binding sites for TCF21 and FOSL2/FRA2 transcrip-

tion factors in the DMRs overlapping with strong enhancers in

COPD. TCF21 is a mesenchyme-specific basic helix–loop–helix tran-

scription factor regulating multiple processes, including prolifera-

tion, extracellular matrix assembly, as well as secretion of pro-

inflammatory mediators (Akama & Chun, 2018). It is required for

lung development in mice, mesenchymal–epithelial crosstalk

(Quaggin et al, 1999) and specification of fibroblast cell fate in dif-

ferent organs (Acharya et al, 2012; Braitsch et al, 2012). Recently,

TCF21 has been identified as a specific marker of lipofibroblasts in

the mouse (Park et al, 2019) and human lung (Liu et al, 2021), a

subpopulation of fibroblasts essential for alveolar niche homeostasis

and repair. Despite its central roles in alveolar development and

maintenance, TCF21 function in human lung fibroblasts is largely

unknown. Our phenotypic screens demonstrate that TCF21 is

required for lung fibroblast proliferation and differentiation upon

TGFβ1 stimulation, providing first insights into its molecular func-

tion in the human lung. Notably, the effects of TCF21 on prolifera-

tion and αSMA were stronger in diseased cells, indicating that COPD

cells may be more sensitive to TCF21 loss than healthy lung fibro-

blasts. Consistent with our results, regulation of cell proliferation by

TCF21 has been previously demonstrated in cancer cells (Lotfi

et al, 2021).

◀ Figure 5. siRNA-based phenotypic screens in normal and COPD primary human lung fibroblasts identify multiple candidate genes regulating COPD
phenotypes.

A Schematic representation of the siRNA-based phenotypic assays performed in primary normal human lung fibroblasts (NHLFs, two donors) and diseased/COPD human
lung fibroblasts (DHLFs, three donors).

B Examples of primary pictures obtained in the screens showing the performance of the siRNA controls as well as positive hits upon KD. Scale bars: 0.05mm.
C Heatmap showing the effect of the KD of each candidate gene on the three measured readouts (αSMA, col1 and proliferation) in primary normal (NHLF) or COPD

(DHLF) human lung fibroblasts, red: readout higher than NTC, blue: readout lower than NTC. |SSMD values|≥ 2 are shown in lighter shade and |SSMD values|≥ 3 in
stronger shade.

D Scatterplots showing the correlation of the screen data from two different NHLFs donors (left) and two different DHLFs (right) for the αSMA readout.
E Comparison of the KD effect of each candidate relative to NTCs in NHLFs and DHLFs. Each dot represents a unique candidate tested, blue and red dots represent

significant hits (|SSMD values|≥ 2 are shown in lighter shade and |SSMD values|≥ 3 in stronger shade). Assay controls are labeled in black and examples of strong hits
regulating fibroblast to myofibroblast transition and cell proliferation processes are labeled in blue.

F Dot plot showing examples of positive hits with significant differences between NHLFs (2 donors, 2 biological replicates each, shown in green) and DHLFs (3 donors, 2
biological replicates each, shown in orange) in αSMA readout. Screen readout was normalized to the corresponding NTC. TGFβR1 and ACTA2 represent positive screen
controls. The results of all replicates are shown.

Data information: In (D) P-value was derived from linear regression analysis and the Pearson correlation coefficient (R) is indicated. In (F) statistical evaluation was
performed using an unpaired two-tailed student’s t-test. *P-value < 0.05; **P-value < 0.01. Black dots denote the means and error bars represent the standard deviation.
KD, knockdown; FGF, fibroblast growth factor; TGFβ, transforming growth factor beta; αSMA, alpha smooth-muscle actin; col1, collagen 1; NTC, non-targeting siRNA con-
trol; SSMD, strictly standardized mean difference.
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FOSL2/FRA2 belongs to the activator-protein (AP)-1 family of

transcription factors and is a known regulator of wound repair, and

TGFβ-mediated fibrosis (Eferl et al, 2008). Increased FOSL2/FRA2

expression is detected in several chronic lung diseases, including

pulmonary fibrosis, COPD, and asthma (Birnhuber et al, 2019).

Notably, ectopic expression of FOSL2/FRA2 in mice results in fibro-

sis of several organs, including the lung, highlighting a potential

profibrotic role of FOSL2/FRA2 (Eferl et al, 2008). Our high-content

screens demonstrate that FOSL2/FRA2 is required for myofibroblast

differentiation, consistent with its postulated profibrotic role. Collec-

tively, our data suggest that TCF21 and FOSL2/FRA2, whose bind-

ing sites are enriched in DMRs at strong enhancers, may mediate

some of the downstream biological effects in COPD fibroblasts and

contribute to disease phenotypes, linking epigenetic changes to gene

regulatory networks. Future work is needed to delineate and experi-

mentally validate the target genes directly bound and regulated by

these transcription factors in lung fibroblasts.

