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Abstract

This thesis has two themes: (1) the predictive potential of principal components in

regression, and (2) methodological developments in sufficient dimension reduction.

For the first theme, several research papers have established a number of results

showing that, under some uniformity assumptions, higher-ranking principal components

of a predictor vector tend, across a range of datasets, to have greater squared correlation

with a response variable than lower-ranking ones. This is despite the procedure being

unsupervised. This thesis reviews these results and greatly extends them by showing that

analogues hold in the setting where nonlinear principal component analysis with general

predictors is applied.

For the second theme, research in the past 10 years has led to a measure-theoretic

framework for sufficient dimension reduction, inspired by the measure-theoretic formula-

tion of sufficient statistics, which permits nonlinear reductions. This thesis extends this

framework to allow for some of the predictors to be categorical. A new estimator, partial

generalised sliced inverse regression, is proposed and its properties and effectiveness are

explored.
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Frequently used notation

The notation listed here is used throughout this thesis, however there are some

occasions where a symbol is applied in a different way to that specified here. The

context is used to determine which meaning is intended.

a.s.P
= P almost sure equality

B(𝑆) the Borel 𝜎-field on a topological space 𝑆>
𝑖∈I 𝑆𝑖 the Cartesian product of a family of sets indexed by I

(⊥⊥ 𝑖∈I F𝑖) |F∗ the family (F𝑖)𝑖∈I of 𝜎-fields is conditionally independent given

F∗

(⊥⊥ 𝑖∈I 𝑓𝑖) | 𝑓 ∗ the stochastic process ( 𝑓𝑖)𝑖∈I is conditionally independent given

the random variable 𝑓 ∗

(𝑎, 𝑏) an open interval on some linearly ordered set

(𝑀,F𝑀) a measurable space

(𝑆, T ) a topological space

C the complex numbers

Card (𝐴) the cardinality of the set 𝐴

Cov (𝐴, 𝐵|𝐺) the conditional cross-covariance of 𝐴 and 𝐵 given the 𝜎-field 𝐺
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E (𝐴|𝐺) the conditional expectation of a Banach random variable 𝐴 given the

𝜎-field 𝐺

Σ the covariance matrix/operator of the predictor 𝑋

Cov (𝐴, 𝐵) the cross-covariance operator of 𝐴 and 𝐵

P (𝐴|𝐺) the conditional probability of 𝐴 given the 𝜎-field 𝐺

𝐷
= equality in distribution

F1 ⊴ F2 F1 is a sub-𝜎-field of F2

H a Hilbert space (generally over C)

Hom (𝐴, 𝐵) the set of all functions from 𝐴 to 𝐵∫
Ω
𝑓 d𝜇 the Bochner integral of a Banach random variable 𝑓 (with respect to 𝜇)

L (𝐵1, 𝐵2) the bounded operators from 𝐵1 to 𝐵2 where 𝐵1 and 𝐵2 are complex

Banach spaces

⊥⊥ 𝑖∈I F𝑖 the 𝜎-fields F𝑖 (𝑖 ∈ I) are independent

⊥⊥ 𝑖∈I 𝑓𝑖 the stochastic process { 𝑓𝑖}𝑖∈I is independent

𝜇 ≪ 𝜈 𝜇 is absolutely continuous with respect to 𝜈

𝜇,𝜈 measures defined on some measurable space

N the positive integers

N𝑚 the first 𝑚 positive integers

P𝐴 the conditional probability measure defined by an event 𝐴

P 𝑓 |𝐺 a conditional distribution of the random variable 𝑓 given the 𝜎-field 𝐺
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P 𝑓 the distribution of a random variable/stochastic process 𝑓

P𝑆 the set of permutations on a set 𝑆

EP ( 𝑓 ) the expectation of a Banach random variable 𝑓 with respect to P

𝜙𝑖 :
>

𝑗∈I 𝑆 𝑗 → 𝑆𝑖 the projection from
>

𝑗∈I 𝑆 𝑗 to 𝑆𝑖

P (𝐴) the powerset of a set 𝐴

(Ω,F , P) a probability space

R the real numbers

d𝜇
d𝜈 the Radon Nikodym deriviative of 𝜇 with respect to 𝜈

𝜎𝐴 the relative 𝜎-field on 𝐴

[𝑎, 𝑏] a closed interval on some linearly ordered set

⊗
𝑖∈I 𝑣𝑖 product of elements of a complex unital Banach algebra over an arbitrary

set

⊕
𝑖∈I 𝑣𝑖 summation of elements of a complex Banach space over an arbitrary set⊗
𝑖∈I F𝑖 the tensor product 𝜎-field⊗
𝑖∈I H𝑖 tensor product of complex Hilbert spaces⊗
𝑖∈I P𝑖 product of probability measures⊗
𝑖∈I 𝐴𝑖 the tensor product of operators

Var (𝐴) the covariance operator of a Hilbertian random variable 𝐴

Z∗ the counting numbers (the non-negative integers)

𝑎 < 𝑏, 𝑎 > 𝑏, 𝑎 ≤ 𝑏, 𝑎 ≥ 𝑏 inequalities on a partially ordered set
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𝐴 ⊥ 𝐵 𝐴 and 𝐵 are orthogonal subsets of some Hilbert space

𝐴† Moore-Penrose inverse of an operator

𝐵 a Banach space

𝐷 (𝐺) the domain of some function 𝐺

𝑑 number of components extracted from a dimension reduction procedure

𝐻𝑆(H1,H2) the Hilbert-Schmidt operators between two complex Hilbert spaces

𝑛 number of observations

𝑝 number of variables

𝑋 the predictor variable in a regression setting

𝑌 the response variable in a regression setting
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Chapter 1

Introduction

1.1 What is the need for dimension reduction?

When the number of variables (𝑝) in a dataset is large relative to the number of

observations (𝑛), classical statistical methodology tends to break down. Take

ordinary least squares regression for example. When 𝑛 < 𝑝, the inversion

in the equation for the estimated coefficients in a linear regression becomes

impossible to perform as the matrix 𝐴𝑇 𝐴 (where 𝐴 ∈ R𝑛×𝑝 is the design matrix)

is non-invertible.

This is an instance of the infamous ‘curse of dimensionality’, which is

frequently encountered when dealing with high-dimensional data. This expression

is used to describe an array of issues that may be encountered in Statistics. These

include

1. statistical methods suffering from worse performance as the dimension

increases,

2. statistical methods suffering from rapidly growing time complexity as the

dimension increases,

1



Chapter 1. Introduction

3. statistical methods being impossible to perform because of theoretical

limitations such as operator singularity or ill-conditioning,

4. the inherent difficulty in visualising high-dimensional data.

To perform statistical techniques with high-dimensional data then, this curse

must be dealt with. This is where dimension reduction comes into play. By reduc-

ing the dimension of a dataset before applying classical statistical methodology,

the aforementioned issues posed by high-dimensionality can be overcome.

1.2 What approaches to dimension reduction exist?

There are two main classes of dimension reduction methods. These are known re-

spectively as feature selection and feature extraction. In practice, these approaches

are often combined.

Feature selection, also called variable selection, works by choosing a proper

subset of the variables, while discarding the rest. It does this by determining which

variables are redundant or irrelevant, and discards them to leave a dimension

reduced dataset. As feature extraction is the focus of this thesis, feature selection

is not discussed further; a review of the literature can be found in Kumar and

Minz (2014).

Feature extraction, on the other hand, seeks a collection of 𝑑 functions of the

original 𝑝 variables where 𝑑 < 𝑝, and makes use of these transformed variables

instead. So far, ‘dimension reduction’ has meant either feature selection or feature

extraction. As is conventional in the Statistics literature, the phrase is henceforth

limited to feature extraction only.

The earliest methods for dimension reduction, which remain commonly used,

sought only linear functions of the variables. For example, principal components

analysis seeks linear combinations which have maximal variance, subject to the

2



Chapter 1. Introduction

coefficient vectors forming an orthonormal system. More recent approaches

allow for nonlinear combinations by making use of the “kernel trick", most

famous for its application to the support vector machine developed by Cortes

and Vapnik (1995). For example, Schölkopf et al. (1998) use kernels to develop

kernel principal components analysis. Note that, while resulting in further

dimension reduction, these nonlinear approaches often sacrifice interpretability

of the extracted components so may be inappropriate for some applications.

Nonlinear approaches are also more prone to overfitting, though this can be

controlled by using cross-validation methods to choose a kernel, from some

parametrised family, which gives a function space of functions whose complexity

is controlled.

Many commonly used dimension reduction procedures are unsupervised, and

are often applied before a supervised learning task. For example, it is common

practice, in a high-dimensional regression setting, to regress the response on the

leading principal components of the predictors. There is also a supervised frame-

work, sufficient dimension reduction, which is detailed in Chapter 4. Speaking

loosely for now, methods in this framework take the response into account by

requiring that the transformed predictors have the same predictive power for the

response as the original predictors.

1.3 Non-classical data

The classical framework for statistical methodology assumes that the data, or

the predictors in a regression setting, are vectors. This was so historically, but

now researchers are able to collect more diverse types of data. These new data

are broad in scope and include audio files, images, videos, tweets, curves, and

surfaces. To handle such data, either classical statistical methodology needs

3



Chapter 1. Introduction

to be broadened to include them as subcases or entirely new methods need to

be developed. New fields have emerged as a result of this development in data

collection including image processing, audio processing, and natural language

processing.

One particular type of data that has been of recent interest in the dimension

reduction literature is Hilbertian data. A datum is said to be Hilbertian if it is an

element of a (typically real) Hilbert space H. The quintessential separable infinite-

dimensional example is the space of square-integrable real-valued functions over

the interval [0, 1] where functions that are almost everywhere equal are considered

equivalent. Such functions are common in Neuroscience, where brainwave data

are being collected. They are also found in Economics and Finance, where

functional processes (e.g.stock prices) are often discretely sampled in the form of

time-series data.

As the Hilbert spaces used herein are typically infinite-dimensional, there are

unique theoretical issues that do not arise for multivariate data. In particular, it is

possible for relevant operators to be unbounded, non-compact, or non-nuclear

(see Section 2.4). This statement notwithstanding, classical statistical methods are

often adaptable to this setting by replacing the standard Euclidean inner product

with the inner product of the Hilbert space.

Analogously to the situation with multivariate data, techniques for reducing

the dimension of Hilbertian data can be developed. Indeed, many dimension

reduction approaches have been extended to this case. For example, principal

components analysis was extended to a functional data setting in Chapter 8 of

Ramsay and Silverman (2005), while a more general Hilbertian data formulation

is given in Chapter 9 of Hsing and Eubank (2015). In the sufficient dimension

reduction framework, Ferré and Yao (2003) extended the sliced inverse regression

method, developed by Li (1991), to Hilbertian data.

4



Chapter 1. Introduction

1.4 Thesis aims and structure

It has been noted already that, in high-dimensional regression, it is common to

regress a response on the leading principal components of the predictor vector. As

the principal components procedure is unsupervised, this practice is controversial.

For any given dataset, there is no guarantee that the leading principal components

will be more informative of the response than the trailing ones. Nevertheless,

there are a number of research papers (see, e.g., Artemiou and Li (2009), Ni

(2011), and Artemiou and Li (2013)) that establish that, across a range of datasets,

higher-ranking components tend (i.e.with probability exceeding 1/2) to have

greater squared correlations with the response than lower-ranking ones. One of

the aims of this thesis is to review these results, after giving an account of the

principal components procedure, and to greatly extend them by proving analogues

in the setting where nonlinear principal components analysis is used with a general

predictor. This is the focus of Chapter 3.

More generally, the leading components obtained from an unsupervised

dimension reduction procedure are not necessarily the most informative of the

response. This makes it desirable that the response be taken into account, thus

motivating the sufficient dimension reduction framework. In the past 10 years,

this framework has been given (see Lee et al. (2013) and Li (2018)) a measure-

theoretic formulation, herein called generalised sufficient dimension reduction,

which allows for nonlinear reductions. This thesis extends this framework to allow

for some of the predictors to be categorical. A new estimator, partial generalised

sliced inverse regression, is proposed and its properties and effectiveness are

explored. This is the focus of Chapter 4.

Chapter 2 provides the definitions used throughout, along with some supporting

results. As it is rather long and dense, the author recommends reading from

Chapter 3 and referring back whenever an unfamiliar term, notation, or result is

5



Chapter 1. Introduction

encountered. Chapter 5 closes with a review of the developments and provides

ideas for future research.
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Chapter 2

Definitions and supporting results

As the following sections overlap, some definitions in one section may seem to be

more appropriately placed in another. The chosen order is designed to trade off

between minimising forward cross-referencing as much as possible and placing

supporting results in appropriate places.

2.1 Set Theory

Enough Set Theory is given in this section to be able to define arithmetic with

cardinals. Though it may seem out of place in a Statistics thesis, this is done as

infinite, maybe uncountable, sets are frequently used in Probability Theory and

Functional Analysis. The novel usage of Set Theory in this thesis is to extend

many classical definitions in Probability Theory to allow for uncountable sets in

Section 2.2. Furthermore, the newly given proof of Theorem 2.3.1 (the result is

not original, but the proof is) relies fundamentally on the arithmetic of cardinals.

The axiom system used here is presumed to be the Zermelo–Fraenkel axiom

system with the axiom of choice. The definitions are adapted from Jech (2006),

except where it is stated that they are due to the author or otherwise referenced.

7



Chapter 2. Definitions and supporting results

To begin, the formal definition of a function is given in a slightly different

presentation to classically (see the remark following it).

Definition 2.1.1 (Relations and functions/maps, due to author). Let 𝐴 and

𝐵 be sets. A subset 𝑅 ⊆ {(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} is called a binary relation

between 𝐴 and 𝐵 (if 𝐴 = 𝐵, it is said to be a binary relation on 𝐴). A subset

𝑓 ⊆ {(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} is called a function/map with domain 𝐴 and codomain

𝐵 if:

∀𝑥 ∈ 𝐴 ∃!𝑦𝑥 ∈ 𝐵 : (𝑥, 𝑦𝑥) ∈ 𝑓 .

Write 𝑓 : 𝐴 → 𝐵 if 𝑓 is a function. For 𝑥 ∈ 𝐴, let 𝑓 (𝑥) be the unique

element of 𝐵 for which (𝑥, 𝑓 (𝑥)) ∈ 𝑓 and call 𝑓 (𝑥) the image of 𝑥 under 𝑓 ,

and write 𝑥 ↦→ 𝑓 (𝑥). For 𝑆 ∈ P (𝐴), where P (𝐴) is the powerset of 𝐴, let

𝑓 (𝐴) B {𝑦 ∈ 𝐵 : ∃𝑥 ∈ 𝐴 [𝑦 = 𝑓 (𝑥)]} be called the image of 𝐴 under 𝑓 . For

𝑇 ∈ P (𝐵), let 𝑓 −1(𝑇) B {𝑥 ∈ 𝐴 : 𝑓 (𝑥) ∈ 𝑇} be called the preimage of 𝑇 under

𝑓 . Let Hom (𝐴, 𝐵) be the set of all functions from 𝐴 to 𝐵.

Remark 2.1.1. Unlike standard expositions, Definition 2.1.1 deliberately avoids

the use of the term “Cartesian product". This version is given (despite being

elementary, and using the same concepts) to avoid a circularity when defining, in

Definition 2.1.17, the Cartesian product of an arbitrary number of sets in terms of

a set of functions.

To start the development of the formal theory of numbers, it is necessary to

begin by defining the counting numbers in set-theoretic terms.

Definition 2.1.2 (Von Neumann construction of the counting numbers). Let

0 B ∅ and, for every set 𝐴, let 𝑆(𝐴) B 𝐴∪ {𝐴} be the successor of 𝐴. The set of

counting numbers is the set containing 0 and all its successors. Denote this by Z∗.

8



Chapter 2. Definitions and supporting results

Remark 2.1.2. Throughout this thesis, 0 typically denotes the additive identity

in a vector space over some field (typically either R or C); the context makes it

clear what meaning is to be understood. Some authors use N instead of Z∗ for the

counting numbers, but this thesis uses N to denote the positive integers.

Much of axiomatic set theory is concerned with formalising the conceptual

framework for handling infinities, so now defined are finite and infinite sets.

Definition 2.1.3 (Finite and infinite sets). For 𝑛 ∈ Z∗, a set 𝐴 is said to have 𝑛

elements if there is a bĳection between 𝑛 and 𝐴. If there exists 𝑛 ∈ Z∗ such that 𝐴

has 𝑛 elements, then 𝐴 is called finite. 𝐴 is called infinite if it is not finite.

The concept of order is one where a basic intuition is acquired at an early age

for the integers; presented below is a formalisation of two types of orderings that

may encountered when dealing with some particular set.

Definition 2.1.4 (Partial and linear orders). A binary relation < on a set 𝑆 is said

to be a partial ordering on 𝑆 if

1. ∀𝑠 ∈ 𝑆 [𝑠 ≮ 𝑠]

2. [(𝑠1 < 𝑠2) ∧ (𝑠2 < 𝑠3)] =⇒ 𝑠1 < 𝑠3.

Moreover, if < is a partial ordering on 𝑆, < is called a linear ordering on 𝑆 if

additionally

∀𝑠1, 𝑠2 ∈ 𝑆 [(𝑠1 < 𝑠2) ∨ (𝑠1 = 𝑠2) ∨ (𝑠2 < 𝑠1)] .

If < is a partial order on 𝑆, write 𝑥 ≤ 𝑦 if 𝑥 < 𝑦 or 𝑥 = 𝑦 for 𝑥 and 𝑦 in 𝑆.

Later, in Section 2.4, the following generalisation of a sequence is employed

to define summations of vectors in some complex Banach space over arbitrary

index sets.

9



Chapter 2. Definitions and supporting results

Definition 2.1.5 (Directed sets and nets, see Willard (1970)). A set 𝐷 is said to

be directed if there is a binary relation ≤ on 𝐷 such that: (1) 𝑥 ≤ 𝑥 for any 𝑥 ∈ 𝐷,

(2) if 𝑥1 ≤ 𝑥2 and 𝑥2 ≤ 𝑥3 then 𝑥1 ≤ 𝑥3, and (3) if 𝑥1, 𝑥2 ∈ 𝐷 then there exists

𝑥3 ∈ 𝐷 such that 𝑥1 ≤ 𝑥3 and 𝑥2 ≤ 𝑥3. A net is a function 𝑓 : 𝐷 → 𝑆 where 𝐷 is

a directed set and 𝑆 is an arbitrary set.

The following definition formalises the intuitions of “least", “greatest", and

"bounds" at a high level of generality.

Definition 2.1.6 (Least and greatest elements, minimal and maximal elements,

lower and upper bounds, infima and suprema). If (𝑆, <) is a partially ordered set,

𝑃 is a non-empty subset of 𝑆, and 𝑎 ∈ 𝑆, then say

1. 𝑎 is the least element of 𝑃 if 𝑎 ∈ 𝑃 and ∀𝑥 ∈ 𝑃 [𝑎 ≤ 𝑥]

2. 𝑎 is the greatest element of 𝑃 if 𝑎 ∈ 𝑃 and ∀𝑥 ∈ 𝑃 [𝑥 ≤ 𝑎]

3. 𝑎 is a minimal element of 𝑃 if 𝑎 ∈ 𝑃 and ∀𝑥 ∈ 𝑃 [𝑥 ≮ 𝑎]

4. 𝑎 is a maximal element of 𝑃 if 𝑎 ∈ 𝑃 and ∀𝑥 ∈ 𝑃 [𝑎 ≮ 𝑥]

5. 𝑎 is a lower bound of 𝑃 if ∀𝑥 ∈ 𝑃 [𝑎 ≤ 𝑥]

6. 𝑎 is an upper bound of 𝑃 if ∀𝑥 ∈ 𝑃 [𝑥 ≤ 𝑎]

7. 𝑎 is the infimum of 𝑃 if 𝑎 is the greatest lower bound (assuming it exists) of

𝑃. Write 𝑎 = inf 𝑃 if 𝑎 is the infimum of 𝑃

8. 𝑎 is the supremum of 𝑃 if 𝑎 is the least upper bound (assuming it exists) of

𝑃. Write 𝑎 = sup 𝑃 if 𝑎 is the supremum of 𝑃.

Suprema and infima of bounded subsets of some set do not have to be elements

of the set themselves; the classical example here being the rational numbers. The

following definition delineates those which do have this property.

10
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Definition 2.1.7 (The least upper bound and greatest lower bound properties, see

Rudin (1976)). Let (𝑆, <) be a linearly ordered set. 𝑆 is said to have the least

upper bound property if the supremum of any non-empty bounded above (i.e.

there is an upper bound) subset of 𝑆 is itself an element of 𝑆. The greatest lower

bound property is dually defined.

Remark 2.1.3. Theorem 1.11 of Rudin (1976) gives that a linearly ordered set

with the least upper bound property also has the greatest lower bound property.

A further type of ordering that may be encountered is given below.

Definition 2.1.8 (Well-orderings). A linear order < on a set 𝐴 is a well-ordering

if every non-empty subset of 𝐴 has a least element. 𝐴 is said to be well-ordered

by <.

Remark 2.1.4. It is known that the axiom of choice implies that every set can be

well-ordered, and vice versa.

The approach taken here to define cardinals (which answers the question of

how many elements are in a set) is to define them as ordinals (which answers the

question of what position an element has within some ordered collection) with

certain properties. To define ordinals then, the following is used.

Definition 2.1.9 (Transitive sets). A set 𝐴 is transitive if every element of 𝐴 is a

subset of 𝐴.

Definition 2.1.10 (Ordinals). A set 𝐴 is an ordinal if it is transitive and well-

ordered by the membership relation ∈. For any two ordinals 𝛼 and 𝛾, write 𝛼 < 𝛾

if 𝛼 ∈ 𝛾.

As is standard in Mathematics, when a new class of objects has been defined,

it is important to consider structure-preserving maps between those objects. The

following does this for partially ordered sets.

11
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Definition 2.1.11 (Order isomorphisms). Let (𝐴, <𝐴) and (𝐵, <𝐵) be partially

ordered sets. A function 𝑓 : 𝐴 → 𝐵 is said to be order-preserving if 𝑥 <𝐴
𝑦 =⇒ 𝑓 (𝑥) <𝐵 𝑓 (𝑦). Now suppose that 𝑓 has an inverse. 𝑓 is said to be an

order-isomorphism if both 𝑓 and its inverse are order-preserving.

Theorem 2.1.1 (Theorem 2.12 of Jech (2006)). Let (𝐴, <) be a well-ordered set.

There exists a unique ordinal 𝛼 such that (𝐴, <) and (𝛼, ∈) are order-isomorphic.

As ordinals answer the question of what position an element has within some

ordered collection, the notion of the “next" element can be defined as follows.

Definition 2.1.12 (Successor and limit ordinals). Let 𝛼 be an ordinal. If 𝛼 = 𝑆(𝛾)

(where 𝑆 is as in Definition 2.1.2) for some ordinal 𝛾, then 𝛼 is called a successor

ordinal. If 𝛼 is not a successor ordinal then 𝛼 = sup {𝛾 : 𝛾 < 𝛼} is called a limit

ordinal. 0 is also considered to be a limit ordinal and sup ∅ B 0.

Remark 2.1.5. Jech (2006) considers 0 to be a limit ordinal, but this is not typical.

The least non-zero limit ordinal is denoted by 𝜔. With this, it is seen that Z∗ is

the set of ordinals less than 𝜔.

Now that ordinals have been defined, there is a need to specify their arithmetic

and study its properties. To this end, the focus is now turned.

Definition 2.1.13 (Arithmetic with ordinals). Let 𝛼 be an ordinal. Define

1. 𝛼 + 0 B 𝛼

2. for any ordinal 𝛾, 𝛼 + 𝑆(𝛾) B 𝑆(𝛼 + 𝛾)

3. for any non-zero limit ordinal 𝛾, 𝛼 + 𝛾 B sup {𝛼 + 𝜂 : 𝜂 < 𝛾}

4. 𝛼 · 0 B 0

5. for any ordinal 𝛾, 𝛼 · 𝑆(𝛾) B 𝛼 · 𝛾 + 𝛼

12
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6. for any non-zero limit ordinal 𝛾, 𝛼 · 𝛾 B sup {𝛼 · 𝜂 : 𝜂 < 𝛾}

7. 𝛼0 B 1

8. for any ordinal 𝛾, 𝛼𝑆(𝛾) B 𝛼𝛾 · 𝛼

9. for any non-zero limit ordinal 𝛾, 𝛼𝛾 B sup {𝛼𝜂 : 𝜂 ∈ 𝛾}

Remark 2.1.6. Lemma 2.21 of Jech (2006) gives that addition and multiplication

of ordinals are both associative. However, they give examples to show that neither

is commutative. Let 𝛼, 𝛾, and 𝜂 be ordinals. The statement of Exercise 2.8 of

Jech (2006) gives that 𝛼 · (𝛾 + 𝜂) = 𝛼 · 𝛾 +𝛼 · 𝜂, 𝛼𝛾+𝜂 = 𝛼𝛾 · 𝛼𝜂, and (𝛼𝛾)𝜂 = 𝛼𝛾·𝜂.

Lemma 2.1.2 (Lemma 2.25 of Jech (2006)). Let 𝛼, 𝛾, and 𝜂 be ordinals. Then

1. if 𝛾 < 𝜂 then 𝛼 + 𝛾 < 𝛼 + 𝜂

2. if 𝛼 < 𝛾 then there is a unique ordinal 𝛿 such that 𝛼 + 𝛿 = 𝛾

3. if 𝛾 < 𝜂 and 0 < 𝛼 then 𝛼 · 𝛾 < 𝛼 · 𝜂

4. if 0 < 𝛼 then there is a unique ordinal 𝜌1 and a unique ordinal 𝜌2 < 𝛼 such

that 𝜂 = 𝛼 · 𝜌1 + 𝜌2

5. if 𝛾 < 𝜂 and 1 < 𝛼 then 𝛼𝛾 < 𝛼𝜂.

Now to define cardinals, it is necessary to be able to say when two sets have

the same number of elements. This motivates the following definition.

Definition 2.1.14 (Comparing sizes of sets). Let 𝐴 and 𝐵 be sets. They are said

to be equinumerous if there exists a bĳection between them. 𝐴 is said to be no

larger than 𝐵 if there is a injection from 𝐴 to 𝐵. 𝐴 is said to be smaller than 𝐵 if

it is both no larger than 𝐵 and not equinumerous with 𝐵.

13
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Remark 2.1.7. The term “equinumerous" is not used in Jech (2006), but is common

in Set Theory.

Now cardinals are defined.

Definition 2.1.15 (Cardinals). An ordinal 𝛼 is called a cardinal if 𝛼 is not

equinumerous with any ordinal 𝛾 satisfying 𝛾 < 𝛼. For any well-ordered set 𝐴,

define its cardinality Card (𝐴) to be the least ordinal which is equinumerous with

𝐴. 𝐴 is said to be countably infinite if Card (𝐴) = 𝜔. 𝐴 is said to be countable if

it is either finite or countably infinite. For any cardinal 𝜆, let 𝜆+ be the smallest

cardinal larger than 𝜆. For any two cardinals 𝛼1 and 𝛼2, write

1. 𝛼1 = 𝛼2 if there is a bĳection between 𝛼1 and 𝛼2

2. 𝛼1 ≤ 𝛼2 if there is an injection from 𝛼1 to 𝛼2

3. 𝛼1 < 𝛼2 if 𝛼1 ≤ 𝛼2 but not 𝛼1 = 𝛼2.

As the particular interest in axiomatic set theory is for sets with infinite

cardinality, it is worthwhile giving them their own name.

Definition 2.1.16 (Alephs). The infinite ordinals which are also cardinals are

called alephs. For any ordinal 𝛼, define

1. ℵ0 B 𝜔

2. ℵ𝑆(𝛼) B ℵ+
𝛼

3. if 𝛼 is a non-zero limit ordinal ℵ𝛼 B sup
{
ℵ𝛾 : 𝛾 < 𝛼

}
Jech (2006) shows that this enumeration exhausts all alephs.

One of the most elementary set operations is that of taking the Cartesian

product of a family of sets. The formal definition of this is now given in terms of

what are often called “choice functions".

14
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Definition 2.1.17 (Cartesian product and projections). Let I be a set and let

(𝑆𝑖)𝑖∈I be a family of sets indexed by I. The Cartesian product (see Cameron

(1998)) is defined by

?
𝑖∈I

𝑆𝑖 B

{
𝑓 : I →

⋃
𝑖∈I

𝑆𝑖

����� ∀𝑖 ∈ I [ 𝑓 (𝑖) ∈ 𝑆𝑖]
}
.

Write 𝑆 = 𝑀 I (which is equal to Hom (𝐼, 𝑀)) in the event that 𝑀 is a set which

satisfies 𝑀 = 𝑆𝑖 for all 𝑖 ∈ I. In this case, write 𝑀 I as 𝑀𝑚 if I = N𝑚 where

𝑚 ∈ N∪ {𝜔} and N𝑚 B {𝑥 ∈ N : [1 ≤ 𝑥 ≤ 𝑚]}. Let 𝜙𝑖 : 𝑆 → 𝑆𝑖 be the function

defined by the mapping 𝑓 ↦→ 𝑓 (𝑖) and call it the projection (see Willard (1970))

onto 𝑆𝑖.

Remark 2.1.8. Definition 2.1.17 tends to be stated for I ∈ P (N) \ {∅}. When I ∈

P (N) \ {∅}, an arbitrary element 𝑓 of the Cartesian product
>

𝑖∈I 𝑆𝑖 can be iden-

tified with ( 𝑓 (𝑥1), 𝑓 (𝑥2), . . .) (if I is countably infinite) or ( 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑘 ))

(if I has cardinality 𝑘 where 𝑘 ∈ N) where 𝑥𝑖 is the 𝑖th largest element of I.

This means that the definition of a Cartesian product given here is a suitable

generalisation of the classical definition for a countable non-empty collection of

sets. Whenever it is permissible and reasonable to do so, the classical definition

is favoured in this thesis.

At last, it is time to define arithmetic with cardinals which will be needed for

the novel proof of Theorem 2.3.1

Definition 2.1.18 (Arithmetic with cardinals, see Cardinal Arithmetic in nLab

(2022)). For a family of sets (𝑆𝑖)𝑖∈I indexed by a non-empty set I , the sum of the

cardinalities of the elements in the family is defined by∑︁
𝑖∈I

Card (𝑆𝑖) B Card

(⊎
𝑖∈I

𝑆𝑖

)
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where, ⊎
𝑖∈I

𝑆𝑖 B
⋃
𝑖∈I

{(𝑖, 𝑎) : 𝑎 ∈ 𝑆𝑖} .

The product of the cardinalities of the elements in the family is defined by∏
𝑖∈I

Card (𝑆𝑖) B Card

(?
𝑖∈I

𝑆𝑖

)
.

Cardinal exponentiation of the cardinality of a set 𝑆 to the power of the cardinality

of a set 𝑇 is defined by

Card (𝑆)Card(𝑇) B Card (Hom (𝑇, 𝑆)) .

Remark 2.1.9. Let 𝛼, 𝛾, and 𝜂 be cardinals. Jech (2006) states the following facts

about cardinal arithmetic,

1. cardinal addition and multiplication are both associative and commutative

2. cardinal multiplication distributes over cardinal addition

3. (𝛼 · 𝛾)𝜂 = 𝛼𝜂 · 𝛾𝜂

4. 𝛼𝛾+𝜂 = 𝛼𝛾 · 𝛼𝜂

5. (𝛼𝛾)𝜂 = 𝛼𝛾·𝜂

6. if 𝛼 ≤ 𝛾 then 𝛼𝜂 ≤ 𝛾𝜂

7. if 𝛾 ≤ 𝜂 and 0 < 𝛾 then 𝛼𝛾 ≤ 𝛼𝜂

8. 𝛼0 = 1, 1𝛼 = 1, and, if 0 < 𝛼, 0𝛼 = 0.

Remark 2.1.10. It is a trivial consequence of (3.14) of Jech (2006) that for 𝑚 ∈ N

and ordinals (𝛼𝑖)𝑖∈N𝑚
,∑︁

𝑖∈N𝑚

ℵ𝛼𝑖 =
∏
𝑖∈N𝑚

ℵ𝛼𝑖 = max
{
ℵ𝛼𝑖 : 𝑖 ∈ N𝑚

}
.
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This further implies that if (𝑐𝑖)𝑖∈N𝑚
satisfies 𝑐𝑖 ≤ ℵ𝛼𝑖 for any 𝑖 ∈ N𝑚, then∑︁

𝑖∈N𝑚

𝑐𝑖 ≤ max
{
ℵ𝛼𝑖 : 𝑖 ∈ N𝑚

}
,∏

𝑖∈N𝑚

𝑐𝑖 ≤ max
{
ℵ𝛼𝑖 : 𝑖 ∈ N𝑚

}
.

A result which is useful later in the proof of Theorem 2.3.1 is now given.

Lemma 2.1.3 (Lemmas 5.8 and 5.9 of Jech (2006)). Let 𝛾 be an infinite cardinal

and let 0 < 𝜂𝑖 for each 𝑖 < 𝛾. Then∑︁
𝑖<𝛾

𝜂𝑖 = 𝛾 · sup {𝜂𝑖 : 𝑖 < 𝛾} .

If additionally 𝑖 < 𝑗 implies 𝜂𝑖 ≤ 𝜂 𝑗 , then∏
𝑖<𝛾

𝜂𝑖 = (sup {𝜂𝑖 : 𝑖 < 𝛾})𝛾 .

To finish off this section, the formal definition of permutations is given which

is of use when discussing exchangeability in Section 2.2

Definition 2.1.19 (Permutations). Let 𝑆 be a set. A permutation of 𝑆 is a bĳection

from 𝑆 to itself. Denote the set of all permutations of 𝑆 by P𝑆. If 𝑚 ∈ N ∪ {𝜔}

and Card (𝑆) = 𝑚, write P𝑚 instead of P𝑆.

Remark 2.1.11. Definition 2.1.19 is not in Jech (2006), though can be found in

most elementary set theory texts.

2.2 Measure Theory, Integration Theory, and

Probability Theory

This section, along with Section 2.4 and Section 2.5, is fundamental to the

theoretical and methodological developments in Chapter 3 and Chapter 4. The
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definitions given here are adapted from Hoffmann-Jørgensen (1994), except where

it is stated that they are due to the author or otherwise referenced. They are stated

more abstractly than most presentations of them detail. A significant novelty in this

section is that many definitions, like that of exchangeability, in Probability Theory

are extended to settings where relevant sets may have uncountable cardinality.

Proofs of any unreferenced results are given in Section 2.6.

First defined is absolute continuity of measures, which is a key hypothesis of

the Radon-Nikodym theorem that is used to show the existence of conditional

expectations in the real random variable setting.

Definition 2.2.1 (Absolute continuity of measures, see e.g.Li and Babu (2019)).

Let (𝑀,F𝑀) be a measurable space, with 𝑀 some set and F𝑀 some 𝜎-field on

𝑀 , and suppose that 𝜇 and 𝜈 are measures on (𝑀,F𝑀). 𝜇 is said to be absolutely

continuous with respect to 𝜈 if, for any 𝐴 ∈ F𝑀 , 𝜈(𝐴) = 0 =⇒ 𝜇(𝐴) = 0. If

this is the case, write 𝜇 ≪ 𝜈.

In Mathematics, it is commonplace to consider the structure-preserving

maps between various entities of the same kind. For example, consider group

homomorphisms between groups. The maps relevant to Probability Theory are

random variables, defined below.

Definition 2.2.2 (Random variables). Let (Ω,F , P) (with Ω some set, F a 𝜎-field

on Ω, and P a probability measure on F ) be a probability space and let (𝑀,F𝑀)

be a measurable space. A measurable function 𝑓 : (Ω,F , P) → (𝑀,F𝑀) is

called an 𝑀-valued random variable. Now let I be a non-empty set. Define

𝑓 I : (Ω,F , P) →
(
𝑀I ,FI

𝑀

)
(this notation represents a product of measurable

spaces, which is defined properly in Definition 2.2.12) to be the 𝑀I-valued

random variable given by 𝑓 I (𝑥) = 𝑔𝑥 where 𝑔𝑥 : I → 𝑀 is itself given by

𝑔𝑥 (𝑖) = 𝑓 (𝑥).
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Remark 2.2.1. Whenever the domain and codomain of a function are specified

with 𝜎-fields on them, it is assumed that the function is measurable.

Frequently, one will want to consider a collection of random variables –

consider for example the setting of time series data where the variable(s) of

interest being monitored across time are random variables. This motivates the

definition of stochastic processes.

Definition 2.2.3 (Stochastic processes, this version due to the author). Let I be a

non-empty set, let (Ω,F , P) be a probability space, and, for 𝑖 ∈ I, let (𝑀𝑖,F𝑖)

be a measurable space. A stochastic process is a family ( 𝑓𝑖)𝑖∈I where, for 𝑖 ∈ I,

𝑓𝑖 : (Ω,F , P) → (𝑀𝑖,F𝑖) is a 𝑀𝑖-valued random variable.

Remark 2.2.2. Definition 2.2.3 is more general than the definitions of a stochastic

process given in any of the texts the author has searched through. They tend to

have the random variables to have all the same codomain, the index set to be the

non-negative reals or integers, or the random variables to be real-valued.

In Section 4.5, there is a need to condition on a particular categorical variable

taking some fixed value so here is a definition of conditioning on an event that is

useful for this task.

Definition 2.2.4 (Conditioning on an event). Let (Ω,F , P) be a probability

space. For 𝐴 ∈ F with P (𝐴) > 0, define the conditional probability measure

P𝐴 : F → [0, 1] by the mapping 𝐵 ↦→ P (𝐵 ∩ 𝐴) /P (𝐴). An alternative notation

is available by letting the function P (·|𝐴) : F → [0, 1] be given by 𝐵 ↦→ P𝐴 (𝐵).

Sometimes, a subset of the sample space will be considered and so there is a

need to consider a modification of the 𝜎-field which is defined similarly to how

relative topologies are defined; this motivates the below definition.
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Definition 2.2.5 (Relative 𝜎-field, due to the author). Let (𝑀,F𝑀) be a mea-

surable space. For 𝐴 ⊆ 𝑀, the relative 𝜎-field 𝜎𝐴 is defined to be the set

{𝐴 ∩ 𝐸 : 𝐸 ∈ F𝑀}.

Remark 2.2.3. Definition 2.2.5 is not original. It tends to be used without explicit

terminology being given. It is similar to the definition of relative topologies.

Because of their primacy in Probability Theory, the attention is now turned to

various ways to obtain 𝜎-fields from given objects.

Definition 2.2.6 (𝜎-field generated by a set of sets). Let Ω be a set. For any

𝑆 ⊆ P (Ω), define 𝜎 (𝑆), called the 𝜎-field generated by 𝑆, to be the intersection

of all 𝜎-fields on Ω which contain 𝑆.

Remark 2.2.4. Let Ω be a set. For 𝑆 ⊆ P (Ω), a construction of 𝜎 (𝑆) can be

given using ordinals. Let 𝐴0 be the set of all elements of 𝑆 along with their

complements. Given an ordinal 𝛼 with cardinality Card (𝛼) ≤ ℵ0, let 𝐴𝛼 be the

set of sets which are countable unions or countable intersections of elements

belonging to
⋃
𝛾<𝛼 𝐴𝛾. Then, 𝜎 (𝑆) is the union of the sets 𝐴𝛼 where the index

runs over all ordinals with cardinality no larger than ℵ0. This construction is

given in Vestrup (2003).

Definition 2.2.7 (𝜎-field generated by a set of functions). Let Ω and I be

sets with I non-empty. For 𝑖 ∈ I, let (𝑀𝑖,F𝑖) be a measurable space and let

𝑓𝑖 : Ω → (𝑀𝑖,F𝑖) be a 𝑀𝑖-valued function. Let W B { 𝑓𝑖 : 𝑖 ∈ I}. Define

𝜎 (W), called the 𝜎-field generated by W , as

𝜎 (W) B 𝜎

({
𝑓 −1
𝑖 (𝑆𝑖) : 𝑖 ∈ I, 𝑆𝑖 ∈ F𝑖

})
.

Further, let 𝜎 ( 𝑓𝑖 : 𝑖 ∈ I) B 𝜎 ({ 𝑓𝑖 : 𝑖 ∈ I}).
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Definition 2.2.8 (Join of 𝜎-fields, due to the author). Let Ω and I be sets with I

non-empty. For 𝑖 ∈ I, let F𝑖 be a 𝜎-field on Ω. The join of them is defined by

∨
𝑖∈I

F𝑖 B 𝜎

(⋃
𝑖∈I

F𝑖

)
.

Remark 2.2.5. Let Ω, I, and F𝑖 (𝑖 ∈ I) be as in Definition 2.2.8. A 𝜋-system (a

non-empty set of subsets of Ω which is closed under finite intersections) which

generates∨𝑖∈I F𝑖 is
{⋂

𝑖∈N𝑛
𝐴𝑖 : 𝐴𝑖 ∈ F𝛼𝑖 , 𝛼𝑖 ∈ I, 𝑛 ∈ N

}
.

Remark 2.2.6. Definition 2.2.8 is not original. It tends to be used without the

term “join” being explicitly defined.

Theorem 2.2.1 (Dynkin’s 𝜋-𝜆 theorem, see Billingsley (1995)). Let Ω be a

set. If 𝑃 is a 𝜋-system on Ω and Λ is a 𝜆-system on Ω (a set of subsets of Ω

which contains Ω, is closed under complementation, and is closed under disjoint

countable unions), then 𝑃 ⊆ Λ =⇒ 𝜎 (𝑃) ⊆ Λ.

Definition 2.2.9 (Borel𝜎-field on a topological space). Let (𝑆, T ) be a topological

space. Define B(𝑆), called the Borel 𝜎-field on 𝑆, by B(𝑆) B 𝜎 (T ).

It is sometimes said (see, e.g., Loève (1977)) that the definition of independence

is where Probability Theory comes into its own as opposed to being a part of

Measure Theory. This fundamental notion is now defined.

Definition 2.2.10 (Independence of 𝜎-fields, adapted from Williams (2018)). Let

(Ω,F , P) be a probability space and let I be a non-empty set. Let (F𝑖)𝑖∈I be a

family of sub-𝜎-fields of F . (F𝑖)𝑖∈I is said to be independent (with respect to P,

though this will not usually be mentioned explicitly), denoted by⊥⊥ 𝑖∈I F𝑖, if for

any finite subset 𝐸 ⊆ I and, for 𝑖 ∈ 𝐸 , any 𝐴𝑖 ∈ F𝑖,

P

(⋂
𝑖∈𝐸

𝐴𝑖

)
=

∏
𝑖∈𝐸
P (𝐴𝑖) .

If I = {1, 2} and (F1,F2) is independent, write F1 ⊥⊥ F2.
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Remark 2.2.7. For convenience, as it is extensively used in Chapter 4, the notation

𝐴 ⊴ 𝐵 is introduced. It means that 𝐴 and 𝐵 are 𝜎-fields on some set with 𝐴 a

sub-𝜎-field of 𝐵.

Definition 2.2.11 (Independence of stochastic processes, adapted from Williams

(2018)). Let (Ω,F , P) be a probability space, I be a non-empty set, and, for

𝑖 ∈ I , let (𝑀𝑖,F𝑖) be a measurable space. Let 𝑓 B ( 𝑓𝑖)𝑖∈I be a stochastic process

where, for 𝑖 ∈ I, 𝑓𝑖 is a 𝑀𝑖-valued random variable on (Ω,F , P). 𝑓 is said to

be independent, denoted by ⊥⊥ 𝑖∈I 𝑓𝑖, if the family (𝜎 ( 𝑓𝑖))𝑖∈I is independent.

Furthermore, if (𝑆,F𝑆) = (𝑀𝑖,F𝑖) for any 𝑖 ∈ I and there exists P∗ such that

∀𝑖 ∈ I [P∗ = P𝑖] (where P𝑖 is the distribution of 𝑓𝑖, see Definition 2.2.13), then

𝑓 is said to be independent and identically distributed (abbreviated i.i.d). If

I = {1, 2} and ( 𝑓1, 𝑓2) is independent, write 𝑓1 ⊥⊥ 𝑓2.

Remark 2.2.8. Let (Ω,F , P) be a probability space. Suppose 𝑓1 : (Ω,F , P) →

(𝑀1,F1) and 𝑓2 : (Ω,F , P) → (𝑀2,F2) are such that ( 𝑓1, 𝑓2) is an independent

stochastic process. Then it is easy to see that, for any measurable functions

𝑆 : (𝑀1,F1) → (𝑀𝑆,F𝑆) and 𝑇 : (𝑀2,F2) → (𝑀𝑇 ,F𝑇 ), the stochastic process

(𝑆 ◦ 𝑓1, 𝑇 ◦ 𝑓2) is independent. This follows immediately from𝜎 (𝑆 ◦ 𝑓1)⊴𝜎 ( 𝑓1)

and 𝜎 (𝑇 ◦ 𝑓2) ⊴ 𝜎 ( 𝑓2). This remark is easily generalised to an arbitrary non-

empty collection of random variables.

In analogy with the definition of Cartesian products in Set Theory, the taking

of products of measurable spaces is a fundamental notion in Measure Theory and

(consequently) Probability Theory.

Definition 2.2.12 (Product of measurable spaces). Let I be a non-empty set

and let (𝑀𝑖,F𝑖) be a measurable space for any 𝑖 ∈ I. Let 𝑀 B
>

𝑖∈I 𝑀𝑖.

For 𝑖 ∈ I, let 𝜙𝑖 :
>

𝑖∈I 𝑀𝑖 → (𝑀𝑖,F𝑖) be the projection onto 𝑀𝑖. Let

F B
⊗

𝑖∈I F𝑖 B 𝜎 (𝜙𝑖 : 𝑖 ∈ I) be the 𝜎-field generated by the projections, and
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call it the tensor product 𝜎-field. Write F = 𝐺 I in the event that: (1) there exists

a set 𝑆 which satisfies 𝑆 = 𝑀𝑖 for any 𝑖 ∈ I, and (2) 𝐺 is a 𝜎-field satisfying

𝐺 = F𝑖 for any 𝑖 ∈ I . In this case, write𝐺 I as𝐺𝑚 if I = N𝑚 where𝑚 ∈ N∪{𝜔}.

The pair (𝑀,F) is called the product measurable space.

Remark 2.2.9. The tensor product 𝜎-field is the coarsest 𝜎-field for which the

projection maps are all measurable.

Before the definition of random variables, it was noted that they are essentially

structure-preserving maps between probability spaces. There, however, was no

probability measure given on their codomains. A natural way to take such a

measure is given now as well as its generalisation to stochastic processes.

