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Abstract
A mathematical model for nematic liquid crystal elastomers is proposed that mimics the elastic response of cat skin where
reorientation of dermal fibres produces an increase in the thickness direction under tensile stretch. To capture this unusual
effect, the uniaxial order parameter in the nematic elastomer model is allowed to decrease then increase again, and the critical
stretch at which this change of monotonicity occurs and where the director also rotates suddenly is predicted. In addition,
the model parameters are described by probability density functions and their uncertainty is propagated numerically to the
predicted mechanical results.

Keywords Liquid crystal elastomer · Large strain elasticity · Auxetic response · Uncertainty quantification ·
Biomimetic materials · Mathematical modelling

“Of particular relevance here is the fact that technology of people must be different from that of nature simply
because the two span different size scales [...] Everyday terms such as ‘assembly’, ‘polymer’, ‘blueprint’, ‘safety
factor’, ‘design’, and ‘intended application’ were meant for our production systems, and we run considerable risk of
self-deception when we use them for natural systems.” - S. Vogel [16]

1 Introduction

Extensive experimental programs have demonstrated the capability of a class of nematic liquid crystal elastomesr (LCEs)
to present certain auxetic responses, while their volume is conserved under large elastic strain [8–13]. In particular, when
a material sample is stretched longitudinally, its thickness, measured in the direction perpendicular to the sample’s plane,
first decreases, then increases if the deformation is sufficiently large, then decreases again. Such mechanical behaviour is
generated at a molecular level, without porosity emerging at macroscopic scale, and it is accompanied by a mechanical
Fréedericksz transition whereby the nematic director, which is initially aligned within the sample’s plane and perpendicular
to the longitudinal direction, rotates suddenly to become parallel with the applied force.

Auxetic materials that are simple to fabricate and avoid porosity-related weakening have long been sought for applications
in a range of industries including sports equipment, aerospace, biomedical materials and architecture. Because of the
intrinsic similarities between LCEs and conventional rubber [17], suitable descriptions can be achieved by adapting existing
hyperelastic models for rubber-like solids [5]. Hyperelastic materials are the class of material models described by a
strain-energy density function with respect to a fixed reference configuration.

In [6], a quantitative model is proposed and calibrated to available experimental data for auxetic LCEs. To analyse the
effect of different model parameters on the predicted mechanical response, a simplified qualitative model is developed in
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[7]. The theoretical analysis suggests that auxeticity can be obtained by letting the uniaxial scalar order parameter decrease
to a sufficiently low value then increase again. This is in agreement with the experimental observations where, in addition,
mechanical biaxiality can also be observed that enhances the auxetic behaviour.

The purpose of this paper is to present a mathematical model for nematic LCEs that is capable of predicting a similar
auxetic behaviour as that found in cat skin where reorientation of dermal fibres produces an increase in the thickness direction
under tensile stretch. Cat skin thickening occurs first at small strain and continues at large strain until a maximum stretch
is attained, after which the skin thickness begins to decrease. Both compressible and incompressible isotropic hyperelastic
models are found acceptable within the range of experimental data, as reported in [15]. For the incompressible LCE model
mimicking such behaviour, the uniaxial order parameter is allowed to decrease then increase again, and the critical stretch
at which this change in monotonicity and where the director also rotates suddenly is predicted. In addition, a stochastic
elasticity framework [5] is adopted where the model parameters are described by probability density functions, and the
uncertainty in those parameters is propagated numerically to the predicted mechanical results. The theoretical model is
described and explained in Section 2. This model is then calibrated to experimental data showing the auxeticity of cat skin
in Section 3. The stochastic framework is summarised in the appendix.

2 Stochastic strain-energy function

In this paper, the model functions describing an incompressible nematic LCE satisfy the following assumptions [5]:

(C1) Objectivity (frame-indifference). This condition states that the scalar strain-energy function is unaffected by a
superimposed rigid-body transformation, which involves a change of position after deformation. As the nematic
director n is defined with respect to the deformed configuration, it transforms when this configuration is rotated,
whereas the nematic director n0 for the reference configuration does not.

(C2) Isotropy. This property requires that the strain-energy function is unaffected by a rigid-body transformation prior
to deformation. As n is defined with respect to the deformed configuration, it does not change when the reference
configuration is rotated, whereas n0 does.