Transient TGFβ1 activity is required for lung tissue regeneration

and repair upon injury, however its persistent activation in lung fibro-

blasts leads to aberrant repair and fibrosis (Fernandez & Eickel-

berg, 2012). In turn, reduced fibroblast proliferation and response to

TGFβ1 has been proposed as a key mechanism driving the develop-

ment of emphysema (Plantier et al, 2007; Togo et al, 2008; Konigshoff

et al, 2009; Kulkarni et al, 2016). How these phenotypes are con-

trolled at the molecular level is not well understood. We identified

and functionally characterized numerous, previously unknown regu-

lators of lung fibroblast function in COPD. Among the top candidates,

silencing of the water/glycerol channel aquaporin 3 (AQP3), Hedge-

hog transcription factor GLI4 and focal adhesion protein leupaxin

(LPXN) had the most drastic effects on both fibroblast proliferation

and TGFβ1-mediated differentiation, establishing these three proteins

as potential regulators of lung fibroblast repair and remodeling. AQP3

contribution to wound healing, ECM remodeling and cell proliferation

has been well documented in other cellular systems (Xu et al, 2011;

Ryu et al, 2012; Chen et al, 2014; Huang et al, 2015; Hou et al, 2016;

Luo et al, 2016; Xiong et al, 2017) and the role of LPXN in cancer cell

proliferation and migration through regulation of focal adhesion sites

is recognized (Kaulfuss et al, 2008; Dierks et al, 2015). Hence, down-

regulation of AQP3 in COPD fibroblasts could contribute, at least in

part, to the decreased proliferation and contractility, manifesting in

reduced fibroblast activity and impaired response to injury in emphy-

sema (Togo et al, 2008). In support of our data, change in expression

of AQP3 (Heinbockel et al, 2018) and LPXN (Spira et al, 2004) in

COPD/emphysematous lung tissue has been observed previously,

consistent with their dysregulation in COPD fibroblasts in our RNA-

seq. Notably, we showed that changes in expression of AQP3, LPXN,

and GLI4 in COPD fibroblasts were also associated with aberrant

methylation in proximity to their TSS, raising the possibility that their

epigenetic regulation may be one of the factors contributing to the

reduced repair capacity of lung fibroblasts in emphysema (Muller

et al, 2006; Togo et al, 2008).

Notably, we observed strong effects on lung fibroblast prolifera-

tion and differentiation upon targeted knockdown of different epige-

netic enzymes and readers, identifying these factors as key

regulators of fibroblasts and COPD repair phenotypes. The imbal-

ance of histone acetyltransferase (HAT) and deacetylase (HDAC)

activities has previously been linked to COPD (Ito et al, 2005), pro-

viding a scientific basis for the potential use of bromodomain (BET)

and HDAC inhibitors in COPD (van den Bosch et al, 2017); how-

ever, the potential of targeting other dysregulated epigenetic activi-

ties in COPD remains to be explored.

Collectively, our results demonstrate that focused, high-

resolution profiling of defined cell populations in COPD effectively

complements large-cohort epigenetic biomarker studies and can pro-

vide important insights into the COPD-driving cell populations and

associated mechanisms. Integration of -omics data across disease

stages is a powerful tool for the identification of novel candidate dis-

ease regulators and potential sensitive biomarkers. Future large-

scale profiling of early disease in an extended patient cohort will be

crucial for an improved understanding of COPD pathology and will

guide the development of new diagnostic strategies and disease-

modifying therapies for early disease.

Materials and Methods

Study approval

The protocol for tissue collection was approved by the ethics com-

mittees of the University of Heidelberg (S-270/2001), Ludwig-

Maximilians-Universit€at München (projects 333-10 and 17-166) and

the University of Texas Health Science Center at Houston (HSC-MS-

08-0354 and HSC-MS-15-1049). The experiments followed the prin-

ciples set out in the WMA Declaration of Helsinki and the Depart-

ment of Health and Human Services Belmont Report. All patients

gave written informed consent before inclusion in the study and

remained anonymous in the context of this study.

Patient samples

Lung tissue samples were obtained through collaborations with the

Lung Biobank Heidelberg at the Thoraxklinik (Heidelberg, Ger-

many), the Asklepios Clinic (Gauting, Germany) and the UTHealth

Pulmonary Center of Excellence (Houston, TX, USA). Residual lung

parenchyma samples were obtained from patients undergoing lung

surgery due to primary squamous cell carcinomas (SCC) who had

not received chemotherapy or radiation within 4 years before sur-

gery or from COPD patients undergoing lung resection. Normal

human lung tissue was only used for protocol optimization and

obtained from the International Institute for the Advancement of

Medicine (IIAM), from lungs rejected for transplantation due to rea-

sons unrelated to obvious acute or chronic pulmonary disease.

Collection of lung tissue samples for profiling

To identify molecular changes associated with COPD development

and progression we collected distal lung tissue from patients across

COPD stages and divided them into three groups: (i) no COPD, (ii)

mild COPD (stage I, according to GOLD classification (GOLD, 2021)

and (iii) established COPD (GOLD stages II–IV, Fig EV1A). Strict

patient inclusion criteria for prospective tissue collection were estab-

lished to ensure best possible matching of control and disease

groups. To avoid direct smoking effects (van der Vaart et al, 2004),

all included donors were ex-smokers. In addition, lung function

results, as well quantitative emphysema score index (ESI) based on

chest CT and whenever possible, medical history were collected for
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each patient for their best possible characterization. Patients’ char-

acteristics and exemplary images from hematoxylin and eosin

staining of the tissue are provided in Dataset EV1 and Fig EV1B,

respectively. Each tissue sample was reviewed by an experienced

lung pathologist, who confirmed that all samples were tumor-free

and evaluated COPD relevant phenotypes, like emphysema, airway

thickening, and immune infiltration. Only ex-smokers with pre-

served lung function and no indication of emphysema or fibrosis in

the test results or patient history were included as control samples.