Definition 2.2.13 (Distribution of a random variable). Let (Ω,F , P) be a probabil-

ity space and let (𝑀,F𝑀) be a measurable space. Let 𝑓 : (Ω,F , P) → (𝑀,F𝑀)

be a 𝑀-valued random variable. The distribution of 𝑓 , denoted P 𝑓 , is defined by

the mapping 𝐴 ↦→ P
(
𝑓 −1(𝐴)

)
where 𝐴 ∈ F𝑀 .

Definition 2.2.14 (Distribution of a stochastic process, version due to author).

Let I be a non-empty set, let (Ω,F , P) be a probability space, and, for 𝑖 ∈ I,

let (𝑀𝑖,F𝑖) be a measurable space. Let 𝑓 B ( 𝑓𝑖)𝑖∈I be a stochastic process

where, for 𝑖 ∈ I , 𝑓𝑖 is a 𝑀𝑖-valued random variable on (Ω,F , P). The distribution

of 𝑓 , denoted P 𝑓 , is defined to be the distribution of the random variable 𝑓 ∗ :

(Ω,F , P) →
(>

𝑖∈I 𝑀𝑖,
⊗

𝑖∈I F𝑖
)

given by 𝑓 ∗(𝑥) = ℎ𝑥 where ℎ𝑥 : I → ⋃
𝑖∈I 𝑀𝑖

is itself given by ℎ𝑥 (𝑖) = 𝑓𝑖 (𝑥).

Lemma 2.2.2 (Relation between the independence of a stochastic process and

the random variable defining its distribution). Let I be a non-empty set, let

(Ω,F , P) be a probability space, and, for 𝑖 ∈ I, let (𝑀𝑖,F𝑖) be a measurable

space. Let 𝑓 B ( 𝑓𝑖)𝑖∈I be a stochastic process where, for 𝑖 ∈ I , 𝑓𝑖 is a 𝑀𝑖-valued
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random variable on (Ω,F , P). Let 𝑓 ∗ : (Ω,F , P) →
(>

𝑖∈I 𝑀𝑖,
⊗

𝑖∈I F𝑖
)

be the

random variable given by 𝑓 ∗(𝑥) = ℎ𝑥 where ℎ𝑥 : I → ⋃
𝑖∈I 𝑀𝑖 is itself given by

ℎ𝑥 (𝑖) = 𝑓𝑖 (𝑥). Let 𝜙𝑖 :
(>

𝑖∈I 𝑀𝑖,
⊗

𝑖∈I F𝑖
)
→ (𝑀𝑖,F𝑖) be the projection onto

𝑀𝑖. If 𝑓 is independent, then 𝑓 ∗ satisfies that for any finite subset 𝐸 ⊆ I and, for

𝑖 ∈ I, any 𝐴𝑖 ∈ 𝜎 (𝜙𝑖)

P

(⋂
𝑖∈𝐸

[ 𝑓 ∗]−1 (𝐴𝑖)
)
=

∏
𝑖∈𝐸
P

(
[ 𝑓 ∗]−1 (𝐴𝑖)

)
.

Given a product of measurable spaces each with a probability measure on

their respective 𝜎-fields, it is natural to wonder if there is a canonical probability

measure on the product space. This is indeed the case, as given in the next

definition.

Definition 2.2.15 (Product probability measures, adapted from Cohn (2013)).

Let I be a non-empty set, let (Ω,F , P) be a probability space, and, for 𝑖 ∈ I,

let (𝑀𝑖,F𝑖, P𝑖) be a probability space. Let
(>

𝑖∈I 𝑀𝑖,
⊗

𝑖∈I F𝑖
)

be the product

measurable space. For 𝑖 ∈ I, let 𝜙𝑖 :
(>

𝑖∈I 𝑀𝑖,
⊗

𝑖∈I F𝑖
)
→ (𝑀𝑖,F𝑖) be

the projection onto 𝑀𝑖. A measure
⊗

𝑖∈I P𝑖 on
⊗

𝑖∈I F𝑖 is called a product

probability measure if it is a probability measure satisfying

1. the stochastic process (𝜙𝑖)𝑖∈I is independent (with respect to
⊗

𝑖∈I P𝑖).

2. for any 𝑖 ∈ I, the distribution of 𝜙𝑖 is P𝑖.

If (𝑆,F𝑆, P) = (𝑀𝑖,F𝑖, P𝑖) for all 𝑖 ∈ I, write
⊗

𝑖∈I P𝑖 = P
I .

Remark 2.2.10. Exercise 2 in Section 10.6 of Cohn (2013) states that the product

probability measure, on the product of an arbitrary non-empty family of probability

spaces, exists and is unique.

Lemma 2.2.3 (Relation between the distribution of an independent stochastic

process and the product probability measure). Let I be a non-empty set, let
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(Ω,F , P) be a probability space, and, for 𝑖 ∈ I, let (𝑀𝑖,F𝑖) be a measurable

space. Let 𝑓 B ( 𝑓𝑖)𝑖∈I be an independent stochastic process where, for 𝑖 ∈ I, 𝑓𝑖

is a 𝑀𝑖-valued random variable on (Ω,F , P). Then, P 𝑓 =
⊗

𝑖∈I P 𝑓𝑖 .

For the work in Chapter 3, the notion of an exchangeable stochastic process is

fundamental, hence is defined here.

Definition 2.2.16 (Exchangeable stochastic process, due to the author). Let

(Ω,F , P) be a probability space, let I be a non-empty set, and let (𝑀,F𝑀) be a

measurable space. Let 𝑓 B ( 𝑓𝑖)𝑖∈I be a stochastic process where, for 𝑖 ∈ I, 𝑓𝑖 is

a 𝑀-valued random variable on (Ω,F , P). 𝑓 is said to be exchangeable if

∀𝑇 ∈
{
N𝑛𝑇 : [Card (I) ≥ ℵ0 =⇒ 𝑛𝑇 ∈ N]

∧ [Card (I) = 𝑘 < ℵ0 =⇒ 𝑛𝑇 ∈ N𝑘+1]
}

∀𝑚 ∈ {𝑛 ∈ N : 𝑛 < 𝑛𝑇 }

∀𝑘1, . . . , 𝑘𝑚 ∈ 𝑇[ (
∀𝑖, 𝑗 ∈ N𝑚

[
𝑖 ≠ 𝑗 =⇒ 𝑘𝑖 ≠ 𝑘 𝑗

] )
=⇒

(
P
𝑓
†
𝑚
= P 𝑓 ∗𝑚

)]
where 𝑓 †𝑚 : (Ω,F , P) →

(
𝑀𝑚,F𝑚

𝑀

)
is given by 𝑓

†
𝑚 (𝑥) = 𝑔𝑥 where 𝑔𝑥 : N𝑚 → 𝑀

is itself given by 𝑔𝑥 (𝑖) = 𝑓𝑖 (𝑥), and 𝑓 ∗𝑚 : (Ω,F , P) →
(
𝑀𝑚,F𝑚

𝑀

)
is given by

𝑓 ∗𝑚 (𝑥) = ℎ𝑥 where ℎ𝑥 : N𝑚 → 𝑀 is itself given by ℎ𝑥 (𝑖) = 𝑓𝑘𝑖 (𝑥).

Remark 2.2.11. Definition 2.2.16 is, to the best of the author’s knowledge, the most

general definition (as far as the cardinality of I is concerned) of exchangeability

to date. The concept can be found in Kallenberg (1988, 1992, 2000, 2005, 2021).

Lemma 2.2.4 (i.i.d stochastic processes are exchangeable). Let (Ω,F , P) be a

probability space, let I be a non-empty set, and let (𝑀,F𝑀) be a measurable

space. If the stochastic process 𝑓 B ( 𝑓𝑖)𝑖∈I (where, for any 𝑖 ∈ I, 𝑓𝑖 is a

𝑀-valued random variable) is i.i.d, then it is exchangeable.
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Exchangeability is essentially a permutation invariance assumption. Another

notion of invariance is that of contractability, now defined. This notion is less

fundamental for this thesis, but is included to explore its relation to exchangeability.

Definition 2.2.17 (Contractable stochastic processes, due to the author). Let

(Ω,F , P) be a probability space, let I be a non-empty set, and let (𝑀,F𝑀) be a

measurable space. Let 𝑓 B ( 𝑓𝑖)𝑖∈I be a stochastic process where, for 𝑖 ∈ I, 𝑓𝑖 is

a 𝑀-valued random variable. 𝑓 is said to be contractable if

∀𝑇 ∈
{
N𝑛𝑇 : [Card (I) ≥ ℵ0 =⇒ 𝑛𝑇 ∈ N]

∧ [Card (I) = 𝑘 < ℵ0 =⇒ 𝑛𝑇 ∈ N𝑘+1]
}

∀𝑚 ∈ {𝑛 ∈ N : 𝑛 < 𝑛𝑇 }

∀𝑘1, . . . , 𝑘𝑚 ∈ 𝑇[
(1 ≤ 𝑘1 < . . . < 𝑘𝑚 ≤ 𝑛𝑇 ) =⇒

(
P
𝑓
†
𝑚
= P 𝑓 ∗𝑚

)]
where 𝑓 †𝑚 : (Ω,F , P) →

(
𝑀𝑚,F𝑚

𝑀

)
is given by 𝑓

†
𝑚 (𝑥) = 𝑔𝑥 where 𝑔𝑥 : N𝑚 → 𝑀

is itself given by 𝑔𝑥 (𝑖) = 𝑓𝑖 (𝑥), and 𝑓 ∗𝑚 : (Ω,F , P) →
(
𝑀𝑚,F𝑚

𝑀

)
is given by

𝑓 ∗𝑚 (𝑥) = ℎ𝑥 where ℎ𝑥 : N𝑚 → 𝑀 is itself given by ℎ𝑥 (𝑖) = 𝑓𝑘𝑖 (𝑥).

Remark 2.2.12. Definition 2.2.17 is, to the best of the author’s knowledge, the most

general definition of contractability (as far as the cardinality of I is concerned) to

date. The concept can be found in Kallenberg (1988, 1992, 2000, 2005, 2021). It

is trivial to see that exchangeability implies contractability.

Lemma 2.2.5 (Some equivalences). Let (Ω,F , P) be a probability space, let I

be a non-empty set, and let (𝑀,F𝑀) be a measurable space. Let 𝑓 B ( 𝑓𝑖)𝑖∈I
be a stochastic process where, for 𝑖 ∈ I, 𝑓𝑖 is a 𝑀-valued random variable. Let

𝑓 ∗ : (Ω,F , P) →
(
𝑀I ,FI

𝑀

)
be given by 𝑓 ∗(𝑥) = ℎ𝑥 where ℎ𝑥 : I → 𝑀 is itself

given by ℎ𝑥 (𝑖) = 𝑓𝑖 (𝑥). Let 𝜙 B (𝜙𝑖)𝑖∈I be the stochastic process where, for 𝑖 ∈ I ,

𝜙𝑖 :
(
𝑀I ,FI

𝑀
, P 𝑓 ∗

)
→ (𝑀,F𝑀) is the projection onto 𝑀 . Then

26



Chapter 2. Definitions and supporting results

1. 𝑓 is independent if and only if 𝜙 is independent

2. 𝑓 is identically distributed if and only if 𝜙 is identically distributed

3. 𝑓 is contractable if and only if 𝜙 is contractable

4. 𝑓 is exchangeable if and only if 𝜙 is exchangeable.

The following theorem gives an implication of contractability/exchangeability,

where the exchangeability case is useful for the proof of Theorem 2.2.11 which

plays a crucial role in the developments in Chapter 3.

Theorem 2.2.6 (An implication of contractability and exchangeability). Let

(Ω,F , P) be a probability space, let I be a non-empty set, and let (𝑀,F𝑀)

be a measurable space. Let 𝑓 : (Ω,F , P) → (𝑀,F𝑀) be a 𝑀-valued random

variable. Let 𝑉 B (𝑣𝑖)𝑖∈I be a stochastic process where, for 𝑖 ∈ I, 𝑣𝑖 is a

𝑀-valued random variable. Let 𝑉∗ : (Ω,F , P) →
(
𝑀I ,FI

𝑀

)
be the random

variable given by 𝑉∗(𝑥) = 𝑔𝑥 where 𝑔𝑥 : I → 𝑀 is itself given by 𝑔𝑥 (𝑖) = 𝑣𝑖 (𝑥).

Suppose that the stochastic process (𝑉∗, 𝑓 ) is independent (written 𝑉∗ ⊥⊥ 𝑓 ). Let

𝑧 B (𝑧𝑖)𝑖∈I be the stochastic process where, for 𝑖 ∈ I , 𝑧𝑖 : (Ω,F , P) →
(
𝑀2,F2

𝑀

)
is given by 𝑧𝑖 (𝑥) = 𝑙𝑖𝑥 where 𝑙𝑖𝑥 : {1, 2} → 𝑀 is itself given by 𝑙𝑖𝑥 (1) = 𝑣𝑖 (𝑥) and

𝑙𝑖𝑥 (2) = 𝑓 (𝑥). Let 𝑇 :
(
𝑀2,F2

𝑀

)
→ (𝑁,F𝑁 ) be a measurable function where

(𝑁,F𝑁 ) is a measurable space. Let𝑊 B (𝑤𝑖)𝑖∈I be the stochastic process where,

for 𝑖 ∈ I, 𝑤𝑖 : (Ω,F , P) → (𝑁,F𝑁 ) is given by 𝑤𝑖 (𝑥) = [𝑇 ◦ 𝑧𝑖] (𝑥). Claim 1:

if 𝑉 is exchangeable then so is𝑊 . Claim 2: if 𝑉 is contractable then so is𝑊 .

Remark 2.2.13. It is convenient to introduce some seemingly abusive notation

here. For 𝑖 ∈ I, define 𝑣𝑖 ( 𝑓 ) B 𝑤𝑖. If 𝑀 = H for some Hilbert space

over C, F𝑀 = B (H), 𝑁 = C, F𝑁 = B (C), and 𝑇 = ⟨·, ·⟩H, then define, for

𝑖 ∈ I, ⟨𝑣𝑖, 𝑓 ⟩H B 𝑤𝑖. It is straightforward to see that, for 𝑖 ∈ I and 𝑥 ∈ Ω,

[⟨𝑣𝑖, 𝑓 ⟩H] (𝑥) = ⟨𝑣𝑖 (𝑥), 𝑓 (𝑥)⟩H.
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As empirical measures are fundamental to Statistics, and they depend on a

sample, they are random measures – this notion is thus important to define here.

Definition 2.2.18 (Random measures and random probability measures, adapted

from Klenke (2008)). Let (𝑀,B (𝑀)) be a measurable space where 𝑀 is a

metric space, let M∗ be the set of all measures on B (𝑀), and let (Ω,F , P)

be a probability space. Let M be the set of all locally finite measures in

M∗; that is M B {𝜇 ∈ M∗ : 𝜇 (𝐵) < ∞ for all bounded 𝐵 ∈ B (𝑀)}. For any

bounded 𝐵 ∈ B (𝑀), let 𝐼𝐵 : M∗ → [0,∞] be given by 𝜇 ↦→ 𝜇 (𝐵). Let

B (𝑀)∗ B 𝜎 (𝐼𝐵 : 𝐵 ∈ B (𝑀) , 𝐵 is bounded) define a 𝜎-field on M∗, and let

B (𝑀)† B 𝜎 (𝐼𝐵 |M : 𝐵 ∈ B (𝑀) , 𝐵 is bounded) define a 𝜎-field on M. A

random measure on B (𝑀) is a M∗-valued random variable 𝜇 : (Ω,F , P) →(
M∗,B (𝑀)∗

)
which, almost surely, takes values in M. For the definition of a

random probability measure, replace “measure(s)" with “probability measure(s)"

in the above.

Being random, it is natural to wonder if it is possible to talk about the

expectation of a random measure; this can indeed be done with the following

definition of an intenstity measure.

Definition 2.2.19 (Intensity measure, adapted from Kallenberg (2017)). Let

(Ω,F , P) be a probability space and let (𝑀,B (𝑀)) be a measurable space where

𝑀 is a metric space. Let 𝜇 be a random measure on B (𝑀). The intensity measure

of 𝜇 is the function E (𝜇) : B (𝑀) → [0,∞] given by [E (𝜇)] (𝐵) = E (𝜇 (𝐵)).

See Definition 2.2.35 for the definition of the Lebesgue integral, which is used to

define the expectation used on the right hand side of the previous sentence (note

it does not always exist).

The attention is now turned to generalised notions of cumulative distribution

functions, quantiles, and medians. This generalisation is at a high level of
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abstraction, which is useful for the work in Chapter 3.

Definition 2.2.20 (Cumulative distribution function, see Simons (1974)). Let

(𝑆, <𝑆) be a linearly ordered set. 𝐴 ⊆ 𝑆 is called an initial if it holds that ∀𝑦 ∈

𝐴 [𝑥 <𝑆 𝑦 =⇒ 𝑥 ∈ 𝐴] and a terminal if ∀𝑦 ∈ 𝐴 [𝑦 <𝑆 𝑥 =⇒ 𝑥 ∈ 𝐴]. An inter-

val is an intersection of an inital and a terminal. A set of the form {𝑦 ∈ 𝑆 : 𝑦 ≤𝑆 𝑥}

is called a closed initial and, dually, a set of the form {𝑦 ∈ 𝑆 : 𝑥 ≤𝑆 𝑦} is called

a closed terminal. The coarsest 𝜎-field F<𝑆
on 𝑆 which contains the intervals

is called the order 𝜎-field. Let P𝑆 be a probability measure on F<𝑆
. The

cumulative distribution function of P𝑆 is the function 𝐹𝑆 : 𝑆 → [0, 1] given

by 𝐹𝑆 (𝑥) = P𝑆 ({𝑦 ∈ 𝑆 : 𝑦 ≤𝑆 𝑥}). Now let 𝑓 : (Ω,F , P) →
(
𝑆,F<𝑆

, <𝑆
)

be a

random variable, and define the cumulative distribution function of 𝑓 to be the

function 𝐹 𝑓 : 𝑆 → [0, 1] given by 𝐹 𝑓 (𝑥) = P ({𝑦 ∈ Ω : 𝑓 (𝑦) ≤𝑆 𝑥}).

Definition 2.2.21 (Open initials and terminals, see Simons (1974)). Let (𝑆, <𝑆)

be a linearly ordered set. An initial is open if its complement is a closed terminal.

A terminal is open if its complement is a closed initial.

Definition 2.2.22 (Left and right continuity, see Simons (1974)). Let (𝑆, <𝑆) be

a linearly ordered set and let 𝑓 : 𝑆 → R be some function. 𝑓 is said to be left

continuous at a point 𝑥 if, for each 𝜖 > 0, there exists an open terminal 𝐴 such

that 𝑥 ∈ 𝐴 and ∀𝑢 ∈ 𝐴 [ 𝑓 (𝑥) − 𝜖 < 𝑓 (𝑢)]. 𝑓 is said to be left continuous if it is

left continuous at each 𝑥 ∈ 𝑆 for which {𝑦 ∈ 𝑆 : 𝑥 ≤𝑆 𝑦} ≠ 𝑆. Right continuity at

a point and right continuity are dually defined. Total continuity (or just continuity)

of 𝑓 means that 𝑓 is both left and right continuous.

Definition 2.2.23 (Order topology and order 𝜎-field, see Gálvez-Rodríguez and

Sánchez-Granero (2019)). Let (𝑆, <𝑆) be a linearly ordered set. The order

topology on 𝑆 is the topology T<𝑆
generated (see Definition 2.3.5) by the open
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initials and the open terminals. The order 𝜎-field B (𝑆) is then defined to be the

𝜎-field generated by T<𝑆
.

Definition 2.2.24 (Upper/lower semicontinuity, see Stromberg (2015)). Let (𝑆, T )

be a topological space. Let 𝑓 : 𝑆 → [−∞,∞] be some function. 𝑓 is said to

be lower semicontinuous at a point 𝑥 ∈ 𝑆 (also known as left T -continuous at a

point 𝑥 ∈ 𝑆) if, for each 𝑦 ∈ R with 𝑦 < 𝑓 (𝑥), there exists a neighbourhood (see

Definition 2.3.1)𝑈 of 𝑥 such that 𝑓 (𝑧) > 𝑦 for each 𝑧 ∈ 𝑈. 𝑓 is said to be lower

semicontinuous (also known as left T -continuous) if it is lower semicontinuous at

each 𝑥 ∈ 𝑆. Upper semicontinuity at a point 𝑥 ∈ 𝑆 (right T -continuity at 𝑥 ∈ 𝑆)

and upper semicontinuity (right T -continuity) are defined similarly by reversing

the inequalities.

Lemma 2.2.7 (Relation between types of left/right continuity). Let
(
𝑆, T<𝑆

, <𝑆
)

be a linearly ordered topological space with the order topology, which has the

least upper bound and greatest lower bound properties. A function 𝑓 : 𝑆 → R

is left T<𝑆
-continuous (respectively right T<𝑆

-continuous) if it is left continuous

(respectively right continuous).

Theorem 2.2.8 (Properties of a cumulative distribution function on a linearly

ordered topological space). Let
(
𝑆,B (𝑆) , T<𝑆

, <𝑆
)

be a linearly ordered topolog-

ical space with the order topology and the order 𝜎-field. Let P𝑆 be a probability

measure on B (𝑆) and let 𝐹𝑆 : 𝑆 → [0, 1] be its cumulative distribution function.

Then

1. 𝐹𝑆 is non-decreasing

2. 𝐹𝑆 is right continuous

3. if 𝑆 does not have a minimal element, then inf 𝐹𝑆 (𝑆) = 0

4. sup 𝐹𝑆 (𝑆) = 1.
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Theorem 2.2.9 (A restatement of Theorem 7.7 of Gálvez-Rodríguez and Sánchez–

Granero (2020)). Let
(
𝑆,B (𝑆) , T<𝑆

, <𝑆
)

be a linearly ordered topological space

with the order topology and the order 𝜎-field. Suppose that
(
𝑆, T<𝑆

, <𝑆
)

is

separable and has the least upper bound and greatest lower bound properties.

Let 𝐹 : 𝑆 → [0, 1] be a non-decreasing and right continuous function satisfying

sup 𝐹 (𝑆) = 1. Then there exists a unique probability measure P𝑆 on B (𝑆) whose

cumulative distribution function coincides with 𝐹.

Remark 2.2.14. That Theorem 2.2.9 is a restatement of Theorem 7.7 of Gálvez-

Rodríguez and Sánchez-Granero (2020) follows from combining point 7 in Section

39 of Part II in Steen and Seebach (1978) with their statement of Theorem 7.7,

and applying Lemma 2.2.7.

Remark 2.2.15. Gálvez-Rodríguez and Sánchez-Granero (2022) give a way to

construct a linearly ordered topological space from a so-called “fractal structure".

While it is beyond the author’s objectives to discuss this notion technically, what

is important to note here is that these objects are abundant so there is no shortage

of instances where the previous results are applicable.

Definition 2.2.25 (Joint cumulative distribution function, due to the author).

Let I be a countable non-empty set and, for 𝑖 ∈ I, let
(
𝑆𝑖,B (𝑆𝑖) , P𝑖, T<𝑖

, <𝑖
)

be a linearly ordered topological space with the order topology and the order

𝜎-field that is equipped with a probability measure. Let
(
𝑆,B (𝑆) , P𝑆, T<𝑆

, <𝑆
)

be the product of such spaces where 𝑆 =
>

𝑖∈I 𝑆𝑖, P𝑆 =
⊗

𝑖∈I P𝑖, <𝑆 is the

product order, T<𝑆
is the product topology of the order topologies, and B (𝑆)

is the Borel 𝜎-field generated by T<𝑆
. Define the joint cumulative distribu-

tion function of P to be the function 𝐹𝑆 : 𝑆 → [0, 1] given by 𝐹𝑆 (𝑥) =

P𝑆 ({𝑦 ∈ 𝑆 : 𝑦 ≤ 𝑥}) = P𝑆 (
⋂
𝑖∈I {𝑦 ∈ 𝑆 : 𝑦(𝑖) ≤𝑖 𝑥(𝑖)}). Now suppose that

(Ω,F , P) is a probability space and let 𝑓 B ( 𝑓𝑖)𝑖∈I be a stochastic process
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where, for 𝑖 ∈ I, 𝑓𝑖 is a 𝑆𝑖-valued random variable on (Ω,F , P). Define the joint

cumulative distribution function of 𝑓 to be the function 𝐹 𝑓 : 𝑆 → [0, 1] given by

𝐹 𝑓 (𝑥) = P (
⋂
𝑖∈I {𝑦 ∈ Ω : 𝑓𝑖 (𝑦) ≤𝑖 𝑥(𝑖)}).

Remark 2.2.16. By considering Theorem 2.2.9, it is seen that, if the spaces are

separable and have the least upper bound and greatest lower bound properties, then

the joint cumulative distribution function of some stochastic process characterises

the product probability measure provided that the process is independent. Note

that, by Tychonoff’s theorem (see Theorem 17.8 of Willard (1970)) and Point 7

in Section 39 of Part II in Steen and Seebach (1978), the product space is also

separable and has the least upper bound and greatest lower bound properties.

Definition 2.2.26 (Quantile functions and medians, due to the author). Let(
𝑆,B (𝑆) , T<𝑆

, <𝑆
)

be a linearly ordered topological space with the order topology

and the order 𝜎-field. Suppose that
(
𝑆,B (𝑆) , T<𝑆

, <𝑆
)

is separable and has the

least upper bound and greatest lower bound properties. It is convenient here to

introduce the notation [𝑎, 𝑏] B {𝑥 ∈ 𝑆 : 𝑎 ≤𝑆 𝑥 ≤𝑆 𝑏} for 𝑎, 𝑏 ∈ 𝑆 with 𝑎 ≤𝑆 𝑏.

Let P𝑆 be a probability measure on (𝑆,B (𝑆)) and let 𝐹𝑆 be its cumulative

distribution function. Define the quantile function of P𝑆 to be the function

𝑄𝑆 : [0, 1] → P (𝑆) given by

𝑄𝑆 (𝑝) =


∅ 𝑝 = 0

[sup {𝑥 ∈ 𝑆 : 𝐹𝑆 (𝑥) < 𝑝} , sup {𝑥 ∈ 𝑆 : 𝐹𝑆 (𝑥) ≤ 𝑝}] 𝑝 ∈ (0, 1)

𝑆 𝑝 = 1

A median of P𝑆 is any member of 𝑄𝑆 (0.5). Now let (Ω,F , P) be a probability

space and let 𝑓 : (Ω,F , P) →
(
𝑆,B (𝑆) , T<𝑆

, <𝑆
)

be a random variable with

cumulative distribution function 𝐹 𝑓 . The quantile function of 𝑓 is defined to be
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the function 𝑄 𝑓 : [0, 1] → P (𝑆) given by

𝑄 𝑓 (𝑝) =


∅ 𝑝 = 0[
sup

{
𝑥 ∈ 𝑆 : 𝐹 𝑓 (𝑥) < 𝑝

}
, sup

{
𝑥 ∈ 𝑆 : 𝐹 𝑓 (𝑥) ≤ 𝑝

}]
𝑝 ∈ (0, 1)

𝑆 𝑝 = 1

A median of 𝑓 is any member of 𝑄 𝑓 (0.5).

Theorem 2.2.10 (Probability integral transform). Let
(
𝑆,B (𝑆) , T<𝑆

, <𝑆
)

be a

linearly ordered topological space with the order topology and the order 𝜎-field.

Suppose that
(
𝑆,B (𝑆) , T<𝑆

, <𝑆
)

is separable and has the least upper bound

and greatest lower bound properties. Let (Ω,F , P) be a probability space and

let 𝑓 : (Ω,F , P) →
(
𝑆,B (𝑆) , T<𝑆

, <𝑆
)

be a 𝑆-valued random variable with

cumulative distribution function 𝐹 𝑓 . Suppose 𝐹 𝑓 is continuous. Then 𝑔 B 𝐹 𝑓 ◦ 𝑓

has a standard uniform distribution.

A standard way to model multivariate distributions in Statistics is to consider

a collection of standard uniform random variables coupled with what is known as

a copula. This notion is now defined and it is conjectured that they can be used in

the more general setting than real random vectors which was previously worked

in.

Definition 2.2.27 (Copulas, see Sklar (1973)). Let 𝑛 ∈ N. An 𝑛-interval is a set

of the form
>

𝑖∈N𝑛
[𝑥(𝑖), 𝑦(𝑖)] for some 𝑥, 𝑦 ∈ R𝑛 with, for 𝑖 ∈ N𝑛, 𝑥(𝑖) ≤ 𝑦(𝑖).

An 𝑛-place real function is a function whose domain is a non-empty subset of

[−∞,∞]𝑛 and whose range is a subset of R. Let 𝐺 be an 𝑛-place real function.

Suppose 𝑁 =
>

𝑖∈N𝑛
[𝑥(𝑖), 𝑦(𝑖)] is an 𝑛-interval whose points are in 𝐷 (𝐺) (the

domain of 𝐺) . The 𝐺-volume of 𝑁 is the sum

𝑉𝐺 (𝑁) B
∑︁
𝑧∈𝑁

𝛼(𝑧)𝐺 (𝑍)
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where

𝛼(𝑧) B


1 if 𝑧(𝑖) = 𝑥(𝑖) for an even number of 𝑖’s

−1 if 𝑧(𝑖) = 𝑥(𝑖) for an odd number of 𝑖’s

𝐺 is said to be 𝑛-increasing if 𝑉𝐺 (𝑁) ≥ 0 for any 𝑛-interval whose points

lie in 𝐷 (𝐺). An 𝑛-copula is an 𝑛-place real function with 𝐷 (𝐺) = [0, 1]𝑛,

𝐺 (𝐷 (𝐺)) = [0, 1], and which satisfies

1. ∀𝑚 ∈ N𝑛∀𝑖 ∈ N𝑛∀𝑥 ∈ 𝐷 (𝐺) [[(𝑖 ≠ 𝑚) ∧ (𝑥(𝑖) = 1)] =⇒ 𝐶 (𝑥) = 𝑥(𝑚)]

2. 𝐶 (𝑥) = 0 if 𝑥(𝑖) = 0 for some 𝑖 ∈ N𝑛

3. 𝐶 is 𝑛-increasing.

Conjecture 2.2.1 (A generalisation of Sklar’s theorem). Let I = N𝑛 for some

𝑛 ∈ N and, for 𝑖 ∈ I, let
(
𝑆𝑖,B (𝑆𝑖) , P𝑖, T<𝑖

, <𝑖
)

be a linearly ordered topological

space with the order topology and the order 𝜎-field that is equipped with a

probability measure. Let
(
𝑆,B (𝑆) , P𝑆, T<𝑆

, <𝑆
)

be the product of such spaces

where 𝑆 =
>

𝑖∈I 𝑆𝑖, P𝑆 =
⊗

𝑖∈I P𝑖, <𝑆 is the product order, T<𝑆
is the product

topology of the order topologies, and B (𝑆) is the Borel 𝜎-field generated by T<𝑆
.

For 𝑖 ∈ I, let 𝐹𝑖 be the cumulative distribution function of P𝑖. Let 𝐹𝑆 be the joint

cumulative distribution function of P. Then there exists an 𝑛-copula 𝐶 such that

𝐹𝑆 (𝑥) = 𝐶 (𝑥∗) (2.1)

where 𝑥∗ : N𝑛 → [0, 1] is given by 𝑥∗(𝑖) = 𝐹𝑖 (𝑥(𝑖)). Furthermore, if, for 𝑖 ∈ I , 𝐹𝑖
is continuous, then 𝐶 is unique; if not, 𝐶 is uniquely determined on

>
𝑖∈I 𝐹𝑖 (𝑆𝑖).

Conversely, if 𝐶 is an 𝑛-copula and, for 𝑖 ∈ I, 𝐹𝑖 is a function satisfying the

properties of a cumulative distribution function given in Theorem 2.2.8, then

the function 𝐹𝑆 determined by Equation (2.1) is a joint cumulative distribution

function.
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The following result is a significant generalisation of Lemma 3.1 from

Artemiou and Li (2009), which is used to prove a major result of Chapter 3.

Theorem 2.2.11 (A unique median result). Let (Ω,F , P) be a probability space,

let I be a non-empty set, and let (𝑀,B (𝑀) , T𝑀) be a topological vector space,

over some field, with the Borel 𝜎-field. Let 𝑓 : (Ω,F , P) → (𝑀,B (𝑀) , T𝑀)

be a non-zero 𝑀-valued random variable. Let 𝑉 B (𝑣𝑖)𝑖∈I be a stochastic

process where, for 𝑖 ∈ I, 𝑣𝑖 is a non-zero 𝑀-valued random variable on

(Ω,F , P). Let T I
𝑀

be the product topology (see Definition 2.3.6) and let 𝑉∗ :

(Ω,F , P) →
(
𝑀I , [B (𝑀)]I , T I

𝑀

)
be the random variable given by 𝑉∗(𝑥) = 𝑔𝑥

where 𝑔𝑥 : I → 𝑀 is itself given by 𝑔𝑥 (𝑖) = 𝑣𝑖 (𝑥). Suppose that the stochastic

process (𝑉∗, 𝑓 ) is independent (written𝑉∗ ⊥⊥ 𝑓 ). Let 𝑧 B (𝑧𝑖)𝑖∈I be the stochastic

process where, for 𝑖 ∈ I, 𝑧𝑖 : (Ω,F , P) →
(
𝑀2, [B (𝑀)]2 , T 2

𝑀

)
is given by

𝑧𝑖 (𝑥) = (𝑣𝑖 (𝑥), 𝑓 (𝑥))𝑇 (viewing 𝑀2 as the vector space of ordered pairs of

elements of 𝑀). Let 𝑇 :
(
𝑀2,F2

𝑀

)
→ (R,B (R)) be a bilinear map where any

pair with both entries non-zero is mappped to a non-zero real number. Let 𝑖, 𝑗 ∈ I

be distinct. Suppose P ({𝑥 ∈ Ω : 𝑓 (𝑥) ∈ 𝐺}) > 0 for any non-empty open set

𝐺 ∈ T𝑀 . Suppose
(
𝑣𝑖, 𝑣 𝑗

)
is exchangeable and that 𝑣𝑖 (𝑥) and 𝑣 𝑗 (𝑥) are linearly

independent for any 𝑥 ∈ Ω. Then (𝑇◦𝑧𝑖)2

(𝑇◦𝑧 𝑗)2 has a unique median of 1.

Notions of elliptical symmetry, spherical symmetry, and unitary invariance of

real Hilbert space valued random variables are now defined. These are essential

for Chapter 3, and were either used in Jones and Artemiou (2019, 2021) and Jones

et al. (2020) or originally defined in those papers.

Definition 2.2.28 (Characteristic function). The characteristic function Φ𝐴 :

H → C of an H-valued random variable 𝐴 on some probability space (Ω,F , P),

where H is a real Hilbert space, is defined by Φ𝐴 ( 𝑓 ) B E (exp (𝑖 ⟨ 𝑓 , 𝐴⟩H)). See
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Definition 2.5.6 for the definition of expectation for a 𝐵-valued random variable

where 𝐵 is a Banach space over C.

Definition 2.2.29 (Elliptically symmetric distribution). Let (Ω,F , P) be a prob-

ability space and let (H,B (H)) be a measurable space where H is a Hilbert

space over R. An H-valued random variable 𝐴 on (Ω,F , P) is said to have an

elliptically symmetric distribution if there exists 𝜇 ∈ H, a nuclear, non-negative

definite, self-adjoint operator (see Section 2.4 for the definitions) Ψ : H → H,

and a function 𝜑 : [0,∞) → R such that the characteristic function of 𝐴 − 𝜇 has

the form:

Φ𝐴−𝜇 ( 𝑓 ) = 𝜑 (⟨ 𝑓 ,Ψ 𝑓 ⟩H)

for all 𝑓 ∈ H.

Remark 2.2.17. Definition 2.2.29 is taken from Li (2007b). For such an 𝐴, Li

(2007b) shows that if E (𝐴) and Var (𝐴) exist (see Section 2.5 for the definitions)

thenE (𝐴) = 𝜇 andΨ is a non-negative multiple of Var (𝐴). 𝜑must be real-valued;

to see this, let 𝑓 ∈ H then consider that Φ𝐴−𝜇 (− 𝑓 ) = Φ𝐴−𝜇 ( 𝑓 ) and Φ𝐴−𝜇 (− 𝑓 ) =

𝜑 (⟨− 𝑓 ,Ψ(− 𝑓 )⟩H) = 𝜑 (⟨ 𝑓 ,Ψ( 𝑓 )⟩H) = Φ𝐴−𝜇 ( 𝑓 ). Definition 2.2.30 now defines

spherical symmetry for an H-valued random variable, where H is a real Hilbert

space, when the space is finite-dimensional.

Definition 2.2.30 (Spherically symmetric distribution). Suppose H is a finite-

dimensional Hilbert space overR. AnH-valued random variable 𝐴 on a probability

space (Ω,F , P) is said to have an spherically symmetric distribution if it has

an elliptically symmetric distribution with 𝜇 = 0 and Ψ being a non-negative

multiple of the identity operator.

Remark 2.2.18. Definition 2.2.30 requires the Hilbert space H to be finite-

dimensional as the identity operator is not nuclear on infinite-dimensional spaces.
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Remark 2.2.19. Definition 2.2.30 is adapted from Boente et al. (2014). They

remarked that a real random vector 𝑓 (here viewed as a stochastic process, but there

is an equivalence) is spherically distributed if and only if its distribution is invariant

under orthogonal transformations. This observation motivates Definition 2.2.31.

Definition 2.2.31 (Unitarily invariant random variables, due to the author originally

in Jones et al. (2020)). Let (Ω,F , P) be a probability space and let H be a

finite-dimensional Hilbert space over R. A random variable 𝑓 : (Ω,F , P) →

(H,B (H)) is said to be unitarily invariant if, for any unitary operator (see

Definition 2.4.11)𝑈 : H → H, P𝑈◦ 𝑓 = P 𝑓 .

Lemma 2.2.12 (Spherically distributed random variables have spherically dis-

tributed Fourier coefficients, first appeared in Jones et al. (2020)). SupposeH is a 𝑝-

dimensional (𝑝 ∈ N) Hilbert space overR and let (Ω,F , P) be a probability space.

If 𝑓 : (Ω,F , P) → (H,B (H)) is spherically symmetric then, for any orthonormal

basis
{
𝑣1, . . . , 𝑣𝑝

}
, so is the random vector ⟨𝑣, 𝑓 ⟩H : (Ω,F , P) → (R𝑝,B (R𝑝))

(viewing R𝑝 in its classical form as the real vector space of 𝑝-tuples of real

numbers) given by [⟨𝑣, 𝑓 ⟩H] (𝑥) =

(
⟨𝑣1, 𝑓 ⟩H , . . . ,

〈
𝑣𝑝, 𝑓

〉
H

)𝑇
. Furthermore,

the stochastic process
(
⟨𝑣1, 𝑓 ⟩H , . . . ,

〈
𝑣𝑝, 𝑓

〉
H

)
is exchangeable.

Lemma 2.2.13 (A relation between unitary operators, first appeared in Jones et al.

(2020)). Let H be a real Hilbert space with dimH = 𝑝 for some 𝑝 ∈ N. Suppose

that
{
𝑣1, . . . , 𝑣𝑝

}
forms an orthonormal basis for H and let 𝑇 : R𝑝 → R𝑝 be a

unitary operator (see Definition 2.4.11). Then the operator𝑈 : H → H defined

by

𝑈 (ℎ) B
∑︁
𝑗∈N𝑝

𝑇𝑗 (𝐶)𝑣 𝑗

is a unitary operator. 𝐶 is the coordinate of ℎ and𝑇𝑗 (𝐶) denotes the 𝑗 th component

of 𝑇 (𝐶).
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Lemma 2.2.14 (A relation between unitary operators, first appeared in Jones et al.

(2020)). Let H be a real Hilbert space with dimH = 𝑝 for some 𝑝 ∈ N. Suppose

that
{
𝑣1, . . . , 𝑣𝑝

}
forms an orthonormal basis for H and let 𝑈 : H → H be a

unitary operator. Let ℎ be an arbitrary element of H with coordinate 𝐶, and let

𝐷 be the coordinate of 𝑈 (ℎ). Define the operator 𝑇 : R𝑝 → R𝑝 by 𝑇 (𝐶) B 𝐷.

Then 𝑇 is a unitary operator on R𝑝.

Theorem 2.2.15 (Relation between unitary invariance and spherical symmetry,

first appeared in Jones et al. (2020)). Suppose H is a real Hilbert space with

dimH = 𝑝 for some 𝑝 ∈ N and let (Ω,F , P) be a probability space. An H-valued

random variable 𝑓 : (Ω,F , P) → (H,B (H)) is unitarily invariant if and only if,

for any orthonormal basis {𝑣𝑖}𝑖∈N𝑝
, the random variable ⟨𝑣, 𝑓 ⟩H : (Ω,F , P) →

(R𝑝,B (R𝑝)) given by [⟨𝑣, 𝑓 ⟩H] (𝑥) =

(
⟨𝑣1, 𝑓 (𝑥)⟩H , . . . ,

〈
𝑣𝑝, 𝑓 (𝑥)

〉
H

)𝑇
is a

spherically distributed R𝑝-valued random variable.

Now turned to are definitions of random operators, with a spectral decomposi-

tion, which satisfy some kind of invariance assumption. Like the notions recently

defined, these are essential to the work in Chapter 3.

Definition 2.2.32 (Orientationally uniform random operator, see Artemiou

and Li (2009)). Let (Ω,F , P) be a probability space and let H be a real 𝑝-

dimensional (𝑝 ∈ N) Hilbert space. A random operator Σ : (Ω,F , P) →

(L (H,H) ,B (L (H,H))) (see Definition 2.4.1) is said to have an orientationally

uniform distribution if there exists positive distinct random variables (𝜆𝑖)𝑖∈N𝑝
and

H-valued random variables (𝑣𝑖)𝑖∈N𝑝
such that

1. Σ
a.s.P
=

∑
𝑖∈N𝑝

𝜆𝑖 (𝑣𝑖 ⊗ 𝑣𝑖) (see Definition 2.5.7)

2. (𝜆𝑖)𝑖∈N𝑝
is exchangeable
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3. (𝑣𝑖)𝑖∈N𝑝
is exchangeable and, for any 𝑥 ∈ Ω, {𝑣𝑖 (𝑥)}𝑖∈N𝑝

is an orthonormal

basis of H

4. the stochastic process
(
(𝜆𝑖)𝑖∈N𝑝

, (𝑣𝑖)𝑖∈N𝑝

)
is independent.

Remark 2.2.20. Definition 2.2.32 is a generalisation of the definition of an

orientationally uniform random 𝑝 × 𝑝 matrix given in Artemiou and Li (2009).

Their definition required that the distribution of the random vector
(
𝜆1, . . . , 𝜆𝑝

)
be

absolutely continuous with respect to Lebesgue measure, though that assumption

does not appear to be used in subsequent developments in their work.

Definition 2.2.33 (Unitarily invariant random operators, originally in Jones et al.

(2020)). Let (Ω,F , P) be a probability space and let H be a real 𝑝-dimensional

(𝑝 ∈ N) Hilbert space. A random self-adjoint operator (see Section 2.4 for the

definitions) Σ : (Ω,F , P) → (L (H,H) ,B (L (H,H))) (see Definition 2.4.8)

is said to be unitarily invariant if, for any unitary operator 𝑈 : H → H,

Σ
𝐷
= 𝑈Σ𝑈−1 where𝑈Σ𝑈−1 : (Ω,F , P) → (L (H,H) ,B (L (H,H))) is given by[
𝑈Σ𝑈−1] (𝑥) = 𝑈Σ(𝑥)𝑈−1.

Finally for this section, the standard definition of the Lebesgue integral for

complex-valued measurable functions is recalled.

Definition 2.2.34 (Simple real-valued functions, see Bass (2016)). Let (𝑀,F𝑀)

be a measurable space. A simple real-valued function on 𝑀 is a function

𝑔 : 𝑀 → R of the form

𝑔(𝑥) =
∑︁
𝑖∈N𝑚

𝑎𝑖1𝐸𝑖
(𝑥)

for some 𝑚 ∈ N, 𝑎𝑖 ∈ R (𝑖 ∈ N𝑚), and 𝐸𝑖 ∈ F𝑀 .

Definition 2.2.35 (Lebesgue integral, see Bass (2016)). Let (𝑀,F𝑀 , 𝜇) be a

measure space. If 𝑠 : (𝑀,F𝑀 , 𝜇) → (R,B (R)) is a non-negative measurable
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simple function defined on 𝑀 with representation 𝑠 =
∑
𝑖∈N𝑚

𝑎𝑖1𝐸𝑖
, define the

Lebesgue integral of s to be∫
𝑀

𝑠 d𝜇 B
∑︁
𝑖∈N𝑚

𝑎𝑖𝜇(𝐸𝑖).

Here, the convention 0 · ∞ = 0 is adopted. If 𝑓 : (𝑀,F𝑀 , 𝜇) → (R,B (R)) is a

non-negative measurable function, define the Lebesgue integral of f to be∫
𝑀

𝑓 d𝜇 B sup
{∫

𝑀

𝑠 d𝜇 : 0 ≤ 𝑠 ≤ 𝑓 , 𝑠 is simple
}
.

For measurable 𝑔 : (𝑀,F𝑀 , 𝜇) → (R,B (R)), let 𝑔+ B max {𝑔, 0} and 𝑔− B

max {−𝑔, 0}. Provided
∫
𝑀
𝑔+ d𝜇 and

∫
𝑀
𝑔− d𝜇 are not both infinite, define the

Lebesgue integral of g to be∫
𝑀

𝑔 d𝜇 B
∫
𝑀

𝑔+ d𝜇 −
∫
𝑀

𝑔− d𝜇.

For measurable ℎ : (𝑀,F𝑀 , 𝜇) → (C,B (C)), define the Lebesgue integral to be∫
𝑀

ℎ d𝜇 B
∫
𝑀

ℜ(ℎ) d𝜇 + 𝑖
∫
𝑀

ℑ(ℎ) d𝜇

provided that
∫
𝑀
ℜ(ℎ) d𝜇 and

∫
𝑀
ℑ(ℎ) d𝜇 both exist, where ℜ(ℎ) : (Ω,F , P) →

(R,B (R)) is given by [ℜ(ℎ)] (𝑥) = ℜ(ℎ(𝑥)) and ℑ(ℎ) is defined analogously.

Remark 2.2.21. The standard properties of the Lebesgue integral are given in

virtually every measure-theoretic probability textbook, so are not explicitly noted

here. Taylor (2006) shows that the integral does not depend on the representation

of the simple functions.

2.3 Topology

This section is entirely dedicated to Theorem 2.3.1, with all definitions (bar net

convergence, which is used in Section 2.4) being needed in the proof.
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Definition 2.3.1 (Neighbourhoods, see Willard (1970)). Let (𝑆, T ) be a topologi-

cal space. For 𝑥 ∈ 𝑆, a neighbourhood of 𝑥 is a subset𝑈 ⊆ 𝑆 which contains an

open set containing 𝑥.