These fundamental assumptions underpin also the finite elasticity and liquid crystal theories [2, 14].
In particular, the following two-term strain-energy function is considered,

W(lce) = μ1

2n2

(
λ2n1 + λ2n2 + λ2n3

)
+ μ2

2m2

(
α2m
1 + α2m

2 + α2m
3

)
, (1)

where μ1, μ2 > 0 and m, n are given parameters, with μ = μ1 + μ2 representing the shear modulus at infinitesimal strain,
{λ21, λ22, λ23} denote the eigenvalues of the Cauchy-Green tensor FFT , where F is the deformation gradient from the reference
cross-linking state, satisfying detF = 1, and {α2

1, α
2
2, α

2
3} are the eigenvalues of AAT , where A = G−1FG0 is the local

elastic deformation tensor, such that detA = 1, with G0 and G representing the ‘natural’ deformation tensors due to the
liquid crystal director in the reference and current configuration, respectively.

Given an intrinsically uniaxial LCE, the natural gradient tensor takes the form [7],

G = a−1/6I +
(
a1/3 − a−1/6

)
n ⊗ n, (2)

where n is the nematic director, ⊗ denotes the tensor product of two vectors, I = diag(1, 1, 1) is the second order identity
tensor, and

a = 1 + 2Q

1 − Q
(3)

represents the anisotropy parameter, with Q the uniaxial scalar order parameter. In the reference configuration,G is replaced
by G0, with n0 instead of n, a0 instead of a, and Q0 instead of Q.

The model function defined by equation (1) can be regarded as a slight generalisation of the strain-energy density
proposed in [7] where m = −n. Similar but more general models were introduced and analysed in [6]. In addition, here, it
is assumed that the shear modulus μ follows a Gamma probability density function (see Appendix A for details), while m, n

are deterministic constants.
For the LCE sample, in a Cartesian system of coordinates (X1, X2, X3), we designate the plane formed by the first

two directions as the sample’s plane and the third direction as its thickness direction. The LCE is elastically deformed by
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application of a tensile force in the first (longitudinal) direction, while the nematic director is initially along the second
(transverse) direction.

Setting the nematic director in the reference and current configuration, respectively, as follows,

n0 =
⎡
⎣
0
1
0

⎤
⎦ , n =

⎡
⎣

sin θ

cos θ

0

⎤
⎦ , (4)

where θ ∈ [0, π/2] is the angle between n and n0, the deformation gradient takes the form

F = diag (λ1, λ2, λ3) , (5)

such that detF = λ1λ2λ3 = 1.
Assuming that the rotation of the nematic director within the plane formed by its initial orientation and the applied force

from θ = 0 to θ = π/2 happens suddenly [6, 7], we denote by λcrt the longitudinal stretch ratio λ1 where the rotation
occurs. In practice, although the angle θ may take intermediate values between 0 and π/2, the deformation interval for which
the director rotation is observed can be very short, and its separate analysis will be omitted.

When the director for the reference and current configuration are given by (4), the associated natural deformation tensors
are, respectively,

G0 = diag
(
a

−1/6
0 , a

1/3
0 , a

−1/6
0

)
(6)

and

G =
⎡
⎣

a−1/6 + (
a1/3 − a−1/6

)
sin2 θ

(
a1/3 − a−1/6

)
sin θ cos θ 0(

a1/3 − a−1/6
)
sin θ cos θ a−1/6 + (

a1/3 − a−1/6
)
cos2 θ 0

0 0 a−1/6

⎤
⎦ . (7)

The elastic deformation tensor A = G−1FG0 is then equal to

A =
⎡
⎢⎣

λ1a
−1/6
0

(
a−1/3 sin2 θ + a1/6 cos2 θ

)
λ2a

1/3
0

(
a−1/3 − a1/6

)
sin θ cos θ 0

λ1a
−1/6
0

(
a−1/3 − a1/6

)
sin θ cos θ λ2a

1/3
0

(
a1/6 sin2 θ + a−1/3 cos2 θ

)
0

0 0 λ3a
−1/6
0 a1/6

⎤
⎥⎦ . (8)

In particular:

• If θ = 0, then

G = diag
(
a−1/6, a1/3, a−1/6

)
; (9)

• If θ = π/2, then

G = diag
(
a1/3, a−1/6, a−1/6

)
(10)

For the corresponding elastic Cauchy-Green tensor AT A = diag
(
α2
1, α

2
2, α

2
3

)
, where “T ” denotes the transpose (see also

[6]), we have:

• If θ = 0, then

α2
1 = λ21a

−1/6
0 a1/6, α2

2 = λ22a
1/3
0 a−1/3, α2

3 = λ23a
−1/6
0 a1/6; (11)

• If θ = π/2, then

α2
1 = λ21a

−1/6
0 a−1/3, α2

2 = λ22a
1/3
0 a1/6, α2

3 = λ23a
−1/6
0 a1/6. (12)

Under the uniaxial deformation considered here, the second and third directions must be stress free. Then the
corresponding principal Cauchy stresses, defined by