Importantly, we included two samples from COPD (GOLD II-IV)

donors (HLD38 and HLD39), which originated from lung resections,

ensuring that the observed changes are also present in COPD tissues

without cancer background.

There were no significant differences between control and COPD

donors regarding age, body mass index, smoking status, and

smoking history, but the control and COPD group could be clearly

separated based on lung function data (Figs 1A and EV1A,

Dataset EV1). Tissue samples that met the inclusion criteria were

cryopreserved upon collection to allow their thorough characteriza-

tion by an experienced lung pathologist before cell isolation and

profiling (Figs 1B and EV1B). We have previously shown that this

step is crucial to ensure the exclusion of low-quality control samples

presenting additional lung pathologies, which may result in

confounding effects in sequencing-based analyses (Llamazares-

Prada et al, 2021).

Emphysema score index (ESI) determination

Lung and emphysema segmentation were performed to calculate the

ESI from clinically indicated preoperative CT scans taken with

mixed technical parameters. After automated lung segmentation

using the YACTA software, a threshold of -950 HU was used with a

noise-correction range between -910 and -950 HU to calculate the

relative amount of emphysema in % of the respective lung portion

(Lim et al, 2016). While usually global ESI was measured, only the

contralateral non-affected lung side was used if one lung was

severely affected by the tumor.

FFPE and H&E

Representative slices from different areas of the tissue were fixed O/

N with 10% neutral buffered formalin (Sigma-Aldrich). Next, fixed

tissue samples were washed with PBS (Fisher Scientific) and kept in

70% ethanol at 4°C until embedding. Sample dehydration, paraffin

embedding, and hematoxylin and eosin (H&E) staining was

performed at Morphisto (Morphisto GmbH, Frankfurt, Germany).

Two 4 μm thick sections were cut per sample using a Leica RM2255

microtome with an integrated cooling station and water basin and

transferred to adhesive glass slides (Superfrost Plus, Thermo

Fisher). Subsequently, the sections were dried O/N in a 40°C oven

to remove excess water and enhance adhesion. H&E-stained slides

were evaluated by an experienced lung pathologist at the Thoraxk-

linik in Heidelberg (Germany).

Cryopreservation of lung parenchyma

The lung tissues from all donors were cryopreserved on arrival,

enabling cell isolation from multiple donors in parallel and

minimizing technical bias introduced by multiple batch processing

of fresh samples, as documented previously (Llamazares-Prada

et al, 2021; Pohl et al, 2023). Briefly, specimens were transported in

CO2-independent medium (Thermo Fisher Scientific) supplemented

with 1% BSA (Carl Roth), 1% penicillin & streptomycin (Fisher Sci-

entific), and 1% Amphotericin B (Fisher Scientific). Upon reception,

tissue pieces were carefully inflated with ice-cold HBSS (Fisher Sci-

entific), supplemented with 2mM EDTA (Thermo Fisher Scientific),

1% BSA (Carl Roth), 1% penicillin & streptomycin (Fisher Scien-

tific), and 1% Amphotericin B (Fisher Scientific). Exemplary sam-

ples of the different areas of the lung piece were collected for

subsequent histological analysis. The pleura was removed from the

remaining tissue, and airways and vessels separated from the paren-

chyma as much as possible. The parenchymal airway and vessel-

free fractions were minced, transferred to cryo-tubes, covered with

ice-cold freezing medium [70% DMEM, high glucose with

GlutaMAX™ (Thermo Fisher Scientific), 20% FBS (Gibco) and 10%

DMSO (Carl Roth)], kept on ice for 15min, and transferred to −80°C
in Mr. Frosty™ containers (Nalgene) to ensure a gradual tempera-

ture decrease (1°C/min). For long-term storage, samples were kept

in liquid nitrogen.

Fibroblast isolation from human lung tissue

Fibroblasts isolation followed a strict, standardized protocol to mini-

mize potential biases related to tissue location and batch effects. We

took care to have a representation of different disease stages during

cell isolation to avoid introducing disease-stage-related batch effects.

As no universal fibroblast markers for FACS are available, primary

human lung fibroblasts were isolated by explant outgrowth from

tumor-free, distal parenchymal lung tissue that has been depleted

from visible airways and vessels, following previously described

protocols (Hallgren et al, 2010; Dessalle et al, 2016; Clifford

et al, 2018; Llamazares-Prada et al, 2021). To have a better repre-

sentation of the parenchymal fibroblasts and preserve lung hetero-

geneity, we collected tissue explants from different regions of the

parenchyma and combined them for cell isolation. Briefly, 7–8
micro-dissected lung parenchyma pieces were placed per well into

6-well plates, let for 30min at RT without medium to improve

explant attachment, and carefully covered with 1ml of growth

medium: DMEM, high glucose, GlutaMAX™ (Thermo Fisher Scien-

tific) supplemented with 2% FBS (Gibco) and 1% penicillin & strep-

tomycin (Thermo Fisher Scientific). Explants were left undisturbed

for 4–7 days, afterward the medium was exchanged every 2 days,

and the outgrowth of fibroblasts from the explants was followed

daily. Cells were collected from multiple explant pieces when

reaching 70% confluency to preserve the fibroblast heterogeneity.

Possible epithelial contamination was prevented by short trypsiniza-

tion of the outgrown cells during the first passage (0.05% trypsin

with EDTA (Gibco), 3 min at 37°C) and keeping cells in the growth

medium indicated above, suitable for fibroblasts enrichment. Fibro-

blast cells for RNA-seq and T-WGBS profiling were collected from

all donors in passage 3.