Definition 2.3.2 (Net convergence, see Bass (2016)). Let (𝑆, T ) be a topological

space and (𝐷, ≤) be a directed set. A net 𝑓 : 𝐷 → 𝑆 is said to converge to 𝑦 ∈ 𝑆

if, for each 𝐺 ∈ T with 𝑦 ∈ 𝐺, there exists 𝛼0 ∈ 𝐷 such that 𝑓 (𝛼) ∈ 𝐺 whenever

𝛼0 ≤ 𝛼.

Definition 2.3.3 (Topological bases, see Bass (2016)). Let (𝑆, T ) be a topological

space. C ⊆ T is called a base for T if every element of T can be written as a

union of elements in C.

Definition 2.3.4 (Topological subbases, see Bass (2016)). Let (𝑆, T ) be a

topological space. C ⊆ T is called a subbase for T if the set of finite intersections

of elements of C is a base for T .

Definition 2.3.5 (Topology generated by a set of sets, see Bass (2016)). Let 𝑆 be

a set and let C ⊆ P (𝑆). Define the topology generated by C, written 𝐺 (C), to be

the intersection of all topologies on 𝑆 which have C as a subbase.

Remark 2.3.1. Let (𝑆, T ) be a topological space. Referring to the construction

given by ordinals in Remark 2.2.4, it is seen that if C is a countable base for T

then 𝜎 (T ) = 𝜎 (C). Furthermore, if D is a countable family of subsets of 𝑆 then

𝜎 (D) = 𝜎 (𝐺 (D)).

Definition 2.3.6 (Product topology, see Engelking (1989)). Let I be a non-empty

set and let (𝑆𝑖, T𝑖) be a topological space for any 𝑖 ∈ I . The product topology T on

𝑆 B
>

𝑖∈I 𝑆𝑖 is defined to the topology generated by
{
𝜙−1
𝑖
(𝑈𝑖) : 𝑖 ∈ I,𝑈𝑖 ∈ T𝑖

}
where 𝜙𝑖 is the projection from 𝑆 to 𝑆𝑖. Define B (𝑆) to be 𝜎 (T ).
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Remark 2.3.2. The product topology is the coarsest topology for which the

projection maps are all continuous.

Theorem 2.3.1 (Relation between the Borel 𝜎-field on the product space with the

tensor product 𝜎-field). Let 𝑚 ∈ N ∪ {𝜔} and let (𝑆𝑖, 𝑑𝑖) be a separable metric

space for each 𝑖 ∈ N𝑚. Let 𝑆 B
>

𝑖∈N𝑚
𝑆𝑖. Then (𝑆, T ) is also a separable metric

space where T is the product topology. Furthermore,

B (𝑆) =
⊗
𝑖∈N𝑚

B (𝑆𝑖) .

2.4 Functional Analysis

The definitions given in this section are adapted from Hsing and Eubank (2015),

except where it is stated that they are due to the author or otherwise referenced.

Proofs of any unreferenced lemmas are given at the end of the chapter. The

purpose of this section is to give the necessary theory from Functional Analysis

that is required for Section 2.5, Chapter 3, and Chapter 4.

Definition 2.4.1 (𝐿𝑝 spaces, due to the author). Let (𝑀,F𝑀 , 𝜇) be a measure

space and let 𝑝 ∈ {𝑥 ∈ R : 𝑥 ≥ 1}. Let 𝐿𝑝 ((𝑀,F𝑀 , 𝜇) , 𝐵) be the set of all

𝐵-valued (where 𝐵 is a complex Banach space) measurable functions on 𝑀 for

which the integral
∫
∥ 𝑓 ∥𝐵 d𝜇 exists where functions which are almost surely

equal are considered equivalent. If 𝐵 is defined over the reals and 𝐵 = R, write

𝐿𝑝 ((𝑀,F𝑀 , 𝜇)) and, when there is no potential ambiguity, write 𝐿𝑝 (𝜇) as

shorthand. Define the 𝑝-norm

∥ 𝑓 ∥𝑝 B
(∫

∥ 𝑓 ∥𝑝
𝐵

)1/𝑝

where 𝑓 ∈ 𝐿𝑝 ((𝑀,F𝑀 , 𝜇) , 𝐵).
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Remark 2.4.1. Hsing and Eubank (2015) only gives Definition 2.4.1 for the

case 𝐵 = R. They give a proof that 𝐿𝑝 (𝑀,F𝑀 , 𝜇) is complete which can be

trivially adapted (by replacing the absolute value with the 𝐵 norm) to show that

𝐿𝑝 ((𝑀,F𝑀 , 𝜇) , 𝐵) is complete.

Definition 2.4.2 (Subsets which are orthogonal, see Muscat (2014)). Subsets 𝐴

and 𝐵 of a complex Hilbert space H are said to be orthogonal, denoted by 𝐴 ⊥ 𝐵,

if ⟨ 𝑓 , 𝑔⟩H = 0 for any 𝑓 ∈ 𝐴 and 𝑔 ∈ 𝐵.

Remark 2.4.2. For a complex Hilbert space H, it is supposed that the inner product

is linear in the first entry and conjugate linear in the second.

Definition 2.4.3 (Orthonormal subsets and bases, see Conway (1990)). An

orthonormal subset of a complex Hilbert space H is a subset 𝐸 with the properties:

(1) for any 𝑒 ∈ 𝐸 , ∥𝑒∥H = 1; (2) for any two distinct 𝑒1, 𝑒2 ∈ 𝐸 , ⟨𝑒1, 𝑒2⟩H = 0.

An orthonormal basis for H is a maximal orthonormal subset (where the ordering

is given by set inclusion).

Remark 2.4.3. Proposition 4.14 in Chapter 1 of Conway (1990) gives that

all orthonormal bases for a complex Hilbert space have the same cardinality.

Proposition 4.16 of the same chapter in the same text gives that a complex

infinite-dimensional Hilbert space is separable if and only if the cardinality of any

orthonormal basis is equal to ℵ0.

Definition 2.4.4 (Summations over arbitrary sets, due to the author). Let 𝐵 be

a complex Banach space and let I be a set. Suppose that (𝑣𝑖)𝑖∈I is a family of

elements of 𝐵. Let F be the set of all finite subsets of I and order F by inclusion

so that it becomes a directed set. Define the summation
⊕

𝑖∈I 𝑣𝑖 to be the limit, if

it exists, of the net 𝑓 : F → 𝐵 given by 𝑓 (𝐹) = ∑
𝑖∈𝐹 𝑣𝑖.

Remark 2.4.4. The concept behind Definition 2.4.4 is used in Conway (1990).
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Definition 2.4.5 (Products over arbitrary sets, due to the author). Let 𝐵 be a

complex unital Banach algebra and let I be a set. Suppose that (𝑣𝑖)𝑖∈I is a family

of elements of 𝐵. Let F be the set of all finite subsets of I and order F by

inclusion so that it becomes a directed set. Define the product
⊗

𝑖∈I 𝑣𝑖 to be the

limit, if it exists, of the net 𝑓 : F → 𝐵 given by 𝑓 (𝐹) = ∏
𝑖∈𝐹 𝑣𝑖.

Remark 2.4.5. Definition 2.4.5 is inspired by Definition 2.4.4.

Remark 2.4.6. Let H be a complex Hilbert space and let I be a set. Let (𝑣𝑖)𝑖∈I be

a family of elements of H. If I = N𝑚 for some 𝑚 ∈ N then it is straightforward to

see that
⊕

𝑖∈I 𝑣𝑖 =
∑
𝑖∈I 𝑣𝑖. If I = N then the statement of Exercise 10 in Section

4 of Chapter 1 of Conway (1990) says that if
⊕

𝑖∈I 𝑣𝑖 exists then so does
∑
𝑖∈I 𝑣𝑖

and they agree; however the existence of
∑
𝑖∈I 𝑣𝑖 does not necessarily imply the

existence of
⊕

𝑖∈I 𝑣𝑖.

Remark 2.4.7. Theorem 4.13 in Chapter 1 of Conway (1990) gives that if 𝐸 is

an orthonormal basis for a complex Hilbert space H then, for any ℎ ∈ H, ℎ is

equal to
⊕

𝑒∈𝐸 ⟨ℎ, 𝑒⟩H 𝑒. Furthermore, Corollary 4.9 of the same chapter in the

same text gives that only countably many of the Fourier coefficients are nonzero.

Therefore, it is often reasonable to assume that H is separable.

Definition 2.4.6 (Dimension, see Conway (1990)). The dimension of a Hilbert

space H, denoted by dim (H), is defined to be the cardinality of any orthonormal

basis for H.

Definition 2.4.7 (Tensor product of Hilbert spaces, see Conway (1990)). Let I be

a non-empty set and let {H𝑖 : 𝑖 ∈ I} be a set of complex Hilbert spaces. Define

their tensor product H =
⊗

𝑖∈I H𝑖 to be{
ℎ : I →

⋃
𝑖∈I

H𝑖

����� (∀𝑖 ∈ I [ℎ(𝑖) ∈ H𝑖]) ∧
(⊕
𝑖∈I

∥ℎ(𝑖)∥2
H𝑖
< ∞

)}
.
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H is made into a complex Hilbert space by equipping it with the inner product

⟨ 𝑓 , 𝑔⟩H B
⊕

𝑖∈I ⟨ 𝑓 (𝑖), 𝑔(𝑖)⟩H𝑖
.

Remark 2.4.8. What is here called the tensor product, Conway (1990) actually

calls a direct sum. This terminology is avoided here to reduce the risk of confusion

with that of the usual sum of vector spaces.

Definition 2.4.8 (Bounded operators). Let
(
𝐵1, ∥·∥𝐵1

)
and

(
𝐵2, ∥·∥𝐵2

)
be complex

Banach spaces. A linear transformation 𝐴 : 𝐵1 → 𝐵2 is called a bounded operator

if there exists a positive constant 𝐶 such that, for all 𝑥 ∈ 𝐵1, ∥𝐴𝑥∥𝐵2 ≤ 𝐶 ∥𝑥∥𝐵1 .

Let L (𝐵1, 𝐵2) denote the collection of all such operators.

Remark 2.4.9. Proposition 8.2 of Muscat (2014) gives that every bounded operator

between two complex Banach spaces is continuous and vice versa.

Remark 2.4.10. For complex Banach spaces 𝐵1 and 𝐵2, Theorem 3.1.3 of Hsing

and Eubank (2015) gives that L (𝐵1, 𝐵2) is also a complex Banach space when

considered to be equipped with the operator norm

∥𝐴∥L(𝐵1,𝐵2) B sup
𝑥∈𝐵1,∥𝑥∥𝐵1=1

∥𝐴𝑥∥𝐵2 .

where 𝐴 ∈ L (𝐵1, 𝐵2). Throughout this thesis, it is assumed that the space

of bounded operators between complex Banach spaces is considered with the

operator norm. This implies that B (L (𝐵1, 𝐵2)) is the Borel 𝜎-field generated by

the topology induced by this norm.

Definition 2.4.9 (Compact operators). Let 𝐵1, 𝐵2 be complex Banach spaces.

The operator 𝑇 ∈ L (𝐵1, 𝐵2) is called a compact operator if, for any bounded

sequence {𝑥𝑖}𝑖∈N of elements of 𝐵1, it holds that {𝑇𝑥𝑖}𝑖∈N contains a convergent

subsequence in 𝐵2.
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Definition 2.4.10 (Isomorphisms between Hilbert spaces, see Conway (1990)). Let

H1 and H2 be complex Hilbert spaces. A bounded linear bĳection𝑈 : H1 → H2

is said to be an isomorphism if ⟨𝑈 𝑓 ,𝑈𝑔⟩H2 = ⟨ 𝑓 , 𝑔⟩H1 for any 𝑓 , 𝑔 ∈ H1.

Remark 2.4.11. Theorem 5.4 in Chapter 1 of Conway (1990) gives that there is

an isomorphism between two complex Hilbert spaces if and only if they have the

same dimension.

Definition 2.4.11 (Unitary operators on a Hilbert space, see Conway (1990)). Let

H be a complex Hilbert space. A bounded linear bĳection𝑈 : H → H is said to

be a unitary operator if ⟨𝑈 𝑓 ,𝑈𝑔⟩H = ⟨ 𝑓 , 𝑔⟩H for any 𝑓 , 𝑔 ∈ H.

Definition 2.4.12 (Adjoint operators, see Conway (1990)). Let H1 and H2 be

complex Hilbert spaces. Let 𝐴 ∈ L (H1,H2). The adjoint of 𝐴 is the unique (by

the Riesz representation theorem) 𝐴∗ ∈ L (H2,H1) such that

∀ 𝑓 ∈ H1, 𝑔 ∈ H2
[
⟨ 𝑓 , 𝐴∗𝑔⟩H1 = ⟨𝐴 𝑓 , 𝑔⟩H2

]
.

When H1 = H2, 𝐴 is said to be self-adjoint if 𝐴 = 𝐴∗.

Remark 2.4.12. Proposition 2.5 in Chapter 1 of Conway (1990) gives that

𝑈 ∈ L (H1,H2) is an isomorphism if and only if𝑈−1 = 𝑈∗. As a trivial corollary,

if H1 = H2 then𝑈 is a unitary operator if and only if𝑈−1 = 𝑈∗.

Definition 2.4.13 (Tensor product of bounded operators, adapted from Conway

(1990)). Let I be a non-empty set and let {H𝑖 : 𝑖 ∈ I} and {G𝑖 : 𝑖 ∈ I} be sets

of complex Hilbert spaces. Let H B
⊗

𝑖∈I H𝑖 and G B
⊗

𝑖∈I G𝑖. For 𝑖 ∈ I,

let 𝐴𝑖 ∈ L (H𝑖,G𝑖) and suppose that sup𝑖∈I ∥𝐴𝑖∥L(H𝑖 ,G𝑖) < ∞. The operator

𝐴 ∈ L (H,G) which satisfies, for any ℎ ∈ H and 𝑖 ∈ I, (𝐴ℎ) (𝑖) = 𝐴𝑖ℎ(𝑖) is

called the tensor product of the operators 𝐴𝑖 (𝑖 ∈ I). It is denoted by 𝐴 =
⊗

𝑖∈I 𝐴𝑖.

It has norm ∥𝐴∥L(H,G) = sup𝑖∈I ∥𝐴𝑖∥L(H𝑖 ,G𝑖) .
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Remark 2.4.13. What is here called the tensor product, Conway (1990) actually

calls a direct sum. This terminology is avoided here to reduce the risk of confusion

with that of the usual sum of bounded operators.

Theorem 2.4.1 (The tensor product of closed ranges is the closed range of the tensor

product operators). Let I be a non-empty set and let {H𝑖 : 𝑖 ∈ I} and {G𝑖 : 𝑖 ∈ I}

be sets of complex Hilbert spaces. Let H B
⊗

𝑖∈I H𝑖 and G B
⊗

𝑖∈I G𝑖. For

𝑖 ∈ I, let 𝐴𝑖 ∈ L (H𝑖,G𝑖) and suppose that sup𝑖∈I ∥𝐴𝑖∥L(H𝑖 ,G𝑖) < ∞. Then

⊗
𝑖∈I

Ran (𝐴𝑖) = Ran

(⊗
𝑖∈I

𝐴𝑖

)
Definition 2.4.14 (Definiteness of bounded operators). Let H be a complex

Hilbert space and let 𝐴 ∈ L (H,H). 𝐴 is said to be

1. non-negative definite if ⟨ℎ, 𝐴ℎ⟩H ≥ 0 for any nonzero ℎ ∈ H

2. positive definite if ⟨ℎ, 𝐴ℎ⟩H > 0 for any nonzero ℎ ∈ H

3. non-positive definite if ⟨ℎ, 𝐴ℎ⟩H ≤ 0 for any nonzero ℎ ∈ H

4. negative definite if ⟨ℎ, 𝐴ℎ⟩H < 0 for any nonzero ℎ ∈ H.

Definition 2.4.15 (Hilbert-Schmidt operators, adapted from Gretton et al. (2005)).

Let I be a non-empty set and let H1 and H2 be complex Hilbert spaces with

dimension equal to the cardinality of I. Let {𝑢𝑖}𝑖∈I and {𝑣𝑖}𝑖∈I be orthonormal

bases for H1 and H2 respectively. A linear operator 𝑇 : H1 → H2 is called a

Hilbert-Schmidt operator if ⊕
𝑖, 𝑗∈I

〈
𝑇𝑢𝑖, 𝑣 𝑗

〉2
H2
< ∞
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Remark 2.4.14. Definition 2.4.15 turns out to be independent of the choice of

orthonormal bases for H1 and H2. To see this, consider first that Parseval’s

identity implies ⊕
𝑖, 𝑗∈I

〈
𝑇𝑢𝑖, 𝑣 𝑗

〉2
H2

=
⊕
𝑖∈I

∥𝑇𝑢𝑖∥2
H2
.

Hence the sum is independent of the choice of orthonormal basis forH2. Similarly,

by the definition of the adjoint operator and Parseval’s identity again,⊕
𝑖, 𝑗∈I

〈
𝑇𝑢𝑖, 𝑣 𝑗

〉2
H2

=
⊕
𝑖, 𝑗∈I

〈
𝑢𝑖, 𝑇

∗𝑣 𝑗
〉2
H1

=
⊕
𝑗∈I



𝑇∗𝑣 𝑗


2
H1

The sum is therefore also independent of the choice of orthonormal basis for H1.

Let 𝐻𝑆(H1,H2) be the vector space of all Hilbert-Schmidt operators from H1 to

H2. Define an inner product on 𝐻𝑆(H1,H2) by

⟨𝑆, 𝑇⟩𝐻𝑆(H1,H2) B
⊕
𝑖, 𝑗∈I

〈
𝑆𝑢𝑖, 𝑣 𝑗

〉
H2

〈
𝑇𝑢𝑖, 𝑣 𝑗

〉
H2

This definition can, similarly to above, be shown to be independent of the choice

of orthonormal bases for H1 and H2. According to Gretton et al. (2005), this inner

product makes 𝐻𝑆(H1,H2) into a separable complex Hilbert space provided that

H1 and H2 are separable.

Definition 2.4.16 (Trace-class operators, see Conway (1990)). Let I be a non-

empty set and let H be a complex Hilbert space with dimension equal to

the cardinality of I. Define the vector space of trace-class operators (also

called nuclear operators) to be Tr (H) B {𝐴𝐵 : 𝐴, 𝐵 ∈ 𝐻𝑆(H,H)}. The state-

ment of Exercise 20 in Section 2 of Chapter 9 of Conway (1990) gives that⊕
𝑖∈I |⟨𝐴𝑣𝑖, 𝑣𝑖⟩H | < ∞ for any 𝐴 ∈ Tr (H) and any orthonormal basis {𝑣𝑖}𝑖∈I

of H, with the sum being independent of the choice of orthonormal basis. For

𝐴 ∈ Tr (H), Tr (𝐴) B⊕
𝑖∈I ⟨𝐴𝑣𝑖, 𝑣𝑖⟩H is called the trace of 𝐴. Define the trace

norm to be the function given by ∥𝐴∥Tr(H) B Tr
(
[𝐴∗𝐴]1/2

)
. This norm makes

Tr (H) into a Banach space.
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Definition 2.4.17 (Moore-Penrose inverse). Let H1 and H2 be complex Hilbert

spaces. Let 𝐴 ∈ L (H1,H2) and let 𝐴⊥ be the restriction of 𝐴 to Ker (𝐴)⊥. The

Moore-Penrose (generalised) inverse of 𝐴 is the linear transformation 𝐴† : H2 →

Ker (𝐴)⊥ with domain 𝐷
(
𝐴†

)
= Ran (𝐴) + Ran (𝐴)⊥ which is specified by

𝐴† 𝑓 B


(𝐴⊥)−1

𝑓 𝑓 ∈ Ran (𝐴)

0 𝑓 ∈ Ran (𝐴)⊥

2.5 Banach/Hilbertian data analysis

The definitions given in this section are adapted from Hsing and Eubank (2015),

except where it is stated that they are due to the author or otherwise referenced.

Proofs of any unreferenced results are given at the end of the chapter. The

purpose of this section, like the previous one, is to give the essential theory from

Banach/Hilbertian data analysis that is used in Chapter 3 and Chapter 4. It could be

argued that this section is classifiable as part of Functional Analysis – it is separate

as it takes on a more probabilistic flavour. A particularly important part of this

section is towards the end where the theory of kernels is discussed, in particular

the definition of conditional kernel mean embeddings and the Hilbert-Schmidt

Conditional Independence Criterion.

Definition 2.5.1 (Banach and Hilbertian random variables). Let (Ω,F , P) be

a probability space. A Banach random variable 𝑓 is a measurable function

𝑓 : (Ω,F , P) → (𝐵,B(𝐵)) where 𝐵 is a complex Banach space. A Hilbertian

random variable 𝑔 is a measurable function 𝑔 : (Ω,F , P) → (H,B(H)) where

H is a complex Hilbert space.

Definition 2.5.2 (Random operators). Let (Ω,F , P) be a probability space. Γ is

called a random operator if Γ : (Ω,F , P) → (L (𝐵1, 𝐵2) ,B (L (𝐵1, 𝐵2))) is a

measurable function where 𝐵1 and 𝐵2 are complex Banach spaces.
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Definition 2.5.3 (Simple Banach space valued functions). Let (Ω,F , 𝜇) be a

measure space and let 𝐵 be a complex Banach space. A 𝐵-valued function

𝑓 : (Ω,F , 𝜇) → 𝐵 is said to be simple if it satisfies:

∀𝜔 ∈ Ω, 𝑓 (𝜔) =
𝑘∑︁
𝑗=1

1𝐹𝑗
(𝜔)𝑔 𝑗

for some 𝑘 ∈ N where, for any 𝑗 ∈ N𝑘 , 𝐹𝑗 ∈ F and 𝑔 𝑗 ∈ 𝐵.

Definition 2.5.4 (Bochner integral for simple functions). Let (Ω,F , 𝜇) be a

measure space and let 𝐵 be a complex Banach space. A 𝐵-valued simple function

𝑓 : (Ω,F , 𝜇) → 𝐵 with representation 𝑓 (𝜔) =
∑𝑘
𝑗=1 1𝐹𝑗

(𝜔)𝑔 𝑗 is said to be

Bochner integrable if, for all 𝑗 ∈ N𝑘 , 𝜇(𝐹𝑗 ) < ∞. The Bochner integral of such a

function is defined as: ∫
Ω

𝑓 d𝜇 B
𝑘∑︁
𝑗=1

𝜇(𝐹𝑗 )𝑔 𝑗

Remark 2.5.1. Hsing and Eubank (2015) remark that Definition 2.5.4 does not

depend on the particular representation of 𝑓 .

Definition 2.5.5 (Bochner integral for measurable functions). Let (Ω,F , 𝜇) be a

measure space and let (𝐵,B(𝐵)) be a measurable space where 𝐵 is a complex

Banach space. A 𝐵-valued measurable function 𝑓 : (Ω,F , 𝜇) → (𝐵,B(𝐵)) is

said to be Bochner integrable if there exists a sequence { 𝑓𝑖}𝑖∈N where: (1) for

any 𝑖 ∈ N, 𝑓𝑖 : (Ω,F , 𝜇) → (𝐵,B(𝐵)) is a simple Bochner integrable function,

and (2) lim𝑖→∞
∫
Ω
∥ 𝑓𝑖 − 𝑓 ∥𝐵 d𝜇 = 0. The Bochner integral of such a function is

defined as: ∫
Ω

𝑓 d𝜇 B lim
𝑖→∞

∫
Ω

𝑓𝑖 d𝜇.

When the context is unambiguous, Ω is suppressed in the notation. Suppose that

𝑓 is Bochner integrable and, for 𝐴 ∈ F , define∫
𝐴

𝑓 d𝜇 B
∫

1𝐴 𝑓 d𝜇.
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Remark 2.5.2. The notation
∫
𝑓 (𝑥) d𝜇 (𝑥) is also sometimes used for the Bocher

integral, if it exists, of 𝑓 .

Theorem 2.5.1 (Theorem 36 of Section 1 of Chapter 1 of Dinculeanu (2000)).

Let (𝑀,F , 𝜇) be a measure space and let (𝐵1,B (𝐵1)) and (𝐵2,B (𝐵2)) be

measurable spaces where 𝐵1 and 𝐵2 are complex Banach spaces. Let 𝑇 ∈

L (𝐵1, 𝐵2). If 𝑓 : (𝑀,F , 𝜇) → (𝐵1,B (𝐵1)) is Bochner integrable then so is

𝑇 ◦ 𝑓 with

𝑇

∫
𝑓 d𝜇 =

∫
𝑇 ◦ 𝑓 d𝜇.

Remark 2.5.3. Dinculeanu (2000) gives a number of properties of the Bochner

integral which are similar to those for the Lebesgue integral, so they will not be

listed here.

Remark 2.5.4. Let (𝑀,F , 𝜇) be a measure space and let (H,B (H)) be a measur-

able space where H is a complex Hilbert space. Let 𝑓 : (𝑀,F , 𝜇) → (H,B (H))

be a Bochner integrable function. As a straightforward corollary of Theorem 2.5.1,

it holds that, for any 𝑔 ∈ H,∫
⟨ 𝑓 , 𝑔⟩H d𝜇 =

〈∫
𝑓 d𝜇, 𝑔

〉
H
.

Definition 2.5.6 (Expectation of a Banach random variable). Let (Ω,F , P) be a

probability space and let (𝐵,B(𝐵)) be a measurable space where 𝐵 is a complex

Banach space. Suppose that 𝑓 : (Ω,F , P) → (𝐵,B(𝐵)) is Bochner integrable.

Define the expectation EP ( 𝑓 ) of 𝑓 by

EP ( 𝑓 ) B
∫

𝑓 dP.

When the context is unambiguous, P is suppressed in the notation for the

expectation.
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Remark 2.5.5. If H is a separable complex Hilbert space and 𝑓 is a H-valued

random variable defined on some probability space (Ω,F , P), Theorem 2.6.5

of Hsing and Eubank (2015) implies that E (∥ 𝑓 ∥H) < ∞ is sufficient for the

existence of E ( 𝑓 ).

Lemma 2.5.2 (Expectation and inner products). Let (Ω,F , P) be a probabil-

ity space and let (H,B (H)) be a measurable space where H is a complex

Hilbert space. Suppose that 𝑓 : (Ω,F , P) → (H,B (H)) and 𝑔 : (Ω,F , P) →

(H,B (H)) are independent and are both Bochner integrable. Then

E (⟨ 𝑓 , 𝑔⟩H) = ⟨E ( 𝑓 ) ,E (𝑔)⟩H

Definition 2.5.7 (Tensor product operator). Let 𝑥1, 𝑥2 be elements of complex

Hilbert spaces H1 and H2 respectively. The tensor product operator (𝑥1 ⊗ 𝑥2) :

H1 → H2 is defined by:

(𝑥1 ⊗ 𝑥2) 𝑦 B ⟨𝑦, 𝑥1⟩H1 𝑥2

for 𝑦 ∈ H1. It is straightforward to see that 𝑥1 ⊗ 𝑥2 = (𝑥2 ⊗ 𝑥1)∗.

Remark 2.5.6. A tensor product operator is Hilbert-Schmidt with Hilbert-Schmidt

norm equal to the product of the norms of its parts (see (3) in Gretton et al. (2005)).

Let (Ω,F , P) be a probability space, H1 and H2 be complex Hilbert spaces, 𝐴 :

(Ω,F , P) → (H1,B (H1)) and 𝐵 : (Ω,F , P) → (H2,B (H2)) be random vari-

ables. The random operator 𝐴 ⊗ 𝐵 : (Ω,F , P) → (L (H1,H2) ,B (L (H1,H2)))

is given by (𝐴 ⊗ 𝐵) (𝑥) = 𝐴(𝑥) ⊗ 𝐵(𝑥).

Definition 2.5.8 (Cross-covariance operators). Let (Ω,F , P) be a probability space

and H1 and H2 be complex Hilbert spaces. Let 𝐴 : (Ω,F , P) → (H1,B (H1))

and 𝐵 : (Ω,F , P) → (H2,B (H2)) be random variables. The cross-covariance

operator Σ𝐵𝐴 : H1 → H2 (also written Cov (𝐴, 𝐵)) is defined to be the expectation
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E ((𝐴 − E (𝐴)) ⊗ (𝐵 − E (𝐵))). Also define the covariance operator Σ𝐴 B

Σ𝐴𝐴 B Var (𝐴) B Cov (𝐴, 𝐴).

Remark 2.5.7. Assuming that the cross-covariance operator Σ𝐵𝐴 of Hilbertian

random variables 𝐴 and 𝐵 exists, it can equivalently be written as

Σ𝐵𝐴 = E (𝐴 ⊗ 𝐵) − (E (𝐴) ⊗ E (𝐵)) .

Remark 2.5.8. A sufficient condition, due to Theorem 2.6.5 of Hsing and

Eubank (2015), for the existence of the cross-covariance operator between

Hilbertian random variables 𝐴 and 𝐵, when the spaces are separable, is that

E
(
∥𝐴∥H1 ∥𝐵∥H2

)
< ∞.

Remark 2.5.9. Cross-covariance operators are Hilbert-Schmidt (see Lemma 4 of

Fukumizu et al. (2007)). Covariance operators are non-negative definite (by a

straightforward application of Lemma 2.5.6) and self-adjoint.

Definition 2.5.9 (Conditional expectation, see Dinculeanu (2000)). Let (Ω,F , P)

be a probability space and let 𝐵 be a complex Banach space. Let 𝐴 : (Ω,F , P) →

(𝐵,B(𝐵)) be a 𝐵-valued random variable such that E (𝐴) exists. Let 𝐺 be a

sub-𝜎-field of F . The conditional expectation E (𝐴|𝐺) is defined to be any

𝐺-measurable Bochner integrable function 𝑔 : (Ω,F , P) → (𝐵,B(𝐵)) such

that, for any 𝐻 ∈ 𝐺, E (1𝐻𝑔) = E (1𝐻𝐴). If 𝑀 : (Ω,F , P) → (Ω𝑀 ,F𝑀) is

a Ω𝑀-valued random variable with (Ω𝑀 ,F𝑀) being a measurable space, then

E (𝐴|𝑀) B E (𝐴|𝜎 (𝑀)). For a non-empty family (F𝑖)𝑖∈I of sub-𝜎-fields of

F , let E (𝐴|F𝑖 : 𝑖 ∈ I) B E (𝐴|∨𝑖∈I F𝑖) and, if I = N𝑚 for some 𝑚 ∈ N, let

E (𝐴|F1, . . . ,F𝑚) B E (𝐴|∨𝑖∈I F𝑖).

Remark 2.5.10. The existence and almost sure uniqueness of the conditional

expectation is established in Dinculeanu (2000). Taking 𝐻 = Ω in the definition

of conditional expectation gives the law of total expectation for Banach random

variables.

53



Chapter 2. Definitions and supporting results

Remark 2.5.11. Dinculeanu (2000) gives a number of properties of the conditional

expectation which are alike those for the classical real-valued case, so they will

not be presented here.

Definition 2.5.10 (Conditional probability, see Dinculeanu (2000)). Let (Ω,F , P)

be a probability space. For 𝐺 ⊴ F and 𝐴 ∈ F , let P (𝐴|𝐺) B E (1𝐴 |𝐺) be the

conditional probability of 𝐴 given 𝐺.

Remark 2.5.12. Let (Ω,F , P) be a probability space. Let 𝐴 ∈ F with P (𝐴) > 0

and 𝐺 ⊴ F . The solution to Problem 34.4(a) of Billingsley (1995) gives that

P𝐴 (𝐵 |𝐺)
a.s.P𝐴
=

P(𝐴∩𝐵 |𝐺)
P(𝐴|𝐺) for any 𝐵 ∈ F .

Definition 2.5.11 (Conditional cross-covariance, see Dinculeanu (2000)). Let

(Ω,F , P) be a probability space. Let 𝐴 : (Ω,F , P) → (H1,B (H1)) and

𝐵 : (Ω,F , P) → (H2,B (H2)) be Hilbertian random variables (the spaces

are defined over C), and let 𝐺 ⊴ F . Suppose that Σ𝐵𝐴 = Cov (𝐴, 𝐵) ex-

ists. Define the conditional cross-covariance Σ𝐵𝐴|𝐺 B Cov (𝐴, 𝐵|𝐺) B

E ((𝐴 − E (𝐴|𝐺)) ⊗ (𝐵 − E (𝐵 |𝐺)) |𝐺). If 𝐺 is generated by a random vari-

able 𝑀, let Σ𝐵𝐴|𝑀 B Σ𝐵𝐴|𝐺 . Also, define the conditional covariance of 𝐴 by

Σ𝐴|𝐺 B Σ𝐴𝐴|𝐺 B Var (𝐴|𝐺) B Cov (𝐴, 𝐴|𝐺).

Remark 2.5.13. In the literature on kernel mean embeddings of distributions (see

Muandet et al. (2016), a different, non-equivalent and more restrictive, definition

of conditional cross-covariance operators is typically used. Definition 2.5.11 is

more alike the definition of conditional cross-covariance operators in the kernel

framework given in Park and Muandet (2020), where they discuss the advantages

of the measure-theoretic definition over the commonly used one.

Remark 2.5.14. In Classical Statistics, the law of total covariance follows from

the law of total expectation. This still holds here with the proof being essentially

the same, hence is omitted.
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Lemma 2.5.3 (A property of conditional expectation). Let (Ω,F , P) be a proba-

bility space and let H1 and H2 be complex Hilbert spaces. Let 𝐴 : (Ω,F , P) →

(H1,B (H1)) and 𝐵 : (Ω,F , P) → (H2,B (H2)) be random variables such that

E (𝐴 ⊗ 𝐵) exists. Let 𝐺 ⊴ F . Then

E (𝐴 ⊗ E (𝐵 |𝐺) |𝐺) a.s.P
= E (𝐴|𝐺) ⊗ E (𝐵 |𝐺) .

Lemma 2.5.4 (A property of conditional expectation). Let (Ω,F , P) be a proba-

bility space and let H1 and H2 be complex Hilbert spaces. Let 𝐴 : (Ω,F , P) →

(H1,B (H1)) and 𝐵 : (Ω,F , P) → (H2,B (H2)) be random variables such that

E (𝐴 ⊗ 𝐵) exists. Let 𝐺 ⊴ F . Then

E (𝐴 ⊗ E (𝐵 |𝐺)) = E (E (𝐴|𝐺) ⊗ 𝐵) = E (E (𝐴|𝐺) ⊗ E (𝐵 |𝐺)) .

Corollary 2.5.5 (A property of conditional cross-covariance). Let (Ω,F , P)

be a probability space and let H1 and H2 be complex Hilbert spaces. Let

𝐴 : (Ω,F , P) → (H1,B (H1)) and 𝐵 : (Ω,F , P) → (H2,B (H2)) be random

variables such that Cov (𝐴, 𝐵) exists. Let 𝐺 ⊴ F . Then

Cov (𝐴,E (𝐵 |𝐺)) a.s.P
= Cov (E (𝐴|𝐺) ,E (𝐵 |𝐺)) a.s.P

= Cov (E (𝐴|𝐺) , 𝐵) .

Lemma 2.5.6 (Conditional cross-covariance operators and inner products). Let

(Ω,F , P) be a probability space and letH1 andH2 be complex Hilbert spaces. Let

𝐴 : (Ω,F , P) → (H1,B (H1)) and 𝐵 : (Ω,F , P) → (H2,B (H2)) be Hilbertian

random variables such that Σ𝐴𝐵 exists. Let 𝐺 ⊴ F . For any 𝑓 ∈ H1 and 𝑔 ∈ H2

Cov
(
⟨ 𝑓 , 𝐴⟩H1 , ⟨𝐵, 𝑔⟩H2

��𝐺) a.s.P
=

〈
𝑓 , Σ𝐴𝐵|𝐺𝑔

〉
H1

a.s.P
=

〈
Σ𝐵𝐴|𝐺 𝑓 , 𝑔

〉
H2
.

where ⟨ 𝑓 , 𝐴⟩H1 : (Ω,F , P) → (C,B (C)) is given by 𝑥 ↦→ ⟨ 𝑓 , 𝐴(𝑥)⟩H1 and

⟨𝐵, 𝑔⟩H2 : (Ω,F , P) → (C,B (C)) is given by 𝑥 ↦→ ⟨𝐵(𝑥), 𝑔⟩H2 .

55



Chapter 2. Definitions and supporting results

Definition 2.5.12 (Conditional independence of 𝜎-fields, adapted from Li (2018)).

Let (Ω,F , P) be a probability space and let I be a non-empty set. Let (F𝑖)𝑖∈I be

a family of sub-𝜎-fields of F and also let F∗ be a sub-𝜎-field of F . The family

is said to be conditionally independent of F∗ (with respect to P, though this will

not normally be explicitly mentioned) if for any finite subset 𝐸 ⊆ I and 𝐴𝑖 ∈ F𝑖
(𝑖 ∈ 𝐸)

P

(⋂
𝑖∈𝐸

𝐴𝑖

�����F∗
)

a.s.P
=

∏
𝑖∈𝐸
P (𝐴𝑖 |F∗)

Denote the conditional independence by (⊥⊥ 𝑖∈I F𝑖) |F∗. If I = {1, 2} and

(F1,F2) is conditionally independent of F∗, write F1 ⊥⊥ F2 |F∗.

Definition 2.5.13 (Conditional independence of stochastic processes, adapted

from Li (2018)). Let (Ω,F , P) be a probability space, let I be a non-empty set,

and, for 𝑖 ∈ I , let (𝑀𝑖,F𝑖) be a measurable space. Let
(
𝑀∗,F∗

𝑀

)
be a measurable

space. Let ( 𝑓𝑖)𝑖∈I be a stochastic process where, for 𝑖 ∈ I, 𝑓𝑖 is a 𝑀𝑖-valued

random variable on (Ω,F , P). Let 𝑓 ∗ be an 𝑀∗-valued random variable on

(Ω,F , P). The stochastic process is said to be conditionally independent of

𝑓 ∗ if the family (𝜎 ( 𝑓𝑖))𝑖∈I is conditionally independent of 𝜎 ( 𝑓 ∗). Denote

the conditional independence by (⊥⊥ 𝑖∈I 𝑓𝑖) | 𝑓 ∗. If I = {1, 2} and ( 𝑓1, 𝑓2) is

conditionally independent of 𝑓 ∗, write 𝑓1 ⊥⊥ 𝑓2 | 𝑓 ∗.

Lemma 2.5.7 (Proposition 2.1 of Li (2018)). Let (Ω,F , P) be a probability space.

Suppose that F1,F2,F3 ⊴ F . The following statements are equivalent

1. F1 ⊥⊥ F2 |F3

2. ∀𝐴 ∈ F1

[
P (𝐴|F2,F3)

a.s.P
= P (𝐴|F3)

]
.

Lemma 2.5.8 (Theorem 2.1. of Li (2018)). Let (Ω,F , P) be a probability space.

Let F1,F2,F3,F4 ⊴ F . Then
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1. F1 ⊥⊥ F2 |F3 =⇒ F2 ⊥⊥ F1 |F3

2. F1 ⊥⊥ (F2,F3) |F4 =⇒ F1 ⊥⊥ F2 |F4

3. F1 ⊥⊥ (F2,F3) |F4 =⇒ F1 ⊥⊥ F2 | (F3,F4)

4. [F1 ⊥⊥ F2 | (F3,F4)] ∧ [F1 ⊥⊥ F3 |F4] =⇒ F1 ⊥⊥ (F2,F3) |F4.

Lemma 2.5.9 (A property of conditional independence). Let (Ω,F , P) be a

probability space. Let F1,F2,F3,F4 ⊴ F . Then

[F1 ⊥⊥ F2 | (F3,F4)] ∧ [F2 ⊥⊥ F3 |F4]

is equivalent to

[F1 ⊥⊥ F2 |F4] ∧ [F2 ⊥⊥ F3 | (F1,F4)] .

Lemma 2.5.10 (A property of conditional independence). Let (Ω,F , P) be a

probability space. Let F1,F2,F3,F4,F5 ⊴ F . Suppose that F4 ⊴ F5 ⊴ F2 and

F1 ⊥⊥ F2 | (F3,F4). Then F1 ⊥⊥ F2 | (F3,F5).

Corollary 2.5.11 (A property of conditional independence). Let (Ω,F , P) be

a probability space. Let F1,F2,F3,F4 ⊴ F . Suppose that F3 ⊴ F4 ⊴ F2 and

F1 ⊥⊥ F2 |F3. Then F1 ⊥⊥ F2 |F4.

Definition 2.5.14 (Conditional distribution, adapted from Klenke (2020)). Let

(Ω,F , P) be a probability space and let (𝑀,F𝑀) be a measurable space. Let

𝑓 : (Ω,F , P) → (𝑀,F𝑀) be a 𝑀-valued random variable. Let 𝐺 ⊴ F . A

conditional distribution is any function P 𝑓 |𝐺 : F𝑀 ×Ω → [0, 1] where, for 𝑥 ∈ Ω,

P 𝑓 |𝐺 (·, 𝑥) B P
(
𝑓 −1 (·)

��𝐺)
(𝑥) and, for 𝐴 ∈ F𝑀 , P 𝑓 |𝐺 (𝐴, ·) B P

(
𝑓 −1(𝐴)

��𝐺)
(·).

A conditional distribution P 𝑓 |𝐺 is said to be regular if, for each 𝑥 ∈ Ω, P 𝑓 |𝐺 (·, 𝑥)

is a probability measure on F𝑀 .
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Definition 2.5.15 (Borel spaces, see Klenke (2020)). A measurable space (𝑀,F𝑀)

is called a Borel space if there exists 𝐵 ∈ B (R) such that there exists an invertible

measurable function 𝑓 : (𝑀,F𝑀) → (𝐵,B (𝐵)) (B (𝐵) is the Borel 𝜎-field on 𝐵

generated by the 𝐵-relative topology) with measurable inverse.

Remark 2.5.15. Theorem 8.36 of Klenke (2020) gives that a separable topological

space for which there exists a complete metric inducing the topology is a Borel

space when equipped with the Borel 𝜎-field.

Theorem 2.5.12 (Theorem 8.37 of Klenke (2020)). Let (Ω,F , P) be a probability

space and let 𝐺 ⊴ F . Suppose that (𝑀,F𝑀) is a Borel space and let 𝑓 :

(Ω,F , P) → (𝑀,F𝑀) be a 𝑀-valued random variable. Then there exists a

regular conditional distribution of 𝑓 given 𝐺.

Theorem 2.5.13 (A restatement of Theorem 8.38 of Klenke (2020)). Let (Ω,F , P)

be a probability space, let (𝑀,F𝑀) be a Borel space, and let 𝑓 : (Ω,F , P) →

(𝑀,F𝑀) be a 𝑀-valued random variable. Let 𝐺 ⊴ F . Let 𝑔 : (𝑀,F𝑀) →

(R,B (R)) be a measurable function such that E (𝑔 ◦ 𝑓 ) exists. Let P 𝑓 |𝐺 be a

regular conditional distribution of 𝑓 given 𝐺. Then

E (𝑔 ◦ 𝑓 |𝐺) (𝑥) =
∫

𝑔 dP 𝑓 |𝐺 (·, 𝑥)

for almost every 𝑥 ∈ Ω.

Definition 2.5.16 (Reproducing kernels, see Berlinet and Thomas-Agnan (2004)).

Let 𝐸 be some set and let H be a complex Hilbert space of C-valued functions on

𝐸 . A function 𝜅 : 𝐸 × 𝐸 → C is called a reproducing kernel of H if

1. for any 𝑥 ∈ 𝐸 , it holds that 𝜅 (·, 𝑥) ∈ H

2. for any 𝑥 ∈ 𝐸 and 𝑓 ∈ H, it holds that ⟨ 𝑓 , 𝜅 (·, 𝑥)⟩H = 𝑓 (𝑥).
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Remark 2.5.16. In the field of Statistical Learning, H is generally a real Hilbert

space of R-valued functions on 𝐸 . This complex version is given as there has been

recent interest (see, e.g., Schuld and Killoran (2019) and Kübler et al. (2019)) in the

connection between reproducing kernel Hilbert spaces and Quantum Mechanics

which the author intends to explore deeper in further research.

Theorem 2.5.14 (Theorem 1 of Berlinet and Thomas-Agnan (2004)). Let 𝐸 be

some set and let H be a complex Hilbert space of C-valued functions on 𝐸 . H

has a reproducing kernel if and only if, for every 𝑥 ∈ 𝐸 , the evaluation functional

𝜙𝑥 : H → C given by 𝜙𝑥 ( 𝑓 ) = 𝑓 (𝑥) is continuous.

Corollary 2.5.15 (Corollary 1 of Berlinet and Thomas-Agnan (2004)). Let 𝐸 be

some set and let H be a complex Hilbert space of C-valued functions on 𝐸 which

has a reproducing kernel 𝜅. Then, every norm convergent sequence of functions

in H is pointwise convergent.

Definition 2.5.17 (Non-negative definite functions, see Berlinet and Thomas-Ag-

nan (2004)). Let 𝐸 be some set. A function 𝜅 : 𝐸×𝐸 → C is called a non-negative

definite function (some authors say positive instead of non-negative) if

∀𝑛 ∈ N∀ (𝑎1, . . . , 𝑎𝑛)𝑇 ∈ C𝑛 ∀(𝑥1, . . . , 𝑥𝑛) ∈ 𝐸𝑛
[ ∑︁
𝑖, 𝑗∈N𝑛

𝑎𝑖𝑎 𝑗 𝜅
(
𝑥𝑖, 𝑥 𝑗

)
∈ [0,∞)

]
.

Lemma 2.5.16 (Lemma 1 of Berlinet and Thomas-Agnan (2004)). Let 𝐸 be some

set and let H be a complex Hilbert space. Let 𝜓 : 𝐸 → H be some function.

The function 𝜅 : 𝐸 × 𝐸 → C given by 𝜅 (𝑥, 𝑦) B ⟨𝜓 (𝑥) , 𝜓 (𝑦)⟩H is non-negative

definite.

Lemma 2.5.17 (Lemma 2 of Berlinet and Thomas-Agnan (2004)). Any function

which is a reproducing kernel for some complex Hilbert space of C-valued

functions on some set is necessarily non-negative definite.
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Theorem 2.5.18 (The Moore-Aronszajn theorem, see Theorem 3 of Berlinet

and Thomas-Agnan (2004)). Let 𝐸 be some set and let 𝜅 : 𝐸 × 𝐸 → C be a

non-negative definite function. Let H0 B Span {𝜅 (·, 𝑥) : 𝑥 ∈ 𝐸} and equip H0

with the inner product ⟨·, ·⟩H0 : H0 ×H0 → C given by〈 ∑︁
𝑖∈N𝑚

𝑎𝑖𝜅 (·, 𝑥𝑖) ,
∑︁
𝑗∈N𝑛

𝑏 𝑗 𝜅
(
·, 𝑦 𝑗

)〉
H0

B
∑︁
𝑖∈N𝑚

∑︁
𝑗∈N𝑛

𝑎𝑖𝑏 𝑗 𝜅
(
𝑦 𝑗 , 𝑥𝑖

)
The completion H of H0 is a reproducing kernel Hilbert space of C-valued

functions on 𝐸 with reproducing kernel 𝜅. Furthermore, no other Hilbert space

of C-valued functions on 𝐸 has 𝜅 as a reproducing kernel.