T
(lce)
i = ∂W(lce)

∂λi

λi − p, i = 1, 2, 3, (13)
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with p denoting the usual Lagrange multiplier for the incompressibility constraint, take the form

T
(lce)
i = μ1

n

(
λ2ni − λ2n2

)
+ μ2

m

(
α2m

i − α2m
2

)

= μ1

n

(
λ2ni − λ2n3

)
+ μ2

m

(
α2m

i − α2m
3

)
, i = 1, 2, 3. (14)

The associated first Piola-Kirchhoff stresses are equal to

P
(lce)
i = T

(lce)
i λ−1

i , i = 1, 2, 3. (15)

Taking λ1 = λ, we solve for λ2 the equation

T
(lce)
2 − T

(lce)
3 = 0. (16)

To capture the auxetic response while maintaining the continuum mechanics formulation tractable, we let the uniaxial
scalar parameter Q > 0 decrease linearly with respect to the longitudinal stretch ratio λ from a given value Q0 ∈ (0, 1), at
λ = 1, to a minimum value Qcrt ∈ (0, Q0) that occurs at the critical stretch ratio λ = λcrt , then increase again, also linearly,
to a value Q1 ∈ (Qcrt , Q0), i.e.,

Q(λ) =
{

C1λ + D1 for 1 ≤ λ ≤ λcrt ,

C2λ + D2 for λcrt ≤ λ ≤ λmax,
(17)

such that Q(1) = Q0, Q(λcrt ) = Qcrt and Q(λmax) = Q1. Hence, C1 = (Q0 − Qcrt )/(1 − λcrt ), D1 = (Qcrt −
λcrtQ0)/(1 − λcrt ), C2 = (Qcrt − Q1)/(λcrt − λmax), D2 = (λcrtQ1 − λmaxQcrt )/(λcrt − λmax).

When a is given by (3) and Q = Q(λ) is described by (17) , the energy function is equal to

w(λ, θ) = W(lce)(λ1, λ2, λ3, a, θ), (18)

where W(lce)(λ1, λ2, λ3, a, θ) = W(lce) is defined by equation (1).
Solving the equation

w(λ, 0) = w(λ, π/2) (19)

gives the critical stretch ratio λ = λcrt .

3 Numerical example

To illustrate the mechanical behaviour predicted by the theoretical LCE model, in the numerical example, we set n = 1 and
m = −1, and obtain:

• If θ = 0, then

λ2 = λ2(λ, a) = 1√
λ

(
μ1 + μ2λ

2a
−2/3
0 a2/3

μ1 + μ2λ2a
1/3
0 a−1/3

)1/4

(20)

and

λ3 = 1

λ1λ2
= 1√

λ

(
μ1 + μ2λ

2a
1/3
0 a−1/3

μ1 + μ2λ2a
−2/3
0 a2/3

)1/4

; (21)

• If θ = π/2, then

λ2 = λ2(λ, a) = 1√
λ

(
μ1 + μ2λ

2a
−2/3
0 a−1/3

μ1 + μ2λ2a
1/3
0 a−1/3

)1/4

(22)

Table 1 Cat skin experimental values for stretch ratio λ3 in the thickness direction vs. stretch ratio λ1 in the longitudinal direction [15]

λ1 1.0000 1.2000 1.4000 1.5000 1.6000 1.7000 1.8000 1.8933 1.9400 2.0000 2.0667

λ3 1.0000 1.0300 1.0500 1.0633 1.0833 1.1300 1.1533 1.1667 1.2033 1.2000 1.1833
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Fig. 1 (a) Computed transverse stretch ratio λ2 and thickness stretch ratio λ3 for the LCE model, and the associated experimental values for the
deformation of cat skin under uniaxial tensile load, and (b) the scalar uniaxial order parameter Q, respectively. The vertical lines correspond to
the predicted longitudinal stretch ratio λ1 = λcrt where the director rotates suddenly. The dashed lines indicate mean values

and

λ3 = 1

λ1λ2
= 1√

λ

(
μ1 + μ2λ

2a
1/3
0 a−1/3

μ1 + μ2λ2a
−2/3
0 a−1/3

)1/4

. (23)

We further assume that μ follows a Gamma probability distribution with shape and scale parameters ρ1 = 190 and
ρ2 = 0.01, respectively, while μ1 follows a Beta distribution with hyperparameters ξ1 = 90 and ξ2 = 100. The mean values
of the model parameters are then μ = ρ1ρ2 = 1.9, μ

1
= μξ1/(ξ1 + ξ2) = 0.9, and μ

2
= μ − μ

1
= 1. These mean values

were calibrated to the experimental data for cat skin displayed in Table 1. Note that, under the incompressibility assumption,
which is valid for LCEs, and considered acceptable for cat skin in [15], λ2 = 1/(λ1λ3). Therefore, the behaviour of λ2 can
be calculated from the data for λ3 as a function of λ1. We also find Q0 = 0.85, Qcrt = 0.001 and Q1 = 0.1.