Immunofluorescence of human lung fibroblasts

The purity of the isolated fibroblasts was assessed by immunofluo-

rescence using mesenchymal markers vimentin (VIM) and alpha
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smooth muscle actin (αSMA) as follows. 104 human lung fibroblasts

in passage 3 were seeded per well in a 96-well plate for imaging

(Zell-kontakt). 48 h later, cells were washed with 1X PBS (Fisher

Scientific), fixed for 10min with 4% PFA (Sigma-Aldrich) at RT,

washed and permeabilized for 10min with 0.3% Triton-X-100 (Carl

Roth) at RT. Unspecific staining was blocked by incubating 1 h at

RT with blocking buffer: 5% BSA (Carl Roth), 2% Normal Donkey

Serum (Abcam) in 1× PBS (Fisher Scientific). Cells were incubated

with primary antibodies against VIM (sc-7557, Santa Cruz Biotech-

nology, 1:200) and αSMA (ab7817, Abcam, 1:100) overnight at 4°C
and labeled with respective secondary antibodies [donkey anti-goat

IgG Alexa Fluor 488 (A-11055, Thermo Fisher Scientific, 1:500) and

donkey anti-mouse IgG Alexa Fluor 568 (A-10037, Thermo Fisher

Scientific, 1:500)] for 40min at RT in the dark. After washing with

1X PBS (Fisher Scientific), the nuclei were counterstained with DAPI

(Thermo Fisher Scientific, 1:5,000) for 10min at RT and washed

with 1X PBS. Stained and fixed cells were kept in 1× PBS (Fisher

Scientific) at 4°C in the dark until imaging. Imaging was conducted

at the ZMBH imaging facility (Heidelberg, Germany) using the Zeiss

LSM780 confocal fluorescent microscope.

FACS analysis of isolated fibroblasts and lung suspension

Cryopreserved lung tissues were thawed for 2 min in a 37°C water-

bath, collected in 50ml Falcon tubes, and washed with wash buffer:

HBSS supplemented with 2mM EDTA (Thermo Fisher Scientific),

1% BSA (Carl Roth), 1% penicillin & streptomycin (Fisher Scien-

tific) and 1% Amphotericin B (Fisher Scientific). Tissue was minced

into smaller pieces prior to mechanical and enzymatic dissociation

as indicated previously (Llamazares-Prada et al, 2021; Pohl et al,

2023). Briefly, the minced tissue (1 g) was introduced in Gentle-

MACS C-tubes (Miltenyi Biotec) containing 10 μM ROCK inhibitor

(Y-27632, Adooq Bioscience), 10 μg DNase I (ProSpec-Tany Techno-

Gene), the enzyme mix from the human tumor tissue dissociation

kit (Miltenyi Biotec) and 4.5 ml of CO2-independent media (Thermo

Fisher Scientific) supplemented with 1% BSA (Carl Roth), 1% peni-

cillin & streptomycin (Fisher Scientific) and 1% Amphotericin B

(Fisher Scientific). Tubes were closed tightly, introduced into the

GentleMACS dissociator (Miltenyi Biotec) for mechanic disruption

and the following program was performed: program h_tumor_01,

followed by 15min incubation at 37°C on a rotator; h_tumor_01,

15min at 37°C on a rotator; h_tumor_02, and 15min at 37°C on a

rotator for a final enzymatic dissociation and a last mechanical

shearing using the program h_tumor_02. The samples were pipetted

up and down to help disaggregation. Finally, the enzymatic reaction

was stopped by adding 20% FBS (Gibco) and single cells were col-

lected by sequential filtering through 100 μm, 70 μm, and 40 μm cell

strainers (BD Falcon). Cells were centrifuged, resuspended in ACK

lysis buffer (Sigma-Aldrich), and incubated for 3 min at RT to lyse

erythrocytes. Lung single-cell suspensions were washed with HBSS

(Fisher Scientific) supplemented with 2mM EDTA (Thermo Fisher

Scientific), 1% BSA (Carl Roth), 1% penicillin & streptomycin

(Fisher Scientific), and 1% Amphotericin B (Fisher Scientific).

To generate fibroblast single-cell suspensions, passage 3 fibro-

blasts were trypsinized 5min at 37°C using 0.05% trypsin with

EDTA (Gibco), centrifuged at 250 g for 5 min at RT, and resus-

pended in HBSS (Fisher Scientific) supplemented with 1% BSA (Carl

Roth), 1% penicillin & streptomycin (Fisher Scientific) and 1%

Amphotericin B (Fisher Scientific).

Lung and fibroblast single-cell suspensions were incubated with

human TruStain FcX (BioLegend) for 30min on ice to block Fc

receptors. Immune and epithelial cells were labeled using CD45

(CD45-Bv605, BD Bioscience) and EpCAM (anti-human CD326 -PE,

Affymetrix eBioscience) antibodies respectively for 30min in the

dark at 4°C following manufacturer instructions. Stained samples

were washed with PBS 1X (Fisher Scientific) and resuspended in

HBSS (Fisher Scientific) supplemented with 2mM EDTA (Thermo

Fisher Scientific), 1% BSA (Carl Roth), 1% penicillin & streptomycin

(Fisher Scientific) and 1% Amphotericin B (Fisher Scientific).

Stained cells were added to Falcon 5ml polystyrene tubes with 40 μ
m cell strainer caps (Neolab Migge). To discriminate between live

and dead cells, we used SyTOX blue (Thermo Fisher Scientific) as

recommended by the manufacturer.