Definition 2.5.18 (Kernel mean embedding, see Muandet et al. (2016)). Let

(𝑀,F𝑀) be a measurable space and let M be the set of all probability measures

on F𝑀 . Let 𝜅 : 𝑀 × 𝑀 → C be a reproducing kernel which generates the

reproducing kernel Hilbert space H. Suppose that, for every P ∈ M, the

function
∫
𝑀
𝜅 (·, 𝑥) dP(𝑥) exists. Define the function 𝜇 : M → H by 𝜇 (P) B∫

𝑀
𝜅 (·, 𝑥) dP(𝑥) and call it the kernel mean embedding of P.

Definition 2.5.19 (Maximum mean discrepancy. see Muandet et al. (2016)).

Let (𝑀,F𝑀), M, 𝜅, H, 𝜇 be as in Definition 2.5.18. The pseudo-metric

𝑑 : M × M → [0,∞) given by 𝑑 (P,Q) B ∥𝜇(P) − 𝜇(Q)∥H is called the

maximum mean discrepancy. It can equivalently be written as 𝑑 (P,Q) =

sup∥ 𝑓 ∥H≤1
[∫
𝑀
𝑓 (𝑥) dP(𝑥) −

∫
𝑀
𝑓 (𝑥) dQ(𝑥)

]
, hence the name.

Definition 2.5.20 (Characteristic kernel, see Muandet et al. (2016)). Let (𝑀,F𝑀),

M, 𝜅, H, 𝜇 be as in Definition 2.5.18. If 𝜇 is injective, then 𝜅 is called a

characteristic kernel. If this is the case, the maximum mean discrepancy becomes

a metric on M.

Theorem 2.5.19 (When is a kernel characteristic, see Proposition 5 of Fukumizu

et al. (2009)). Let (𝑀,F𝑀) be a measurable space. A kernel 𝜅 : 𝑀 × 𝑀 → C is
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characteristic if and only if, for any probability measure P on F𝑀 , the vector space

sum of the reproducing kernel Hilbert space H generated by 𝜅 and the P almost

surely constant C-valued functions on 𝑀 is dense in 𝐿2 (P,C). Equivalently (see

Li (2018)), a kernel is characteristic when, for any probability measure P on

F𝑀 , H is dense modulo P almost sure constants in 𝐿2 (P,C) meaning that, for

any 𝑓 ∈ 𝐿2 (P,C), there exists a sequence { 𝑓𝑖}𝑖∈N of elements of H such that

VarP ( 𝑓 − 𝑓𝑖) → 0 as 𝑖 → ∞.

Definition 2.5.21 (Kernel induced cross-covariance operators, see Muandet et al.

(2016)). Let (Ω,F , P) be a probability space. Let 𝑋 : (Ω,F , P) → (Ω𝑋 ,F𝑋)

and 𝑌 : (Ω,F , P) → (Ω𝑌 ,F𝑌 ) be random variables. Let H𝑋 and H𝑌 be

reproducing kernel Hilbert spaces ofC-valued functions onΩ𝑋 andΩ𝑌 respectively

with measurable kernels 𝜅𝑋 and 𝜅𝑌 . Suppose that EP (𝜅𝑋 (𝑋, 𝑋)) < ∞ and

EP (𝜅𝑌 (𝑌,𝑌 )) < ∞. Let 𝑍1, 𝑍2 ∈ {𝑋,𝑌 }. The following kernel induced cross-

covariance operator exists

Σ𝑍1𝑍2 B EP
( [
𝜅𝑍1 (·, 𝑍1) − EP

(
𝜅𝑍1 (·, 𝑍1)

) ]
⊗

[
𝜅𝑍2 (·, 𝑍2) − EP

(
𝜅𝑍2 (·, 𝑍2)

) ] )
Remark 2.5.17. Σ𝑍1𝑍2 is really the cross-covariance operator of 𝜅𝑍2 (·, 𝑍2) and

𝜅𝑍1 (·, 𝑍1). It is, however, common to call it the cross-covariance operator of

𝑍2 and 𝑍1. While related, this is not to be confused with the cross-covariance

operators defined in Definition 2.5.8.

Definition 2.5.22 (Hilbert-Schmidt independence criterion, see Muandet et al.

(2016)). Let (Ω,F , P), 𝑋 , 𝑌 , H𝑋 , H𝑌 , 𝜅𝑋 , and 𝜅𝑌 be as in Definition 2.5.21. The

Hilbert-Schmidt independence criterion between 𝑋 and 𝑌 is defined by

𝐻𝑆𝐼𝐶 (𝑋,𝑌 ) B ∥Σ𝑋𝑌 ∥𝐻𝑆(H𝑌 ,H𝑋)

Theorem 2.5.20 (Unlabelled result given in Muandet et al. (2016)). Let (Ω,F , P),

𝑋 , 𝑌 , H𝑋 , H𝑌 , 𝜅𝑋 , and 𝜅𝑌 be as in Definition 2.5.21. Suppose that 𝜅𝑋 and
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𝜅𝑌 are characteristic and, furthermore, the product kernel 𝜅𝑋𝑌 : (Ω𝑋 ×Ω𝑌 ) ×

(Ω𝑋 ×Ω𝑌 ) → C given by 𝜅𝑋𝑌 ((𝑥1, 𝑦1) , (𝑥2, 𝑦2)) B 𝜅𝑋 (𝑥1, 𝑥2) 𝜅𝑌 (𝑦1, 𝑦2) is

characteristic on (Ω𝑋 ×Ω𝑌 ,F𝑋 ⊗ F𝑌 ). Then 𝑋 ⊥⊥ 𝑌 if and only if 𝐻𝑆𝐼𝐶 (𝑋,𝑌 ) =

0.

Remark 2.5.18. Theorem 2.5.20 has been used as the basis for an independence

test of two random variables, see Gretton et al. (2005, 2007).

Definition 2.5.23 (Conditional mean embedding and maximum conditional mean

discrepancy, adapted from Park and Muandet (2020)). Let (Ω,F) be a measurable

space. Let 𝑋 : (Ω,F) → (Ω𝑋 ,F𝑋) be a measurable function. Let𝐺 ⊴F . Let M

be the set of all probability measures onF . Let 𝜅𝑋 : Ω𝑋×Ω𝑋 → C be a measurable

kernel for which, for each P ∈ M, EP (𝜅𝑋 (·, 𝑋)) exists and letH𝑋 be its associated

reproducing kernel Hilbert space. Let P ∈ M and define the kernel conditional

mean embedding of P given𝐺 to be the random variable 𝜇P|𝐺 B EP (𝜅𝑋 (·, 𝑋) |𝐺).

For P,Q ∈ M, define the maximum conditional mean discrepancy of P and Q

given 𝐺 to be the random variable 𝑑 (P,Q|𝐺) B


𝜇P|𝐺 − 𝜇Q|𝐺




H𝑋

.

Definition 2.5.24 (Hilbert-Schmidt conditional independence criterion, adapted

from Park and Muandet (2020)). Let (Ω,F , P), 𝑋 , 𝑌 , H𝑋 , H𝑌 , 𝜅𝑋 , and 𝜅𝑌 be as

in Definition 2.5.21. Let 𝐺 ⊴ F . The Hilbert-Schmidt conditional independence

criterion between 𝑋 and 𝑌 given 𝐺 is the random variable

𝐻𝑆𝐶𝐼𝐶 (𝑋,𝑌 |𝐺) B


Σ𝑋𝑌 |𝐺



𝐻𝑆(H𝑌 ,H𝑋)

Theorem 2.5.21 (Conditional independence and the Hilbert-Schmidt conditional

independence criterion). Let (Ω,F , P), 𝑋 , 𝑌 , H𝑋 , H𝑌 , 𝜅𝑋 , and 𝜅𝑌 be as in

Definition 2.5.21. Let 𝐺 ⊴ F . Suppose that 𝜅𝑋 and 𝜅𝑌 are characteristic

and that 𝜅𝑋𝑌 , the product kernel, is characteristic on (Ω𝑋 ×Ω𝑌 ,F𝑋 ⊗ F𝑌 ).

Suppose that P (·|𝐺) admits a regular version. Then 𝑌 ⊥⊥ 𝑋 |𝐺 if and only
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if 𝐻𝑆𝐶𝐼𝐶 (𝑋,𝑌 |𝐺) a.s.P
= 0. Note that this is also equivalent to saying that

EP (𝐻𝑆𝐶𝐼𝐶 (𝑋,𝑌 |𝐺)) = 0 or Σ𝑋𝑌 |𝐺
a.s.P
= 0 or E

(
Σ𝑋𝑌 |𝐺

)
= 0.

Remark 2.5.19. In future work, the author intends to use Theorem 2.5.21 as a basis

for developing a test of conditional independence of two random variables given a

𝜎-field generated by some further random variable. Furthermore, Theorem 2.5.21

can be used as the basis for a nonlinear Sufficient Dimension Reduction method.

It can also be used to devise a test for the number of components to extract from

a nonlinear Sufficient Dimension Reduction procedure in order to characterise

conditional independence.

2.6 Proofs of supporting results

Proof of Lemma 2.2.2. Consider

P

(⋂
𝑖∈𝐸

[ 𝑓 ∗]−1 (𝐴𝑖)
)
= P

(⋂
𝑖∈𝐸

{𝑥 ∈ Ω : 𝑓 ∗(𝑥) ∈ 𝐴𝑖}
)

= P

(⋂
𝑖∈𝐸

{𝑥 ∈ Ω : ℎ𝑥 ∈ 𝐴𝑖}
)

= P
©­«
⋂
𝑖∈𝐸

©­«
⋂
𝑗∈I

{𝑥 ∈ Ω : 𝑓𝑖 (𝑥) ∈ {𝑦( 𝑗) : 𝑦 ∈ 𝐴𝑖}}ª®¬ª®¬
= P

©­«
⋂
𝑖∈𝐸

©­«
⋂
𝑗∈I

𝑓 −1
𝑖 ({𝑦(𝑖) : 𝑦 ∈ 𝐴𝑖})ª®¬ª®¬

= P
©­«
⋂
𝑖∈𝐸

𝑓 −1
𝑖

©­«
⋂
𝑗∈I

{𝑦( 𝑗) : 𝑦 ∈ 𝐴𝑖}
ª®¬ª®¬

=
∏
𝑖∈𝐸
P
©­« 𝑓 −1
𝑖

©­«
⋂
𝑗∈I

{𝑦( 𝑗) : 𝑦 ∈ 𝐴𝑖}ª®¬ª®¬
=

∏
𝑖∈𝐸
P
©­«
⋂
𝑗∈I

𝑓 −1
𝑖 ({𝑦( 𝑗) : 𝑦 ∈ 𝐴𝑖})ª®¬
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=
∏
𝑖∈𝐸
P
©­«
⋂
𝑗∈I

{𝑥 ∈ Ω : 𝑓𝑖 (𝑥) ∈ {𝑦( 𝑗) : 𝑦 ∈ 𝐴𝑖}}ª®¬
=

∏
𝑖∈𝐸
P ({𝑥 ∈ Ω : 𝑓 ∗(𝑥) ∈ 𝐴𝑖})

=
∏
𝑖∈𝐸
P

(
[ 𝑓 ∗]−1 (𝐴𝑖)

)
.

□

Proof of Lemma 2.2.3. Let 𝑓 ∗ : (Ω,F , P) →
(>

𝑖∈I 𝑀𝑖,
⊗

𝑖∈I F𝑖
)

be given by

𝑓 ∗(𝑥) = ℎ𝑥 where ℎ𝑥 : I → ⋃
𝑖∈I 𝑀𝑖 is itself given by ℎ𝑥 (𝑖) = 𝑓𝑖 (𝑥). Consider the

stochastic process (𝜙𝑖)𝑖∈I where, for 𝑖 ∈ I , 𝜙𝑖 :
(>

𝑖∈I 𝑀𝑖,
⊗

𝑖∈I F𝑖
)
→ (𝑀𝑖,F𝑖)

is the projection onto 𝑀𝑖. As the product measure is unique, it needs to be shown

that: (1) (𝜙𝑖)𝑖∈I is independent (with respect to P 𝑓 = P 𝑓 ∗), and (2) the distribution

of 𝜙𝑖 equals P 𝑓𝑖 for any 𝑖 ∈ I. For the first, let 𝐸 be a finite subset of I and, for

𝑖 ∈ 𝐸 , let 𝐴𝑖 ∈ 𝜎 (𝜙𝑖). Consider

P 𝑓

(⋂
𝑖∈𝐸

𝐴𝑖

)
= P 𝑓 ∗

(⋂
𝑖∈𝐸

𝐴𝑖

)
= P

(
[ 𝑓 ∗]−1

(⋂
𝑖∈𝐸

𝐴𝑖

))
= P

(⋂
𝑖∈𝐸

[ 𝑓 ∗]−1 (𝐴𝑖)
)

=
∏
𝑖∈𝐸
P

(
[ 𝑓 ∗]−1 (𝐴𝑖)

)
=

∏
𝑖∈𝐸
P 𝑓 ∗ (𝐴𝑖)

=
∏
𝑖∈𝐸
P 𝑓 (𝐴𝑖) .

This gives that (𝜙𝑖)𝑖∈I is independent. For the second claim, let 𝑖 ∈ I and let
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𝐴 ∈ F𝑀 . Consider

P 𝑓𝑖 (𝐴) = P
(
𝑓 −1
𝑖 (𝐴)

)
= P

(
[𝜙𝑖 ◦ 𝑓 ∗]−1 (𝐴)

)
= P

(
[ 𝑓 ∗]−1

(
𝜙−1
𝑖 (𝐴)

))
= P 𝑓 ∗

(
𝜙−1
𝑖 (𝐴)

)
= P𝜙𝑖 (𝐴).

This gives the claim, and so concludes the proof. □

Proof of Lemma 2.2.4. Let P∗
𝑓

be the common distribution of the 𝑓𝑖’s where 𝑖 ∈ I .

Let 𝑇 B N𝑛𝑇 for some 𝑛𝑇 ∈ N (if I is infinite) or 𝑛𝑇 ∈ N𝑘+1 (if I has 𝑘 elements

for some 𝑘 ∈ N), let 𝑚 be a natural number less than 𝑛𝑇 , and let 𝑘1, . . . , 𝑘𝑚 be

distinct elements of 𝑇 . Let 𝑓 †𝑚, 𝑓 ∗𝑚, 𝑔𝑥 , and ℎ𝑥 be as in Definition 2.2.16. Let

𝐴 ∈ F𝑚
𝑀

and, for 𝑖 ∈ N𝑚, let 𝐴𝑖 B {𝑥(𝑖) : 𝑥 ∈ 𝐴}. Consider

P
𝑓
†
𝑚
(𝐴) = P

( [
𝑓 †𝑚

]−1 (𝐴)
)

= P
({
𝑥 ∈ Ω : 𝑓 †𝑚 (𝑥) ∈ 𝐴

})
= P ({𝑥 ∈ Ω : 𝑔𝑥 ∈ 𝐴})

= P

( ⋂
𝑖∈N𝑚

{𝑥 ∈ Ω : 𝑓𝑖 (𝑥) ∈ 𝐴𝑖}
)

=
∏
𝑖∈N𝑚

P ({𝑥 ∈ Ω : 𝑓𝑖 (𝑥) ∈ 𝐴𝑖})

=
∏
𝑖∈N𝑚

P 𝑓𝑖 (𝐴𝑖)

=
∏
𝑖∈N𝑚

P∗𝑓 (𝐴𝑖).
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Also

P 𝑓 ∗𝑚 (𝐴) = P
( [
𝑓 ∗𝑚

]−1 (𝐴)
)

= P
({
𝑥 ∈ Ω : 𝑓 ∗𝑚 (𝑥) ∈ 𝐴

})
= P ({𝑥 ∈ Ω : ℎ𝑥 ∈ 𝐴})

= P

( ⋂
𝑖∈N𝑚

{
𝑥 ∈ Ω : 𝑓𝑘𝑖 (𝑥) ∈ 𝐴𝑖

})
=

∏
𝑖∈N𝑚

P
({
𝑥 ∈ Ω : 𝑓𝑘𝑖 (𝑥) ∈ 𝐴𝑖

})
=

∏
𝑖∈N𝑚

P 𝑓𝑘𝑖 (𝐴𝑖)

=
∏
𝑖∈N𝑚

P∗𝑓 (𝐴𝑖).

Putting these together concludes the proof. □

Proof of Lemma 2.2.5. Let 𝐴 ∈ FI
𝑀

and, for 𝑖 ∈ I, let 𝐴𝑖 B {𝑥(𝑖) : 𝑥 ∈ 𝐴}. Let

𝜙∗ :
(
𝑀I ,FI

𝑀
, P 𝑓 ∗

)
→

(
𝑀I ,FI

𝑀

)
be the 𝑀I-valued random variable given by

𝜙∗(𝑥) = 𝑔𝑥 where 𝑔𝑥 : I → 𝑀 is itself given by 𝑔𝑥 (𝑖) = 𝜙𝑖 (𝑥). Consider

P𝜙 (𝐴) = P𝜙∗ (𝐴)

= P 𝑓 ∗
(
𝜙−1(𝐴)

)
= P

(
[ 𝑓 ∗]−1

(
𝜙−1 (𝐴)

))
= P

(
[𝜙 ◦ 𝑓 ∗]−1 (𝐴)

)
= P ({𝑥 ∈ Ω : [𝜙 ◦ 𝑓 ∗] (𝑥) ∈ 𝐴})

= P
({
𝑥 ∈ Ω : 𝑘 𝑓 ∗𝑥 ∈ 𝐴

})
= P

(⋂
𝑖∈I

{𝑥 ∈ Ω : 𝜙𝑖 ( 𝑓 ∗ (𝑥)) ∈ 𝐴𝑖}
)

= P

(⋂
𝑖∈I

{𝑥 ∈ Ω : [𝜙𝑖 ◦ 𝑓 ∗] (𝑥) ∈ 𝐴𝑖}
)
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= P

(⋂
𝑖∈I

{𝑥 ∈ Ω : 𝑓𝑖 (𝑥) ∈ 𝐴𝑖}
)

= P ({𝑥 ∈ Ω : 𝑓 ∗ (𝑥) ∈ 𝐴})

= P
(
[ 𝑓 ∗]−1 (𝐴)

)
= P 𝑓 ∗ (𝐴)

= P 𝑓 (𝐴) .

In a similar manner, it is shown that, for any 𝐵 ∈ F𝑚, P𝜙𝑖 (𝐵) = P 𝑓𝑖 (𝐵). The

given equivalences then follow by pairing (Ω,F , P) with
(
𝑀I ,FI

𝑀
, P 𝑓

)
, pairing

P𝜙 with P 𝑓 , and pairing (for 𝑖 ∈ I) P𝜙𝑖 with P 𝑓𝑖 . □

Proof of Theorem 2.2.6. For the first claim, begin by supposing that 𝑉 is ex-

changeable. Let 𝑆 B N𝑛𝑆 for some 𝑛𝑆 ∈ N (if I is infinite) or 𝑛𝑆 ∈ N𝑘+1 (if I

has 𝑘 elements for some 𝑘 ∈ N), let 𝑚 be a natural number less than 𝑛𝑆, and let

𝑘1, . . . , 𝑘𝑚 be distinct elements of 𝑆. Let𝑊𝑚 : (Ω,F , P) →
(
𝑁𝑚,F𝑚

𝑁

)
be given

by 𝑊𝑚 (𝑥) = 𝑎𝑥 where 𝑎𝑥 : N𝑚 → 𝑁 is itself given by 𝑎𝑥 (𝑖) = 𝑤𝑖 (𝑥), and let

𝑊∗
𝑚 : (Ω,F , P) →

(
𝑁𝑚,F𝑚

𝑁

)
be given by 𝑊∗

𝑚 (𝑥) = 𝑏𝑥 where 𝑏𝑥 : N𝑚 → 𝑁 is

itself given by 𝑏𝑥 (𝑖) = 𝑤𝑘𝑖 (𝑥). The aim is to show that P𝑊𝑚
= P𝑊∗

𝑚
. To this end,

let 𝐴 ∈ F𝑚
𝑁

and, for 𝑖 ∈ N𝑚, let 𝐴𝑖 B {𝑥(𝑖) : 𝑥 ∈ 𝐴}. Consider

P𝑊𝑚
(𝐴) = P ({𝑥 ∈ Ω : 𝑊𝑚 (𝑥) ∈ 𝐴})

= P

( ⋂
𝑖∈N𝑚

{𝑥 ∈ Ω : 𝑤𝑖 (𝑥) ∈ 𝐴𝑖}
)

= P

( ⋂
𝑖∈N𝑚

{𝑥 ∈ Ω : [𝑇 ◦ 𝑧𝑖] (𝑥) ∈ 𝐴𝑖}
)

= P

( ⋂
𝑖∈N𝑚

{𝑥 ∈ Ω : 𝑇 (𝑧𝑖 (𝑥)) ∈ 𝐴𝑖}
)

= P

( ⋂
𝑖∈N𝑚

{
𝑥 ∈ Ω : 𝑧𝑖 (𝑥) ∈ 𝑇−1 (𝐴𝑖)

})
. (2.2)

67



Chapter 2. Definitions and supporting results

Now, for 𝑖 ∈ N𝑚, let

𝐵∗
𝑖 B

{
𝑥 ∈ 𝑀 : ∃𝑦 ∈ 𝑇−1(𝐴𝑖) [𝑥 = 𝑦(1)]

}
𝐵∗∗
𝑖 B

{
𝑥 ∈ 𝑀 : ∃𝑦 ∈ 𝑇−1(𝐴𝑖) [𝑥 = 𝑦(2)]

}
With this, Equation (2.2) can be rewritten as

P

( ⋂
𝑖∈N𝑚

{
𝑥 ∈ Ω : 𝑧𝑖 (𝑥) ∈ 𝑇−1 (𝐴𝑖)

})
= P

( ⋂
𝑖∈N𝑚

[
𝑣−1
𝑖 (𝐵∗

𝑖 ) ∩ 𝑓 −1(𝐵∗∗
𝑖 )

] )
= P

([ ⋂
𝑖∈N𝑚

𝑣−1
𝑖 (𝐵∗

𝑖 )
]
∩ 𝑓 −1

( ⋂
𝑖∈N𝑚

𝐵∗∗
𝑖

))
(2.3)

Now let 𝑉𝑚 : (Ω,F , P) →
(
𝑀𝑚,F𝑚

𝑀

)
be given by 𝑉𝑚 (𝑥) = 𝑔𝑥 where 𝑔𝑥 :

N𝑚 → 𝑀 is itself given by 𝑔𝑥 (𝑖) = 𝑣𝑖 (𝑥), let 𝑉∗
𝑚 : (Ω,F , P) →

(
𝑀𝑚,F𝑚

𝑀

)
be

given by 𝑉∗
𝑚 = ℎ𝑥 where ℎ𝑥 : N𝑚 → 𝑀 is itself given by ℎ𝑥 (𝑖) = 𝑣𝑘𝑖 (𝑥), and

let 𝐵 B
{
𝑥 ∈ 𝑀𝑚 : ∀𝑖 ∈ N𝑚∃𝑦𝑖 ∈ 𝐵∗

𝑖
[𝑥(𝑖) = 𝑦]

}
. Equation (2.3) can now be

rewritten as

P

([ ⋂
𝑖∈N𝑚

𝑣−1
𝑖 (𝐵∗

𝑖 )
]
∩ 𝑓 −1

( ⋂
𝑖∈N𝑚

𝐵∗∗
𝑖

))
= P

(
𝑉−1
𝑚 (𝐵) ∩ 𝑓 −1

( ⋂
𝑖∈N𝑚

𝐵∗∗
𝑖

))
= P

(
𝑉−1
𝑚 (𝐵)

)
P

(
𝑓 −1

( ⋂
𝑖∈N𝑚

𝐵∗∗
𝑖

))
= P

( [
𝑉∗
𝑚

]−1 (𝐵)
)
P

(
𝑓 −1

( ⋂
𝑖∈N𝑚

𝐵∗∗
𝑖

))
Repeating the above argument with 𝑖 replaced by 𝑘𝑖 where needed yields the

result. For the second claim, replace the requirement that 𝑘1, . . . , 𝑘𝑚 be distinct

elements of 𝑆 with the requirement that 1 ≤ 𝑘1 < . . . < 𝑘𝑚 ≤ 𝑛𝑆 and repeat the

above argument. □

Proof of Lemma 2.2.7. Only the left version is proven as the case for the right

is similar. Let 𝑥 ∈ 𝑆 and let 𝑦 ∈ R with 𝑦 < 𝑓 (𝑥). The goal is to show

that there exists a neighbourhood 𝑈 of 𝑥 such that 𝑓 (𝑧) > 𝑦 for 𝑧 ∈ 𝑈. For
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𝑎, 𝑏 ∈ 𝑆 with 𝑎 ≤𝑆 𝑏, let (𝑎, 𝑏) B {𝛼 ∈ 𝑆 : 𝑎 <𝑆 𝛼 <𝑆 𝑏}. Taking 𝑈 B

(inf {𝛼 ∈ 𝑆 : 𝑓 (𝛼) < 𝑓 (𝑥)} , sup {𝛼 ∈ 𝑆 : 𝑦 < 𝑓 (𝛼)}) suffices for the proof. □

Proof of Theorem 2.2.8. Only Property 2 is shown as the others are established

in the proof of Proposition 8 in Gálvez-Rodríguez and Sánchez-Granero (2019).

By definition, 𝐹𝑆 : 𝑆 → [0, 1] is right continuous if for each 𝑥 ∈ 𝑆 for which

{𝑦 ∈ 𝑆 : 𝑦 ≤𝑆 𝑥} ≠ 𝑆 and for each 𝜖 > 0, there exists an open initial 𝐴 such that

𝑥 ∈ 𝐴 and ∀𝑢 ∈ 𝐴 [𝐹𝑆 (𝑢) < 𝐹𝑆 (𝑥) + 𝜖]. So let 𝑥 ∈ 𝑆 with {𝑦 ∈ 𝑆 : 𝑦 ≤𝑆 𝑥} ≠ 𝑆

and let 𝜖 > 0. Choosing 𝑧 B inf {𝛼 ∈ 𝑆 : 𝐹𝑆 (𝛼) ≥ 𝐹𝑆 (𝑥) + 𝜖} and letting

𝐴 B {𝑦 ∈ 𝑆 : 𝑦 <𝑆 𝑧} suffices for the proof. □

Proof of Theorem 2.2.10. Define the extension of 𝑆 to be the set 𝑆∗ B 𝑆 ∪

{−∞,∞} where −∞ and ∞ are formal symbols conventionally satisfying ∀𝛼 ∈

𝑆 [(−∞ <𝑆 𝛼) ∧ (𝛼 <𝑆 ∞)]. If 𝑆 has no lower bounds, let inf 𝑆 B −∞. Similarly,

if 𝑆 has no upper bounds, let sup 𝑆 B ∞. Define the function 𝜆 : [0, 1] → 𝑆∗ by

𝜆(𝑝) =


inf 𝑆 𝑝 = 0

inf
{
𝛼 ∈ 𝑆 : 𝐹 𝑓 (𝛼) ≥ 𝑝

}
𝑝 ∈ (0, 1)

sup 𝑆 𝑝 = 1

Let 𝐹𝑔 be the cumulative distribution function of 𝑔. Let 𝑦 ∈ [0, 1] and consider

𝐹𝑔 (𝑦) = P ({𝑥 ∈ Ω : 𝑔(𝑥) ≤ 𝑦})

= P
({
𝑥 ∈ Ω : 𝐹 𝑓 ( 𝑓 (𝑥)) ≤ 𝑦

})
= P ({𝑥 ∈ Ω : 𝑓 (𝑥) ≤ 𝜆(𝑦)})

= 𝐹 𝑓 (𝜆(𝑦)) = 𝑦.

Thus 𝐹𝑔 has the form of a cumulative distribution function for a standard uniform

random variable. □
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Proof of Theorem 2.2.11. Let 𝑄 : [0, 1] → P ((0,∞)) be the quantile function

of (𝑇◦𝑧𝑖)2

(𝑇◦𝑧 𝑗)2 . Recall that a median of (𝑇◦𝑧𝑖)2

(𝑇◦𝑧 𝑗)2 is any member of 𝑄(0.5). Let

𝐹 : (0,∞) → [0, 1] be the cumulative distribution function of (𝑇◦𝑧𝑖)2

(𝑇◦𝑧 𝑗)2 . To show

that 1 is a median of (𝑇◦𝑧𝑖)2

(𝑇◦𝑧 𝑗)2 , it needs to be shown that

1 ∈
[
sup

{
𝑥 ∈ (0,∞) : 𝐹 (𝑥) < 1

2

}
, sup

{
𝑥 ∈ (0,∞) : 𝐹 (𝑥) ≤ 1

2

}]
.

More explicitly, it needs to be shown that

1 ∈
[
sup

{
𝑥 ∈ (0,∞) : P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 ≤ 𝑥
)
<

1
2

}
,

sup

{
𝑥 ∈ (0,∞) : P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 ≤ 𝑥
)
≤ 1

2

}]
.

As
(
𝑣𝑖, 𝑣 𝑗

)
is exchangeable and 𝑉∗ ⊥⊥ 𝑓 ,

(
[𝑇 ◦ 𝑧𝑖]2 ,

[
𝑇 ◦ 𝑧 𝑗

]2
)

is exchangeable by

Theorem 2.2.6. It is now shown that 1 is a median for the target random variable.

Consider

P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 ≤ 1

)
= P

( (
𝑇 ◦ 𝑧 𝑗

)2

(𝑇 ◦ 𝑧𝑖)2 ≤ 1

)
= 1 − P

( (
𝑇 ◦ 𝑧 𝑗

)2

(𝑇 ◦ 𝑧𝑖)2 > 1

)
= 1 − P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 < 1

)
.

So

P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 < 1

)
≤ 1 − P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 < 1

)
,

and P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 ≤ 1

)
≥ 1 − P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 ≤ 1

)
.

Hence

P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 < 1

)
≤ 1

2
≤ P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 ≤ 1

)
.
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Hence, 1 is a median of (𝑇◦𝑧𝑖)2

(𝑇◦𝑧 𝑗)2 as claimed. It is now shown that 1 is a unique

median. In other words, for any 𝑐1 ∈ (0, 1) and 𝑐2 ∈ (1,∞), it needs to be shown

that

P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 ≤ 𝑐1

)
<

1
2

and P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 < 𝑐2

)
>

1
2
.

Only the first inequality will be shown as the second is similarly proven. Let

𝑐1 ∈ (0, 1) and observe that

P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 ≤ 𝑐1

)
= E

(
P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 ≤ 𝑐1

�����𝑣𝑖, 𝑣 𝑗
))

It thus suffices to show that, for any linearly independent 𝛼1, 𝛼2 ∈ 𝑀 ,

P

(
(𝑇 ◦ 𝑧𝑖)2(
𝑇 ◦ 𝑧 𝑗

)2 ≤ 𝑐1

����� (𝑣𝑖, 𝑣 𝑗 ) = (𝛼1, 𝛼2)
)
<

1
2
. (2.4)

Let 𝛼1, 𝛼2 ∈ 𝑀 be linearly independent. Let 𝑘 ∈ {1, 2}. Let 𝛿𝑘 : (Ω,F , P) →(
𝑀2, [F𝑀]2 , T 2

𝑀

)
be given by 𝛿𝑘 (𝑥) = 𝑚𝑘

𝑥 where 𝑚𝑘
𝑥 : {1, 2} → 𝑀 is itself given

by 𝑚𝑘
𝑥 (1) = 𝛼𝑘 and 𝑚𝑘

𝑥 (2) = 𝑓 (𝑥). As 𝑉∗ ⊥⊥ 𝑓 , Equation (2.4) is equivalent to

P

(
[𝑇 ◦ 𝛿1]2

[𝑇 ◦ 𝛿2]2 ≤ 𝑐1

)
<

1
2
.

Let 𝑐3 ∈ (𝑐1, 1). Consider 𝐿 : 𝑀 → R2 given by 𝐿 (𝑢) B (𝑇 (𝛼1, 𝑢), 𝑇 (𝛼2, 𝑢))𝑇 .

𝐿 is linear as 𝑇 is linear in the second entry. Also, 𝐿 has rank 2 as 𝛼1 and 𝛼2 are

linearly independent. Thus, the system

𝑇 (𝛼1, 𝑢) =
√
𝑐3

𝑇 (𝛼2, 𝑢) = 1

has a unique solution, call it 𝑢∗. As the mapping 𝑢 → [𝑇 (𝛼1,𝑢)]2

[𝑇 (𝛼2,𝑢)]2 is continuous, there

exists an open neighbourhood 𝐺 of 𝑢∗ such that 𝑢 ∈ 𝐺 =⇒ [𝑇 (𝛼1,𝑢)]2

[𝑇 (𝛼2,𝑢)]2 ∈ (𝑐1, 1).
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By assumption, P ( 𝑓 ∈ 𝐺) > 0. Thus P
(
[𝑇 (𝛼1, 𝑓 )]2

[𝑇 (𝛼2, 𝑓 )]2 ∈ (𝑐1, 1)
)
> 0. Combining

this with the fact that 1 is a median of [𝑇 (𝑣𝑖 , 𝑓 )]2

[𝑇 (𝑣 𝑗 , 𝑓 )]2 gives the result. □

Proof of Lemma 2.2.12. The first part of the result follows from Theorem 4 of

Li (2007b). Now the exchangeability of
(
⟨𝑣1, 𝑓 ⟩H , . . .

〈
𝑣𝑝, 𝑓

〉
H

)
is equivalent

to saying that, for any permutation 𝜎 ∈ P𝑝,
(
⟨𝑣1, 𝑓 ⟩H , . . . ,

〈
𝑣𝑝, 𝑓

〉
H

)𝑇
𝐷
=(〈

𝑣𝜎(1) , 𝑓
〉
H , . . . ,

〈
𝑣𝜎(𝑝) , 𝑓

〉
H

)𝑇
. By Remark 2.2.19, the distribution of the left

hand side is invariant under orthogonal transformations. Hence, it is also invariant

after being transformed by a permutation matrix thus giving the claim. □

Proof of Lemma 2.2.13. Since𝑇 is a unitary operator onR𝑝,𝑇 and𝑈 are invertible

with the inverse of𝑈 being given by

𝑈−1(ℎ) =
∑︁
𝑗∈N𝑝

𝑇−1
𝑗 (𝐶) (𝑣 𝑗 ).

Let 𝑔 be a member of H with coordinate representation 𝐴 = (𝛼1, . . . , 𝛼𝑝)𝑇 with

respect to
{
𝑣1, . . . , 𝑣𝑝

}
. Then

⟨𝑔,𝑈 (ℎ)⟩H =
∑︁
𝑗∈N𝑝

𝛼 𝑗𝑇𝑗 (𝐶)

= 𝐴𝑇𝑇 (𝐶)

= (𝑇−1(𝐴))𝑇𝐶

=
∑︁
𝑗∈N𝑝

𝑇−1
𝑗 (𝐴)𝐶 𝑗

=
〈
𝑈−1𝑔, ℎ

〉
H .

Thus𝑈∗ = 𝑈−1, as desired. □

Proof of Lemma 2.2.14. Suppose that𝑈 is a unitary operator on H and let 𝑔 ∈ H
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have coordinate representation 𝐴 = (𝛼1, . . . , 𝛼𝑝)𝑇 . Then

𝐶𝑇𝑇 (𝐴) =
∑︁
𝑗∈N𝑝

𝑐 𝑗𝑇𝑗 (𝐴)

= ⟨ℎ,𝑈 (𝑔)⟩H

=
〈
𝑈−1(ℎ), 𝑔

〉
H

=
∑︁
𝑗∈N𝑝

𝑇−1
𝑗 (𝐶)𝛼 𝑗

= (𝑇−1(𝐶))𝑇 𝐴.

Thus 𝑇∗ = 𝑇−1, as desired. □

Proof of Theorem 2.2.15. “only if”: Suppose that 𝑈 : H → H is a unitary

operator and 𝑓 is a unitarily invariant H-valued random variable with coordinate

𝐴 = (𝛼1, . . . , 𝛼𝑘 )𝑇 with respect to an orthonormal basis
{
𝑣1, . . . , 𝑣𝑝

}
of H. For

each 𝑖 ∈ N𝑝 and unitary𝑈 : H → H:

𝛼𝑖 = ⟨ 𝑓 , 𝑣𝑖⟩H
𝐷
= ⟨𝑈 ( 𝑓 ), 𝑣𝑖⟩H (2.5)

Let𝑇 : R𝑝 → R𝑝 be a unitary operator onR𝑝 and now let𝑈 be as in Lemma 2.2.13.

Then, for each 𝑖 ∈ N𝑝
⟨𝑈 ( 𝑓 ), 𝑣𝑖⟩H = 𝑇𝑖 (𝐴). (2.6)

From Equation (2.5) and Equation (2.6), 𝐴 𝐷
= 𝑇 (𝐴). So 𝐴 is a unitarily invariant

R𝑛-valued random variable. Identifying 𝑇 with an orthogonal matrix then gives

that 𝐴 is a spherically distributed R𝑝-valued random variable. “if”: Suppose

𝐴 = (𝛼1, . . . , 𝛼𝑝)𝑇 is a spherically distributed R𝑝-valued random variable, and

let 𝑣1, . . . , 𝑣𝑘 be an orthonormal basis of H. Define 𝑓 B
∑
𝑖∈N𝑝

𝛼𝑖𝑣𝑖 and let

𝑈 : H → H be a unitary operator. Let 𝑇 be as in Lemma 2.2.14. Then, as 𝑇 is

unitary and by identifying it with an orthogonal matrix, 𝐴 𝐷
= 𝑇 (𝐴). Furthermore,
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for each 𝑖 ∈ N𝑝, 𝛼𝑖
𝐷
= 𝑇𝑖 (𝐴). Consequently

𝑈 ( 𝑓 ) =
∑︁
𝑖∈N𝑝

𝑇𝑖 (𝐴)𝑣𝑖
𝐷
=

∑︁
𝑖∈N𝑝

𝛼𝑖𝑣𝑖 = 𝑓

which means 𝑓 is unitarily invariant. □

Proof of Theorem 2.3.1. Let 𝑖 ∈ N𝑚. Let T𝑖 be the topology induced by 𝑑𝑖. By

Theorem 22.2 of Willard (1970), there exists a metric 𝑑∗
𝑖

on 𝑆𝑖 which also induces

T𝑖 and satisfies

∃ 𝐶𝑖 ≥ 0 : 𝑥, 𝑦 ∈ 𝑆𝑖 =⇒ 𝑑∗𝑖 (𝑥, 𝑦) ≤ 𝐶𝑖 .

It may be assumed that 𝐶𝑖 = 1. For each 𝑥 ∈ 𝑆𝑖 and 𝜖 > 0, let the open ball

centred at 𝑥 with radius 𝜖 be defined as 𝐵𝑖 (𝑥, 𝜖) B
{
𝑦 ∈ 𝑆𝑖 : 𝑑∗

𝑖
(𝑥, 𝑦) < 𝜖

}
. Now

recall that (𝑆𝑖, T𝑖) being separable means that there exists a countable subset 𝐸𝑖 ⊆

𝑆𝑖 such that 𝐸𝑖 = 𝑆𝑖 where 𝐸𝑖 is the intersection of all closed sets which contain 𝐸𝑖.

Let 𝐸𝑖 be any such set. Following the proof of Proposition 20.7 in Bass (2016),

it is seen that C𝑖 B {𝐵𝑖 (𝑥, 𝑟) : 𝑟 ∈ {𝑧 ∈ Q : 𝑧 > 0} , 𝑥 ∈ 𝐸𝑖} forms a countable

base for T𝑖. Recalling Remark 2.3.1, this gives that 𝜎 (C𝑖) = 𝜎 (𝐺 (C𝑖)) = 𝜎 (T𝑖).

Now let T be the product topology on 𝑆. By Proposition 2.3.1 of Engelking

(1989),

D B
{?
𝑖∈N𝑚

𝐴𝑖

����� [∀𝑖 ∈ N𝑚 [𝐴𝑖 ∈ T𝑖]] ∧ [Card ({𝑖 ∈ N𝑚 : 𝐴𝑖 ≠ 𝑆𝑖}) < ℵ0]
}

and

D∗ B

{?
𝑖∈N𝑚

𝐴𝑖 ∈ 𝐷
����� 𝑗 ∈ {𝑖 ∈ N𝑚 : 𝐴𝑖 ≠ 𝑆𝑖} =⇒ 𝐴 𝑗 ∈ C 𝑗

}
are bases for T . It is now shown that D∗ is countable. Note that Card (C𝑖) ≤ ℵ0

and 0 < Card (C𝑖). Let 𝔈𝑚 be the set of those functions in Hom (N𝑚, {0, 1})

which have finitely many inputs with image equal to 1. For 𝑓 ∈ 𝔈𝑚, let
(
𝐹𝑖 𝑓

)
𝑖∈N𝑚

be a family of sets with Card
(
𝐹𝑖 𝑓

)
= 𝑓 (𝑖) for all 𝑖 ∈ N𝑚. For 𝑓 ∈ 𝔈𝑚, let I 𝑓 be
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the finite subset of N𝑚 for which 𝑓 (𝑖) = 1 whenever 𝑖 ∈ I 𝑓 . It is seen that∑︁
𝑓 ∈𝔈𝑚

∏
𝑖∈N𝑚

Card (C𝑖) 𝑓 (𝑖) =
∑︁
𝑓 ∈𝔈𝑚

∏
𝑖∈N𝑚

Card (C𝑖)Card(𝐹𝑖 𝑓 )

=
∑︁
𝑓 ∈𝔈𝑚

∏
𝑖∈N𝑚

Card
(
Hom

(
𝐹𝑖 𝑓 , C𝑖

) )
=

∑︁
𝑓 ∈𝔈𝑚

Card

(?
𝑖∈N𝑚

Hom
(
𝐹𝑖 𝑓 , C𝑖

))
= Card ©­«

⊎
𝑓 ∈𝔈𝑚

(?
𝑖∈N𝑚

Hom
(
𝐹𝑖 𝑓 , C𝑖

))ª®¬
= Card

({
( 𝑓 , 𝑎)

����� 𝑓 ∈ 𝔈𝑚, 𝑎 ∈
?
𝑖∈N𝑚

Hom
(
𝐹𝑖 𝑓 , C𝑖

)})
.

Let Γ B
{
( 𝑓 , 𝑎)

�� 𝑓 ∈ 𝔈𝑚, 𝑎 ∈ >
𝑖∈N𝑚

Hom
(
𝐹𝑖 𝑓 , C𝑖

)}
. Consider the function

𝑀 : D∗ → Γ given by the mapping?
𝑖∈N𝑚

𝐴𝑖 ↦→ ( 𝑓 , 𝑎)

where 𝑓 : N𝑚 → {0, 1} is the function given by 𝑓 (𝑖) = 1 if 𝑖 ∈
{
𝑗 ∈ N𝑚 : 𝐴 𝑗 ≠ 𝑆 𝑗

}
and 𝑓 (𝑖) = 0 otherwise, and 𝑎 is the function which is specified by 𝑎(𝑖) = ∅ for

𝑖 ∉
{
𝑗 ∈ N𝑚 : 𝐴 𝑗 ≠ 𝑆 𝑗

}
(for any set Ω, ∅ is itself a function from ∅ to Ω) and, for

𝑖 ∈
{
𝑗 ∈ N𝑚 : 𝐴 𝑗 ≠ 𝑆 𝑗

}
, 𝑎(𝑖) = 𝐴𝑖. It is claimed that 𝑀 is a bĳection. To see

that it is first an injection, suppose

𝑀

(?
𝑖∈N𝑚

𝐴𝑖

)
= 𝑀

(?
𝑖∈N𝑚

𝐵𝑖

)
and let ( 𝑓1, 𝑎1) B 𝑀

(>
𝑖∈N𝑚

𝐴𝑖
)

and ( 𝑓2, 𝑎2) B 𝑀
(>

𝑖∈N𝑚
𝐵𝑖

)
. As two ordered

pairs are equal if and only if both of their corresponding entries are equal, it holds

that 𝑓1 = 𝑓2 and 𝑎1 = 𝑎2. The first of these implies that {𝑖 ∈ N𝑚 : 𝐴𝑖 ≠ 𝑆𝑖} =

{𝑖 ∈ N𝑚 : 𝐵𝑖 ≠ 𝑆𝑖}. This along with 𝑎1 = 𝑎2 implies that 𝐴𝑖 = 𝐵𝑖 for 𝑖 ∈ N𝑚.

75



Chapter 2. Definitions and supporting results

Hence ?
𝑖∈N𝑚

𝐴𝑖 =

{
𝑔 : N𝑚 →

⋃
𝑖∈N𝑚

𝐴𝑖

����� ∀𝑖 ∈ N𝑚 [𝑔(𝑖) ∈ 𝐴𝑖]
}

=

{
𝑔 : N𝑚 →

⋃
𝑖∈N𝑚

𝐵𝑖

����� ∀𝑖 ∈ N𝑚 [𝑔(𝑖) ∈ 𝐵𝑖]
}

=
?
𝑖∈N𝑚

𝐵𝑖 .

To see that 𝑀 is also a surjection, let ( 𝑓 , 𝑎) ∈ Γ and consider a family of sets

(𝐴𝑖)𝑖∈N𝑚
where 𝐴𝑖 = 𝑆𝑖 for 𝑖 ∉ I 𝑓 and 𝐴𝑖 ∈ C𝑖 for 𝑖 ∈ I 𝑓 . It is immediate that

𝑀
(>

𝑖∈N𝑚
𝐴𝑖

)
= ( 𝑓 , 𝑎). This all implies that Γ and D∗ are equinumerous. Thus

Card (D∗) =
∑︁
𝑓 ∈𝔈𝑚

∏
𝑖∈N𝑚

Card (C𝑖) 𝑓 (𝑖)

Let 𝑏𝑚 B Card (N𝑚) and 𝑐𝑚 B Card (𝔈𝑚). For 𝑗 < 𝑐𝑚, let 𝑔 𝑗 be the function in

𝔈𝑚 given by 𝑔 𝑗 (1 + 𝑖) = 1 whenever 1 + 𝑖 ∈ I𝑔 𝑗 and 𝑔 𝑗 (1 + 𝑖) = 0 otherwise. The

above can be rewritten as ∑︁
𝑗<𝑐𝑚

∏
𝑖<𝑏𝑚

Card (C1+𝑖)𝑔 𝑗 (1+𝑖) .