RNA isolation and RNA-seq

105 HLFs were harvested at passage 3 for RNA-seq studies 24 h after

fresh medium change by scraping in ice-cold PBS. To minimize

technical batch effects, cells were washed, pelleted, flash-frozen in

liquid nitrogen, and stored at −80°C until all donors were collected.

Afterwards, RNA isolation, library preparation, and sequencing of

all samples were performed simultaneously. Total RNA was isolated

using RNeasy plus micro kit (Qiagen, Hilden, Germany) following

manufacturer’s instructions. DNA was removed by passing the

lysate through the gDNA eliminator column and by an additional

on-column DNase I treatment (Qiagen) before the elution. RNA was

eluted using nuclease-free water (Thermo Fisher Scientific) and the

concentration measured with Qubit HS Kit (Thermo Fisher Scien-

tific). RNA integrity was assessed using the Bioanalyzer 2100

(Agilent, model G2939A) and the RNA 6000 pico kit (Agilent). Only

samples with RIN> 8.5 were processed.

Libraries were prepared at the Genomics core facility (GeneCore)

at EMBL using 200 ng of total RNA as input. Ribosomal RNA was

removed by Illumina Ribo-Zero Gold rRNA Removal Kit Human/

Mouse/Rat (Illumina, San Diego, CA, USA) and strand-specific total

RNA-seq libraries were prepared using the Illumina TruSeq RNA

Sample Preparation v2 Kit (Illumina, San Diego, CA, USA) imple-

mented on the liquid handling robot Beckman FXP2. Obtained

libraries were pooled in equimolar amounts. 1.8 pM solution of each

library was pooled and loaded on the Illumina sequencer NextSeq

500 High output and sequenced uni-directionally, generating ∼450
million reads per run, each 75 bases long. General statistics about

the quality of the RNA-seq can be found in Table EV1.

RNA-seq read alignment and transcript abundance quantification

Single-end reads were mapped to the human genome version 37

(hg19) and the reference gene annotation (release 70, Ensembl)

using STAR v2.5.0a (Dobin et al, 2013) with following parameters:

--outFilterType BySJout –outFilterMultimapNmax 20 –alignSJover-
hangMin 8 –alignSJDBoverhangMin 1 –outFilterMismatchNmax 999

–alignIntronMin 20 –alignIntronMax 100000 –outFilterMismatchNo-

verReadLmax 0.04 –outSAMtype BAM SortedByCoordinate –
outSAMmultNmax 1 –outMultimapperOrder Random.
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Contamination of PCR duplication artifacts in the RNA-seq data

was controlled using the R package dupRadar (Sayols et al, 2016).

The featureCounts script (Liao et al, 2014) of the Subread package

v1.5.3 was used to assign and count mapped reads to annotated

protein-coding and lncRNA genes with default settings.

Differential gene expression analysis

Statistical analysis of differential gene expression was performed with

the DESeq2 Bioconductor package (Love et al, 2014). For exploratory

RNA-seq data analysis, the data needs to be homoscedastic. Therefore,

the raw counts were transformed by the regularized-logarithm trans-

formation rlog. Genes with less than 32 counts in at least five samples

were excluded from further analysis. Ex-smokers with preserved lung

function (no COPD, n= 3) were considered as ground state and differ-

ential gene expression in COPD patients classified as GOLD Grade II-

IV (n= 5) was identified as a significant change in expression by an

FDR (false discovery rate)< 0.05 and an absolute log2 fold change >
0.5 (corresponding to fold change > 1.4), after fold change correction

with the built-in lfcShrink function.

DNA isolation and T-WGBS

For DNA methylation analysis, DNA isolation and library prepara-

tion were performed in two rounds, but for each round, a represen-

tation of samples from different disease stages was ensured to avoid

potential disease-stage-related batch effects. Genomic DNA was

extracted from 2 × 105 primary human lung fibroblasts harvested in

passage 3 using QIAamp Micro Kit (Qiagen, Hilden, Germany) fol-

lowing manufacturer’s protocol, with an additional RNase A treat-

ment step. T-WGBS was essentially performed as described

previously (Wang et al, 2013) using 30 ng genomic DNA as input.

15 pg unmethylated DNA of phage lambda was used as control for

bisulfite conversion. Four sequencing libraries were generated per

sample using 11 amplification cycles. For each sample, equimolar

amounts of all four libraries were pooled and sequenced on two

lanes of a HiSeq2500 (Illumina, San Diego, California, US) machine

at NGX Bio (San Francisco), resulting in 100 bp, paired-end reads.

For different sequencing runs, a representation of libraries from dis-

ease stages in each flow cell was ensured. General statistics about

the quality of the WGBS can be found in Table EV2.

Read alignment

The whole genome bisulfite sequencing mapping pipeline MethylC-

tools with modifications to adapt for the T-WGBS data was used

(https://github.com/hovestadt/methylCtools) (Hovestadt

et al, 2014). Briefly, the hg19 reference genome (37d5) was trans-

formed in silico for both the top strand (C to T) and bottom strand

(G to A). Before alignment, adaptor sequences were trimmed using

Trimmomatic (release 0.35) (Bolger et al, 2014). The first read in

each read pair was then C-to-T converted and the 2nd read in the

pair was G-to-A converted. The converted reads were aligned to a

combined reference of the transformed top (C to T) and bottom (G

to A) strands using BWA MEM (bwa-0.7.8) with default parameters,

yet, disabling the quality threshold for read output (−T 0) (Li &

Durbin, 2009). After alignment, reads were converted back to the

original states, and reads mapped to the antisense strand of the

respective reference were removed. Duplicate reads were marked,

and the complexity determined using Picard MarkDuplicates

(http://picard.sourceforge.net/). Total genome coverage was calcu-

lated using the total number of bases aligned from uniquely mapped

reads over the total number of mappable bases in the genome.

Methylation calling

At each cytosine position, reads that maintain the cytosine status

were considered methylated, and the reads that have cytosine

converted to thymine were considered unmethylated. Only bases

with Phred-scaled quality score of ≥ 20 were considered. In addi-

tion, the 10 bp at the two ends of the reads were excluded from

methylation calling according to M-bias plot quality control. In addi-

tion, CpGs located on sex chromosomes were removed from

analysis.

DMR calling

Differences in CpG methylation profiles of no COPD donors (n= 3)

and patients diagnosed with COPD (n= 5) were analyzed using the

R/Bioconductor package bsseq (Hansen et al, 2012). First, the data

were smoothed using the built-in Bsmooth function with default set-

tings. Only CpG sites with a coverage of at least 4× were kept for

subsequent analysis. A t-statistic was calculated between no COPD

and COPD (II–IV) samples using the Bsmooth.tstat function with fol-

lowing parameters: local.correct= TRUE, maxGap= 300, estima-

te.var= “same”. Differentially methylated regions (DMRs) were

called by (i) selecting the regions with the 5% most extreme t-

statistics in the data (lower and upper 2.5% quantile; default param-

eters of the dmrFinder function), (ii) filtering for regions exhibiting

at least 10% methylation difference between no COPD and COPD

(II–IV) and containing at least 3 CpGs. (iii) Finally, a non-parametric

Wilcoxon test was applied using the average methylation level of

the region to remove potentially false positive regions, since the t-

statistic is not well-suited for not normally distributed values, as

expected at very low/high (close to 0% / 100%) methylation levels.

A significance level of 0.1 was used. No further FDR correction was

performed.

Validation of T-WGBS workflow with mass Array

While establishing the T-WGBS for this project, we initially vali-

dated our approach using matrix-assisted time-of-flight mass spec-

trometry (MassARRAY; Agena Bioscience), a sequencing-

independent method. For this, we performed T-WGBS on the com-

mercially available smoker and COPD lung fibroblasts (purchased

from Epithelix) and selected nine regions with different levels of

methylation for validation using MassARRAY. The MassARRAY

assay was performed as described previously (Ehrich et al, 2005).

As shown in Fig EV1K, we obtained an excellent correlation

between both methods, providing technical validation of T-WGBS

and our workflow.

Gene ontology analysis

The closest genes were assigned to DMRs and subjected to gene

ontology enrichment analysis using GREAT (McLean et al, 2010).
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To define significant associations with pathways, we used the

default settings of the GREAT tool, which are as follows: FDR< 0.05

in both binominal and hypergeometric tests and minimum region-

based fold enrichment of 2.

ChIP-seq data

Histone modification ChIP-seq data of human lung fibroblasts were

obtained from the ENCODE portal (https://www.encodeproject.org/

) (Davis et al, 2018) with the following identifiers: ENCFF354IJB,

ENCFF070CZY, ENCFF377BNX, ENCFF227WSF, ENCFF208SHP,

ENCFF386FDQ, ENCFF102BGI, ENCFF843AYT.

Chromatin states for adult human lung fibroblasts (accession:

ENCFF001TDQ) were obtained from ENCODE data base (Ernst &

Kellis, 2017). The number of bp of each DMR coinciding with a

chromatin state was calculated and the chromatin state with the

largest overlap was assigned to the DMR. To assess the genomic

background, 10,000 regions with matching size and CpG distribu-

tion were randomly selected.

TRACE inferred binding sites of TCF21 (ENCFF506LDV), FOSL2

(ENCFF248CHP) and ZBTB7A (ENCFF063SAY) in human lung fibro-

blasts were obtained from ENCODE (https://www.encodeproject.

org/) (Davis et al, 2018). Enrichment at selected DMRs was tested

using the enrichPeakOverlap from the Bioconductor package clus-

terProfiler (Wu et al, 2021).

Profile plots of DMRs and identification of super-enhancers

Enrichment of H3K4me1, H3K27ac, and H3K27me3 signals at DMRs,

stratified in hypo- and hypermethylated regions, was performed with

peakSeason (https://github.com/PoisonAlien/peakseason).

Super Enhancers (SE) were identified using ROSE (Rank Ordering

of Super Enhancers) software (v.0.1; https://bitbucket.org/young_

computation/rose), by merging closely spaced (< 12.5 kb) enhancer

peaks (H3K4me1 peaks overlapping with H3K27ac peaks) (Whyte

et al, 2013). Further on, all enhancers were ranked by their

H3K27ac signals. Separation of SE and enhancers was performed

based on the geometrical inflection point.

Transcription factor motif analysis

All hypomethylated DMRs which showed an overlap with the strong

enhancer chromatin state were selected and motif enrichment analy-

sis was carried out using the findMotifsGenome.pl script of the

HOMER software suit omitting CG correction.

In order to obtain information about methylation dependent bind-

ing for transcription factor motifs which are enriched at DMRs, the

results of a recent SELEX study (Yin et al, 2017) were integrated in the

analysis and a motif database of 1,787 binding motifs with associated

methylation dependency was constructed. The log odds detection

threshold was calculated for the HOMER motif search as following.