If 𝑚 ∈ N, this is a finite sum of a finite product of terms with countable

cardinality so, by Remark 2.1.10, is itself countable. If 𝑚 = 𝜔 and 𝑗 < 𝑐𝑚,

let 𝑥 𝑗 B
∏
𝑖<𝑏𝑚

Card (C1+𝑖)𝑔 𝑗 (1+𝑖) . Infinitely many of the terms in the product

defining 𝑥 𝑗 are equal to 1 and finitely many terms have countable (non-zero)

cardinality; all the terms being one of the two. Hence, by Remark 2.1.10, 𝑥 𝑗 is

countable and non-zero. Now, by Lemma 2.1.3,∑︁
𝑗<𝑐𝑚

𝑥 𝑗 = 𝑐𝑚 · sup
{
𝑥 𝑗 : 𝑗 < 𝑐𝑚

}
It is readily verified that 𝑐𝑚 = ℵ0. As 𝑥 𝑗 ≤ ℵ0 for each 𝑗 < 𝑐𝑚, it holds that

sup
{
𝑥 𝑗 : 𝑗 < 𝑐𝑚

}
≤ ℵ0. Summarising all this, D∗ is a countable base for T .
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Now let 𝑑𝑆 : 𝑆 × 𝑆 → {𝑥 ∈ R : 0 ≤ 𝑥} be defined by:

𝑑𝑆 (𝑥, 𝑦) =
∑︁
𝑖∈N𝑚

𝑑∗
𝑖
(𝑥(𝑖), 𝑦(𝑖))

2𝑖
.

It is readily verified that 𝑑𝑆 is a metric on 𝑆. Following the proof of Theorem 22.3

of Willard (1970) gives that it induces T . Proposition 20.7 of Bass (2016) then

implies that (𝑆, T ) is separable. Thus it has been shown that (𝑆, T ) is a separable

metric space.

For 𝑖 ∈ N𝑚, let 𝜙𝑖 be the projection from 𝑆 to 𝑆𝑖 and let

𝐴 B
{
𝜙−1
𝑖 (𝑈𝑖) : 𝑖 ∈ N𝑚,𝑈𝑖 ∈ C𝑖

}
𝐴∗ B

{
𝜙−1
𝑖 (𝑈𝑖) : 𝑖 ∈ N𝑚,𝑈𝑖 ∈ T𝑖

}
As C𝑖 is a base for T𝑖, it holds that 𝐺 (𝐴) = 𝐺 (𝐴∗). By definition, T = 𝐺 (𝐴∗).

Thus T = 𝐺 (𝐴). This implies that 𝜎 (T ) = 𝜎 (𝐺 (𝐴)). Furthermore, as 𝐴 is

countable, 𝜎 (𝐴) = 𝜎 (𝐺 (𝐴)). Thus 𝜎 (T ) = 𝜎 (𝐴). Now as 𝐴 ⊆
⊗

𝑖∈N𝑚
𝜎 (C𝑖)

and 𝜎 (C𝑖) = 𝜎 (T𝑖), 𝜎 (𝐴) ⊴
⊗

𝑖∈N𝑚
𝜎 (T𝑖). By definition,

⊗
𝑖∈N𝑚

𝜎 (T𝑖) is the

coarsest 𝜎-field on 𝑆 such that the projection maps are all measurable, hence⊗
𝑖∈N𝑚

𝜎 (T𝑖) ⊴ 𝜎 (T ).

This allows the conclusion 𝜎 (T ) = 𝜎 (𝐴) ⊴
⊗

𝑖∈N𝑚
𝜎 (T𝑖) ⊴ 𝜎 (T ). There

is thus equality throughout, which finishes the proof. □

Proof of Theorem 2.4.1. The claim is equivalent to⊗
𝑖∈I

Ker
(
𝐴∗𝑖

)
= Ker

([⊗
𝑖∈I

𝐴𝑖

]∗)
.

Before establishing this, it is first shown that
[⊗

𝑖∈I 𝐴𝑖
]∗

=
⊗

𝑖∈I 𝐴
∗
𝑖
. To see this,
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let 𝑓 ∈ H and 𝑔 ∈ G and consider〈
𝑓 ,

[⊗
𝑖∈I

𝐴𝑖

]∗
𝑔

〉
H

=

〈[⊗
𝑖∈I

𝐴𝑖

]
𝑓 , 𝑔

〉
G

=
⊕
𝑗∈I

〈[[⊗
𝑖∈I

𝐴𝑖

]
𝑓

]
( 𝑗), 𝑔( 𝑗)

〉
G 𝑗

=
⊕
𝑗∈I

〈
𝐴 𝑗 𝑓 ( 𝑗), 𝑔( 𝑗)

〉
G 𝑗

=
⊕
𝑗∈I

〈
𝑓 ( 𝑗), 𝐴 𝑗𝑔( 𝑗)∗

〉
G 𝑗

=

〈
𝑓 ,

[⊗
𝑖∈I

𝐴∗𝑖

]
𝑔

〉
H

.

Now let ℎ ∈
⊗

𝑖∈I Ker
(
𝐴∗
𝑖

)
. Then, for any 𝑓 ∈ H,〈

𝑓 ,

[⊗
𝑖∈I

𝐴𝑖

]∗
ℎ

〉
H

=
⊕
𝑗∈I

〈
𝑓 ( 𝑗),

[ [⊗
𝑖∈I

𝐴𝑖

]∗
ℎ

]
( 𝑗)

〉
H 𝑗

=
⊕
𝑗∈I

〈
𝑓 ( 𝑗), 𝐴∗𝑗ℎ( 𝑗)

〉
H 𝑗

=
⊕
𝑗∈I

⟨ 𝑓 ( 𝑗), 0⟩H 𝑗
= 0.

Hence ℎ ∈ Ker
( [⊗

𝑖∈I 𝐴𝑖
]∗) . For the other inclusion, begin by letting ℎ ∈

Ker
( [⊗

𝑖∈I 𝐴𝑖
]∗) so that, for any 𝑓 ∈ H,〈
𝑓 ,

[⊗
𝑖∈I

𝐴𝑖

]∗
ℎ

〉
H

=
⊕
𝑗∈I

〈
𝑓 ( 𝑗), 𝐴∗𝑗ℎ( 𝑗)

〉
H 𝑗

= 0.
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Take 𝑓 =
[⊗

𝑖∈I 𝐴𝑖
]∗
ℎ to obtain






[⊗
𝑖∈I

𝐴𝑖

]∗
ℎ






2

H

=
⊕
𝑗∈I




𝐴∗𝑗ℎ( 𝑗)


2

H 𝑗

= 0.

This gives that ℎ( 𝑗) ∈ Ker
(
𝐴∗
𝑗

)
for 𝑗 ∈ I, thus giving the desired inclusion. □

Proof of Lemma 2.5.2. First see that E (⟨ 𝑓 , 𝑔⟩H) = E (E (⟨ 𝑓 , 𝑔⟩H |𝑔)). Now, for

any 𝑔∗ ∈ H, E (⟨ 𝑓 , 𝑔⟩H |𝑔 = 𝑔∗) = E (⟨ 𝑓 , 𝑔∗⟩H) = ⟨E ( 𝑓 ) , 𝑔∗⟩H. Hence, as 𝑓

and 𝑔 are independent, E (⟨ 𝑓 , 𝑔⟩H |𝑔) a.s.P
= ⟨E ( 𝑓 ) , 𝑔⟩H. Thus E (⟨ 𝑓 , 𝑔⟩H) =

E (⟨E ( 𝑓 ) , 𝑔⟩H) = ⟨E ( 𝑓 ) ,E (𝑔)⟩H. □

Proof of Lemma 2.5.3. Let 𝑓 ∈ H1. Consider

[E (𝐴|𝐺) ⊗ E (𝐵 |𝐺)] 𝑓 a.s.P
= ⟨ 𝑓 ,E (𝐴|𝐺)⟩H1 E (𝐵|𝐺)

a.s.P
= E

(
⟨ 𝑓 , 𝐴⟩H1

��𝐺)
E (𝐵 |𝐺)

a.s.P
= E

(
⟨ 𝑓 , 𝐴⟩H1 E (𝐵 |𝐺)

��𝐺)
a.s.P
= E ( [𝐴 ⊗ E (𝐵|𝐺)] 𝑓 |𝐺)

a.s.P
= E ( [𝐴 ⊗ E (𝐵|𝐺)] |𝐺) 𝑓 .

□

Proof of Lemma 2.5.4. Using the law of total expectation

E (𝐴 ⊗ E (𝐵 |𝐺)) = E (E (𝐴 ⊗ E (𝐵 |𝐺) |𝐺))

= E (E (𝐴|𝐺) ⊗ E (𝐵 |𝐺))

= E (E (E (𝐴|𝐺) ⊗ 𝐵 |𝐺))

= E (E (𝐴|𝐺) ⊗ 𝐵) .

□
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Proof of Corollary 2.5.5. Using Lemma 2.5.4 and the law of total expectation

Cov (𝐴,E (𝐵 |𝐺)) a.s.P
= E (𝐴 ⊗ E (𝐵 |𝐺)) − [E (𝐴) ⊗ E (𝐵)]

a.s.P
= E (E (𝐴|𝐺) ⊗ 𝐵) − [E (𝐴) ⊗ E (𝐵)]

a.s.P
= Cov (E (𝐴|𝐺) , 𝐵) .

Furthermore

Cov (𝐴,E (𝐵 |𝐺)) a.s.P
= Cov (𝐴,E (E (𝐵 |𝐺) |𝐺)) a.s.P

= Cov (E (𝐴|𝐺) ,E (𝐵 |𝐺)) .

Putting these together completes the proof. □

Proof of Lemma 2.5.6. Let 𝑓 ∈ H1 and 𝑔 ∈ H2. Then

Cov
(
⟨ 𝑓 , 𝐴⟩H1 , ⟨𝐵, 𝑔⟩H2

��𝐺)
a.s.P
= E

( [
⟨ 𝑓 , 𝐴⟩H1 − E

(
⟨ 𝑓 , 𝐴⟩H1

��𝐺) ] [
⟨𝐵, 𝑔⟩H2 − E

(
⟨𝐵, 𝑔⟩H2

��𝐺) ] ��𝐺)
a.s.P
= E

( [
⟨ 𝑓 , 𝐴⟩H1 − ⟨ 𝑓 ,E (𝐴|𝐺)⟩H1

] [
⟨𝐵, 𝑔⟩H2 − ⟨E (𝐵 |𝐺) , 𝑔⟩H2

] ��𝐺)
a.s.P
= E

(
⟨ 𝑓 , 𝐴 − E (𝐴|𝐺)⟩H1 ⟨𝐵 − E (𝐵 |𝐺) , 𝑔⟩H2

��𝐺)
a.s.P
= E

(〈
⟨ 𝑓 , 𝐴 − E (𝐴|𝐺)⟩H1 [𝐵 − E (𝐵 |𝐺)] , 𝑔

〉
H2

���𝐺)
a.s.P
= E

(
⟨[(𝐴 − E (𝐴|𝐺)) ⊗ (𝐵 − E (𝐵 |𝐺))] 𝑓 , 𝑔⟩H2

��𝐺)
a.s.P
= ⟨E ( [𝐴 − E (𝐴|𝐺)] ⊗ [𝐵 − E (𝐵 |𝐺)] |𝐺) 𝑓 , 𝑔⟩H2

a.s.P
=

〈
Σ𝐵𝐴|𝐺 𝑓 , 𝑔

〉
H2
.

The second final equality follows from Corollary 37 in Section 1 of Chapter 1

of Dinculeanu (2000). The other relation follows from the fact that Σ∗
𝐵𝐴|𝐺

a.s.P
=

Σ𝐴𝐵|𝐺 . □

Proof of Lemma 2.5.9. Begin by supposing that

[F1 ⊥⊥ F2 | (F3,F4)] ∧ [F2 ⊥⊥ F3 |F4] .
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By part 4 of Lemma 2.5.8, it follows that F2 ⊥⊥ (F1,F3) |F4. The desired

expression then follows from parts 2 (giving F1 ⊥⊥ F2 |F4) and 3 (giving that

F2 ⊥⊥ F3 | (F1,F4)). The converse is proven in a similar manner. □

Proof of Lemma 2.5.10. As F4 ⊴ F5 ⊴ F2 by assumption, it holds that F2 =

(F2,F5) and (F3,F5) = (F3,F4,F5). By substituting, F1 ⊥⊥ F2 | (F3,F4)

becomes F1 ⊥⊥ (F2,F5) | (F3,F4). By part 3 of Lemma 2.5.8, this implies that

F1 ⊥⊥ F2 | (F5, (F3,F4)) .

This is equivalent toF1 ⊥⊥ F2 | (F3,F4,F5) which, by substitution, can be rewritten

as F1 ⊥⊥ F2 | (F3,F5). □

Proof of Corollary 2.5.11. As F3 ⊴ F4 ⊴ F2 by assumption, it holds that F2 =

(F2,F4) and F4 = (F3,F4). By substituting, it is seen that F1 ⊥⊥ F2 |F3 can

be rewritten as F1 ⊥⊥ (F2,F4) |F3. By part 3 of Lemma 2.5.8, this implies that

F1 ⊥⊥ F2 | (F3,F4) which, by substitution, is equivalent to F1 ⊥⊥ F2 |F4. □

Proof of Theorem 2.5.21. By applying the isometric isomorphism 𝑇 of Park and

Muandet (2020) to their 𝜇𝑃𝑋𝑌 |Z and 𝜇𝑃𝑋 |𝑍 ⊗ 𝜇𝑃𝑌 |𝑍 when evaluated at 𝑥 ∈ Ω, the

proof of their Theorem 5.4 yields the proof of Theorem 2.5.21. Note that their

proof does not depend on 𝑍 being a random variable, and can be replaced with

any 𝐺 ⊴ F . □
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Chapter 3

The predictive potential of principal

components in regression

3.1 Outline of chapter

In this chapter, the predictive potential of principal components in regression is

explored. First, the principal components procedure is described technically for

the multivariate and Hilbertian settings. Then a nonlinear extension is technically

described for the general predictor setting. This is followed by a review of the

results in the existing literature regarding the predictive potential of principal

components for multivariate predictors. These results are then greatly extended

to the case when nonlinear principal components analysis is applied with general

predictors. All results are proven in Section 3.5.4 at the end of the chapter.

Remark 3.1.1. The results in this chapter build on (and subsume) those published

in Jones and Artemiou (2019), Jones et al. (2020), and Jones and Artemiou (2021).
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3.2 The principal components analysis procedure

Principal components analysis (PCA) is the earliest, most well-known, and most

commonly used procedure for unsupervised dimension reduction. An authoritative

work on the subject is Jolliffe (2002). As a comprehensive presentation is provided

in that text, the procedure given here is only a basic technical description.

3.2.1 Multivariate setting

Let (Ω,F , P) be a probability space and let 𝑋 : (Ω,F , P) → (R𝑝,B (R𝑝)) be a

R𝑝-valued random variable. Suppose that E (𝑋) and Var (𝑋) exist. It is assumed

that E (𝑋) = 0. Let S 𝑝 be the set of unit norm vectors in R𝑝. The first principal

direction 𝑣1 is defined to be any element of:{
𝑣 ∈ S 𝑝 : ∀𝑤 ∈ S 𝑝,Var

(
𝑣𝑇𝑋

)
≥ Var

(
𝑤𝑇𝑋

)}
.

The first principal component is 𝑣𝑇1𝑋 . The 𝑘 th (𝑘 > 1) principal direction 𝑣𝑘
is then defined to be any unit norm variance maximiser subject to the additional

constraint of being orthogonal to the previous principal directions. The 𝑘 th

principal component is 𝑣𝑇
𝑘
𝑋 .

An alternative, equivalent, formulation is to perform an eigendecomposition

of the covariance matrix Var (𝑋). Let 𝜆1 ≥ . . . ≥ 𝜆𝑝 ≥ 0 denote the eigenvalues

of Var (𝑋). The 𝑘 th (𝑘 ≥ 1) principal direction 𝑣𝑘 is any normalised eigenvector

of Var (𝑋) which corresponds to 𝜆𝑘 . The requirement that the principal directions

have unit norm ensures that Var
(
𝑣𝑇
𝑖
𝑋
)
= 𝜆𝑖.

The orthogonality constraint implies that the principal components have zero

covariance, and so are uncorrelated. To see this, let 𝑖 and 𝑗 be distinct and consider

Cov
(
𝑣𝑇𝑖 𝑋, 𝑣

𝑇
𝑗 𝑋

)
= 𝑣𝑇𝑖 Var (𝑋) 𝑣 𝑗 = 𝜆𝑖𝑣𝑇𝑖 𝑣 𝑗 = 0.
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Because of this, the procedure is commonly used to replace a set of correlated

variables with uncorrelated ones. If 𝑋 has a multivariate Gaussian distribution,

this further implies that the principal components are independent.

3.2.2 Hilbertian setting

PCA is extended to data that lie in a real separable Hilbert spaceH by replacing the

R𝑝 inner product with the H inner product. That is, 𝑋 : (Ω,F , P) → (H,B(H))

is now a H-valued random variable. It is supposed that E (𝑋) and Var (𝑋) exist,

and that E (𝑋) = 0. Let S denote the unit norm elements of H. The first principal

direction 𝑣1 is defined to be any element of:

{𝑣 ∈ S : ∀𝑤 ∈ S,Var (⟨𝑣, 𝑋⟩H) ≥ Var (⟨𝑤, 𝑋⟩H)} .

The first principal component is ⟨𝑣1, 𝑋⟩H. The 𝑘 th (𝑘 > 1) principal direction

𝑣𝑘 is then defined to be any unit norm variance maximiser subject to the additional

constraint of being orthogonal to the previous principal directions. The 𝑘 th

principal component is ⟨𝑣𝑘 , 𝑋⟩H.

Like for multivariate data, this procedure is equivalent to performing an

eigendecomposition of Var (𝑋). Let 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 0 be the eigenvalues of

Var (𝑋). The 𝑘 th (𝑘 ≥ 1) principal direction 𝑣𝑘 is any normalised eigenvector

of Var (𝑋) which corresponds to 𝜆𝑘 . Again, in this setting, it holds that: (1)

the variance of the 𝑘 th (𝑘 ≥ 1) principal component equals 𝜆𝑘 , and (2) any two

distinct principal components have zero covariance.

See Chapter 9 of Hsing and Eubank (2015) for further details of PCA for

Hilbertian data.
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3.3 A nonlinear version of principal components

analysis with general predictors

To formulate nonlinear principal components analysis with general predictors,

suppose that 𝑋 : (Ω,F , P) → (Ω𝑋 ,F𝑋) is a Ω𝑋 -valued random variable defined

on a probability space (Ω,F , P). Assume Ω𝑋 = 𝑋 (Ω). Let G be a real separable

Hilbert space whose members are measurable real-valued functions defined on

Ω𝑋 , such that there exists a unique (up to permutations of G) surjective function

𝑓 :
(
Ω𝑋 , 𝜎Ω𝑋

, P𝑋
)
→ (G,B (G)) for which the covariance operator Var ( 𝑓 ◦ 𝑋)

exists and, without loss of generality, E ( 𝑓 ◦ 𝑋) = 0. Let ⟨·, ·⟩G denote the inner

product in G, ∥·∥G denote the induced norm, and S be the set of unit norm

functions in G.

G is often taken to be a reproducing kernel Hilbert space derived from some

measurable kernel function 𝜅𝑋 : Ω𝑋 ×Ω𝑋 → R. Though this is common, it is not

necessary for the results in this thesis. Indeed the space of square-integrable real

valued functions on some probability space, where almost surely equal functions

are considered equivalent, is not generally a reproducing kernel Hilbert space (see

Berlinet and Thomas-Agnan (2004)).

Remark 3.3.1. If G is generated by a measurable kernel 𝜅𝑋 : Ω𝑋 ×Ω𝑋 → R, the

function 𝑓 is the function which satisfies 𝑓 ◦ 𝑋 = 𝜅𝑋 (·, 𝑋). Var ( 𝑓 ◦ 𝑋) exists

provided that E (𝜅𝑋 (𝑋, 𝑋)) exists. Kernels satisfying this assumption are known

to exist (see, e.g., Virta et al. (2022)) for when (Ω𝑋 ,F𝑋) is a separable complete

metric space with the Borel 𝜎-field. Therefore the requirements for G given above

can be satisfied in the kernel setting.

Remark 3.3.2. In this general setup, Ω𝑋 need not be a vector space so it is natural

to ask what is meant by “dimension reduction" in this setting. What it means is

that the extracted components generate a sub-𝜎-field of 𝜎 (𝑋).
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At population level, nonlinear principal components is described as follows.

The first nonlinear principal direction 𝑣1 is any function in

𝑆 B
{
𝑢 ∈ S : ∀𝑤 ∈ S

[
Var

(
⟨𝑢, 𝑓 ◦ 𝑋⟩G

)
≥ Var

(
⟨𝑤, 𝑓 ◦ 𝑋⟩G

) ]}
The first nonlinear principal component is ⟨𝑣1, 𝑓 ◦ 𝑋⟩G . For 𝑘 = 2, 3, . . ., the 𝑘 th

nonlinear principal direction 𝑣𝑘 is any unit norm variance maximiser subject to

the constraints

Cov
(
⟨𝑣, 𝑓 ◦ 𝑋⟩G , ⟨𝑣𝑖, 𝑓 ◦ 𝑋⟩G

)
= 0, 𝑖 = 1, . . . , 𝑘 − 1.

The 𝑘 th principal component is ⟨𝑣𝑘 , 𝑓 ◦ 𝑋⟩G . This is much more general than the

classical (linear) principal components because the maximisation is carried out

among all functions in S, not just linear functions of the form 𝑎𝑇𝑋 .

Similarly to classical principal components analysis, the nonlinear version

can be represented as an eigendecomposition task. Let 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 0 be

the eigenvalues of Var ( 𝑓 ◦ 𝑋). The 𝑘 th (𝑘 ≥ 1) principal direction 𝑣𝑘 is any

normalised eigenvector of Var ( 𝑓 ◦ 𝑋) which corresponds to 𝜆𝑘 .

3.4 Literature review: the predictive potential of

principal components in regression with

multivariate data

As mentioned in Chapter 1, it is common, in high-dimensional regression, to

regress the response on the leading principal components of the predictor. This

practice, called principal component regression, is controversial. As Cox (1968)

notes
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“A difficulty seems to be that there is no logical reason why the

dependent variable should not be closely tied to the least important

principal component."

This issue arises as the principal components are extracted without making

use of the response 𝑌 (i.e.the procedure is unsupervised). This means that there

is no guarantee that, for any given dataset, the higher-ranking components are

more informative of 𝑌 than lower-ranking ones. However, one wonders whether,

across a range of datasets, the higher-ranking components will tend to be more

informative than the lower-ranking ones. Cook (2007) gives a historical account

of the debate surrounding the use of principal component regression, highlighting

the views of both advocates and opponents of the practice.

In their comments on Cook (2007), Li (2007a) proposed a conjecture which

suggests a probabilistic justification for the practice. The conjecture roughly (the

exact form is more technical than outlined here) states

If nature (the original quote author’s term) uniformly randomly

selects a covariance matrix Σ for the predictor 𝑋 and independently

randomly selects a linear relation between 𝑋 and the response 𝑌 then,

conditioning on Σ and the regression coefficients, the first principal

component of 𝑋 is the most likely, among all of the principal

components, to have the largest absolute correlation with 𝑌 .

Motivated by this conjecture, Artemiou and Li (2009) gave empirical evidence

in support of its claim by examining 33 datasets and comparing how often the

first component has the largest absolute correlation with the response against the

second component. They also proved that, in a linear regression setting, the 𝑖th

principal component tends (i.e.with probability greater than 1/2) to have greater

squared correlation with the response than the 𝑗 th component (where 𝑖 < 𝑗). This
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was done under a permutation invariance assumption on the eigenvalues and

eigenvectors of the randomly chosen covariance matrix Σ of 𝑋 . Following up on

that result, Ni (2011) tacitly used a rotational invariance assumption on Σ to obtain

an exact form for the probability of this phenomenon in terms of the eigenvalues

of the covariance matrix. They also used a spherical symmetry assumption on

the randomly chosen regression coefficients to derive a similar result when the

conditioning is on the regression coefficients as opposed to the covariance matrix.

Artemiou and Li (2013) generalised these results to a conditional independence

model, which subsumes the linear regression model as a subcase.

Spherical distributions were central to the work of Artemiou and Li (2013).

For data in a real separable infinite-dimensional Hilbert space, this notion cannot

be generalised. This is because Ψ in Definition 2.2.29 cannot be the identity

operator as it is not nuclear for such spaces. This implies that it is impossible

for the characteristic function of 𝐴 − E (𝐴) (𝐴 is as in Definition 2.2.29) to

depend only on the norm of 𝑓 . As a result of these considerations, the notion

of a spherically symmetric distribution cannot be extended to the entirety of an

infinite-dimensional space. In subsequent developments, it is thus necessary to

assume that the space is finite-dimensional. That said, it is seen that some results

can still be established for the infinite-dimensional setting.

Having outlined their history, the discussed results are now presented formally.

Artemiou and Li (2009) gave a matrix version of Definition 2.2.32 to define what is

meant by uniformly randomly selecting a covariance matrix. It means, intuitively,

that the relative positions of the eigenvalues and eigenvectors of Σ can be freely

permutated without changing the distribution of Σ. If Σ is an orientationally

uniform random matrix and if the random vector 𝑋 satisfies E (𝑋 |Σ) a.s.P
= 0 and

Var (𝑋 |Σ) a.s.P
= Σ, then any random variable among 𝑣𝑇1𝑋, . . . , 𝑣

𝑇
𝑝𝑋 is equally

likely to be the 1st, 2nd, . . . , or 𝑝th principal component of 𝑋 . This follows from

88



Chapter 3. The predictive potential of principal components in regression

Theorem 2.2.6.

Using the matrix version of Definition 2.2.32, Artemiou and Li (2009) proved

Theorem 3.4.1.

Theorem 3.4.1 (Predictive potential under orientationally uniform covariance

matrix, see Artemiou and Li (2009)). Let 𝑋 and 𝛽 be 𝑝-dimensional real random

vectors on some probability space (Ω,F , P), with Var (𝑋) existing, and let 𝑌 be

a real random variable on (Ω,F , P). Suppose that:

1. Σ is an orientationally uniform random matrix

2. E (𝑋 |Σ) a.s.P
= 0 and Var (𝑋 |Σ) a.s.P

= Σ

3. 𝑌 = 𝛽𝑇𝑋 + 𝜖 where 𝛽 ⊥⊥ (𝑋, Σ), 𝜖 ⊥⊥ (𝑋, 𝛽, Σ), 𝜖 is square-integrable,

E (𝜖) = 0, and Var (𝜖) < ∞

4. P (𝛽 ∈ 𝐺) > 0 for any nonempty open set 𝐺 ⊆ R𝑝

Write Σ as
∑
𝑖∈N𝑝

𝜆𝑖𝑣𝑖𝑣
𝑇
𝑖
. Let 𝜌𝑘 (𝛽, Σ) B Corr2 (

𝑌, 𝑣𝑇
𝑘
𝑋
��𝛽, Σ)

. Reorder the eigen-

values as 𝜆(1) > 𝜆(2) > . . . > 𝜆(𝑝) > 0, let
(
𝑣 (1) , . . . 𝑣 (𝑝)

)
be the corresponding

normalised eigenvectors, and let 𝜌(𝑖) (𝛽, Σ) be the conditional squared correlation

corresponding to 𝑣 (𝑖) . Then, for 𝑖 < 𝑗 ≤ 𝑝,

P
(
𝜌(𝑖) (𝛽, Σ) ≥ 𝜌( 𝑗) (𝛽, Σ)

)
>

1
2
.

Under Assumption 3.4.1 and Assumption 3.4.2 respectively, Ni (2011) proved

Theorem 3.4.2 and Theorem 3.4.3. These give an explicit form for the probability

of the phenomenon. Notice that the conditioning is different in each theorem.

The first conditions on a random covariance matrix, while the second conditions

on random regression coefficients. Assumption 3.4.2 was used tacitly.

Assumption 3.4.1. The 𝑝-dimensional random vector 𝛽 has a spherically sym-

metric distribution.
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Assumption 3.4.2. The 𝑝 × 𝑝 random matrix Σ is symmetric and has the same

distribution as𝑈𝑇Σ𝑈 for any 𝑝×𝑝 orthogonal matrix𝑈. Moreover, the eigenvalues

(which are themselves random variables) of Σ are almost surely positive and

distinct.

Theorem 3.4.2 (Ni (2011)). Let 𝑋 and 𝛽 be 𝑝-dimensional real random vectors,

with Var (𝑋) existing, and let 𝑌 be a real random variable. Suppose that:

1. 𝛽 satisfies Assumption 3.4.1

2. E (𝑋 |Σ) a.s.P
= 0 and Var (𝑋 |Σ) a.s.P

= Σ

3. 𝑌 = 𝛽𝑇𝑋 + 𝜖 where 𝛽 ⊥⊥ (𝑋, Σ), 𝜖 ⊥⊥ (𝑋, 𝛽, Σ), 𝜖 is square-integrable,

E (𝜖) = 0, and Var (𝜖) < ∞

Write Σ as
∑
𝑖∈N𝑝

𝜆𝑖𝑣𝑖𝑣
𝑇
𝑖

alike in Definition 2.2.32. Suppose that the eigenvalues

of Σ are almost surely positive and distinct. Define 𝜌𝑘 (Σ) B Corr2 (
𝑌, 𝑣𝑇

𝑘
𝑋
��Σ)

.

Reorder the eigenvalues as 𝜆(1) > 𝜆(2) > . . . > 𝜆(𝑝) > 0, let
(
𝑣 (1) , . . . 𝑣 (𝑝)

)
be

the corresponding normalised eigenvectors, and let 𝜌(𝑖) (Σ) be the conditional

squared correlation corresponding to 𝑣 (𝑖) . Then, for 𝑖 < 𝑗 ≤ 𝑝,

P
(
𝜌(𝑖) (Σ) ≥ 𝜌( 𝑗) (Σ)

)
=

2
𝜋
E

(
arctan

(√︄
𝜆(𝑖)
𝜆( 𝑗)

))
>

1
2
.

Theorem 3.4.3 (Ni (2011)). Let 𝑋 and 𝛽 be 𝑝-dimensional real random vectors

and 𝑌 be a real random variable. Suppose that:

1. Σ satisfies Assumption 3.4.2

2. E (𝑋 |Σ) a.s.P
= 0 and Var (𝑋 |Σ) a.s.P

= Σ

3. 𝑌 = 𝛽𝑇𝑋 + 𝜖 where 𝛽 ⊥⊥ (𝑋, Σ), 𝜖 ⊥⊥ (𝑋, 𝛽, Σ), 𝜖 is square-integrable,

E (𝜖) = 0, and Var (𝜖) < ∞.
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Write Σ as
∑
𝑖∈N𝑝

𝜆𝑖𝑣𝑖𝑣
𝑇
𝑖
. Define 𝜌𝑘 (𝛽) B Corr2 (

𝑌, 𝑣𝑇
𝑘
𝑋
��𝛽) Reorder the eigen-

values as 𝜆(1) > 𝜆(2) > . . . > 𝜆(𝑝) > 0, let
(
𝑣 (1) , . . . 𝑣 (𝑝)

)
be the corresponding

normalised eigenvectors, and let 𝜌(𝑖) (𝛽) be the conditional squared correlation

corresponding to 𝑣 (𝑖) . Then, for 𝑖 < 𝑗 ≤ 𝑝

P
(
𝜌(𝑖) (𝛽) ≥ 𝜌( 𝑗) (𝛽)

)
=

2
𝜋
E

(
arctan

(√︄
𝜆(𝑖)
𝜆( 𝑗)

))
>

1
2
.

In the above results, the authors assumed a linear regression setting. Artemiou

and Li (2013) explored the probabilistic tendency under a conditional independence

model which includes the linear model as a subcase. The most general result they

showed was Theorem 3.4.4.

Theorem 3.4.4 (Artemiou and Li (2013)). Let 𝑋 and 𝛽 be 𝑝-dimensional random

vectors. Let 𝑌 be a 𝑚-dimensional random vector. Let 𝑓 : R𝑚 → R be a

measurable function. Suppose that

1. 𝑌 ⊥⊥ 𝑋 | (𝛽𝑇𝑋, 𝛽, Σ)

2. Var ( 𝑓 (𝑌 ) |𝛽, Σ) < ∞ almost surely

3. Cov
(
𝑓 (𝑌 ), 𝛽𝑇𝑋

��𝛽, Σ)
≠ 0 and Cov

(
𝑓 (𝑌 ), 𝛽𝑇𝑋

��𝛽, Σ)
< ∞ almost surely

4. E (𝑋 |Σ) a.s.P
= 0 and Var (𝑋 |Σ) a.s.P

= Σ

5. 𝛽 ⊥⊥ (𝑋, Σ)

6. E
(
𝑋
��𝛽𝑇𝑋, 𝛽, Σ)

is linear in 𝛽𝑇𝑋

7. either Assumption 3.4.1 or Assumption 3.4.2 holds

8. the eigenvalues of Σ are almost surely positive and distinct.

Write Σ as
∑
𝑖∈N𝑝

𝜆𝑖𝑣𝑖𝑣
𝑇
𝑖
. Define 𝜌𝑘 (𝛽, Σ) B Corr2 (

𝑓 (𝑌 ), 𝑣𝑇
𝑘
𝑋
��𝛽, Σ)

. Reorder

the eigenvalues as 𝜆(1) > 𝜆(2) > . . . > 𝜆(𝑝) > 0, let
(
𝑣 (1) , . . . 𝑣 (𝑝)

)
be the
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corresponding normalised eigenvectors, and let 𝜌(𝑖) (𝛽, Σ) be the conditional

squared correlation corresponding to 𝑣 (𝑖) . Then, for 𝑖 < 𝑗 ≤ 𝑝,

P
(
𝜌(𝑖) (𝛽, Σ) ≥ 𝜌( 𝑗) (𝛽, Σ)

)
=

2
𝜋
E

(
arctan

(√︄
𝜆(𝑖)
𝜆( 𝑗)

))
>

1
2
.

The presentation of Theorem 3.4.4 in Artemiou and Li (2013) has 𝑚 = 𝑝, so

the presentation here is slightly more general.

3.5 The predictive potential of nonlinear principal

components with general predictors

In this section and subsequent sections in this chapter, (Ω,F , P) is a probability

space, 𝑋 : (Ω,F , P) → (Ω𝑋 ,F𝑋) is a random variable called the predictor,

𝑌 : (Ω,F , P) → (Ω𝑌 ,F𝑌 ) is a random variable, 𝑔 : (Ω𝑌 ,F𝑌 ) → (R,B (R)) is a

measurable function, G and 𝑓 are as described in Section 3.3. 𝑔(𝑌 ) represents

the response variable — in the setting of multivariate 𝑌 , each component could

represent the number of crimes of different kinds while 𝑔(𝑌 ) could represent their

total.

The central question of this section is whether nonlinear principal components

analysis possesses a similar predictive tendency to that held by classical principal

components when general predictors are used. This question is addressed at two

different levels. The first is the conditional independence model

𝑔(𝑌 ) ⊥⊥ 𝑋 | ⟨ℎ, 𝑓 ◦ 𝑋⟩G (3.1)

where ℎ : Ω𝑋 → R is an arbitrary function in G. The question is formulated by

asking if, given a randomly selected function ℎ and an independently randomly

selected operator Σ where 𝑓 ◦𝑋 satisfies Var ( 𝑓 ◦ 𝑋 |Σ) a.s.P
= Σ, nonlinear principal
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components analysis enjoys a similar predictive tendency to that classically

possessed?

The second level is the most general. Suppose 𝑌 and 𝑋 are dependent but the

dependence is not restricted by any model, parametric or nonparametric. Then,

given a randomly selected regular conditional distribution for 𝑔(𝑌 ) |𝑋 and an inde-

pendently randomly selected operator Σ where 𝑓 ◦𝑋 satisfies Var ( 𝑓 ◦ 𝑋 |Σ) a.s.P
= Σ,

do nonlinear principal components possess the predictive tendency?

For technical reasons owing to the non-existence of orientationally uniform

random operators, unitarily invariant random variables, and unitarily invariant

random operators in infinite-dimensional spaces, it is assumed that G is finite-

dimensional. This assumption is not restrictive as one can take as large a

dimension as desired. Nevertheless, workarounds in the infinite-dimensional case

are considered.

First explored is the first level where an orientationally uniform random

operator is selected for the covariance operator independently of the randomly

chosen ℎ. Then considered is the first level with a unitarily invariant random

ℎ chosen independently of the randomly chosen covariance operator. Finally

considered is the second level with a either an orientationally uniform or unitarily

invariant random operator for the covariance operator.

Both levels are answered in the affirmative. While the work at the second level

is more general, the first level is not technically a special case. This is because the

conditions assumed for each of the levels are different.

3.5.1 Main results

In this section, it is assumed that G is 𝑞-dimensional for some 𝑞 ∈ N.
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3.5.1.1 Orientationally uniform random operator

The following theorem is useful in the proofs of Theorem 3.5.2 and Theorem 3.5.4.

Theorem 3.5.1. Suppose

1. Σ is a random positive definite operator on G with 𝑓 ◦ 𝑋 satisfying

E ( 𝑓 ◦ 𝑋 |Σ) a.s.P
= 0 and Var ( 𝑓 ◦ 𝑋 |Σ) a.s.P

= Σ

2. ℎ is a random function in G satisfying ℎ ⊥⊥ (𝑋, Σ)

3. P (ℎ = 0) = 0

4. for any 𝑣 ∈ G, there exists a constant 𝑐𝑣 such that

E
(
⟨𝑣, 𝑓 ◦ 𝑋⟩G

��ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ) a.s.P
= 𝑐𝑣 ⟨ℎ, 𝑓 ◦ 𝑋⟩G .

Then

E
(
𝑓 ◦ 𝑋

��ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ) a.s.P
=

[
1

⟨ℎ, Σℎ⟩G
Σ [ℎ ⊗ ℎ]

]
( 𝑓 ◦ 𝑋) .

Remark 3.5.1. Item 4 is called the linearity condition. Li (2007b) has shown that

it holds if 𝑓 ◦ 𝑋 has an elliptically symmetric distribution. Even if 𝑓 ◦ 𝑋 is not

elliptically symmetric, by expanding in an orthonormal basis for G, the results

of Hall and Li (1993) can be used, provided that ℎ has unit norm (which can be

assumed without loss of generality), to give probabilistic bounds in terms of 𝑞 of

the deviation from holding. As 𝑞 → ∞, there is convergence in probability of the

deviation to zero. As 𝑞 can be arbitrarily large, this condition is therefore mild.

Theorem 3.5.2. Suppose

1. Σ is an orientationally uniform random operator with 𝑓 ◦ 𝑋 satisfying

E ( 𝑓 ◦ 𝑋 |Σ) a.s.P
= 0 and Var ( 𝑓 ◦ 𝑋 |Σ) a.s.P

= Σ

2. 𝑔(𝑌 ) ⊥⊥ 𝑋 |
(
⟨ℎ, 𝑓 ◦ 𝑋⟩G , ℎ, Σ

)
where ℎ ⊥⊥ (𝑋, Σ)
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3. P (ℎ = 0) = 0

4. P (ℎ ∈ 𝐺) > 0 for any nonempty open set 𝐺 ⊆ G

5. Var (𝑔(𝑌 ) |ℎ, Σ) < ∞ almost surely

6. Cov
(
𝑔(𝑌 ), ⟨ℎ, 𝑓 ◦ 𝑋⟩G

��ℎ, Σ)
is nonzero almost surely

7. for any 𝑣 ∈ G, there exists a constant 𝑐𝑣 such that

E
(
⟨𝑣, 𝑓 ◦ 𝑋⟩G

��ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ) a.s.P
= 𝑐𝑣 ⟨ℎ, 𝑓 ◦ 𝑋⟩G .

Write Σ as
∑
𝑖∈N𝑞

𝜆𝑖 (𝑣𝑖 ⊗ 𝑣𝑖). Reorder the eigenvalues as 𝜆(1) > 𝜆(2) > . . . >

𝜆(𝑞) > 0 and let
(
𝑣 (1) , . . . 𝑣 (𝑞)

)
be the corresponding normalised eigenvectors.

Let 𝜌𝑖 (ℎ, Σ) B Corr2 (
𝑔(𝑌 ), ⟨𝑣𝑖, 𝑓 ◦ 𝑋⟩G

��ℎ, Σ)
. Then, whenever 𝑖 < 𝑗 ≤ 𝑞,

P
(
𝜌(𝑖) (ℎ, Σ) ≥ 𝜌( 𝑗) (ℎ, Σ)

)
> 1/2.

3.5.1.2 Unitarily invariant random functions

To establish the results using unitary invariance, the following lemma is needed.

Lemma 3.5.3. Suppose that 𝑣1, 𝑣2 are random functions in G such that (1)

⟨𝑣1, 𝑣2⟩G
a.s.P
= 0 and (2) for any unitary operator 𝑈 : G → G, (𝑣1, 𝑣2)

𝐷
=

(𝑈 (𝑣1),𝑈 (𝑣2)). Then, for any (nonrandom) function ℎ ∈ G \ {0}, the ratio

⟨ℎ, 𝑣1⟩G /⟨ℎ, 𝑣2⟩G has a standard Cauchy distribution.

Theorem 3.5.4. Suppose

1. Σ is a random operator with 𝑓 ◦ 𝑋 satisfying E ( 𝑓 ◦ 𝑋 |Σ) a.s.P
= 0 and

Var ( 𝑓 ◦ 𝑋 |Σ) a.s.P
= Σ

2. almost surely, each nonzero eigenvalue of Σ has multiplicity 1

3. ℎ is a unitarily invariant random function satisfying ℎ ⊥⊥ (𝑋, Σ)
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4. P (ℎ = 0) = 0

5. 𝑔(𝑌 ) ⊥⊥ 𝑋 |
(
⟨ℎ, 𝑓 ◦ 𝑋⟩G , ℎ, Σ

)
6. Var (𝑔(𝑌 ) |ℎ, Σ) < ∞ almost surely

7. Cov
(
𝑔(𝑌 ), ⟨ℎ, 𝑓 ◦ 𝑋⟩G

��ℎ, Σ)
is nonzero almost surely

8. for any 𝑣 ∈ G, there exists a constant 𝑐𝑣 such that

E
(
⟨𝑣, 𝑓 ◦ 𝑋⟩G

��ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ) a.s.P
= 𝑐𝑣 ⟨ℎ, 𝑓 ◦ 𝑋⟩G .

Write Σ as
∑
𝑖∈N𝑞

𝜆𝑖 (𝑣𝑖 ⊗ 𝑣𝑖). Reorder the eigenvalues as 𝜆(1) > 𝜆(2) > . . . >

𝜆(𝑞) > 0 and let
(
𝑣 (1) , . . . 𝑣 (𝑞)

)
be the corresponding normalised eigenvectors.

Let 𝜌𝑖 (ℎ, Σ) B Corr2 (
𝑔(𝑌 ), ⟨𝑣𝑖, 𝑓 ◦ 𝑋⟩G

��ℎ, Σ)
. Then, whenever 𝑖 < 𝑗 ≤ 𝑞,

P
(
𝜌(𝑖) (ℎ, Σ) ≥ 𝜌( 𝑗) (ℎ, Σ)

)
= 2

𝜋
E

(
arctan

(√︃
𝜆 (𝑖)
𝜆 ( 𝑗 )

))
.

3.5.1.3 Orientationally uniform random operators, unitarily invariant

random operators, and random regular conditional distributions

The second more general level is now addressed. This is the general situation

where 𝑋 and 𝑌 are dependent, but the dependence is not restricted to any model.

While no model is assumed for the relation between 𝑋 and 𝑌 , the following

conditional independence is needed

𝑔(𝑌 ) ⊥⊥ Σ |𝑋. (3.2)

This means that 𝑔(𝑌 ) depends on 𝑋 only through the value of 𝑋 itself, and not its

covariance operator.

Recall that, by Theorem 2.5.12, there exists a regular conditional distribution

of 𝑔(𝑌 ) |𝑋 . Let K be the collection of all such mappings. For simplicity, it is

assumed that G is rich enough to contain all bounded measurable functions of
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𝑋 , so that, for each 𝜅 ∈ K, and each 𝐴 ∈ B (R), 𝜅(𝐴, ·) ∈ G. Define a random

element in K to be a mapping

𝜈 : Ω → K, 𝜔 ↦→ 𝜈𝜔 (·, ·),

such that, for each 𝐴 ∈ B (R), the function Ω → G, 𝜔 ↦→ 𝜈𝜔 (𝐴, ·) is measurable.

The notation 𝑔(𝑌 ) | (𝑋, 𝜈) ∼ 𝜈 is used to indicate that a 𝜈 is chosen from K to be

the regular conditional distribution of 𝑌 |𝑋 .

If, for each 𝐴 ∈ B (R), 𝜅(𝐴, 𝑋) is almost surely constant, then 𝜅 represents a

regular conditional distribution under which 𝑋 and 𝑔(𝑌 ) are independent. Let

K0 be the collection of all such 𝜅. Since the tendency described in this section

occurs only when 𝑋 and 𝑔(𝑌 ) are related in some way, the case of independence

needs to be excluded from consideration. This is formulated with the condition

P (𝜈 ∈ K0) = 0.

Theorem 3.5.5. Suppose

1. Σ is an orientationally uniform random operator with 𝑓 ◦ 𝑋 satisfying

E ( 𝑓 ◦ 𝑋 |Σ) a.s.P
= 0 and Var ( 𝑓 ◦ 𝑋 |Σ) a.s.P

= Σ

2. 𝜈 is a random element of K with P (𝜈 ∈ K0) = 0 and which satisfies

𝑔(𝑌 ) | (𝑋, 𝜈) ∼ 𝜈, 𝜈 ⊥⊥ (𝑋, Σ), 𝑔(𝑌 ) ⊥⊥ Σ | (𝑋, 𝜈)

3. the random function 𝑚𝜈 (·) B
∫
𝑔 d𝜈 (·, 𝜔) almost surely belongs to G

4. Var (𝑔(𝑌 ) |𝜈,Σ) < ∞ almost surely

5. almost surely, Cov (𝑔(𝑌 ), 𝑚𝜈 (𝑋) |𝜈, Σ) is both nonzero and finite.