Bases with a probability > 0.7 get a score of log(base probability/

0.25), otherwise the score was set to 0. The final threshold was cal-

culated as the sum of the scores of all bases in the motif. Motif

enrichment analysis was carried out against a sampled background

of 50,000 random regions with matching GC content using the find-

MotifsGenome.pl script of the HOMER software suit omitting CG cor-

rection and setting the generated SELEX motifs as motif database.

For the TF enrichment analysis within the clusters, chromatin

states for adult human lung fibroblasts (accession: ENCFF001TDQ)

were obtained from ENCODE database (Ernst & Kellis, 2017). The

number of bp of each DMR coinciding with a chromatin state was

calculated and the chromatin state with the largest overlap was

assigned to the DMR. All hypomethylated DMRs which showed an

overlap with the strong enhancer chromatin state were selected and

split by the DMR k-means cluster analysis into two groups (cluster1

and cluster3). Motif enrichment analysis against known motifs was

carried out using the findMotifsGenome.pl script of the HOMER soft-

ware suit omitting CG correction, as described above.

siRNA-based phenotypic assays in primary human lung
fibroblasts

Normal human lung fibroblasts (NHLFs) from two donors (donor

IDs: 608197; 543644) and diseased COPD human lung fibroblasts

(DHLFs) from three donors (donor IDs: OF3353, OF3418, and

OF3238) were purchased from Lonza and tested for their response

to FGF2 and TGFβ stimulation.

Fibroblast to myofibroblast transition (FMT) assay

Cells in passage 5 were plated in a poly-D-lysine coated 384 CellCar-

rier microtiter plate from PerkinElmer in fibroblast basal medium

(FBM) with FGM-2TM Single Quots (Lonza) at a density of 2,000

cells per well. Six hours after cell seeding, cells were transfected

with siRNAs (Horizon ON-Target Plus siRNA pools, Table EV3) as

previously described (Weigle et al, 2019). Twenty four hours later,

the medium was replaced by FBM containing 0.1% fetal calf serum

(starvation medium). Twenty four hours later, fibroblast to myofi-

broblast differentiation was initiated by adding fresh starvation

medium containing a mixture of Ficoll 70 and 400 (GE Healthcare;

37.5 mg/ml and 25mg/ml, respectively), 200 μM vitamin C and 5

ng/ml TGFβ1. After 72 h the medium was removed, cells were fixed

with 100% ice-cold methanol for 30min, washed with PBS, permea-

bilized 20min using 1% Triton-X-100 (Sigma), washed, and blocked

for 30min with 3% BSA in PBS. After an additional wash step, cell

nuclei were stained using 1 μM Hoechst 33342 (Molecular Probes).

Alpha smooth-muscle actin (αSMA) and collagen I (col1) were

stained using monoclonal antibodies (1:1,000 diluted, Sigma, A2547

and SAB4200678, respectively). For detection of primary antibodies,

cells were washed and incubated for 30min at 37°C with AF647-

goat-anti-mouse IgG2b (αSMA) and AF568 goat-anti-mouse IgG1

(col1) antibodies. After removal of secondary antibodies, cells were

stained with HCS Cell Mask Green stain (Invitrogen, 1:50,000). Fol-

lowing a final PBS 1× wash step, images were acquired in a GE

Healthcare InCell 2200 Analyzer, using 2D-deconvolution for nuclei

(Hoechst channel), cells (FITC channel), αSMA (Cy5 channel) and

collagen I (TexasRed channel), and images were transferred to and

analyzed using Perkin Elmer’s Columbus™ Image Storage as previ-

ously described (Aumiller et al, 2017; Weigle et al, 2019). Briefly,

the building blocks (BB) of the Columbus™ Image Analysis system

were used, first nuclei (Hoechst channel acquisition) were detected

using the BB “nuclei”. Second, cells were defined with the BB “find

cytoplasm” from the FITC channel image. αSMA fibers and col1 area

were defined by two individual BBs “find simple image region”

based on images acquired in the Cy5 and TexasRed channels,
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respectively. Both αSMA fibers and col1 readouts were normalized

to the number of cells per image field. The FMT assay was

performed in 2 NHLFs and 3 DHLFs independent donors. For each

donor, siRNA transfection for every gene was performed in four

technical replicates. In addition, the FMT screen was performed in

each donor twice independently.

Proliferation assay (nuclei count)

To analyze the effects of gene knockdown on FGF2-mediated fibro-

blast proliferation, 2,000 cells at passage 5 were plated in a poly-D-

lysine coated 384-CellCarrier microtiter plate (PerkinElmer) in FBM

with FGM-2TM SingleQuots™ (Lonza). Six hours after seeding, cells

were transfected with siRNAs (Dharmacon ON-Target Plus siRNA

pools, HORIZON discovery, Table EV3) as previously described

(Weigle et al, 2019). Twenty four hours later, the medium was

replaced by FBM containing 0.1% fetal calf serum (starvation

medium). Twenty four hours later the medium was replaced by star-

vation medium containing 20 ng/ml basic FGF (R&D Systems). After

72 h the medium was removed, cells washed with PBS and treated

with 3.7% formaldehyde containing 1 μM Hoechst 33342 for 30min.

Cells were washed with PBS and images were acquired in a GE

Healthcare InCell 2200 Analyzer, using 2D-deconvolution for nuclei

(Hoechst channel). Nuclei numbers were determined using the

Columbus™ image analysis software as described above (BB

“nuclei”). The proliferation assay was performed in five indepen-

dent donors: two NHLFs and three DHLFs. For each donor, siRNA

transfection to knockdown the selected candidate genes was

performed in four technical replicates. In addition, the proliferation

screen was performed in each donor twice independently.

Analysis of phenotypic screen data

siRNA transfection was performed in each phenotypic screen in four

technical replicates and repeated two times independently for each

donor. Three DHLF and two NHLF independent donors were used for

each screen. For statistical analysis of both the FMT and proliferation

data, each readout (nuclei for both FMT and proliferation, αSMA and

col1 for FMT) was first normalized within each plate, based on the

negative control wells, corresponding to cells transfected with non-

target siRNA control (NTC) (40 wells per plate). After plate-based nor-

malization, the normalized values for the specific readout (e.g., nuclei,

αSMA and col1) were averaged for the independent replicates. To mea-

sure the siRNA effect as the magnitude of the difference between an

individual siRNA and the negative control (NTC siRNA), the previ-

ously described strictly standardized mean difference (SSMD) was

applied (Zhang, 2007; Zhang et al, 2007). The following formula was

used for the SSMD calculation: SMD ¼ μ1�μ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ12þσ22
p , where μ1 is the nor-

malized mean of all NTC siRNAs, μ2 is the mean of the normalized

values of siRNA for a given gene, σ1 is the variance of all normalized

NTC siRNAs values and σ2 is the variance of all normalized values

transfected with siRNA for a given gene.

Analysis of siRNA-mediated gene knockdown

For determining siRNA-mediated gene knockdown of ACTA2 and

TGFBR1, cells were lysed and RNA prepared using the RNeasy Plus

96 Kit according to the manufacture’s protocol. Two micrograms of

total RNA was reverse transcribed with the High-Capacity cDNA

Reverse Transcription Kit as described in the supplier’s protocol.

qPCR with 2 μl of cDNA and gene-specific TaqMan Assays was

performed as suggested in the manual (TGFBR1: Hs00610320_m1;

ACTA2: Hs00909449_m1, RNA-polymerase II amplification primers:

GCAAGCGGATTCCATTTGG and TCTCAGGCCCGTAGTCATCCT,

probe: AAGCACCGGACTCTTGCCTCACTTCATC). The gene-specific

knockdown was calculated using the (2−ΔΔCT) compared to control

siRNA treated cells (NTC) after normalization to RNA-polymerase II

expression.

For determining the siRNA-mediated gene knockdown of LPXN,

AQP3 and GLI4, the Luna Universal One-Step Reaction Mix Kit was

used (New England Biolabs) with the following amplification primers:

LPXN: CCACCACCTTCTAAAACGTCAG and CCCAAGCATTGAGTCC

AGGG; AQP3: CTCGTGAGCCCTGGATCAAGC and AAAGCTGGTTG

TCGGCGAAGT; GLI4, TCCCGCTCGGAAGGTCC and CTGAATGTC

CCCTAGGGCTG; RPLP0: CTCTGCATTCTCGCTTCCTGGAG, CAGATG

GATCAGCCAAGAAGG. Specifically, 10 ng of RNA was loaded into

MicroAmp™ Fast Optical 96-Well Reaction Plate (Applied Biosys-

tems) together with Luna Universal One-Step Reaction Mix, Luna

WarmStart® RT Enzyme Mix (New England Biolabs), 1 μl of 10×
SYBR™ Green I Nucleic Acid Gel Stain (Invitrogen), and 2 μl of 10 μM
of forward and reverse primers in a final reaction of 20 μl. The plate

was loaded in a QuantStudio™ 7 Flex Real-Time PCR System (Applied

Biosystems) and ran using the following program as recommended:

10min 55C, 1min 95C, followed by 40 cycles of 10 s 95C, 1min 60C.

All reactions were run in duplicates, and the average CT values

between duplicates were used for the analysis. The gene-specific

knockdown was calculated using the (2−ΔΔCT) compared to control

siRNA treated cells (NTC) after normalization to RPLP0 expression.

Statistical analysis

Statistical analysis was performed using GraphPad Prism software,

version 8.0.1. The significance level was set to 0.05, unless other-

wise specified. An unpaired non-parametric t-test (Mann–Whitney

test, GraphPad Prism software, version 8.0.1) was employed to

compare the lung function (FEV1 and FEV1/FVC values) between

control and COPD donors. For the analysis of the patient metadata

of the three groups studied (control, COPD I and COPD II–IV),
one-way ANOVA non-parametric unpaired test was used (Kruskal–
Wallis test, GraphPad Prism software, version 8.0.1) followed by

correction for multiple comparisons using Dunn’s test. For experi-

mental validation of the data, the number of replicates and the sta-

tistical test used are described in figure legends for each of the

panels.

Data availability

The WGBS and RNA-seq data generated in this study have been

deposited at the European Genome-phenome Archive (EGA), which

is hosted by the EBI and the CRG. The access to the patient data is

controlled by the data access committee.

• RNA-seq data: European Genome-phenome Archive (EGA) EGAS

00001006602 (https://ega-archive.org/studies/EGAS00001006602)
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• T-WGBS DNA methylation data: European Genome-phenome

Archive (EGA) EGAS00001006603 (https://ega-archive.org/studies/

EGAS00001006603)

Expanded View for this article is available online.
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