6. P (𝑚𝜈 ∈ 𝐺) > 0 for any nonempty open set 𝐺 ⊆ G

Write Σ as
∑
𝑖∈N𝑞

𝜆𝑖 (𝑣𝑖 ⊗ 𝑣𝑖). Reorder the eigenvalues as 𝜆(1) > 𝜆(2) >

. . . > 𝜆(𝑞) > 0 and let
(
𝑣 (1) , . . . 𝑣 (𝑞)

)
be the corresponding normalised eigen-

vectors. Let 𝜌𝑖 (𝜈,Σ) be defined to be the squared conditional correlation
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Corr2 (
𝑔(𝑌 ), ⟨𝑣𝑖, 𝑓 ◦ 𝑋⟩G

��𝜈, Σ)
. Then, for any 𝑖 < 𝑗 ≤ 𝑞,

P
(
𝜌(𝑖) (𝜈,Σ) ≥ 𝜌( 𝑗) (𝜈, Σ)

)
>

1
2
.

Although Theorem 3.5.5 subsumes Theorem 3.5.2, the latter is included as its

proof makes use of Theorem 3.5.1 which is a significant result in its own right.

Before giving this result, it is worth noting that a sufficient condition for Σ to be

unitarily invariant is that each of the eigenvectors are unitarily invariant.

Theorem 3.5.6. Suppose

1. Σ is a unitarily invariant random operator with 𝑓 ◦𝑋 satisfyingE ( 𝑓 ◦ 𝑋 |Σ) a.s.P
=

0 and Var ( 𝑓 ◦ 𝑋 |Σ) a.s.P
= Σ

2. almost surely, each nonzero eigenvalue of Σ has multiplicity 1

3. 𝜈 is a random element of K with P (𝜈 ∈ K0) = 0 and which satisfies

𝑔(𝑌 ) | (𝑋, 𝜈) ∼ 𝜈, 𝜈 ⊥⊥ (𝑋, Σ), 𝑔(𝑌 ) ⊥⊥ Σ | (𝑋, 𝜈)

4. the random function 𝑚𝜈 (·) B
∫
𝑔 d𝜈 (·, 𝜔) almost surely belongs to G

5. Var (𝑔(𝑌 ) |𝜈,Σ) < ∞ almost surely

6. almost surely, Cov (𝑔(𝑌 ), 𝑚𝜈 (𝑋) |𝜈, Σ) is both nonzero and finite.

Write Σ as
∑
𝑖∈N𝑞

𝜆𝑖 (𝑣𝑖 ⊗ 𝑣𝑖). Reorder the eigenvalues as 𝜆(1) > 𝜆(2) >

. . . > 𝜆(𝑞) > 0 and let
(
𝑣 (1) , . . . 𝑣 (𝑞)

)
be the corresponding normalised eigen-

vectors. Let 𝜌𝑖 (𝜈,Σ) be defined to be the squared conditional correlation

Corr2 (
𝑔(𝑌 ), ⟨𝑣𝑖, 𝑓 ◦ 𝑋⟩G

��𝜈, Σ)
. Then, for any 𝑖 < 𝑗 ≤ 𝑞,

P
(
𝜌(𝑖) (𝜈,Σ) ≥ 𝜌( 𝑗) (𝜈, Σ)

)
=

2
𝜋
E

(
arctan

(√︄
𝜆(𝑖)
𝜆( 𝑗)

))
.
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3.5.2 The infinite-dimensional case

The difficulty of extending the historical results to nonlinear principal components

with general predictors where G may have infinite-dimension arises from the fact

that orientationally uniform operators, unitarily invariant functions, and unitarily

invariant operators cannot be defined on infinite-dimensional spaces. However,

one can have these in any finite-dimensional subspace hence this section presents

workarounds which allow similar results to those in Section 3.5.1 to be given for

the infinite-dimensional setting.

The assumptions one can make are as follows.

Assumption 3.5.1. Let Σ be a random compact self-adjoint positive definite

operator on 𝐺. This Σ is taken to be the covariance operator of 𝑓 ◦ 𝑋 . It is

assumed that there exists a finite subvector 𝑉 B (𝑥1, . . . , 𝑥𝑎) of N such that

Σ∗ B
∑
𝑖∈N𝑎

𝜆𝑥𝑖
[
𝑣𝑥𝑖 ⊗ 𝑣𝑥𝑖

]
is orientationally uniform.

Assumption 3.5.2. Let Σ be a random compact self-adjoint positive definite

operator on 𝐺. This Σ is taken to be the covariance operator of 𝑓 ◦ 𝑋 . It is

assumed that there exists a finite subvector 𝑉 B (𝑥1, . . . , 𝑥𝑎) of N such that

Σ∗ B
∑
𝑖∈N𝑎

𝜆𝑥𝑖
[
𝑣𝑥𝑖 ⊗ 𝑣𝑥𝑖

]
is unitarily invariant.

Assumption 3.5.3. Let Σ be a random compact self-adjoint positive definite

operator on G. This Σ is taken to be the covariance operator of 𝑓 ◦ 𝑋 . Let 𝑣𝑖
be the 𝑖th eigenvector of Σ. It is assumed that ℎ is a random element of G, with

ℎ ⊥⊥ (𝑋, Σ), such that there exists a finite subvector 𝑉 B (𝑥1, . . . , 𝑥𝑎) of N such

that the sequence
(〈
ℎ, 𝑣𝑥𝑙

〉
G

)
𝑙∈N𝑎

is spherically distributed.

With these assumptions replacing their counterparts, results analogous to

those in the previous section can be obtained by having Σ∗ replacing Σ, 𝑣𝑥𝑖 and

𝑣𝑥 𝑗 replacing 𝑣𝑖 and 𝑣 𝑗 respectively, 𝜆𝑥𝑖 and 𝜆𝑥 𝑗 replacing 𝜆𝑖 and 𝜆 𝑗 respectively,
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and 𝑎 replacing 𝑞. The proofs are essentially the same after these modifications

are made, hence are omitted.

3.5.3 Summary

In this section, the predictive utility of nonlinear principal components in regression

with general predictors was explored at two levels. The first is the conditional

independence model and the second is an arbitrary 𝑋-𝑔(𝑌 ) relation. For both

levels, it was demonstrated that the predictive tendency held by classical principal

components remains valid.

3.5.4 Proofs

Proof of Theorem 3.5.1. First observe that

E
(
⟨𝑣, 𝑓 ◦ 𝑋⟩G

��ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ) a.s.P
= 𝑐𝑣 ⟨ℎ, 𝑓 ◦ 𝑋⟩G ⇐⇒〈

𝑣,E
(
𝑓 ◦ 𝑋

��ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ)〉
G

a.s.P
= 𝑐𝑣 ⟨ℎ, 𝑓 ◦ 𝑋⟩G .

To show the result, it suffices to show that, for any 𝐴 ∈ 𝜎
(
ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ

)
and

𝑣 ∈ G,

E
(
1𝐴

〈
𝑣,E

(
𝑓 ◦ 𝑋

��ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ)〉
G

)
= E

(
1𝐴

〈
𝑣,

1
⟨ℎ, Σℎ⟩G

Σ [ℎ ⊗ ℎ] ( 𝑓 ◦ 𝑋)
〉
G

)
So let 𝑣 ∈ G and let 𝐴 ∈ 𝜎

(
ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ

)
. By the definition of conditional

expectation and the linearity assumption, there exists a constant 𝑐𝑣 such that,

E
(
1𝐴

〈
𝑣,E

(
𝑓 ◦ 𝑋

��ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ)〉
G

)
= E

(
1𝐴𝑐𝑣 ⟨ℎ, 𝑓 ◦ 𝑋⟩G

)
= E

(
1𝐴 ⟨𝑣, 𝑓 ◦ 𝑋⟩G

)
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Consider

E

(
1𝐴

〈
𝑣,

1
⟨ℎ, Σℎ⟩G

Σ [ℎ ⊗ ℎ] ( 𝑓 ◦ 𝑋)
〉
G

)
= E

(
1𝐴

〈
𝑣, ⟨ℎ, 𝑓 ◦ 𝑋⟩G Σℎ

〉
G

⟨ℎ, Σℎ⟩G

)
= E

(1𝐴 ⟨𝑣, Σℎ⟩G ⟨ℎ, 𝑓 ◦ 𝑋⟩G
⟨ℎ, Σℎ⟩G

)
(3.3)

Now observe

⟨𝑣, Σℎ⟩G
a.s.P
= ⟨𝑣,E ( [ 𝑓 ◦ 𝑋] ⊗ [ 𝑓 ◦ 𝑋] |Σ) ℎ⟩G

a.s.P
= ⟨𝑣,E (( [ 𝑓 ◦ 𝑋] ⊗ [ 𝑓 ◦ 𝑋]) ℎ |ℎ, Σ)⟩G

a.s.P
=

〈
𝑣,E

(
⟨ℎ, 𝑓 ◦ 𝑋⟩G ( 𝑓 ◦ 𝑋)

��ℎ, Σ)〉
G

a.s.P
= E

(〈
𝑣, ⟨ℎ, 𝑓 ◦ 𝑋⟩G ( 𝑓 ◦ 𝑋)

〉
G

���ℎ, Σ)
a.s.P
= E

(
⟨ℎ, 𝑓 ◦ 𝑋⟩G ⟨𝑣, 𝑓 ◦ 𝑋⟩G

��ℎ, Σ)
By a similar argument, ⟨ℎ, Σℎ⟩G

a.s.P
= E

(
⟨ℎ, 𝑓 ◦ 𝑋⟩2

G
��ℎ, Σ)

. So Equation (3.3) can

be rewritten as

E
©­­«
1𝐴E

(
⟨ℎ, 𝑓 ◦ 𝑋⟩G ⟨𝑣, 𝑓 ◦ 𝑋⟩G

��ℎ, Σ)
⟨ℎ, 𝑓 ◦ 𝑋⟩G

E
(
⟨ℎ, 𝑓 ◦ 𝑋⟩2

G
��ℎ, Σ) ª®®¬

= E
©­­«
E

(
1𝐴

��ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ)
E

(
⟨ℎ, 𝑓 ◦ 𝑋⟩G ⟨𝑣, 𝑓 ◦ 𝑋⟩G

��ℎ, Σ)
⟨ℎ, 𝑓 ◦ 𝑋⟩G

E
(
⟨ℎ, 𝑓 ◦ 𝑋⟩2

G
��ℎ, Σ) ª®®¬

= E
©­­«
1𝐴 ⟨ℎ, 𝑓 ◦ 𝑋⟩G E

(
E

(
⟨ℎ, 𝑓 ◦ 𝑋⟩G ⟨𝑣, 𝑓 ◦ 𝑋⟩G

��ℎ, Σ) ��ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ)
E

(
⟨ℎ, 𝑓 ◦ 𝑋⟩2

G
��ℎ, Σ) ª®®¬

= E
©­­«
1𝐴 ⟨ℎ, 𝑓 ◦ 𝑋⟩G E

(
E

(
⟨ℎ, 𝑓 ◦ 𝑋⟩G ⟨𝑣, 𝑓 ◦ 𝑋⟩G

��ℎ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G , Σ) ��ℎ, Σ)
E

(
⟨ℎ, 𝑓 ◦ 𝑋⟩2

G
��ℎ, Σ) ª®®¬

= E
©­­«
1𝐴 ⟨ℎ, 𝑓 ◦ 𝑋⟩G E

(
𝑐𝑣 ⟨ℎ, 𝑓 ◦ 𝑋⟩2

G
��ℎ, Σ)

E
(
⟨ℎ, 𝑓 ◦ 𝑋⟩2

G
��ℎ, Σ) ª®®¬
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= E
(
1𝐴𝑐𝑣 ⟨ℎ, 𝑓 ◦ 𝑋⟩G

)
This completes the proof. □

Proof of Theorem 3.5.2. By the definition of conditional correlation,

Corr2
(
𝑔(𝑌 ),

〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���ℎ, Σ)
a.s.P
=

Cov2
(
𝑔(𝑌 ),

〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���ℎ, Σ)
Var (𝑔(𝑌 ) |ℎ, Σ) Var

(〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���ℎ, Σ)
Now as ℎ ⊥⊥ (𝑋, Σ), Var

(〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���ℎ, Σ)
a.s.P
= Var

(〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���Σ)
a.s.P
= 𝜆(𝑖) .

Consider now

Cov
(
𝑔(𝑌 ),

〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���ℎ, Σ)
a.s.P
= Cov

(
𝑔(𝑌 ),E

(〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���ℎ, Σ, 𝑋)���ℎ, Σ)
a.s.P
= Cov

(
E (𝑔(𝑌 ) |ℎ, Σ, 𝑋) ,

〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���ℎ, Σ)
a.s.P
= Cov

(
E

(
𝑔(𝑌 )

��ℎ, Σ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G ) , 〈𝑣 (𝑖) , 𝑓 ◦ 𝑋〉
G

���ℎ, Σ)
a.s.P
= Cov

(
𝑔(𝑌 ),E

(〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���ℎ, Σ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G)���ℎ, Σ)
a.s.P
= Cov

(
𝑔(𝑌 ),

〈
𝑣 (𝑖) ,E

(
𝑓 ◦ 𝑋

��ℎ, Σ, ⟨ℎ, 𝑓 ◦ 𝑋⟩G )〉G ���ℎ, Σ)
a.s.P
= Cov

(
𝑔(𝑌 ),

〈
𝑣 (𝑖) ,

1
⟨ℎ, Σℎ⟩G

Σ [ℎ ⊗ ℎ] ( 𝑓 ◦ 𝑋)
〉
G

�����ℎ, Σ
)

a.s.P
=

1
⟨ℎ, Σℎ⟩G

Cov
(
𝑔(𝑌 ),

〈
Σ𝑣 (𝑖) , [ℎ ⊗ ℎ] ( 𝑓 ◦ 𝑋)

〉
G

���ℎ, Σ)
a.s.P
=

𝜆(𝑖)
〈
𝑣 (𝑖) , ℎ

〉
G

⟨ℎ, Σℎ⟩G
Cov

(
𝑔(𝑌 ), ⟨ℎ, 𝑓 ◦ 𝑋⟩G

��ℎ, Σ)
After substituting this into the above relation for conditional correlation, doing a

similar analysis with 𝑖 replaced by 𝑗 , and applying some elementary algebra, this

implies that

Corr2
(
𝑔(𝑌 ),

〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���ℎ, Σ)
Corr2

(
𝑔(𝑌 ),

〈
𝑣 ( 𝑗) , 𝑓 ◦ 𝑋

〉
G

���ℎ, Σ) a.s.P
=

𝜆(𝑖)
〈
𝑣 (𝑖) , ℎ

〉2
G

𝜆( 𝑗)
〈
𝑣 ( 𝑗) , ℎ

〉2
G

.
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Therefore

P
(
𝜌(𝑖) (ℎ, Σ) ≥ 𝜌( 𝑗) (ℎ, Σ)

)
= P

©­«
𝜆(𝑖)

〈
𝑣 (𝑖) , ℎ

〉2
G

𝜆( 𝑗)
〈
𝑣 ( 𝑗) , ℎ

〉2
G

≥ 1ª®¬ = P
©­«
〈
𝑣 ( 𝑗) , ℎ

〉2
G〈

𝑣 (𝑖) , ℎ
〉2
G

≤
𝜆(𝑖)
𝜆( 𝑗)

ª®¬ .
(3.4)

By the law of total probability, the final expression in Equation (3.4) can be

rewritten as∑︁
𝑘≠𝑙

P
©­«
〈
𝑣 ( 𝑗) , ℎ

〉2
G〈

𝑣 (𝑖) , ℎ
〉2
G

≤
𝜆(𝑖)
𝜆( 𝑗)

������𝜆(𝑖) = 𝜆𝑘 , 𝜆( 𝑗) = 𝜆𝑙ª®¬P
(
𝜆(𝑖) = 𝜆𝑘 , 𝜆( 𝑗) = 𝜆𝑙

)
.

Each of the unconditional probabilities in this summation is equal to
(𝑞
2
)−1. Hence,

after seeing that
(
𝑣 (𝑖) , 𝑣 ( 𝑗)

)
= (𝑣𝑘 , 𝑣𝑙) when the event

(
𝜆(𝑖) = 𝜆𝑘 , 𝜆( 𝑗) = 𝜆𝑙

)
is

conditioned on, this summation can be rewritten as(
𝑞

2

)−1 ∑︁
𝑘≠𝑙

P

(
⟨𝑣𝑙 , ℎ⟩2

G

⟨𝑣𝑘 , ℎ⟩2
G
≤ 𝜆𝑘

𝜆𝑙

�����𝜆(𝑖) = 𝜆𝑘 , 𝜆( 𝑗) = 𝜆𝑙
)
. (3.5)

Reexpress each term in this summation as

E

(
P

(
⟨𝑣𝑙 , ℎ⟩2

G

⟨𝑣𝑘 , ℎ⟩2
G
≤ 𝜆𝑘

𝜆𝑙

�����𝜆(𝑖) = 𝜆𝑘 , 𝜆( 𝑗) = 𝜆𝑙 , 𝜆𝑘 , 𝜆𝑙
)�����𝜆(𝑖) = 𝜆𝑘 , 𝜆( 𝑗) = 𝜆𝑙

)
. (3.6)

By the definition of an orientationally uniform random operator,

(𝑣𝑘 , 𝑣𝑙) ⊥⊥
(
𝜆1, . . . , 𝜆𝑞

)
=⇒ (𝑣𝑘 , 𝑣𝑙) ⊥⊥

(
𝜆1, . . . , 𝜆𝑞, 𝜆(1) , . . . , 𝜆(𝑞)

)
=⇒ (𝑣𝑘 , 𝑣𝑙) ⊥⊥

(
𝜆𝑘 , 𝜆𝑙 , 𝜆(𝑖) , 𝜆( 𝑗)

)
=⇒ (𝑣𝑘 , 𝑣𝑙) ⊥⊥

(
𝜆(𝑖) , 𝜆( 𝑗)

)
| (𝜆𝑘 , 𝜆𝑙) .

Thus the expression in 3.6 can be rewritten as

E

(
P

(
⟨𝑣𝑙 , ℎ⟩2

G

⟨𝑣𝑘 , ℎ⟩2
G
≤ 𝜆𝑘

𝜆𝑙

�����𝜆𝑘 , 𝜆𝑙
)�����𝜆(𝑖) = 𝜆𝑘 , 𝜆( 𝑗) = 𝜆𝑙

)
. (3.7)
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As (ℎ, 𝑣𝑘 , 𝑣𝑙) ⊥⊥ (𝜆𝑘 , 𝜆𝑙), it holds that for 𝑠 > 𝑡 > 0,

P

(
⟨𝑣𝑙 , ℎ⟩2

G

⟨𝑣𝑘 , ℎ⟩2
G
≤ 𝑠

𝑡

�����𝜆𝑘 = 𝑠, 𝜆𝑙 = 𝑡
)
= P

(
⟨𝑣𝑙 , ℎ⟩2

G

⟨𝑣𝑘 , ℎ⟩2
G
≤ 𝑠

𝑡

)
>

1
2
.

where the inequality follows from Theorem 2.2.11. As the event 𝜆𝑘 = 𝜆𝑙 has zero

probability, it follows that the expression in 3.7, and hence 3.5, exceeds 1/2. □

Proof of Lemma 3.5.3. Since𝑈−1 is also a unitary operator,

(𝑣1, 𝑣2)
𝐷
= (𝑈−1(𝑣1),𝑈−1(𝑣2)).

Consequently,(
⟨ℎ, 𝑣1⟩G , ⟨ℎ, 𝑣2⟩G

) 𝐷
=

(〈
ℎ,𝑈−1(𝑣1)

〉
G ,

〈
ℎ,𝑈−1(𝑣2)

〉
G

)
=

(
⟨𝑈 (ℎ), 𝑣1⟩G , ⟨𝑈 (ℎ), 𝑣2⟩G

)
.

Thus, the distribution of
(
⟨ℎ, 𝑣1⟩G , ⟨ℎ, 𝑣2⟩G

)
depends on ℎ only through ∥ℎ∥G =

𝑎 > 0. Let ℎ̃ be a G-valued random variable on (Ω,F , P) which is independent

of (𝑣1, 𝑣2) and uniformly distributed on the sphere S (𝑎) =
{
𝑙 ∈ G : ∥𝑙∥G = 𝑎

}
.

Then, for any 𝐴 ∈ B (R), and any nonrandom function ℎ0,

P
(〈
ℎ̃, 𝑣1

〉
G /

〈
ℎ̃, 𝑣2

〉
G ∈ 𝐴

���ℎ̃ = ℎ0

)
= P

(
⟨ℎ0, 𝑣1⟩G /⟨ℎ0, 𝑣2⟩G ∈ 𝐴

)
. (3.8)

This implies

P
(〈
ℎ̃, 𝑣1

〉
G /

〈
ℎ̃, 𝑣2

〉
G ∈ 𝐴

���ℎ̃) = P (〈
ℎ̃, 𝑣1

〉
G /

〈
ℎ̃, 𝑣2

〉
G ∈ 𝐴

)
(3.9)

The right hand side can be rewritten as

E
(
P

(〈
ℎ̃, 𝑣1

〉
G /

〈
ℎ̃, 𝑣2

〉
G ∈ 𝐴

���𝑣1, 𝑣2

))
Because ℎ̃ ⊥⊥ (𝑣1, 𝑣2), ℎ̃ is unitarily invariant when conditioning on (𝑣1, 𝑣2). Then,

by Theorem 2.2.15 and Theorem 1 of Arnold and Brockett (1992), the ratio
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〈
ℎ̃, 𝑣1

〉
G /

〈
ℎ̃, 𝑣2

〉
G has a standard Cauchy distribution regardless of the value of

(𝑣1, 𝑣2). This means that the ratio
〈
ℎ̃, 𝑣1

〉
G /

〈
ℎ̃, 𝑣2

〉
G is independent of (𝑣1, 𝑣2),

and therefore has a standard Cauchy distribution unconditionally. Hence

P
(〈
ℎ̃, 𝑣1

〉
G /

〈
ℎ̃, 𝑣2

〉
G ∈ 𝐴

)
= P𝐶 (𝐴),

where P𝐶 (𝐴) is the probability of 𝐴 under the standard Cauchy distribution.

However, by Equation (3.8) and Equation (3.9) equalities and the discussion

preceding them,

P
(
⟨ℎ, 𝑣1⟩G /⟨ℎ, 𝑣2⟩G ∈ 𝐴

)
= P

(
⟨ℎ0, 𝑣1⟩G /⟨ℎ0, 𝑣2⟩G ∈ 𝐴

)
= P

(〈
ℎ̃, 𝑣1

〉
G /

〈
ℎ̃, 𝑣2

〉
G ∈ 𝐴

)
= P𝐶 (𝐴).

That is, ⟨ℎ, 𝑣1⟩G /⟨ℎ, 𝑣2⟩G has a standard Cauchy distribution, which proves the

result. □

Proof of Theorem 3.5.4. The first part of the proof is identical to that for Theo-

rem 3.5.2 up to Equation (3.4). Note now that

P
©­«
〈
𝑣 ( 𝑗) , ℎ

〉2
G〈

𝑣 (𝑖) , ℎ
〉2
G

≤
𝜆(𝑖)
𝜆( 𝑗)

ª®¬ = P

(
−
√︄
𝜆(𝑖)
𝜆( 𝑗)

≤
〈
𝑣 ( 𝑗) , ℎ

〉
G〈

𝑣 (𝑖) , ℎ
〉
G

≤
√︄
𝜆(𝑖)
𝜆( 𝑗)

)
By Theorem 1 of Arnold and Brockett (1992),

〈
𝑣 ( 𝑗) , ℎ

〉
G /

〈
𝑣 (𝑖) , ℎ

〉
G has a standard

Cauchy distribution. Hence, for any 𝑠 > 𝑡 > 0,

P

(
−
√︄
𝜆(𝑖)
𝜆( 𝑗)

≤
〈
𝑣 ( 𝑗) , ℎ

〉
G〈

𝑣 (𝑖) , ℎ
〉
G

≤
√︄
𝜆(𝑖)
𝜆( 𝑗)

�����𝜆(𝑖) = 𝑠, 𝜆( 𝑗) = 𝑡
)

= P

(
−
√︂
𝑠

𝑡
≤

〈
𝑣 ( 𝑗) , ℎ

〉
G〈

𝑣 (𝑖) , ℎ
〉
G

≤
√︂
𝑠

𝑡

)
=

2
𝜋

arctan
(√︂

𝑠

𝑡

)
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As the event 𝜆( 𝑗) = 𝜆(𝑖) has probability zero, it follows that

P

(
−
√︄
𝜆(𝑖)
𝜆( 𝑗)

≤
〈
𝑣 ( 𝑗) , ℎ

〉
G〈

𝑣 (𝑖) , ℎ
〉
G

≤
√︄
𝜆(𝑖)
𝜆( 𝑗)

�����𝜆(𝑖) , 𝜆( 𝑗)
)

a.s.P
=

2
𝜋

arctan

(√︄
𝜆(𝑖)
𝜆( 𝑗)

)
Taking the expectation of both sides gives the result. □

Proof of Theorem 3.5.5. Note that

Cov
(
𝑔(𝑌 ),

〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���𝜈, Σ)
a.s.P
= Cov

(
E (𝑔(𝑌 ) |𝜈, Σ, 𝑋) ,

〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���𝜈, Σ)
Since 𝑔(𝑌 ) ⊥⊥ Σ | (𝑋, 𝜈),

E (𝑔(𝑌 ) |𝜈, Σ, 𝑋) a.s.P
= E (𝑔(𝑌 ) |𝜈, 𝑋) a.s.P

= 𝑚𝜈 (𝑋).

Since 𝜈 ⊥⊥ (𝑋, Σ), 𝑚𝜈 ⊥⊥ (𝑋, Σ). Hence, for any 𝜅 ∈ K,

Cov
(
𝑚𝜈 (𝑋),

〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���𝜈 = 𝜅, Σ)
a.s.P
= Cov

(
𝑚𝜅 (𝑋),

〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���Σ)
a.s.P
=

〈
𝑚𝜅, Σ𝑣 (𝑖)

〉
G

a.s.P
= 𝜆(𝑖)

〈
𝑚𝜅, 𝑣 (𝑖)

〉
G .

This implies

Cov
(
𝑚𝜈 (𝑋),

〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���𝜈,Σ)
a.s.P
= 𝜆(𝑖)

〈
𝑚𝜈, 𝑣 (𝑖)

〉
G .

Similarly, by 𝜈 ⊥⊥ (𝑋, Σ)

Var
(〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���𝜈, Σ)
a.s.P
= Var

(〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���Σ)
a.s.P
= 𝜆(𝑖) .

It follows that

Corr2
(
𝑔(𝑌 ),

〈
𝑣 (𝑖) , 𝑓 ◦ 𝑋

〉
G

���𝜈, Σ)
Corr2

(
𝑔(𝑌 ),

〈
𝑣 ( 𝑗) , 𝑓 ◦ 𝑋

〉
G

���𝜈, Σ) a.s.P
=

𝜆(𝑖)
〈
𝑚𝜈, 𝑣 (𝑖)

〉2
G

𝜆( 𝑗)
〈
𝑚𝜈, 𝑣 ( 𝑗)

〉2
G

.
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Since 𝑚𝜈 ⊥⊥ (𝑣 (𝑖) , 𝑣 ( 𝑗) , 𝜆(𝑖) , 𝜆( 𝑗)), it follows that 𝑚𝜈 ⊥⊥ (𝑣 (𝑖) , 𝑣 ( 𝑗)) | (𝜆(𝑖) , 𝜆( 𝑗)).

Hence, for any 𝜅 ∈ K,

P
©­«
( 〈
𝑚𝜈, 𝑣 ( 𝑗)

〉
G〈

𝑚𝜈, 𝑣 (𝑖)
〉
G

)2

<
𝜆(𝑖)
𝜆( 𝑗)

������𝜈 = 𝜅, 𝜆(𝑖) , 𝜆( 𝑗)ª®¬
a.s.P
= P

©­«
( 〈
𝑚𝜅, 𝑣 ( 𝑗)

〉
G〈

𝑚𝜅, 𝑣 (𝑖)
〉
G

)2

<
𝜆(𝑖)
𝜆( 𝑗)

������𝜆(𝑖) , 𝜆( 𝑗)ª®¬
By an argument similar to that for the proof of Theorem 3.5.2, the right hand side

almost surely exceeds 1/2. Taking the expectation on both sides of the above

equality completes the proof. □

Proof of Theorem 3.5.6. The proof is similar to that for Theorem 3.5.5, except

that the last paragraph is replaced with saying that the probability preceeding it is

almost surely equal to (2/𝜋) arctan
( (
𝜆(𝑖)/𝜆( 𝑗)

)1/2
)
. Thus it has been shown that

P
©­«
( 〈
𝑚𝜈, 𝑣 ( 𝑗)

〉
G〈

𝑚𝜈, 𝑣 (𝑖)
〉
G

)2

<
𝜆(𝑖)
𝜆( 𝑗)

������𝜈, 𝜆(𝑖) , 𝜆( 𝑗)ª®¬ a.s.P
=

2
𝜋

arctan

(√︄
𝜆(𝑖)
𝜆( 𝑗)

)
.

Taking the expectation on both sides of the above equality completes the proof. □
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Chapter 4

Methodological developments in

sufficient dimension reduction

4.1 Outline of chapter

In this chapter, methodological developments in sufficient dimension reduction are

given. First, an overview of this supervised framework for dimension reduction

is provided. A brief presentation of two commonly used procedures for linear

sufficient dimension reduction is given for context. The interest in this thesis is the

scenario where some of the predictors are categorical, so an account of the existing

literature for this situation is given in the following. The main methodological

developments are then provided; in brief, a nonlinear approach for sufficient

dimension reduction with some categorical predictors is developed.

4.2 Overview of sufficient dimension reduction

This thesis has so far focussed on principal components analysis, an early

unsupervised dimension reduction method, and explored its predictive utility for
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regression. As the discussion indicated (because the results in Chapter 3 are of

a probabilistic nature), it is desirable that dimension reduction procedures take

the response variable into account. The discussion is thus turned to a supervised

framework, known as sufficient dimension reduction (SDR), which combines

dimension reduction with notions from classical statistics, particularly that of a

sufficient statistic (see Fisher (1922)).

Classically, SDR assumes that the predictor 𝑋 is a random vector in R𝑝, for

some 𝑝 ∈ N, and the response 𝑌 is a random variable in R. In this setting,

the idea is to find a 𝑑-dimensional subspace S, called an SDR subspace, of R𝑝

(𝑑 ≤ 𝑝) on which to project 𝑋 such that the projection 𝑃S𝑋 of 𝑋 onto S retains

the predictive power that 𝑋 has for 𝑌 . This preservation is characterised via the

conditional independence 𝑌 ⊥⊥ 𝑋 |𝑃S𝑋 . There can be many such subspaces, so

SDR seeks those with minimal 𝑑. Under some mild assumptions, Cook (1998)

showed that the intersection of all SDR subspaces, denoted by S𝑌 |𝑋 , is itself an

SDR subspace. S𝑌 |𝑋 is called the central subspace and its dimension is called the

structural dimension. As it is the intersection of all SDR subspaces, the central

subspace is unique. Some of the key methods and results for this setting are given

in: Li (1991), Cox (1968), Li et al. (2005), Cook (1998), Cook (1994), Cook and

Ni (2005), and Cook and Forzani (2009). See Li (2018) for a comprehensive

presentation of the most commonly used procedures for linear SDR, two of which

are discussed in Section 4.3.

The assumption that the extracted manifold in SDR is a linear subspace of

R𝑝 has been relaxed as the field has evolved. Most of the approaches for finding

nonlinear manifolds have been developed by applying the “kernel trick", most

well-known for its application to the support vector machine of Cortes and Vapnik

(1995), to extend the classical methods. This is done by allowing for nonlinear

projections of 𝑋 which are constrained to be functions of 𝑋 in some reproducing
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kernel Hilbert space (see Aronszajn (1950)). This technique relies on the fact

that many of the methods only require the computation of inner products. This

nonlinear approach allows for even greater reduction of dimension. Some of

the key literature for this setting are: Fukumizu et al. (2004), Li et al. (2011),

Artemiou and Dong (2016), and Yeh et al. (2009).

Many of the methods developed for the setting of multivariate data have

been broadened to situations where the predictor is a random function or, more

generally, a random variable in some real separable Hilbert space H. These

extensions are achieved by replacing the R𝑝 inner product with the inner product

in H. Some alterations are made in estimation procedures as the possible infinite-

dimensionality necessitates careful consideration regarding the nature of various

operators particularly relating to their boundedness, compactness, and if they are

trace-class. For an overview of the field of functional data analysis, see Hsing

and Eubank (2015). Some methods for this setting are given in: Ferré and Yao

(2003), Wang et al. (2013), Lian and Li (2014), and Wang et al. (2015).

A significant development in SDR has arisen by exploiting its similarities (see

Li and Song (2017), Li (2018), and Lee et al. (2013)) with the measure-theoretic

formulation of sufficient statistics. This theory, referred to in this thesis as

generalised SDR, allows: (1) the response to be categorical or multivariate, (2) the

predictor or the response to be random functions, and (3) the extracted manifold

to be nonlinear. Generalised SDR is characterised in terms of sub-𝜎-fields of

the 𝜎-field generated by 𝑋 (𝜎 (𝑋)). Any sub-𝜎-field 𝐺 of 𝜎 (𝑋) which satisfies

the conditional independence relation 𝑌 ⊥⊥ 𝑋 |𝐺 is called a SDR 𝜎-field. Under a

mild assumption, given in Lee et al. (2013), the intersection of all SDR 𝜎-fields

is itself a SDR 𝜎-field known as the central subfield. This theory is built on in

Section 4.5 to develop a nonlinear approach to SDR when some of the predictors

are categorical.
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4.3 Literature review: two commonly used methods

for linear sufficient dimension reduction

In this section, 𝑋 is a 𝑝-dimensional random vector and 𝑌 is a real random

variable. The setting is that of linear sufficient dimension reduction as described

in the previous section.

4.3.1 Sliced inverse regression

The earliest method for linear SDR, sliced inverse regression (SIR), was introduced

by Li (1991). It relies on the following linearity assumption.

Assumption 4.3.1. Let 𝛽 ∈ R𝑝×𝑑 be such that the columnspace of 𝛽 coincides

with the central subspace. Assume that E
(
𝑋
��𝛽𝑇𝑋 )

is a linear function of 𝛽𝑇𝑋 .

This assumption is known to hold when 𝑋 has an elliptical distribution (see

Eaton (1986)). With this assumption, the following theorem gives that the SIR

estimator is unbiased.

Theorem 4.3.1 (SIR is unbiased, see Li (2018)). Suppose Σ = Var (𝑋) exists and

is nonsingular. Then

Σ−1 [E (𝑋 |𝑌 ) − E (𝑋)] ∈ S𝑌 |𝑋 .

Note that this is how the result is presented in Li (2018) – the author of

this thesis believes that the fact that E (𝑋 |𝑌 ) is random means there should be a

clarification that the result holds almost surely. This point holds throughout this

section.

The term “inverse regression" comes from the fact that it is the conditional

expectation of 𝑋 given 𝑌 which is of interest, rather than the other way around.

Notably, this is easier to estimate as 𝑌 is univariate. The term “sliced" comes
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from the way that the inverse regression curve is estimated. In the following, the

span of a matrix is defined to be its columnspace (to use the same notation as Li

(2018)).

Corollary 4.3.2 (A property of the SIR estimator, see Li (2018)). Under the

assumptions of the previous theorem

Span
{
Σ−1 Var (E (𝑋 |𝑌 )) Σ−1} ⊆ S𝑌 |𝑋

Let ΛSIR B Var (E (𝑋 |𝑌 )). The above corollary implies that the columnspace

(denoted SSIR) of Σ−1ΛSIRΣ
−1 can be used to estimate at least part of the central

subspace. Before examining how to estimate this space, note that Li (2018) gives

an example to show that, in general, SIR is unable to recover the entirety of the

central subspace. More problematically, a regression function (in a multi-index

model) which is symmetric about the origin is only able to recover the zero vector

which is of no use for dimension reduction.

The target columnspace can be found by solving the following optimisation

problem. Let 𝛼1 solve

Max 𝛼𝑇ΛSIR𝛼

Subject to 𝛼𝑇Σ𝛼 = 1.
(4.1)

For 𝑘 = 2, . . . , 𝑝, let 𝛼𝑘 be the solution to 4.1 subject to the extra condition

𝛼𝑇Σ𝛼𝑙 = 0 for 𝑙 = 1, . . . , 𝑘 − 1

This can be converted into an eigenvalue problem by the substitution

𝛽 B Σ1/2𝛼. This gives that the SIR directions are given by the vectors

Σ−1/2𝑢1, . . . , Σ
−1/2𝑢𝑟 where 𝑟 is the rank of Σ−1/2ΛSIRΣ

−1/2 and 𝑢𝑖 is the 𝑖th

most dominant normalised eigenvector of that matrix.

Now the sample level estimation procedure is outlined. Let (𝑋1, 𝑌1), . . .,

(𝑋𝑛, 𝑌𝑛) be an i.i.d sample of (𝑋,𝑌 ) with sample size 𝑛 ∈ N. The SIR estimation

procedure is as follows.
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1. Compute 𝜇̂ B 1
𝑛

∑
𝑖∈N𝑛

𝑋𝑖 and Σ̂ B 1
𝑛

∑
𝑖∈N𝑛

(𝑋𝑖 − 𝜇̂) (𝑋𝑖 − 𝜇̂)𝑇 .

2. Compute the standardised random vectors 𝑍𝑖 B Σ̂−1/2 (𝑋𝑖 − 𝜇̂) for each

𝑖 ∈ N𝑛

3. Let ℎ ∈ N and let 𝐽1 B [min𝑖∈N𝑛
𝑌𝑖, 𝑗1), 𝐽2 B [ 𝑗1, 𝑗2), . . ., 𝐽ℎ B

[ 𝑗ℎ−1,max𝑖∈N𝑛
𝑌𝑖] for some min𝑖∈N𝑛

𝑌𝑖 < 𝑗1 < 𝑗2 < . . . < 𝑗ℎ−1 <

max𝑖∈N𝑛
𝑌𝑖. In practice, the intervals (known as “slices" in the litera-

ture, hence the name) are chosen to have approximately the same number

of observations taking values in them.

4. For 𝑖 ∈ Nℎ, estimate E (𝑍 |𝑌 ∈ 𝐽𝑖) by

E𝑛 (𝑍 |𝑌 ∈ 𝐽𝑖) B
1
𝑝𝑖

(
1
𝑛

∑︁
𝑗∈N𝑛

𝑍 𝑗1𝑌∈𝐽𝑖

)
where 𝑝𝑖 is the empirical estimate of P (𝑌 ∈ 𝐽𝑖).

5. Estimate Var (E (𝑍 |𝑌 )) by

Λ̂ B
∑︁
𝑖∈Nℎ

𝑝𝑖E𝑛 (𝑍 |𝑌 ∈ 𝐽𝑖) E𝑛
(
𝑍𝑇

�� 𝑌 ∈ 𝐽𝑖
)
.

6. Let 𝑣̂1, . . ., 𝑣̂𝑟 be the first 𝑟 most dominant eigenvectors of Λ̂ and let

𝛽𝑘 B Σ̂−1/2𝑣̂𝑘 (𝑘 ∈ N𝑟). The sufficient predictors are 𝛽𝑇
𝑘
(𝑋1 − 𝜇̂), . . .,

𝛽𝑇
𝑘
(𝑋𝑛 − 𝜇̂).

Determining the number of components 𝑟 to take is an ongoing problem,

though there are some methods in the literature: see Bura and Yang (2011) for a

unified approach to dimension estimation.

4.3.2 Sliced average variance estimation

To overcome the limitations of SIR, Cook and Weisberg (1991) introduced sliced

average variance estimation (SAVE). This is a second-order conditional moment
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method, which is able to capture a subspace which contains the SIR subspace

and is itself a subspace of the central subspace (possibly, and ideally, equal to it).

It relies on Assumption 4.3.2 as well as on Assumption 4.3.1, so has stronger

conditions than just SIR.

Assumption 4.3.2. Let 𝛽 be as in Assumption 4.3.1. It is furthermore assumed

that Var
(
𝑋
��𝛽𝑇𝑋 )

is non-random.

It is known (see Proposition 5.1 of Li (2018)) that Assumption 4.3.2 holds

when 𝑋 has a multivariate Gaussian distribution and a nonsingular covariance

matrix.

Corollary 4.3.3 (Corollary 5.1 of Li (2018)). If the random vector 𝑋 satisfies

Assumption 4.3.1 and Assumption 4.3.2, then

Var
(
𝑋
��𝛽𝑇𝑋)

a.s.P
= Σ

(
𝐼𝑑×𝑑 − 𝛽

(
𝛽𝑇Σ𝛽

)−1
𝛽𝑇Σ

)
Theorem 4.3.4 (Theorem 5.1 of Li (2018)). Let 𝛽 be as in Assumption 4.3.1 and

suppose that assumption holds as well as Assumption 4.3.2, Then

Span {Σ − Var (𝑋 |𝑌 )} ⊆ ΣS𝑌 |𝑋

where ΣS𝑌 |𝑋 B
{
Σ𝑣 : 𝑣 ∈ S𝑌 |𝑋

}
.

This theorem is applied to the standardised random vector 𝑍 B Σ−1/2 (𝑋 − 𝜇)

to obtain that, under the same assumptions,

Span
{
𝐼𝑝×𝑝 − Var (𝑍 |𝑌 )

}
⊆ S𝑌 |𝑍 .

This result, combined with an application of Proposition 5.2 of Li (2018),

gives that

Span
{
E

( (
𝐼𝑝×𝑝 − Var (𝑍 |𝑌 )

)2
)}

⊆ S𝑌 |𝑍 .
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Let the expectation inside the span be denoted by ΛSAVE. By this observation

and Theorem 2.2 of Li (2018) (which relates S𝑌 |𝑋 wth S𝑌 |𝑍 ), it holds that

Σ−1/2 Span {ΛSAVE} ⊆ S𝑌 |𝑋 ,

where Σ−1/2 Span {ΛSAVE} B
{
Σ−1/2𝑣 : 𝑣 ∈ Span {ΛSAVE}

}
. Thus if 𝑟 is the

rank of ΛSAVE, then

Span
{
Σ−1/2𝑣1, . . . , Σ

−1/2𝑣𝑟
}
⊆ S𝑌 |𝑋 ,

where 𝑣𝑖 is the 𝑖th most dominant eigenvector of ΛSAVE. This is the basis for the

SAVE estimation procedure, which is now described.

As in SIR, let (𝑋1, 𝑌1), . . ., (𝑋𝑛, 𝑌𝑛) be an i.i.d sample of (𝑋,𝑌 ) with sample

size 𝑛 ∈ N. The SAVE estimation procedure is as follows.

1. Perform the first three steps of the SIR estimation procedure to obtain 𝜇̂, Σ̂,

𝑍𝑖 (𝑖 ∈ N𝑛), ℎ ∈ N, and 𝐽𝑖 (𝑖 ∈ Nℎ) as in that algorithm.

2. For 𝑖 ∈ Nℎ, compute

Var𝑛 (𝑍 |𝑌 ∈ 𝐽𝑖) B
1
𝑝𝑖

(
1
𝑛

∑︁
𝑗∈N𝑛

𝑍 𝑗𝑍
𝑇
𝑗 1𝑌∈𝐽𝑖

)
,

where 𝑝𝑖 is the empirical estimate of P (𝑌 ∈ 𝐽𝑖).

3. Calculate the sample version of ΛSAVE as

Λ̂SAVE B
1
ℎ

∑︁
𝑖∈Nℎ

𝑝𝑖
(
𝐼𝑝×𝑝 − Var𝑛 (𝑍 |𝑌 ∈ 𝐽𝑖)

)2

4. Let 𝑣̂1, . . . , 𝑣̂𝑟 be the first 𝑟 most dominant normalised eigenvectors of

ΛSAVE. Compute 𝛽𝑘 B Σ̂−1/2𝑣𝑘 for 𝑘 ∈ N𝑟 , and obtain the sufficient

predictors 𝛽𝑇
𝑘
(𝑋𝑖 − 𝜇̂) where 𝑖 ∈ N𝑛 and 𝑘 ∈ N𝑟 .
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Theorem 5.2 of Li (2018) gives that the SAVE subspace contains the SIR

subspace, even when either Assumption 4.3.1 or Assumption 4.3.2 fails to hold

(though both are needed to ensure that both subspaces are contained in the central

subspace).

The question of when the SAVE subspace coincides with the central subspace

is addressed in Section 5.6, particularly Theorem 5.3, of Li (2018).

4.4 Literature review: linear sufficient dimension

reduction with categorical predictors

In many real-world situations, some of the predictors can be categorical. In

experimental settings for example, a categorical predictor could be the group,

control or experiment, to which subjects are assigned. The presence of such

variables has some implications for sufficient dimension reduction regarding how

to take these variables into account. Note that the categorical variable need not

be given in advance, and can be found by clustering; though this will affect the

estimation procedure for SDR.

As any vector of categorical variables is itself a categorical variable, it can

be assumed that only a single such predictor 𝑊 is present. Chiaromonte et al.

(2002) describe three approaches which can be taken to handle this variable: (1)

marginalise it out, (2) use it to constrain the dimension reduction procedure, or

(3) perform dimension reduction within each subpopulation. These approaches

are respectively called marginal sufficient dimension reduction, partial sufficient

dimension reduction, and conditional sufficient dimension reduction.

In the classical multivariate linear setting, these situations are technically the

following.
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Marginal Find the marginal central subspace S𝑌 |𝑋 .

Partial Find the partial central subspace S (𝑊)
𝑌 |𝑋 . This is the intersection of all

subspaces S of R𝑝 such that the projection 𝑃S𝑋 of 𝑋 onto S satisfies

𝑌 ⊥⊥ 𝑋 | (𝑃S𝑋,𝑊) .

Conditional For each categorical label𝑤, find the𝑤-conditional central subspace

S𝑌𝑤 |𝑋𝑤 . This is defined similarly to the central subspace, except now the

predictor and the response are constrained by the categorical label 𝑤.

The marginal and 𝑤-conditional central subspaces can be estimated using

any estimation procedure for sufficient dimension reduction. The goal then is

to estimate the partial central subspace. Letting 𝐶 be the number of categorical

labels for𝑊 , Chiaromonte et al. (2002) showed the following result.

Theorem 4.4.1 (Chiaromonte et al. (2002)). The partial central subspace is the

vector space sum of the 𝑤-conditional central subspaces. Symbolically,

S (𝑊)
𝑌 |𝑋 =

∑︁
𝑤∈N𝐶

S𝑌𝑤 |𝑋𝑤

This result shows the relationship between the partial central subspace and

the 𝑤-conditional central subspaces. It suggests that the partial central subspace

can be estimated by combining estimators of the 𝑤-conditional central subspaces.

With this insight, Chiaromonte et al. (2002) use it as the basis for extending the

sliced inverse regression procedure of Li (1991) to accommodate categorical

predictors. They give the name of partial sliced inverse regression to their method.

Later, Shao et al. (2009) developed partial sliced average variance estimation to

derive a subspace which captures a greater share of the partial central subspace.

Chiaromonte et al. (2002) also explore the relationship between the partial

central subspace and the marginal central subspace, in particular the conditions
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under which one is a subspace of the other. They showed the following two

results.

Theorem 4.4.2 (Chiaromonte et al. (2002)). If𝑊 ⊥⊥ 𝑋 |𝑃S𝑊
𝑌 |𝑋
𝑋 or𝑊 ⊥⊥ 𝑌 |𝑃S𝑊

𝑌 |𝑋
𝑋 ,

then S𝑌 |𝑋 ⊆ S (𝑊)
𝑌 |𝑋 .

Theorem 4.4.3 (Chiaromonte et al. (2002)). If𝑊 ⊥⊥ 𝑌 |𝑋 , then S (𝑊)
𝑌 |𝑋 ⊆ S𝑌 |𝑋 .

Cook and Critchley (2000) gave the following result which relates the re-

gression of 𝑌 on 𝑋 with the regressions of 𝑊 upon 𝑋 (containing “joining

information") and 𝑌𝑤 upon 𝑋𝑤 (containing “conditional regression information").

Theorem 4.4.4 (Cook and Critchley (2000)). Let S𝑊 |𝑋 be the central subspace,

assuming it exists, for the regression of𝑊 on 𝑋 . Then,

𝑆𝑌 |𝑋 ⊆ 𝑆𝑊 |𝑋 +
( ∑︁
𝑤∈N𝐶

𝑆𝑌𝑤 |𝑋𝑤

)
Sliced inverse regression also has a functional predictor 𝑋 counterpart de-

veloped by Ferré and Yao (2003). It is natural then to apply the ideas from

Chiaromonte et al. (2002) to extend functional sliced inverse regression to the

setting where there are categorical predictors. This was done by Wang (2017),

who developed similar results to the above.

4.5 A nonlinear approach to sufficient dimension

reduction with categorical predictors

The existing results, provided in the previous section, in the literature are limited

to the case where the extracted manifold is assumed to be linear. In this section, a

nonlinear approach for sufficient dimension reduction with categorical predictors

is developed. This is accomplished by combining the generalised sufficient
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dimension reduction theory, as set out by Li (2018), with the approach taken by

Chiaromonte et al. (2002). Chiaromonte et al. (2002) extended the sliced inverse

regression estimator of Li (1991); in a similar vein here, the generalised sliced

inverse regression estimator, a kernel-based method described by Li (2018), is

extended to accommodate categorical predictors.

The rest of this section is structured as follows. In Section 4.5.1, notation is

provided. Some preliminary results are given in Section 4.5.2. In Section 4.5.3,

measure-theoretic formulations of marginal, partial, and conditional sufficient

dimension reduction are provided, and the relationships between these approaches

are explored. Kernel mappings, covariance operators, and cross-covariance

operators are used to develop, in Section 4.5.6, the partial generalised sliced

inverse regression estimator. Section 4.5.4 is therefore devoted to defining these

notions and exploring their relevant properties. As numerical implementation of

these notions requires the use of vectors and matrices rather than functions and

operators, coordinate representation of linear operators is recapped in Section 4.5.5.

The proposed estimator is applied to two real-world datasets in Section 4.5.7.

Section 4.5.8 gives a closing summary. Proofs are supplied in Section 4.5.9.

4.5.1 Notation

Let (Ω,F , P) be a probability space. As any vector of categorical random

variables is itself categorical, it is assumed that there is a single such predictor𝑊 :

(Ω,F , P) → (N𝐶 ,P (N𝐶)) where 𝐶 ∈ N is the number of possible categorical

labels. Let (Ω𝑋 ,F𝑋) and (Ω𝑌 ,F𝑌 ) be measurable spaces, and define the predictor

and response to be some random variables 𝑋 : (Ω,F , P) → (Ω𝑋 ,F𝑋) and

𝑌 : (Ω,F , P) → (Ω𝑌 ,F𝑌 ). Let 𝑤 ∈ N𝐶 and define 𝐸𝑤 B {𝜔 ∈ Ω : 𝑊 (𝜔) = 𝑤}.

Notice that {𝐸𝑤 : 𝑤 ∈ N𝐶} is a partition ofΩ. It is assumed that P (𝐸𝑤) > 0 which

allows the probability measure P𝑤 : F → [0, 1] given by P𝑤 (𝐴) B P (𝐴|𝐸𝑤)
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to be defined. Observe that if 𝐴 ∈ F is a P-null set (P (𝐴) = 0) then it is also a

P𝑤-null set (P𝑤 (𝐴) = 0), meaning that P𝑤 ≪ P. Recall that P (𝐴) = EP (1𝐴). It

is seen that, for each 𝐴 ∈ F ,

P𝑤 (𝐴) = P (𝐴 ∩ 𝐸𝑤)
P (𝐸𝑤)

=
EP

(
1𝐴1𝐸𝑤

)
EP

(
1𝐸𝑤

) = EP

(
1𝐴

(
1𝐸𝑤

EP
(
1𝐸𝑤

) )) .
This gives the Radon-Nikodym derivative dP𝑤

dP
a.s.P
=

1𝐸𝑤
EP(1𝐸𝑤 ) . The induced

probability measures P𝑋 |𝑤 : F𝑋 → [0, 1], P𝑌 |𝑤 : F𝑌 → [0, 1], and P𝑊 |𝑤 :

P (N𝐶) → [0, 1] are defined by the respective mappings 𝐴 ↦→ P𝑤
(
𝑋−1(𝐴)

)
,

𝐴 ↦→ P𝑤
(
𝑌−1(𝐴)

)
, and 𝐴 ↦→ P𝑤

(
𝑊−1(𝐴)

)
. Notice that for 𝐴 ∈ P (N𝐶),

P𝑊 |𝑤 (𝐴) = 0 if 𝑤 ∉ 𝐴 and P𝑊 |𝑤 (𝐴) = 1 if 𝑤 ∈ 𝐴. It also holds that P𝑋 |𝑤 ≪ P𝑋 ,

P𝑌 |𝑤 ≪ P𝑌 , and P𝑊 |𝑤 ≪ P𝑊 . By applying Theorem 16.13 of Billingsley (1995), it

is seen that the Radon-Nikodym derivatives are related to dP𝑤
dP via dP𝑤

dP
a.s.P
=

dP𝑋 |𝑤
dP𝑋 ◦𝑋 ,

dP𝑤
dP

a.s.P
=

dP𝑌 |𝑤
dP𝑌 ◦ 𝑌 , and dP𝑤

dP
a.s.P
=

dP𝑊 |𝑤
dP𝑊 ◦𝑊 .

It is assumed that the codomain of a tuple of random variables is the cartesian

product of the respective codomains equipped with the tensor product 𝜎-field.

Any remaining notation used has already been defined in Chapter 2.

4.5.2 Preliminary results

The following results are used in the proofs of those in Section 4.5.3. They are

included here for clarity.

Lemma 4.5.1. For any 𝐴 ∈ F , 𝐺 ⊴ F , and 𝑤 ∈ N𝐶

P𝑤 (𝐴|𝐺) a.s.P𝑤
= P𝑤 (𝐴|𝐺,𝑊) .

Corollary 4.5.2. For any 𝐴 ∈ F , 𝐺 ⊴ F , and 𝑤 ∈ N𝐶

P𝑤 (𝐴|𝐺) a.s.P𝑤
= P (𝐴|𝐺,𝑊) .
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The second of these is the main result. It essentially says that conditioning

on a particular value of the categorical variable followed by a sub-𝜎-field of F

gives a 𝑤-conditional probability which is equivalent, with respect to P𝑤, to a

conditional probability where the conditioning is on the same 𝜎-field and the

categorical variable.

4.5.3 Marginal, partial, and conditional approaches for the

categorical predictors

4.5.3.1 Formulation

In the general theory of sufficient dimension reduction, as described by Li (2018),

a sub-𝜎-field 𝐺 (called an SDR 𝜎-field) of 𝜎 (𝑋) which satisfies the conditional

independence 𝑌 ⊥⊥ 𝑋 |𝐺 is sought. As in the classical formulation, there can be

many SDR 𝜎-fields so the intersection of them is the target of estimation. Under

a mild condition, given in Theorem 1 in Lee et al. (2013), this intersection is also

a SDR 𝜎-field.

In the present setting,𝑊 also needs to be considered. Taking inspiration from

the work of Chiaromonte et al. (2002), the following three approaches to handling

this variable are given.

Marginal: Find 𝐺 ⊴ 𝜎 (𝑋) such that 𝑌 ⊥⊥ 𝑋 |𝐺. Any such 𝐺 is called a marginal

SDR 𝜎-field.

Partial: Find 𝐺 (𝑊) ⊴ 𝜎 (𝑋) such that 𝑌 ⊥⊥ 𝑋 |
(
𝐺 (𝑊) , 𝜎 (𝑊)

)
. Any such 𝐺 (𝑊) is

called a partial SDR 𝜎-field.

Conditional: For each 𝑤 ∈ N𝐶 , find 𝐺𝑤 ⊴ 𝜎 (𝑋) such that 𝑌
𝑤
⊥⊥ 𝑋 |𝐺𝑤. This

means that, for any 𝐴 ∈ 𝜎 (𝑋) and 𝐵 ∈ 𝜎 (𝑌 ),

P𝑤 (𝐴 ∩ 𝐵 |𝐺𝑤)
a.s.P
= P𝑤 (𝐴|𝐺𝑤) P𝑤 (𝐵 |𝐺𝑤)
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Any such 𝐺𝑤 is called a 𝑤-conditional SDR 𝜎-field.

In each approach, the intersection of all sub-𝜎-fields of 𝜎 (𝑋) that satisfy the

appropriate relation is sought. It is assumed that these intersections themselves

satisfy the relevant relations. These sub-𝜎-fields are respectively called the

marginal central 𝜎-field (denoted by M), the partial central 𝜎-field (denoted by

M(𝑊)), and the 𝑤-conditional central 𝜎-field (denoted by M𝑤).

4.5.3.2 Relationships between the three approaches

The relationship between the partial central 𝜎-field and the 𝑤-conditional central

𝜎-fields is now explored.

Lemma 4.5.3. 𝐺⊴𝜎 (𝑋) is a partial SDR𝜎-field if and only if it is a𝑤-conditional

SDR 𝜎-field for each 𝑤 ∈ N𝐶 .

This implies that, for any 𝑤 ∈ N𝐶 , M𝑤 ⊴ 𝐺
(𝑊) for any partial SDR 𝜎-field

𝐺 (𝑊) . In particular, M𝑤 ⊴M(𝑊) . This implies that (M1, . . . ,M𝐶) ⊴M(𝑊) .

Theorem 4.5.4 gives the stronger result that these 𝜎-fields are equal.

Theorem 4.5.4. M(𝑊) = (M1, . . . ,M𝐶).

The relationship between the partial central 𝜎-field and the marginal central

𝜎-field is now explored. The first two of the following results give sufficient

conditions for one to be a sub-𝜎-field of the other.

Theorem 4.5.5. If𝑊 ⊥⊥ 𝑋 |M(𝑊) or𝑊 ⊥⊥ 𝑌 |M(𝑊) , then M ⊴M(𝑊) .

Theorem 4.5.6. If𝑊 ⊥⊥ 𝑌 |𝑋 , then M(𝑊) ⊴M.

Theorem 4.5.7. M⊴
(
M(𝑊) ,M(𝑊)

)
where M(𝑊) ⊴𝜎 (𝑋) is the central 𝜎-field,

assumed to exist, for the conditional independence𝑊 ⊥⊥ 𝑋 |𝐺.
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4.5.4 Covariance operators and their properties

The target 𝜎-fields are abstract concepts which are not immediately estimable.

To overcome this, what are sought instead are subspaces of reproducing kernel

Hilbert spaces of measurable functions. To this end, suppose that H𝑋 and H𝑌

are reproducing kernel Hilbert spaces of (R,B (R))-valued measurable functions

on (Ω𝑋 ,F𝑋) and (Ω𝑌 ,F𝑌 ) which are generated by measurable kernels 𝜅𝑋 :

Ω𝑋 ×Ω𝑋 → R and 𝜅𝑌 : Ω𝑌 ×Ω𝑌 → R respectively. It is assumed that 𝜅𝑋 and 𝜅𝑌
are characteristic. Define the product kernel 𝜅𝑋𝑌 : (Ω𝑋 ×Ω𝑌 ) × (Ω𝑋 ×Ω𝑌 ) → R

by 𝜅𝑋𝑌 ((𝑥1, 𝑦1) , (𝑥2, 𝑦2)) B 𝜅𝑋 (𝑥1, 𝑥2) 𝜅𝑌 (𝑦1, 𝑦2). It is also assumed that 𝜅𝑋𝑌
is characteristic.

It is assumed that H𝑋 and H𝑌 are separable. A sufficient condition, by

Theorem 2.7.5 of Hsing and Eubank (2015), for this is that

1. Ω𝑋 and Ω𝑌 are separable metric spaces.

2. F𝑋 and F𝑌 are the Borel 𝜎-fields generated by the induced topologies on

Ω𝑋 and Ω𝑌 .

3. 𝜅𝑋 and 𝜅𝑌 are continuous.

If the first and second conditions are assumed, then, for any 𝐺𝑋 ⊴ F𝑋 and

𝐺𝑌 ⊴ F𝑌 , there exists regular conditional distributions P𝑋 |𝐺𝑋
and P𝑌 |𝐺𝑌

. In light

of Theorem 2.5.21, these conditions are therefore assumed. Virta et al. (2022)

developed generalised sliced inverse regression for predictors and responses taking

values in separable metric spaces.

For any𝐺⊴𝜎 (𝑋), letH𝑋 (𝐺) B { 𝑓 ∈ H𝑋 : 𝑓 (𝑋) is 𝐺-measurable}. and let

H𝐺
𝑋
B { 𝑓 ∈ H𝑋 : 𝑓 (𝑋) is (𝐺,𝑊)-measurable}. Name H𝑋 (M) the marginal

central class, H𝑋 (M𝑤) the 𝑤-conditional central class (𝑤 ∈ N𝐶), and H(𝑊)
𝑋
B

HM(𝑊 )
𝑋

the partial central class. The marginal central class and, for each 𝑤 ∈ N𝐶 ,
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the 𝑤-conditional central class can be estimated using the generalised sliced

inverse regression procedure as described by Li (2018). More generally, they

can be estimated using any kernel based method for marginal or 𝑤-conditional

generalised sufficient dimension reduction.

Lemma 4.5.8. For any 𝐺 ⊴ 𝜎 (𝑋), H𝑋 (𝐺) and H𝐺
𝑋

are both closed subspaces

of H𝑋 .

Note it appears to have been assumed in Li (2018) that there is a one-to-one

correspondence between C B {𝐺 ⊴ 𝜎 (𝑋)} and {H𝑋 (𝐺) : 𝐺 ∈ C}. The author

of this thesis believes this to be true, though leaves the proof to future research.

The goal is to find some operator from H𝑌 to H𝑋 whose closed range is

equal, under some assumptions to be given, to the partial central class. To this

end, the kernel mean embeddings of P𝑋 and P𝑌 are now defined. To do this,

Assumption 4.5.1 is made so that, by Theorem 2.6.5 of Hsing and Eubank (2015),

𝜅𝑋 (·, 𝑋) and 𝜅𝑌 (·, 𝑌 ) are Bochner P-integrable. The kernel mean embeddings 𝜇𝑋
and 𝜇𝑌 of P𝑋 and P𝑌 respectively are defined to be the expectations EP (𝜅𝑋 (·, 𝑋))

and EP (𝜅𝑌 (·, 𝑌 )). See Muandet et al. (2016) for a comprehensive review of the

theory of kernel mean embeddings of distributions.

Assumption 4.5.1. EP (𝜅𝑋 (𝑋, 𝑋)) < ∞ and EP (𝜅𝑌 (𝑌,𝑌 )) < ∞.

By using the law of total probability, it is seen that this assumption implies

that, for 𝑤 ∈ N𝐶 , EP𝑤 (𝜅𝑋 (𝑋, 𝑋)) < ∞ and similarly for 𝑌 . This thus allows

defining the kernel mean embeddings of P𝑋 |𝑤 and P𝑌 |𝑤, for 𝑤 ∈ N𝐶 , to be the

functions 𝜇𝑋 |𝑤 B EP𝑤 (𝜅𝑋 (·, 𝑋)) and 𝜇𝑌 |𝑤 B EP𝑤 (𝜅𝑌 (·, 𝑌 )).

By using the reproducing property, it is seen that, for any 𝑓 ∈ H𝑋 , 𝑓 (𝑋) =

⟨ 𝑓 , 𝜅𝑋 (·, 𝑋)⟩H𝑋
and so EP ( 𝑓 (𝑋)) = ⟨ 𝑓 , 𝜇𝑋⟩H𝑋

. Similar considerations apply

for 𝑌 and when the expectation is taken with respect to P𝑤 instead for some

𝑤 ∈ N𝐶 .
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By Theorem 2.5.19, H𝑋 is a subset of 𝐿2 (P𝑋) such that its vector space sum

with the space of P𝑋 almost surely constant real-valued functions on Ω𝑋 is dense

in 𝐿2 (P𝑋). Furthermore, H𝑋 is a subset of 𝐿2 (
P𝑋 |𝑤

)
such that its vector space

sum with the space of P𝑋 |𝑤 almost surely constant real-valued functions on Ω𝑋 is

dense in 𝐿2 (
P𝑋 |𝑤

)
.

Now observe that 𝐿2 (P𝑋) =
⋂
𝑤∈N𝐶 𝐿

2 (
P𝑋 |𝑤

)
as, for 𝑓 ∈ 𝐿2 (P𝑋),

EP𝑋

(
𝑓 2

)
=

∫
𝑓 2dP𝑋

=

∫
𝑓 2d

( ∑︁
𝑤∈N𝐶

P (𝐸𝑤) P𝑋 |𝑤

)
=

∑︁
𝑤∈N𝐶

P (𝐸𝑤)
∫

𝑓 2dP𝑋 |𝑤

=
∑︁
𝑤∈N𝐶

P (𝐸𝑤) EP𝑋 |𝑤

(
𝑓 2

)
.

As the first expectation is finite, so must be all the expectations in the summation

hence 𝐿2 (P𝑋) ⊆ ⋂𝐶
𝑤=1 𝐿

2 (
P𝑋 |𝑤

)
. Conversely, if all the expectations in the

summation are finite then the first expectation is also finite thus the reverse

inclusion holds. By similar reasoning, 𝐿2 (P𝑌 ) =
⋂
𝑤∈N𝐶 𝐿

2 (
P𝑌 |𝑤

)
.

For 𝐺 ⊴𝜎 (𝑋), define 𝐿2 (P𝑋 |𝐺) B
{
𝑓 ∈ 𝐿2 (P𝑋) : 𝑓 (𝑋) is 𝐺-measurable

}
.

Define 𝐿2 (P𝑌 |𝐺) and, for 𝑤 ∈ N𝐶 , 𝐿2 (
P𝑋 |𝑤 |𝐺

)
, and 𝐿2 (

P𝑌 |𝑤 |𝐺
)

similarly.

Assumption 4.5.2. Let 𝐺 ⊴ 𝜎 (𝑋). It is assumed that H𝑋 (𝐺) is dense modulo

P𝑋 almost sure constants in 𝐿2 (P𝑋). Furthermore, for each 𝑤 ∈ N𝐶 , it is

assumed that H𝑋 (𝐺) is dense modulo P𝑋 |𝑤 almost sure constants in 𝐿2 (
P𝑋 |𝑤

)
.

Yet further, it is assumed that H𝐺
𝑋

is dense modulo P𝑋 almost sure constants in{
𝑓 ∈ 𝐿2 (P𝑋) : 𝑓 (𝑋) is (𝐺,𝑊)-measurable

}
.

This assumption is similar to an assumption used in Lee et al. (2013) and

Li (2018) for marginal generalised sliced inverse regression. An analogue of

Theorem 13.3 of Li (2018) would imply that this assumption automatically holds,
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but the author of this thesis believes that there is an invalid step in the given proof

and has been contact with the author of that text. Specifically, the line in that text

(page 217) which reads “Because A \ AG contains only functions that are not

measurable with respect to G, the only 𝑠(2) that satisfies the above equality (see

the text) is 0 (no constants other than 0 are in H𝑋)" is a non-sequiter, because

(1) 𝑠(2) is only known to belong to 𝐿2 (P𝑋) and not neccessarily to H𝑋 , (2) the

sum of non-G-measurable functions may be G-measurable, and (3) the author

seems to implicitly assume that Var
(
E

(
𝑠(2) (𝑋)

��G))
= 0 without justification.

Furthermore, there are gaps in previous steps of the given argument but these may

be filled in by application of the law of total variance.

Define the random operators

𝜑𝑋𝑋 B 𝜅𝑋 (·, 𝑋) ⊗ 𝜅𝑋 (·, 𝑋)

𝜑𝑌𝑌 B 𝜅𝑌 (·, 𝑌 ) ⊗ 𝜅𝑌 (·, 𝑌 )

𝜑𝑋𝑌 B 𝜅𝑋 (·, 𝑋) ⊗ 𝜅𝑌 (·, 𝑌 )

𝜑𝑌𝑋 B 𝜅𝑌 (·, 𝑌 ) ⊗ 𝜅𝑋 (·, 𝑋) .

Define now the covariance and cross-covariance operators

Σ𝑋𝑋 B EP (𝜑𝑋𝑋) − (𝜇𝑋 ⊗ 𝜇𝑋)

Σ𝑌𝑌 B EP (𝜑𝑌𝑌 ) − (𝜇𝑌 ⊗ 𝜇𝑌 )

Σ𝑋𝑌 B EP (𝜑𝑋𝑌 ) − (𝜇𝑋 ⊗ 𝜇𝑌 )

Σ𝑌𝑋 B EP (𝜑𝑌𝑋) − (𝜇𝑌 ⊗ 𝜇𝑋) .

Note that the effective codomain of these Hilbert-Schmidt operators is their

range, which is not necessarily closed. If the codomain were a real Hilbert space,

this would imply that the spaces are finite-dimensional; the fact that the codomain

is generally not closed circumvents this issue.
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Let 𝑤 ∈ N𝐶 . Define the operators

Σ𝑋𝑋 |𝑤 B EP𝑤 (𝜑𝑋𝑋) −
(
𝜇𝑋 |𝑤 ⊗ 𝜇𝑋 |𝑤

)
Σ𝑌𝑌 |𝑤 B EP𝑤 (𝜑𝑌𝑌 ) −

(
𝜇𝑌 |𝑤 ⊗ 𝜇𝑌 |𝑤

)
Σ𝑋𝑌 |𝑤 B EP𝑤 (𝜑𝑋𝑌 ) −

(
𝜇𝑋 |𝑤 ⊗ 𝜇𝑌 |𝑤

)
Σ𝑌𝑋 |𝑤 B EP𝑤 (𝜑𝑌𝑋) −

(
𝜇𝑌 |𝑤 ⊗ 𝜇𝑋 |𝑤

)
.

The following lemma relates the range of the 𝑤-conditional cross-covariance

operators with the 𝑤-conditional covariance operators.

Lemma 4.5.9. Let 𝑤 ∈ N𝐶 . It holds that

Ran
(
Σ𝑋𝑌 |𝑤

)
⊆ Ran

(
Σ𝑋𝑋 |𝑤

)
Ran

(
Σ𝑌𝑋 |𝑤

)
⊆ Ran

(
Σ𝑌𝑌 |𝑤

)
.

Recall (see, for example, Theorem 3.3.7 of Hsing and Eubank (2015)) that,

for any bounded operator 𝐴 ∈ L (H𝑋 ,H𝑋), H𝑋 = Ker (𝐴) ⊕ Ker (𝐴)⊥ and

Ker (𝐴)⊥ = Ran (𝐴∗). This, coupled with the fact that Σ𝑋𝑋 is self-adjoint, implies

that H𝑋 = Ker (Σ𝑋𝑋) ⊕ Ran (Σ𝑋𝑋). Similarly, H𝑌 = Ker (Σ𝑌𝑌 ) ⊕ Ran (Σ𝑌𝑌 ).

Furthermore, for each 𝑤 ∈ N𝐶 , H𝑋 = Ker
(
Σ𝑋𝑋 |𝑤

)
⊕ Ran

(
Σ𝑋𝑋 |𝑤

)
and H𝑌 =

Ker
(
Σ𝑌𝑌 |𝑤

)
⊕ Ran

(
Σ𝑌𝑌 |𝑤

)
.

For the purposes of marginal or partial sufficient dimension reduction, non-zero

functions which are constant almost surely with respect to P𝑋 and P𝑌 respectively

can be discarded. Now the elements in H𝑋 which are almost surely constant with

respect to P𝑋 are those in Ker (Σ𝑋𝑋). To see this, consider that if 𝑓 ∈ Ker (Σ𝑋𝑋)

then VarP ( 𝑓 (𝑋)) = ⟨ 𝑓 , Σ𝑋𝑋 𝑓 ⟩H𝑋
= ⟨ 𝑓 , 0⟩H𝑋

= 0 which implies that 𝑓 is almost

surely P𝑋-constant. Conversely, if 𝑓 ∈ H𝑋 is almost surely P𝑋-constant then

VarP ( 𝑓 (𝑋)) = 0 so Σ𝑋𝑋 𝑓 = 0. Analogous considerations apply for H𝑌 . To

perform this discarding then, the following assumption is made.
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Assumption 4.5.3. It is assumed that

Ker (Σ𝑋𝑋) = {0}

Ker (Σ𝑌𝑌 ) = {0} .

Analogously, for the purposes of 𝑤-conditional sufficient dimension reduction,

non-zero functions which are constant almost surely with respect to P𝑋 |𝑤 and P𝑌 |𝑤
respectively may be discarded with. These are seen, in a similar way to above, to

be the functions in Ker
(
Σ𝑋𝑋 |𝑤

)
and Ker

(
Σ𝑌𝑌 |𝑤

)
respectively. Thus the following

assumption is made.

Assumption 4.5.4. For each 𝑤 ∈ N𝐶 , it is assumed that

Ker
(
Σ𝑋𝑋 |𝑤

)
= {0}

Ker
(
Σ𝑌𝑌 |𝑤

)
= {0} .

Under Assumption 4.5.3, H𝑋 = Ran (Σ𝑋𝑋) and H𝑌 = Ran (Σ𝑌𝑌 ). Further-

more, under Assumption 4.5.4, it holds that, for 𝑤 ∈ N𝐶 , H𝑋 = Ran
(
Σ𝑋𝑋 |𝑤

)
and

H𝑌 = Ran
(
Σ𝑌𝑌 |𝑤

)
. Now it turns out that Ran (Σ𝑋𝑋) and Ran (Σ𝑌𝑌 ) have explicit

expressions, as given in the following lemma. This lemma and its proof are given

in Li (2018), though the proof is repeated here for completeness (and to address a

typo in their version).

Lemma 4.5.10. It holds that

Ran (Σ𝑋𝑋) = Span {𝜅𝑋 (·, 𝑥) − 𝜇𝑋 : 𝑥 ∈ Ω𝑋 }

Ran (Σ𝑌𝑌 ) = Span {𝜅𝑌 (·, 𝑦) − 𝜇𝑌 : 𝑦 ∈ Ω𝑌 } .

Making the appropriate modifications, the proof of this lemma can be changed

to prove that, for each 𝑤 ∈ N𝐶 ,

Ran
(
Σ𝑋𝑋 |𝑤

)
= Span

{
𝜅𝑋 (·, 𝑥) − 𝜇𝑋 |𝑤 : 𝑥 ∈ Ω𝑋

}
Ran

(
Σ𝑌𝑌 |𝑤

)
= Span

{
𝜅𝑌 (·, 𝑦) − 𝜇𝑌 |𝑤 : 𝑦 ∈ Ω𝑌

}
.
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The operator for partial GSIR will soon be defined as a combination of

the operators for 𝑤-conditional GSIR, which are themselves used to obtain an

optimisation problem paralleling that for 𝑤-conditional classical sliced inverse

regression. In analogy to the marginal GSIR operator Σ−1
𝑋𝑋

Σ𝑋𝑌 , and its counterpart

Σ−1
𝑌𝑌
Σ𝑌𝑋 , used in Li (2018) (see that text for the assumptions required for these to

be defined and compact), the 𝑤-conditional (𝑤 ∈ N𝐶) GSIR operator is defined

to be Σ−1
𝑋𝑋 |𝑤Σ𝑋𝑌 |𝑤 and its counterpart part is Σ−1

𝑌𝑌 |𝑤Σ𝑌𝑋 |𝑤 . In order for these to be

defined, the following assumption is made.

Assumption 4.5.5. For 𝑤 ∈ N𝐶 , it is assumed that

Ran
(
Σ𝑋𝑌 |𝑤

)
⊆ Ran

(
Σ𝑋𝑋 |𝑤

)
Ran

(
Σ𝑌𝑋 |𝑤

)
⊆ Ran

(
Σ𝑌𝑌 |𝑤

)
.

These operators are also assumed to be compact.

Assumption 4.5.6. For 𝑤 ∈ N𝐶 , it is assumed that Σ−1
𝑋𝑋 |𝑤Σ𝑋𝑌 |𝑤 and Σ−1

𝑌𝑌 |𝑤Σ𝑌𝑋 |𝑤

are compact operators.

The interpretation of these assumptions is similar to that for the marginal GSIR

operator which is discussed in Li (2018). Essentially, they are assumptions on the

smoothness of the relationship between 𝑋 and 𝑌 within the category indexed by

𝑤.

For convenience, let (for 𝑤 ∈ N𝐶) 𝑅𝑌𝑋 |𝑤 B Σ−1
𝑌𝑌 |𝑤Σ𝑌𝑋 |𝑤 and 𝑅𝑋𝑌 |𝑤 B

Σ−1
𝑋𝑋 |𝑤Σ𝑌𝑋 |𝑤.

Lemma 4.5.11. Let 𝑤 ∈ N𝐶 . It holds that, for any 𝑓 ∈ H𝑋 ,

(𝑅𝑌𝑋 |𝑤 𝑓 ) (𝑌 )
a.s.P𝑤
= EP𝑤 ( 𝑓 (𝑋) |𝑌 ) + EP𝑤

( (
𝑅𝑌𝑋 |𝑤

)
(𝑌 )

)
− EP𝑤 ( 𝑓 (𝑋)) .

Theorem 4.5.12. Let 𝑤 ∈ N𝐶 . It holds that

Ran
(
Σ−1
𝑋𝑋 |𝑤Σ𝑋𝑌 |𝑤

)
⊆ H𝑋 (M𝑤) .
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Observe that, for any invertible bounded linear operator 𝐴𝑤 from H𝑌 to itself,

Ran
(
𝑅𝑋𝑌 |𝑤𝐴𝑤𝑅

∗
𝑋𝑌 |𝑤

)
= Ran

(
𝑅𝑋𝑌 |𝑤

)
(see the proof for Theorem 3.3.7 of Hsing

and Eubank (2015) for the case when 𝐴𝑤 is the identity operator). By similar

reasoning to that used by Li (2018), taking 𝐴𝑤 B Σ−1
𝑌𝑌 |𝑤 yields the optimisation

problem

Max VarP𝑤
(
EP𝑤

(
⟨ 𝑓 , 𝜅𝑋 (·, 𝑋)⟩H𝑋

��𝑌 ) )
Subject to VarP𝑤

(
⟨ 𝑓 , 𝜅𝑋 (·, 𝑋)⟩H𝑋

)
= 1, 𝑓 ⊥ Span { 𝑓1, . . . , 𝑓𝑘 }

(4.2)

where 𝑓1, . . . 𝑓𝑘 are the previous solutions to this problem. This parallels the

optimisation problem for classical sliced inverse regression. Hence, for all

𝑤 ∈ N𝐶 , take 𝐴𝑤 B Σ−1
𝑌𝑌 |𝑤. Define the 𝑤-conditional GSIR estimator to be

Λ𝑤-GSIR B Σ−1
𝑋𝑋 |𝑤Σ𝑋𝑌 |𝑤Σ

−1
𝑌𝑌 |𝑤Σ𝑌𝑋 |𝑤Σ

−1
𝑋𝑋 |𝑤. The closed range of this operator is

contained in H𝑋 (M𝑤). In analogy to how, in Chiaromonte et al. (2002), the

PSIR matrix is taken to be a probability weighted sum of the w-SIR matrices,

define ΛPGSIR B
∑
𝑤∈N𝐶 Λ𝑤-GSIR. Note that there is no need to probability weight

this operator because, if this was done, one would obtain an operator with the

same closed range. This is the operator for which an eigenvalue decomposition

will be used to derive the partial sufficient predictors.

Theorem 4.5.13. It holds that

Ran (ΛPGSIR) ⊆ H(𝑊)
𝑋
.

In the marginal generalised sliced inverse regression setting, Li (2018) showed

the exhaustiveness (see Theorem 13.2 of that text) of Σ−1
𝑋𝑋

Σ𝑋𝑌 (required as-

sumptions given in that text) under a so-called “completeness" assumption – an

analogue of which is shortly given. Significantly, they demonstrate that it is not

a strong assumption by showing, e.g., it holds in the setting of nonparametric

regression (see Proposition 12.7 of that text).
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Definition 4.5.1. Let 𝑤 ∈ N𝐶 . 𝐺 ⊴ 𝜎 (𝑋) is P𝑤-complete for 𝜎 (𝑌 ) if, for all

𝑓 ∈ 𝐿2 (
P𝑋 |𝑤 |𝐺

)
,[
EP𝑤 ( 𝑓 (𝑋) |𝑌 ) a.s.P𝑤

= 𝑐 𝑓

]
=⇒

[
𝑓 (𝑋) a.s.P𝑤

= 𝑐 𝑓

]
where 𝑐 𝑓 is a real constant.

Theorem 4.5.14. For each 𝑤 ∈ N𝐶 , suppose that M𝑤 is P𝑤-complete for 𝜎 (𝑌 ).

Then, it holds that

Ran
(
Σ−1
𝑋𝑋 |𝑤Σ𝑋𝑌 |𝑤

)
= H𝑋 (M𝑤) .

The author of this thesis believes that it should additionally be possible to

prove the exhaustiveness of the PGSIR estimator under some kind of completeness

assumption. For time purposes, this is left to future research.

4.5.5 Coordinate representation

For numerical implementation, use has to be made of vectors and matrices instead

of functions and operators. This section therefore recaps the theory of coordinate

representation of functions in finite-dimensional spaces and linear operators

between such spaces.

Suppose H1,H2, and H3 are finite-dimensional Hilbert spaces with spanning

systems B1 =

{
𝑏
(1)
1 , . . . , 𝑏

(1)
𝑚1

}
,B2 =

{
𝑏
(2)
1 , . . . , 𝑏

(2)
𝑚2

}
and B3 =

{
𝑏
(3)
1 , . . . , 𝑏

(3)
𝑚3

}
respectively. Let 𝑘 ∈ {1, 2, 3} and let [ 𝑓 ]B𝑘

denote the coordinate vector of 𝑓 with

respect to B𝑘 . Let GB𝑘
denote the matrix whose (𝑖, 𝑗)-th element is

〈
𝑏
(𝑘)
𝑖
, 𝑏

(𝑘)
𝑗

〉
H𝑘

.

Let 𝑙 ∈ {1, 2, 3} and suppose that 𝐴 : H𝑘 → H𝑙 is a linear operator. Denote by

[𝐴]B𝑙

B𝑘
the matrix whose (𝑖, 𝑗)-th element is given by

( [
𝐴𝑏

(𝑘)
𝑗

]
B𝑙

)
𝑖

where 𝑖 ∈ N𝑚2

and 𝑗 ∈ N𝑚1 .

Theorem 4.5.15 (Lemma 12.3 of Li (2018)). It holds that:
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1. if ℎ ∈ H𝑘 and 𝑇 : H𝑘 → H𝑙 is a linear operator, then

[𝑇ℎ]B𝑙
=

(
[𝑇]B𝑙

B𝑘

)
[ℎ]B𝑘

.

2. if 𝑓1, 𝑓2 ∈ H𝑘 and 𝛼1, 𝛼2 ∈ R, then

[𝛼1 𝑓1 + 𝛼2 𝑓2]B𝑘
= 𝛼1 [ 𝑓1]B𝑘

+ 𝛼2 [ 𝑓2]B𝑘
.

Furthermore if 𝑇1, 𝑇2 : H𝑘 → H𝑙 are linear operators then

[𝛼1𝑇1 + 𝛼2𝑇2]B𝑙

B𝑘
= 𝛼1

(
[𝑇1]B𝑙

B𝑘

)
+ 𝛼2

(
[𝑇2]B𝑙

B𝑘

)
.

3. suppose that 𝑗 ∈ {1, 2, 3}. If 𝑇1 : H 𝑗 → H𝑘 and 𝑇2 : H𝑘 → H𝑙 , then

[𝑇2𝑇1]B𝑙

B 𝑗
=

(
[𝑇2]B𝑙

B𝑘

) (
[𝑇1]B𝑘

B 𝑗

)
.

4. if 𝑓1, 𝑓2 ∈ H𝑘 , then

⟨ 𝑓1, 𝑓2⟩H𝑘
= [ 𝑓1]𝑇B𝑘

GB𝑘
[ 𝑓2]B𝑘

.

5. if 𝑓 ∈ H𝑘 and 𝑔 ∈ H𝑙 , then

[𝑔 ⊗ 𝑓 ]B𝑙

B𝑘
= [𝑔]B𝑙

[ 𝑓 ]𝑇B𝑘
GB𝑘

.

4.5.6 Partial generalised sliced inverse regression

The work in this and the next subsection represent a first attempt at implementing

partial generalised sliced inverse regression numerically and testing it on two

real-world datasets. The author believes that other approaches may be possible

and preferable, and is actively working on them.

Let (𝑊1, 𝑋1, 𝑌1), . . . , (𝑊𝑛, 𝑋𝑛, 𝑌𝑛) be an independent and identically dis-

tributed sample for (𝑊, 𝑋,𝑌 ). For 𝑤 ∈ N𝐶 , let I𝑤 B {𝑖 ∈ N𝑛 : 𝑊𝑖 = 𝑤} and

let 𝑛𝑤 B Card (I𝑤). It holds that
∑
𝑤∈N𝐶 𝑛𝑤 = 𝑛. Let T B {𝑤 ∈ N𝐶 : 𝑛𝑤 > 0}.
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This allows for the possibility that at least one of the possible categorical labels is

not observed in the sample. Henceforth, 𝑤 ∈ T . Let 𝜅𝑋 : Ω𝑋 ×Ω𝑋 → R and 𝜅𝑌 :

Ω𝑌 ×Ω𝑌 → R be measurable kernel functions satisfying those assumptions regard-

ing the kernels that were given previously. Let H𝑋 B Span {𝜅𝑋 (·, 𝑋𝑖) : 𝑖 ∈ N𝑛}

and H𝑌 B Span {𝜅𝑌 (·, 𝑌𝑖) : 𝑖 ∈ N𝑛} be the kernel spaces generated by the sample.

For 𝑤 ∈ T , let (𝑋 (𝑤)
1 , 𝑌

(𝑤)
1 ), . . . (𝑋 (𝑤)

𝑛𝑤 , 𝑌
(𝑤)
𝑛𝑤 ) be the subsample corresponding to

𝑊 = 𝑤. For each 𝑤 ∈ T , define the empirical estimators:

𝜇̂𝑋 |𝑤 B
1
𝑛𝑤

𝑛𝑤∑︁
𝑖=1

𝜅𝑋 (·, 𝑋 (𝑤)
𝑖

)

𝜇̂𝑌 |𝑤 B
1
𝑛𝑤

𝑛𝑤∑︁
𝑖=1

𝜅𝑌 (·, 𝑌 (𝑤)
𝑖

)

𝐵̂𝑋𝑋 |𝑤 B
1
𝑛𝑤

𝑛𝑤∑︁
𝑖=1

𝜅𝑋 (·, 𝑋 (𝑤)
𝑖

) ⊗ 𝜅𝑋 (·, 𝑋 (𝑤)
𝑖

)

𝐵̂𝑋𝑌 |𝑤 B
1
𝑛𝑤

𝑛𝑤∑︁
𝑖=1

𝜅𝑋 (·, 𝑋 (𝑤)
𝑖

) ⊗ 𝜅𝑌 (·, 𝑌 (𝑤)
𝑖

)

𝐵̂𝑌𝑋 |𝑤 B
1
𝑛𝑤

𝑛𝑤∑︁
𝑖=1

𝜅𝑌 (·, 𝑌 (𝑤)
𝑖

) ⊗ 𝜅𝑋 (·, 𝑋 (𝑤)
𝑖

)

𝐵̂𝑌𝑌 |𝑤 B
1
𝑛𝑤

𝑛𝑤∑︁
𝑖=1

𝜅𝑌 (·, 𝑌 (𝑤)
𝑖

) ⊗ 𝜅𝑌 (·, 𝑌 (𝑤)
𝑖

)

Σ̂𝑋𝑋 |𝑤 B 𝐵̂𝑋𝑋 |𝑤 − ( 𝜇̂𝑋 |𝑤 ⊗ 𝜇̂𝑋 |𝑤)

Σ̂𝑋𝑌 |𝑤 B 𝐵̂𝑋𝑌 |𝑤 − ( 𝜇̂𝑋 |𝑤 ⊗ 𝜇̂𝑌 |𝑤)

Σ̂𝑌𝑋 |𝑤 B 𝐵̂𝑌𝑋 |𝑤 − ( 𝜇̂𝑌 |𝑤 ⊗ 𝜇̂𝑋 |𝑤)

Σ̂𝑌𝑌 |𝑤 B 𝐵̂𝑌𝑌 |𝑤 − ( 𝜇̂𝑌 |𝑤 ⊗ 𝜇̂𝑌 |𝑤).

Notice that the last four of these can be written as:

Σ̂𝑋𝑋 |𝑤 =
1
𝑛𝑤

𝑛𝑤∑︁
𝑖=1

[(
𝜅𝑋 (·, 𝑋 (𝑤)

𝑖
) − 𝜇̂𝑋 |𝑤

)
⊗

(
𝜅𝑋 (·, 𝑋 (𝑤)

𝑖
) − 𝜇̂𝑋 |𝑤

)]
Σ̂𝑋𝑌 |𝑤 =

1
𝑛𝑤

𝑛𝑤∑︁
𝑖=1

[(
𝜅𝑋 (·, 𝑋 (𝑤)

𝑖
) − 𝜇̂𝑋 |𝑤

)
⊗

(
𝜅𝑌 (·, 𝑌 (𝑤)

𝑖
) − 𝜇̂𝑌 |𝑤

)]
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Σ̂𝑌𝑋 |𝑤 =
1
𝑛𝑤

𝑛𝑤∑︁
𝑖=1

[(
𝜅𝑌 (·, 𝑌 (𝑤)

𝑖
) − 𝜇̂𝑌 |𝑤

)
⊗

(
𝜅𝑋 (·, 𝑋 (𝑤)

𝑖
) − 𝜇̂𝑋 |𝑤

)]
Σ̂𝑌𝑌 |𝑤 =

1
𝑛𝑤

𝑛𝑤∑︁
𝑖=1

[(
𝜅𝑌 (·, 𝑌 (𝑤)

𝑖
) − 𝜇̂𝑌 |𝑤

)
⊗

(
𝜅𝑌 (·, 𝑌 (𝑤)

𝑖
) − 𝜇̂𝑌 |𝑤

)]
.

For each 𝑤 ∈ T , the subspaces Ran
(
Σ̂𝑋𝑋 |𝑤

)
and Ran

(
Σ̂𝑌𝑌 |𝑤

)
are spanned by

(see the point following Lemma 4.5.10):

B𝑋 |𝑤 B
{
𝜅𝑋 (·, 𝑋 (𝑤)

𝑖
) − 𝜇̂𝑋 |𝑤 : 𝑖 ∈ N𝑛𝑤

}
B𝑌 |𝑤 B

{
𝜅𝑌 (·, 𝑌 (𝑤)

𝑖
) − 𝜇̂𝑌 |𝑤 : 𝑖 ∈ N𝑛𝑤

}
.

For 𝑖 ∈ N𝑛𝑤 , let 𝑏 (𝑖)
𝑋 |𝑤 B 𝜅𝑋 (·, 𝑋 (𝑤)

𝑖
) − 𝜇̂𝑋 |𝑤 and 𝑏 (𝑖)

𝑌 |𝑤 B 𝜅𝑌 (·, 𝑌 (𝑤)
𝑖

) − 𝜇̂𝑌 |𝑤
giving that B𝑋 |𝑤 =

{
𝑏
(1)
𝑋 |𝑤, . . . , 𝑏

(𝑛𝑤)
𝑋 |𝑤

}
and B𝑌 |𝑤 =

{
𝑏
(1)
𝑌 |𝑤, . . . , 𝑏

(𝑛𝑤)
𝑌 |𝑤

}
.

Theorem 4.5.16. The following coordinate representations hold:[
Σ̂𝑋𝑋 |𝑤

]B𝑋 |𝑤
B𝑋 |𝑤

=
1
𝑛𝑤

GB𝑋 |𝑤[
Σ̂𝑌𝑌 |𝑤

]B𝑌 |𝑤
B𝑌 |𝑤

=
1
𝑛𝑤

GB𝑌 |𝑤[
Σ̂𝑋𝑌 |𝑤

]B𝑋 |𝑤
B𝑌 |𝑤

=
1
𝑛𝑤

GB𝑌 |𝑤[
Σ̂𝑋𝑋 |𝑤

]B𝑌 |𝑤
B𝑋 |𝑤

=
1
𝑛𝑤

GB𝑋 |𝑤 .

Notice now that for 𝑖, 𝑗 ∈ N𝑛𝑤 :〈
𝑏
(𝑖)
𝑋 |𝑤, 𝑏

( 𝑗)
𝑋 |𝑤

〉
H𝑋

=

〈
𝜅𝑋 (·, 𝑋 (𝑤)

𝑖
) − 𝜇̂𝑋 |𝑤, 𝜅𝑋 (·, 𝑋 (𝑤)

𝑗
) − 𝜇̂𝑋 |𝑤

〉
H𝑋

= 𝜅𝑋 (𝑋 (𝑤)
𝑖
, 𝑋

(𝑤)
𝑗

) − 1
𝑛𝑤

𝑛𝑤∑︁
𝑙=1

𝜅𝑋 (𝑋 (𝑤)
𝑖
, 𝑋

(𝑤)
𝑙

)

− 1
𝑛𝑤

𝑛∑︁
𝑘=1

𝜅𝑋 (𝑋 (𝑤)
𝑗
, 𝑋

(𝑤)
𝑘

) + 1
𝑛2
𝑤

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝜅𝑋 (𝑋 (𝑤)
𝑘
, 𝑋

(𝑤)
𝑙

).

Let 𝑚 ∈ N, 𝐼𝑚 be the 𝑚 × 𝑚 identity matrix, and let 𝐾𝑋 |𝑤 be the 𝑛𝑤 × 𝑛𝑤
matrix whose (𝑖, 𝑗)-th entry is 𝜅𝑋 (𝑋 (𝑤)

𝑖
, 𝑋

(𝑤)
𝑗

). Let 𝑄𝑤 B 𝐼𝑛𝑤 − 1
𝑛𝑤

1𝑛𝑤1𝑇𝑛𝑤

134



Chapter 4. Methodological developments in sufficient dimension reduction

where 1𝑛𝑤 is the 𝑛𝑤-dimensional vector whose components are all equal to

1. The above is the (𝑖, 𝑗)-th entry of 𝑄𝑤𝐾𝑋 |𝑤𝑄𝑤, hence GB𝑋 |𝑤 = 𝑄𝑤𝐾𝑋 |𝑤𝑄𝑤.

Similarly, GB𝑌 |𝑤 = 𝑄𝑤𝐾𝑌 |𝑤𝑄𝑤 where 𝐾𝑌 |𝑤 is the matrix whose (𝑖, 𝑗)-th entry is

𝜅𝑌 (𝑌 (𝑤)
𝑖
, 𝑌

(𝑤)
𝑗

).

Let 𝐴̂𝑤 be an invertible operator from Ran
(
Σ̂𝑌𝑌 |𝑤

)
to Ran

(
Σ̂𝑌𝑌 |𝑤

)
. By

applying Theorem 4.5.15 and Theorem 4.5.16, it is seen that, ignoring constants,

the empirical form of the optimisation problem (4.2) is given by:

Maximise [ 𝑓 ]𝑇B𝑋 |𝑤
GB𝑋 |𝑤GB𝑌 |𝑤

[
𝐴̂𝑤

]B𝑌 |𝑤
B𝑌 |𝑤

GB𝑋 |𝑤 [ 𝑓 ]B𝑋 |𝑤

Subject to [ 𝑓 ]𝑇B𝑋 |𝑤
G2
B𝑋 |𝑤

[ 𝑓 ]B𝑋 |𝑤 = 1, 𝑓 ⊥ Ŝ𝑘−1

(4.3)

where Ŝ0 B ∅, Ŝ𝑘 B Span { 𝑓1, . . . , 𝑓𝑘 } for 𝑘 ∈ N, and 𝑓1, . . . , 𝑓𝑘 are the 𝑘 previ-

ous solutions to this constrained optimisation problem. Let 𝑣 B GB𝑋 |𝑤 [ 𝑓 ]B𝑋 |𝑤 so

[ 𝑓 ]B𝑋 |𝑤 = G†
B𝑋 |𝑤

𝑣. The optimisation problem (4.3) becomes:

Maximise 𝑣𝑇
(
G†
B𝑋 |𝑤

GB𝑋 |𝑤GB𝑌 |𝑤

[
𝐴̂𝑤

]B𝑌 |𝑤
B𝑌 |𝑤

GB𝑋 |𝑤G
†
B𝑋 |𝑤

)
𝑣

Subject to 𝑣𝑇𝑣 = 1, 𝑣𝑇𝑣𝑖 = 0, 𝑖 ∈ N𝑘−1.

(4.4)

where 𝑣1, . . . , 𝑣𝑘−1 are the 𝑘 − 1 previous solutions to (4.4). Alike in Li (2018),

replace the Moore-Penrose inverse G†
B𝑋 |𝑤

by the Tychonoff-regularised inverse(
GB𝑋 |𝑤 + 𝜂𝑋 |𝑤 𝐼𝑛𝑤

)−1
, where 𝜂𝑋 |𝑤 > 0 is a tuning constant, in order to control

overfitting. To endow 𝜂𝑋 |𝑤 with appropriate scale, let 𝜂𝑋 |𝑤 = 𝜖𝑋 |𝑤𝜆max

(
GB𝑋 |𝑤

)
where 𝜆max

(
GB𝑋 |𝑤

)
is the largest eigenvalue of GB𝑋 |𝑤 . For simplicity, let 𝜖𝑋 |𝑤 = 𝜖𝑋

for each 𝑤 ∈ T . This then gives that 𝑣𝑖 is the 𝑖th eigenvector, corresponding to the

𝑖th largest eigenvalue, of the matrix:

Λ𝑤 B
(
GB𝑋 |𝑤 + 𝜂𝑋 |𝑤 𝐼𝑛𝑤

)−1
GB𝑋 |𝑤GB𝑌 |𝑤

[
𝐴̂𝑤

]B𝑌 |𝑤
B𝑌 |𝑤

GB𝑋 |𝑤

(
GB𝑋 |𝑤 + 𝜂𝑋 |𝑤 𝐼𝑛𝑤

)−1
.

With some choices of 𝐴̂𝑤 (say 𝐴̂𝑤 = Σ̂−1
𝑌𝑌 |𝑤), G†

B𝑌 |𝑤
appears in the coordinate

representation. If this occurs when 𝑌 is categorical, it is not replaced with a
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Tychonoff-regularisation. If, however, it occurs when 𝑌 is a random vector then

replace it with
(
GB𝑌 |𝑤 + 𝜂𝑌 |𝑤 𝐼𝑛𝑤

)−1
where 𝜂𝑌 |𝑤 is analogous to 𝜂𝑋 |𝑤 above.

In order to be able to merge these matrices, which are 𝑛𝑤 × 𝑛𝑤, assume that,

for 𝑤 ∈ T , 𝑛𝑤 = 𝑐 > 0 where 𝑐 is some constant. Ways to handle when this does

not hold, using the SMOTE algorithm, are discussed in Section 4.5.7. These

operators are then merged as follows:

Λ(𝑊) B
1
𝐶

∑︁
𝑤∈T

Λ𝑤

The partial generalised sliced inverse regression procedure is then summarised

as follows.

1. [Optional] Standardise 𝑋1, . . . , 𝑋𝑛 marginally. If 𝑌 is a random vector, then

also marginally standardise 𝑌1, . . . , 𝑌𝑛.

2. From each of the larger categories, randomly sample 𝑐 observations where

𝑐 is the number of observations in the smallest observed category.

3. Choose kernel functions 𝜅𝑋 and 𝜅𝑌 . If 𝑌 is categorical, say with Ω𝑌 = N𝐷

where 𝐷 ∈ N and the integers represent the categorical labels, then the

discrete kernel 𝜅𝑌 (𝑖, 𝑗) = 𝛿𝑖 𝑗 should be used. If 𝜅𝑋 , or 𝜅𝑌 , is chosen to be

the Gaussian radial basis function, then choose the kernel parameter 𝛾𝑋
(respectively 𝛾𝑌 ) according to the procedure described in Section 13.7 of

Li (2018).

4. For each 𝑤 ∈ T , specify an invertible operator 𝐴̂𝑤 from Ran
(
Σ̂𝑌𝑌 |𝑤

)
to

Ran
(
Σ̂𝑌𝑌 |𝑤

)
whose coordinate representation

[
𝐴̂𝑤

]B𝑌 |𝑤
B𝑌 |𝑤

is known.

5. Choose the tuning parameter 𝜖𝑋 and, if needed, also choose 𝜖𝑌 according

to the procedure described in Section 13.7 of Li (2018).
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6. For 𝑤 ∈ T , calculate GB𝑋 |𝑤 = 𝑄𝐾𝑋 |𝑤𝑄 and GB𝑌 |𝑤 = 𝑄𝐾𝑌 |𝑤𝑄, where

𝑄 = 𝐼𝑐 − 1
𝑐
1𝑐1𝑇𝑐 .

7. For 𝑤 ∈ T , find

Λ𝑤 =

(
GB𝑋 |𝑤 + 𝜂𝑋 |𝑤 𝐼𝑐

)−1
GB𝑋 |𝑤GB𝑌 |𝑤

[
𝐴̂𝑤

]B𝑌 |𝑤
B𝑌 |𝑤

GB𝑋 |𝑤

(
GB𝑋 |𝑤 + 𝜂𝑋 |𝑤 𝐼𝑐

)−1
.

8. Find

Λ(𝑊) =
1
𝐶

∑︁
𝑤∈T

Λ𝑤

9. Find the first 𝑑 eigenvectors 𝑣1, . . . , 𝑣𝑑 of Λ(𝑊) corresponding to the 𝑑

largest eigenvalues.

10. Calculate the 𝑖th sufficient predictor as 𝑣𝑇
𝑖
(GB𝑋 |𝑤 + 𝜂𝑋 |𝑤 𝐼𝑐)−1𝑄𝐾𝑋 |𝑤.

4.5.7 Application to two real-world datasets

In this subsection, the results of partial generalised sliced inverse regression are

compared to those for its marginal counterpart on two real datasets from the

Machine Learning repository of UC Irvine. These are the abalone dataset and

the autoMPG dataset. For both datasets, it seen that generalised sliced inverse

regression captures something meaningful. The advantage of partial generalised

sliced invere regression is that it captures the differences between the different

values for the categorical predictors. When there were differing numbers of

observations within each category, 𝑐 observations are randomly sampled from

each of the larger categories where 𝑐 is the number of observations in the smallest

observed category. The operators 𝐴̂𝑤 are all taken to be the identity.

4.5.7.1 Abalone dataset

The predictors 𝑋 in the abalone dataset consist of observations of 7 physical

characteristics for 4177 abalones. These characteristics are length, diameter,
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Figure 4.1: Generalised sliced inverse regression applied to the abalone dataset
when males and females are merged into adults. Red represents the infants and
black represents the adults.
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Figure 4.2: Partial generalised sliced inverse regression applied to the abalone
dataset when males and females are merged into adults. Red represents the infants
and black represents the adults.
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Figure 4.3: Partial generalised sliced inverse regression applied to the abalone
dataset when all three categories are included.

height, weight, shell weight, gut weight, and meat weight. The response variable

𝑌 is the number of rings of the abalone, which is known to be related with the

age of the abalone (age in years is equal to the number of rings plus 1.5). The

categorical predictor 𝑊 represents the sex. There are three categories: male,

female and infant. For interpretability purposes, the males and females are

combined into one category called adults. Figure 4.1 shows that the first direction

of generalised sliced inverse regression captures a relatively linear relationship

with the number of rings, while the other 2 capture some nonlinear relationships.

140



Chapter 4. Methodological developments in sufficient dimension reduction

Adults are colored in black and infants in red. As expected, as 𝑊 is not used,

the two groups of points overlap. In Figure 4.2, the results obtained by partial

generalised sliced inverse regression are shown. It is seen that the first direction

captures the variability for the infants while the second direction captures it for

the adults. Furthermore, the curvature for the infants is captured in the third

direction, while the fourth direction captures the curvature for the adults. For

comparison, the results of running partial generalised sliced inverse regression

using all three categories (male, female, and infant) are shown in Figure 4.3. It is

seen that the first three directions capture variability in each class, while the next

three directions capture the curvature.

4.5.7.2 AutoMPG dataset

The predictors 𝑋 in the autoMPG dataset consist of 5 variables for 398 cars. These

are the number of cylinders (treated as a numeric variable rather than a categorical

one), the displacement, the horsepower, the weight, and the acceleration. The

response 𝑌 is the fuel consumption in miles per gallon (mpg). There are two

categorical predictors: the location of manufacture (labelled 1, 2, and 3) and the

year of manufacture (which ranges from 1970 to 1982). Here,𝑊 is taken to be

only the location of manufacture.

As can be seen in Figure 4.4, generalised sliced inverse regression captures an

almost linear relationship between the the first direction and the response, and

captures nonlinear relationships with the second and third. As𝑊 is not considered,

there is, as expected, overlap between the three locations of manufacture. The

results of applying partial generalised sliced inverse regression are seen in Figure

4.5. The first 5 directions are presented. The first direction clearly separates the 3

locations of interest. The others, except direction 4 which is similar to direction 1,

reorder the three groups in different arrangements.
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Figure 4.4: Generalised sliced inverse regression applied to the autoMPG dataset.

4.5.8 Summary

In this section, the general theory of nonlinear sufficient dimension reduction as

developed by Lee et al. (2013), Li and Song (2017), and Li (2018) was extended to

the setting where some of the predictors are categorical. This was accomplished

by defining marginal, partial, and 𝑤-conditional sufficient dimension reduction in

a measure-theoretic manner and exploring their relationships. A new estimator,

partial generalised sliced inverse regression, was proposed. The effectiveness of

this estimator was seen in practice on two real-world datasets.
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Figure 4.5: Partial generalised sliced inverse regression applied to the autoMPG
dataset.

4.5.9 Proofs

Proof of Lemma 4.5.1. As𝐺 ⊴ (𝐺, 𝜎 (𝑊)), P𝑤 (𝐴|𝐺) is (𝐺, 𝜎 (𝑊))-measurable.

It is required to show that for 𝐻 ∈ (𝐺, 𝜎 (𝑊)),

EP𝑤 (1𝐻P𝑤 (𝐴|𝐺)) = EP𝑤 (1𝐻1𝐴) .

As (𝐺, 𝜎 (𝑊)) is generated by the 𝜋-system 𝑃 B {𝐶 ∩ 𝐷 : 𝐶 ∈ 𝐺, 𝐷 ∈ 𝜎 (𝑊)},

it suffices to show the above for 𝐻 ∈ 𝑃. Observe now that 𝜎 (𝑊) = {∅} ∪

{⋃𝑖∈𝐼 𝐸𝑖 : 𝐼 ∈ P (N𝐶) \ {∅}}. This gives three cases: (1) 𝐷 = ∅, (2) 𝐷 =
⋃
𝑖∈𝐼 𝐸𝑖
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for some 𝐼 ∈ P (N𝐶) \ {∅} and 𝑤 ∉ 𝐼, and (3) 𝐷 =
⋃
𝑖∈𝐼 𝐸𝑖 for some 𝐼 ∈

P (N𝐶) \ {∅} and 𝑤 ∈ 𝐼. The result is trivial in the first case as both sides equal

0. For the other cases, let 𝐻 = 𝐶 ∩ 𝐷 for some 𝐶 ∈ 𝐺 and 𝐷 ∈ 𝜎 (𝑊) \ {∅} and

consider that:

EP𝑤 (1𝐻P𝑤 (𝐴|𝐺)) = EP𝑤
(
1𝐶1𝐷EP𝑤 (1𝐴 |𝐺)

)
= EP𝑤

(
1𝐶EP𝑤 (1𝐷 |𝐺) 1𝐴

)
= EP𝑤

(
1𝐶

(
EP

(
1𝐷1𝐸𝑤

|𝐺
)

EP
(
1𝐸𝑤

|𝐺
) )

1𝐴
)
.

The second equality follows from Lemma 2.5.4 and the fact that 1𝐶 is 𝐺-

measurable as 𝐶 ∈ 𝐺. In the second case, 𝐷 ∩ 𝐸𝑤 = ∅ so this expectation is equal

to 0. Furthermore, P𝑤 (𝐴 ∩ 𝐶 ∩ 𝐷) = 0 as P (𝐴 ∩ 𝐶 ∩ 𝐷 ∩ 𝐸𝑤) = P (∅) = 0.

In the final case, 𝐷 ∩ 𝐸𝑤 = 𝐸𝑤 so the above simplifies to EP𝑤 (1𝐶1𝐴). This

equals P𝑤 (𝐴 ∩ 𝐶). Now this is equal to P𝑤 (𝐴 ∩ 𝐶 ∩ 𝐷) as P (𝐴 ∩ 𝐶 ∩ 𝐸𝑤) =

P (𝐴 ∩ 𝐶 ∩ 𝐷 ∩ 𝐸𝑤). □

Proof of Corollary 4.5.2. For any 𝑤 ∈ N𝐶 , 1𝐸𝑤
is (𝐺, 𝜎 (𝑊))-measurable as it

is 𝜎 (𝑊)-measurable because 𝐸𝑤 ∈ 𝜎 (𝑊). This implies that

P (𝐴 ∩ 𝐸𝑤 |𝐺,𝑊) a.s.P
= 1𝐸𝑤

P (𝐴|𝐺,𝑊)

and P (𝐸𝑤 |𝐺,𝑊) a.s.P
= 1𝐸𝑤

. As these hold almost surely P and P𝑤 ≪ P, they also

hold almost surely P𝑤 for any 𝑤 ∈ N𝐶 . Applying Lemma 4.5.1 and taking the

ratio (noting that P𝑤
({
𝜔 ∈ Ω : 1𝐸𝑤

(𝜔) = 0
})

= 0) gives the result. □

Proof of Lemma 4.5.3. Let 𝐴 ∈ 𝜎 (𝑌 ) and 𝐵 ∈ 𝜎 (𝑋). Suppose that 𝐺 is a

𝑤-conditional SDR 𝜎-field for each 𝑤 ∈ N𝐶 . Applying Corollary 4.5.2 gives that

P𝑤 (𝐴 ∩ 𝐵 |𝐺) a.s.P𝑤
= P𝑤 (𝐴|𝐺) P𝑤 (𝐵 |𝐺)

can be rewritten as

P (𝐴 ∩ 𝐵 |𝐺,𝑊) a.s.P𝑤
= P (𝐴|𝐺,𝑊) P (𝐵 |𝐺,𝑊) .
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As this holds for each 𝑤 ∈ N𝐶 , this implies that

P (𝐴 ∩ 𝐵|𝐺,𝑊) a.s.P
= P (𝐴|𝐺,𝑊) P (𝐵 |𝐺,𝑊) .

𝐺 is therefore a partial SDR 𝜎-field. For the converse, suppose𝐺 is a partial SDR

𝜎-field so P (𝐴 ∩ 𝐵 |𝐺,𝑊) a.s.P
= P (𝐴|𝐺,𝑊) P (𝐵 |𝐺,𝑊). As this holds almost

surely P, it also holds almost surely P𝑤 (owing to the fact that P𝑤 ≪ P) for any

𝑤 ∈ N𝐶 . Applying Corollary 4.5.2 yields the result. □

Proof of Theorem 4.5.4. Showing that (M1, . . . ,M𝐶) is a partial SDR 𝜎-field

implies that M(𝑊) ⊴ (M1, . . . ,M𝐶), yielding the result. For each 𝑤 ∈ N𝐶 , it

holds thatM𝑤⊴ (M1, . . . ,M𝐶)⊴𝜎 (𝑋) so, by Corollary 2.5.11 with
𝑤
⊥⊥ replacing

⊥⊥ , (M1, . . . ,M𝐶) is a 𝑤-conditional SDR 𝜎-field. Applying Lemma 4.5.3

yields the result. □

Proof of Theorem 4.5.5. It suffices to show that𝑊 ⊥⊥ 𝑋 |M(𝑊) impliesM⊴M(𝑊)

as the other implication is similarly shown by interchanging the roles of 𝑋 and 𝑌 .

In Lemma 2.5.9, let F1 = 𝜎 (𝑊) ,F2 = 𝜎 (𝑋) ,F3 = 𝜎 (𝑌 ) ,F4 = M(𝑊) . The

statement in the lemma becomes[
𝑊 ⊥⊥ 𝑋 |

(
𝑌,M(𝑊)

)]
∧

[
𝑋 ⊥⊥ 𝑌 |M(𝑊)

]
is equivalent to [

𝑊 ⊥⊥ 𝑋 |M(𝑊)
]
∧

[
𝑋 ⊥⊥ 𝑌 |

(
𝑊,M(𝑊)

)]
.

In the latter form, the first conjunct holds by assumption and the second holds

by the definition of M(𝑊) . This gives that the second conjunct in the first form

holds. This is 𝑋 ⊥⊥ 𝑌 |M(𝑊) , which implies that M ⊴M(𝑊) . □

Proof of Theorem 4.5.6. In Lemma 2.5.9, let F1 = 𝜎 (𝑊) ,F2 = 𝜎 (𝑌 ) ,F3 =

𝜎 (𝑋) ,F4 = M. The statement in the lemma becomes:

[𝑊 ⊥⊥ 𝑌 | (𝑋,M)] ∧ [𝑌 ⊥⊥ 𝑋 |M]
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is equivalent to:

[𝑊 ⊥⊥ 𝑌 |M] ∧ [𝑌 ⊥⊥ 𝑋 | (𝑊,M)] .

As M ⊴ 𝜎 (𝑋), it holds that (𝑋,M) = 𝜎 (𝑋). This implies that the first conjunct

in the first form is the same as 𝑊 ⊥⊥ 𝑌 |𝑋 , which holds by the assumption. The

second conjunct in the first form holds by the definition of M. Thus, the second

conjunct in the second form holds. This is 𝑌 ⊥⊥ 𝑋 | (𝑊,M). By the definition of

M(𝑊) , this gives that M(𝑊) ⊴M. □

Proof of Theorem 4.5.7. Note that
(
M(𝑊) ,M(𝑊)

)
⊴ 𝜎 (𝑋) as M(𝑊) ⊴ 𝜎 (𝑋)

and M(𝑊) ⊴ 𝜎 (𝑋). Showing that 𝑌 ⊥⊥ 𝑋 |
(
M(𝑊) ,M(𝑊)

)
suffices because of

the definition of M. By the definition of M(𝑊) , 𝑋 ⊥⊥ 𝑊 |M(𝑊) . As M(𝑊) ⊴(
M(𝑊) ,M(𝑊)

)
⊴ 𝜎 (𝑋), applying Corollary 2.5.11 with F1 = 𝜎 (𝑊) ,F2 =

𝜎 (𝑋) ,F3 = M(𝑊) , and F4 =

(
M(𝑊) ,M(𝑊)

)
implies that 𝑋 is conditionally

independent of 𝑊 given
(
M(𝑊) ,M(𝑊)

)
. Now by the definition of M(𝑊) , it

is known that 𝑌 ⊥⊥ 𝑋 |
(
M(𝑊) ,𝑊

)
. Note that M(𝑊) ⊴

(
M(𝑊) ,M(𝑊)

)
⊴ 𝜎 (𝑋)

also holds. Applying Lemma 2.5.10 with F1 = 𝜎 (𝑌 ) ,F2 = 𝜎 (𝑋) ,F3 =

𝜎 (𝑊) ,F4 = M(𝑊) , and F5 =

(
M(𝑊) ,M(𝑊)

)
gives that

𝑌 ⊥⊥ 𝑋 |
(
𝑊,

(
M(𝑊) ,M(𝑊)

))
.

In the statement of Lemma 2.5.9, let F1 = 𝜎 (𝑌 ) ,F2 = 𝜎 (𝑋) ,F3 = 𝜎 (𝑊), and

F4 =

(
M(𝑊) ,M(𝑊)

)
. The conditional independences just established form the

conjuncts of the first form of the equivalent statement, thus the second form must

hold. The desired result is the first conjunct in this second form. □

Proof of Lemma 4.5.8. Let 𝐺 ⊴ 𝜎 (𝑋). Consider first H𝑋 (𝐺). By Theorem

13.3 of Billingsley (1995), finite linear combinations of 𝐺-measurable real-

valued functions are themselves 𝐺-measurable thus H𝑋 (𝐺) is closed under

finite linear combinations. It remains to show that H𝑋 (𝐺) is topologically
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closed. To this end, suppose that { 𝑓𝑖}𝑖∈N ⊆ H𝑋 (𝐺) is a H𝑋-norm convergent

sequence with limit 𝑓 ∈ H𝑋 . By Theorem 2.7.6 of Hsing and Eubank (2015),

this implies that, for any 𝑥 ∈ Ω𝑋 , | 𝑓𝑖 (𝑥) − 𝑓 (𝑥) | → 0 as 𝑖 → ∞. Thus, for

𝜔 ∈ Ω, | ( 𝑓𝑖 (𝑋)) (𝜔) − ( 𝑓 (𝑋)) (𝜔) | → 0 as 𝑖 → ∞. Applying Theorem 13.4 of

Billingsley (1995) then gives that 𝑓 (𝑋) is also 𝐺-measurable, hence 𝑓 ∈ H𝑋 (𝐺)

as desired. That H𝐺
𝑋

is a closed subspace of H𝑋 is shown similarly. □

Proof of Lemma 4.5.9. Only the first relation is proven as the second follows

similarly by interchanging 𝑋 and 𝑌 . It suffices to show that

Ran
(
Σ𝑋𝑋 |𝑤

)⊥
⊆ Ran

(
Σ𝑋𝑌 |𝑤

)⊥
This is equivalent to Ker

(
Σ𝑋𝑋 |𝑤

)
⊆ Ker

(
Σ𝑌𝑋 |𝑤

)
. Let 𝑓 ∈ Ker

(
Σ𝑋𝑋 |𝑤

)
. This

implies that VarP𝑤 ( 𝑓 (𝑋)) =
〈
𝑓 , Σ𝑋𝑋 |𝑤 𝑓

〉
H𝑋

= 0 hence 𝑓 (𝑋) is P𝑤 almost

surely constant. This implies that for any 𝑔 ∈ H𝑌 , CovP𝑤 ( 𝑓 (𝑋), 𝑔(𝑌 )) =〈
Σ𝑌𝑋 |𝑤 𝑓 , 𝑔

〉
H𝑌

= 0. Taking 𝑔 = Σ𝑌𝑋 |𝑤 𝑓 gives〈
Σ𝑌𝑋 |𝑤 𝑓 , Σ𝑌𝑋 |𝑤 𝑓

〉
H𝑌

=


Σ𝑌𝑋 |𝑤 𝑓 

2

H𝑌
= 0.

Hence Σ𝑌𝑋 |𝑤 𝑓 = 0 so 𝑓 ∈ Ker
(
Σ𝑌𝑋 |𝑤

)
as desired. □

Proof of Lemma 4.5.10. Only the first relation is shown as the second follows

similarly. A member 𝑓 of H𝑋 is orthogonal to the subspace on the right-hand side

if and only if 𝑓 ⊥ 𝜅𝑋 (·, 𝑥) − 𝜇𝑋 for all 𝑥 ∈ Ω𝑋 . That is, ⟨ 𝑓 , 𝜅𝑋 (·, 𝑥) − 𝜇𝑋⟩H𝑋
= 0.

By the reproducing property and the definition of 𝜇𝑋 , this is equivalent to

𝑓 (𝑥) = EP ( 𝑓 (𝑋)) for all 𝑥 ∈ Ω𝑋 which means that VarP ( 𝑓 (𝑋)) = 0 hence

Σ𝑋𝑋 𝑓 = 0. Thus

Ker (Σ𝑋𝑋) = Span {𝜅𝑋 (·, 𝑥) − 𝜇𝑋 : 𝑥 ∈ Ω𝑋 }⊥ .

which implies the desired equality because Σ𝑋𝑋 is self-adjoint. □

147



Chapter 4. Methodological developments in sufficient dimension reduction

Proof of Lemma 4.5.11. Let 𝑤 ∈ N𝐶 and 𝑓 ∈ H𝑋 . It is first shown that, for

𝑔 ∈ 𝐿2 (
P𝑌 |𝑤

)
,

CovP𝑤
(
EP𝑤 ( 𝑓 (𝑋) |𝑌 ) −

(
𝑅𝑌𝑋 |𝑤 𝑓

)
(𝑌 ) , 𝑔 (𝑌 )

)
= 0.

As
(
𝑅𝑌𝑋 |𝑤 𝑓

)
(𝑌 ) is 𝜎 (𝑌 )-measurable, this can be rewritten as

CovP𝑤
(
𝑓 (𝑋) −

(
𝑅𝑌𝑋 |𝑤 𝑓

)
(𝑌 ) , 𝑔 (𝑌 )

)
= 0. (4.5)

As H𝑌 is dense modulo P𝑌 |𝑤 almost sure constants in 𝐿2 (
P𝑌 |𝑤

)
(see Theo-

rem 2.5.19), there is a sequence {𝑔𝑘 }𝑘∈N ⊆ H𝑌 such that VarP𝑤 (𝐺𝑘 (𝑌 )) → 0 as

𝑘 → ∞ where 𝐺𝑘 (𝑌 ) B 𝑔(𝑌 ) − 𝑔𝑘 (𝑌 ). With any such sequence

CovP𝑤
( (
𝑅𝑌𝑋 |𝑤 𝑓

)
(𝑌 ) , 𝑔 (𝑌 )

)
= CovP𝑤

( (
𝑅𝑌𝑋 |𝑤 𝑓

)
(𝑌 ) , 𝑔𝑘 (𝑌 )

)
+ CovP𝑤

( (
𝑅𝑌𝑋 |𝑤 𝑓

)
(𝑌 ) , 𝐺𝑘 (𝑌 )

) (4.6)

The first term on the right-hand side of (4.6) is equal to
〈
𝑅𝑌𝑋 |𝑤 𝑓 , Σ𝑌𝑌 |𝑤𝑔𝑘

〉
H𝑌

.

Now, as Σ𝑌𝑌 |𝑤 is self-adjoint,〈
𝑅𝑌𝑋 |𝑤 𝑓 , Σ𝑌𝑌 |𝑤𝑔𝑘

〉
H𝑌

=
〈
Σ𝑌𝑋 |𝑤 𝑓 , 𝑔𝑘

〉
H𝑌

= CovP𝑤 ( 𝑓 (𝑋), 𝑔𝑘 (𝑌 ))

= CovP𝑤 ( 𝑓 (𝑋), 𝑔(𝑌 )) − CovP𝑤 ( 𝑓 (𝑋), 𝐺𝑘 (𝑌 )) .

Hence (4.6) can be rewritten as

CovP𝑤
( (
𝑅𝑌𝑋 |𝑤 𝑓

)
(𝑌 ) , 𝑔 (𝑌 )

)
= CovP𝑤 ( 𝑓 (𝑋), 𝑔(𝑌 ))

+ CovP𝑤
(
(𝑅𝑌𝑋 |𝑤 𝑓 ) (𝑌 ) − 𝑓 (𝑋), 𝐺𝑘 (𝑌 )

)
.

(4.7)

Now apply the Cauchy-Schwarz inequality to see that��CovP𝑤
(
(𝑅𝑌𝑋 |𝑤 𝑓 ) (𝑌 ) − 𝑓 (𝑋), 𝐺𝑘 (𝑌 )

) �� ≤ √︃
VarP𝑤

(
(𝑅𝑌𝑋 |𝑤 𝑓 ) (𝑌 ) − 𝑓 (𝑋)

)
×

√︁
VarP𝑤 (𝐺𝑘 (𝑌 ))
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This converges to 0 as 𝑘 → ∞, hence the second term of (4.7) converges to 0. In

the limit, this leaves

CovP𝑤
( (
𝑅𝑌𝑋 |𝑤 𝑓

)
(𝑌 ) , 𝑔 (𝑌 )

)
= CovP𝑤 ( 𝑓 (𝑋), 𝑔(𝑌 ))

This then implies (4.5), which yields that
(
𝑅𝑌𝑋 |𝑤 𝑓

)
(𝑌 ) a.s.P𝑤

= EP𝑤 ( 𝑓 (𝑋) |𝑌 ) + 𝑐 𝑓
where 𝑐 𝑓 is a real constant. By taking the P𝑤 expectation of both sides, it is seen

that 𝑐 𝑓 = EP𝑤
( (
𝑅𝑌𝑋 |𝑤 𝑓

)
(𝑌 )

)
− EP𝑤 ( 𝑓 (𝑋)) which gives the result. □

Proof of Theorem 4.5.12. Let Σ𝑋𝑋 |𝑤H𝑋 (M𝑤) B
{
Σ𝑋𝑋 |𝑤 𝑓 : 𝑓 ∈ H𝑋 (M𝑤)

}
.

It is first shown that:

Ran
(
Σ𝑋𝑌 |𝑤

)
⊆ Σ𝑋𝑋 |𝑤H𝑋 (M𝑤) . (4.8)

This is equivalent to showing that
(
Σ𝑋𝑋 |𝑤H𝑋 (M𝑤)

)⊥ ⊆ Ker
(
Σ𝑌𝑋 |𝑤

)
. Let

𝑓 ∈
(
Σ𝑋𝑋 |𝑤H𝑋 (M𝑤)

)⊥. Then, for all 𝑔 ∈ H𝑋 (M𝑤),〈
𝑓 , Σ𝑋𝑋 |𝑤𝑔

〉
H𝑋

= CovP𝑤 ( 𝑓 (𝑋), 𝑔(𝑋)) = 0.

As 𝑔(𝑋) is M𝑤-measurable, 𝑔(𝑋) a.s.P𝑤
= EP𝑤 (𝑔(𝑋) |M𝑤). By Lemma 2.5.4,

CovP𝑤
(
𝑓 (𝑋),EP𝑤 (𝑔(𝑋) |M𝑤)

)
= CovP𝑤

(
EP𝑤 ( 𝑓 (𝑋) |M𝑤) , 𝑔(𝑋)

)
.

Now asH𝑋 (M𝑤) is dense moduloP𝑋 |𝑤 almost sure constants in 𝐿2 (
P𝑋 |𝑤 |M𝑤

)
,

there exists a sequence { 𝑓𝑘 }𝑘∈N ⊆ H𝑋 (M𝑤) such that, as 𝑘 → ∞,

VarP𝑤
(
𝑓𝑘 (𝑋) − EP𝑤 ( 𝑓 (𝑋) |M𝑤)

)
→ 0.

Using this fact and that, for any 𝑘 ∈ N, CovP𝑤
(
EP𝑤 ( 𝑓 (𝑋) |M𝑤) , 𝑓𝑘 (𝑋)

)
= 0,

implies that

CovP𝑤
(
EP𝑤 ( 𝑓 (𝑋) |M𝑤) , 𝑓𝑘 (𝑋)

)
→ CovP𝑤

(
EP𝑤 ( 𝑓 (𝑋) |M𝑤) ,EP𝑤 ( 𝑓 (𝑋) |M𝑤)

)
= VarP𝑤

(
EP𝑤 ( 𝑓 (𝑋) |M𝑤)

)
= 0.
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Hence EP𝑤 ( 𝑓 (𝑋) |M𝑤)
a.s.P𝑤
= EP𝑤 ( 𝑓 (𝑋)). As 𝑌

𝑤
⊥⊥ 𝑋 |M𝑤, it holds that

EP𝑤 ( 𝑓 (𝑋) |M𝑤)
a.s.P𝑤
= EP𝑤 ( 𝑓 (𝑋) |𝑌,M𝑤). Because this is P𝑤 almost surely con-

stant, the tower property of conditional expectation implies that EP𝑤 ( 𝑓 (𝑋) |𝑌 ) is

alsoP𝑤 almost surely constant. By Lemma 4.5.11, this implies thatΣ−1
𝑌𝑌 |𝑤Σ𝑌𝑋 |𝑤 𝑓 is

P𝑌 |𝑤 almost surely constant. As Ker
(
Σ𝑌𝑌 |𝑤

)
= {0}, this gives that Σ−1

𝑌𝑌 |𝑤Σ𝑌𝑋 |𝑤 𝑓 =

0 which implies that 𝑓 ∈ Ker
(
Σ𝑌𝑋 |𝑤

)
as desired.

Now Equation (4.8) implies that

Ran
(
Σ𝑋𝑌 |𝑤

)
⊆ Σ𝑋𝑋 |𝑤H𝑋 (M𝑤) .

This then implies that

Σ−1
𝑋𝑋 |𝑤 Ran

(
Σ𝑋𝑌 |𝑤

)
⊆ H𝑋 (M𝑤) .

Now consider that

Σ−1
𝑋𝑋 |𝑤 Ran

(
Σ𝑋𝑌 |𝑤

)
=

{
Σ−1
𝑋𝑋 |𝑤 𝑓 : 𝑓 = Σ𝑋𝑌 |𝑤𝑔, 𝑔 ∈ H𝑌

}
=

{
Σ−1
𝑋𝑋 |𝑤Σ𝑋𝑌 |𝑤𝑔 : 𝑔 ∈ H𝑌

}
= Ran

(
Σ−1
𝑋𝑋 |𝑤Σ𝑋𝑌 |𝑤

)
.

Now as H𝑋 (M𝑤) is closed, taking the closure of this range gives the result. □

Proof of Theorem 4.5.13. As H(𝑊)
𝑋

is closed, it suffices to show that

Ran (ΛPGSIR) ⊆ H(𝑊)
𝑋
.

As ΛPGSIR =
∑
𝑤∈N𝐶 Λ𝑤-GSIR, M(𝑊) = (M1, . . . ,M𝐶), and by Theorem 4.5.12,

it follows that

Ran (ΛPGSIR) =+
𝑤∈N𝐶

Ran (Λ𝑤-GSIR)

⊆ +
𝑤∈N𝐶

H𝑋 (M𝑤) ⊆ H(𝑊)
𝑋
.

□
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Proof of Theorem 4.5.14. It suffices to show H𝑋 (M𝑤) ⊆ Ran
(
Σ−1
𝑋𝑋 |𝑤Σ𝑋𝑌 |𝑤

)
,

which is equivalent to Ker
(
Σ𝑌𝑋 |𝑤Σ

−1
𝑋𝑋 |𝑤

)
⊆ H𝑋 (M𝑤)⊥. Let 𝑓 be in the

kernel of Σ𝑌𝑋 |𝑤Σ−1
𝑋𝑋 |𝑤 . This implies that (Σ−1

𝑌𝑌 |𝑤Σ𝑌𝑋 |𝑤Σ
−1
𝑋𝑋 |𝑤 𝑓 ) (𝑌 ) = 0 hence, by

Lemma 4.5.11, there is a real constant 𝑐 𝑓 such that EP𝑤
((
Σ−1
𝑋𝑋 |𝑤 𝑓

)
(𝑋)

���𝑌 ) a.s.P𝑤
=

𝑐 𝑓 . By the tower property of conditional expectation and the definition of M𝑤 , it

follows that

EP𝑤

((
Σ−1
𝑋𝑋 |𝑤 𝑓

)
(𝑋)

���𝑌 )
a.s.P𝑤
= EP𝑤

(
EP𝑤

((
Σ−1
𝑋𝑋 |𝑤 𝑓

)
(𝑋)

���𝑌,M𝑤

)���𝑌 )
a.s.P𝑤
= EP𝑤

(
EP𝑤

((
Σ−1
𝑋𝑋 |𝑤 𝑓

)
(𝑋)

���M𝑤

)���𝑌 )
.

Now M𝑤 is P𝑤-complete for 𝜎 (𝑌 ), so EP𝑤
(
Σ−1
𝑋𝑋 |𝑤 𝑓 (𝑋)

���M𝑤

) a.s.P𝑤
= 𝑐 𝑓 . It

follows that for 𝑔 ∈ H𝑋 (M𝑤),

⟨ 𝑓 , 𝑔⟩H𝑋
=

〈
Σ−1
𝑋𝑋 |𝑤 𝑓 , Σ𝑋𝑋 |𝑤𝑔

〉
H𝑋

= CovP𝑤
((
Σ−1
𝑋𝑋 |𝑤 𝑓

)
(𝑋), 𝑔(𝑋)

)
= CovP𝑤

((
Σ−1
𝑋𝑋 |𝑤 𝑓

)
(𝑋),EP𝑤 (𝑔(𝑋) |M𝑤)

)
= CovP𝑤

((
EP𝑤

(
Σ−1
𝑋𝑋 |𝑤 𝑓

���M𝑤

))
(𝑋), 𝑔(𝑋)

)
= 0

Hence 𝑓 ∈ H𝑋 (M𝑤)⊥ as desired. □

Proof of Theorem 4.5.16. The third coordinate representation is shown as the rest

follow by similar reasoning. For 𝑘 ∈ N𝑛𝑤 , let 𝑒𝑘 be the vector with 1 in the 𝑘-th

component and 0 elsewhere. Applying Theorem 4.5.15,

[
Σ̂𝑋𝑌 |𝑤

]B𝑋 |𝑤
B𝑌 |𝑤

=

[
1
𝑛𝑤

𝑛𝑤∑︁
𝑘=1

(
𝑏
(𝑘)
𝑋 |𝑤 ⊗ 𝑏 (𝑘)

𝑌 |𝑤

)]B𝑋 |𝑤

B𝑌 |𝑤

=
1
𝑛𝑤

𝑛𝑤∑︁
𝑘=1

[
𝑏
(𝑘)
𝑋 |𝑤 ⊗ 𝑏 (𝑘)

𝑌 |𝑤

]B𝑋 |𝑤

B𝑌 |𝑤
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Chapter 5

Discussion

5.1 Summary of the contributions of this thesis

This thesis has provided a number of novel developments in Probability Theory

proper, Functional Analysis, Banach/Hilbertian data analysis, the predictive

potential of nonlinear principal components analysis for general predictors, and

methodological developments in nonlinear sufficient dimension reduction when

categorical predictors are present.

Chapter 2 gave definitions and results, some classical and others novel,

spanning several branches of Mathematics. A major development in that chapter

is the extension of many classical definitions in Probability Theory to allow for

relevant sets to be uncountable. The novel results from that chapter are as follows:

1. Lemma 2.2.2 relates the independence of stochastic process with the random

variable that defines its distribution.

2. Lemma 2.2.3 relates the distribution of an independent stochastic process

with the product probability measure.
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3. Lemma 2.2.4 says that i.i.d stochastic processes are exchangeable, using

the provided generalised definitions of these notions.

4. Lemma 2.2.5 relates the independence (respectively identical distribution,

exchangeability, contractability) of a particular kind of stochastic process

with that for the process comprised of projections.

5. Theorem 2.2.6 gives a significant implication of the exchangeability or

contractability of a stochastic process which is used to prove Theorem 2.2.11,

a substantial generalisation of Lemma 3.1 from Artemiou and Li (2009)

that is used in Chapter 3.

6. Existing literature on generalised notions of cumulative distribution func-

tions was extended. Lemma 2.2.7 related two notions of continuity with

each other. Theorem 2.2.8 gave some properties of a cumulative distribution

function on a linearly ordered topological space. Generalised notions of

joint cumulative distribution functions, quantile functions, and medians

were provided. Theorem 2.2.10 gave a generalised version of of the proba-

bility integral transform, which was historically used for simulating random

variables with a given distribution using standard uniform variates which

were easier to generate. A generalised version of Sklar’s Theorem, the basis

for modelling multivariate dependencies with copulas, was conjectured in

Conjecture 2.2.1.

7. A novel proof, using the arithmetic of cardinals, for Theorem 2.3.1 was

provided.

8. Theorem 2.4.1 demonstrated the relationship between tensor products of

closed ranges of bounded linear operators with the closed range of the

tensor product of the operators. This result, to the author’s knowledge,
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has not been given in the Functional Analysis literature though it is not

difficult to prove. Note that the notions of tensor products used here are not

used in other chapters, but are nevertheless included as novel results were

provided and they formed the basis for an earlier attempt at the novel work

in Chapter 4.

9. Expectations, inner products, conditional expectations, tensor products, and

conditional cross-covariance were related via Lemma 2.5.2, Lemma 2.5.3,

Lemma 2.5.4, Corollary 2.5.5, and Lemma 2.5.6.

10. Some properties of conditional independence were given in Lemma 2.5.9,

Lemma 2.5.10, and Corollary 2.5.11. These were useful for establishing

the theoretical results in Section 4.5.3.

11. Theorem 2.5.21 relates conditional independence with the Hilbert-Schmidt

conditional independence criterion.

Chapter 3 generalised the results of Jones and Artemiou (2019), Jones et al.

(2020), and Jones and Artemiou (2021) to when nonlinear principal components

analysis is applied with general predictors. It was established that, under some

uniformity assumptions, higher-ranking nonlinear principal components tend

(with probability exceeding 1/2, with the probability being quantified when

unitary invariance is used) to be more informative (in terms of conditional squared

correlation) of a univariate measurable transformation of a response variable than

the lower-ranking components. This was done under the conditional independence

model and in a model-free setting.

Chapter 4 generalised the measure-theoretic framework for sufficient dimen-

sion reduction that was developed by Lee et al. (2013), Li and Song (2017), and

Li (2018) to the setting where some categorical predictors are present. A new

estimator was proposed and its properties and effectiveness were explored.
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5.2 Ideas for further research

There are a wide variety of avenues for future research related to the work in this

thesis, only a subset of which are included here.

Conjecture 2.2.1 could be proven. As noted in Remark 2.5.19, Theorem 2.5.21

could be used to (1) develop a test for conditional independence, (2) develop

a novel nonlinear sufficient dimension reduction method, and (3) develop a

procedure for determining the number of components to take from a nonlinear

sufficient dimension reduction method.

The conjecture of Li (2007a) that, under some uniformity assumptions on

the randomly chosen regression coefficients and the covariance matrix, the first

principal component of some predictor vector 𝑋 is the most likely, among all

the principal components, to have the greatest absolute correlation with some

univariate response 𝑌 remains unproven. Further research could examine this

conjecture and generalisations thereof. Two possible generalisations that could be

explored are: (1) the conjecture can be modified for when a nonlinear variant of

principal components is used with general predictors, and (2) the conjecture can

be extended to claim that the 𝑘 th principal component of 𝑋 (either the classical or

nonlinear version) is the 𝑘 th most likely to have the 𝑘 th largest absolute correlation

(alternatively squared correlation) with some univariate response 𝑌 . Another

avenue of investigation is to change the measure of how informative the principal

components are of the response from conditional squared correlation to some

other measure. Some developments along this line of thought have been given

by Artemiou (2021) who used conditional mutual information to show similar

results to the classical ones for the multivariate data setting, under the linear

regression model with Gaussian predictors. The author of this thesis believes that

a promising approach to make use of characterstic kernels to derive a measure

which fully characterises the predictive power that the principal components
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have for the transformation of the response. The predictive potential of other

unsupervised dimension methods could also be explored.

In the kernel-based nonlinear sufficient dimension reduction framework,

the suspected one-to-one correspondence between sub-𝜎-fields of the 𝜎-field

generated by the predictor and the closed subspaces of the form H𝑋 (𝐺) remains

to be proven. It also remains to be shown that, under some assumptions, the

PGSIR estimator is exhaustive. For any method based on covariance and cross-

covariance operators, the norm is to take the classic unbiased estimator; alternative

approaches based on shrinkage could be used and are discussed in Zhou et al.

(2019). As the existing methods for nonlinear sufficient dimension reduction

require eigendecomposition of an 𝑛 × 𝑛 (𝑛 being the sample size) matrix, they

may be computationally expensive when 𝑛 is large. To othercome this limitation,

kernel approximation methods can be used: see Gauthier and Suykens (2018) and

Hutchings and Gauthier (2022) for examples of such approximation approaches. It

has been demonstrated in this thesis that measure-theoretic approaches to sufficient

dimension reduction are fruitful in the setting where categorical predictors are

present. It is reasonable to suspect that they would also be useful in other settings

such as with time series data, with extremes, and with tensors. It should be

possible to generalise also the generalised sliced average variance estimator,

as developed in Lee et al. (2013) and further in Li (2018), to the categorical

predictor setting. Li et al. (2011) and Artemiou and Dong (2016) develop support

vector machine based approaches to nonlinear sufficient dimension reduction with

multivariate predictors and univariate responses; the author of this thesis believes

such approaches can be generalised to have both the predictor and response lie in

separable metric spaces. The last idea that is mentioned in this thesis for future

work is to examine statistical inference when conducted post nonlinear sufficient

dimension reduction, thus continuing the line of research began in Kim et al.

157



Chapter 5. Discussion

(2020) who did it for linear sufficient dimension reduction.
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