In Fig. 1(a), the auxetic response, showing how the stretch ratio corresponding to the thickness direction first increases
then decreases, is captured. In the plots, as λ3 records a change of monotonicity at λ1 = λcrt , a slight change in the gradient
of λ2 can also be observed, although this stretch ratio continues to decrease as λ1 increases. Figure 1(b) depicts the associated
deformation dependent uniaxial parameter Q given by equation (17). The energy function described by equation (18) is
illustrated in Fig. 2(a). The corresponding first Piola-Kirchhoff stress defined by equation (15) is plotted in Fig. 2(b). The
computer simulations were run in Matlab 2022a where inbuilt functions for random number generation were used.

4 Conclusion

Biomimetic materials are continuously sought in research fields such as biomedical engineering and regenerative medicine
[1, 3]. This paper presents a hypothetical LCE model that mimics the unusual elastic response of cat skin examined
experimentally and modelled within the theoretical framework of isotropic finite elasticity in [15]. Specifically, when a
material sample is extended longitudinally, assuming that its volume is preserved, its thickness increases until a critical
deformation is reached, then decreases. The hypothetical model suggests that LCEs could also be produced that exhibit

Fig. 2 (a) Energy function and
(b) computed first
Piola-Kirchhoff stress (in MPa),
respectively. The vertical lines
correspond to the predicted
longitudinal stretch ratio
λ1 = λcrt where the director
rotates suddenly. The dashed
lines indicate mean values
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such auxetic response, both under the small and large strain regimes. The present study may also reignite interest in the
extraordinary mechanical behaviour of cat skin, which has been less investigated and discussed than other skin tissue
types [4].

Appendix A: Stochastic model parameters

For the stochastic modelling of nematic LCEs adopted in this paper, the following hypotheses are required [5, Chapter 6]:
For any given finite deformation, at any point in the material, the shear modulus μ > 0 and its inverse, 1/μ, are second
order random variables, i.e., they have finite mean value and finite variance. This assumption is guaranteed by setting the
following mathematical expectations:

{
E [μ] = μ > 0,
E

[
log μ

] = ν, such that|ν| < +∞.
(A.1)

The first constraint in (A.1) specifies the mean value for the random shear modulus μ, and the second constraint provides a
condition from which it follows that 1/μ is a second order random variable. By the maximum entropy principle, the shear
modulus μ with mean value μ and standard deviation ‖μ‖ = √

Var[μ] (which is equal to the square root of the variance,
Var[μ]) follows a Gamma probability distribution with shape and scale parameters ρ1 > 0 and ρ2 > 0, respectively, such
that

μ = ρ1ρ2, ‖μ‖ = √
ρ1ρ2. (A.2)

The resulting probability density function takes the form

g(μ; ρ1, ρ2) = μρ1−1e−μ/ρ2

ρ
ρ1
2 
(ρ1)

, for μ > 0 and ρ1, ρ2 > 0, (A.3)

where 
 : R∗+ → R is the complete Gamma function


(z) =
∫ +∞

0
tz−1e−tdt . (A.4)

The word ‘hyperparameters’ is used for ρ1 and ρ2 to distinguish them from μ and other material constants.
When μ = μ1 + μ2, assuming μi > 0, i = 1, 2, we define the auxiliary random variable

R1 = μ1

μ
, (A.5)

such that 0 < R1 < 1. Then, the random model parameters can be expressed equivalently as follows,

μ1 = R1μ, μ2 = μ − μ1 = (1 − R1)μ. (A.6)

It is reasonable to assume{
E

[
log R1

] = ν1, such that|ν1| < +∞,

E
[
log(1 − R1)

] = ν2, such that|ν2| < +∞,
(A.7)

in which case, the random variable R1 follows a standard Beta distribution, with hyperparameters ξ1 > 0 and ξ2 > 0
satisfying

R1 = ξ1

ξ1 + ξ2
, Var[R1] = ξ1ξ2

(ξ1 + ξ2)
2 (ξ1 + ξ2 + 1)

, (A.8)

where R1 is the mean value and Var[R1] is the variance of R1. The associated probability density function is

β(r; ξ1, ξ2) = rξ1−1(1 − r)ξ2−1

B(ξ1, ξ2)
, for r ∈ (0, 1) and ξ1, ξ2 > 0, (A.9)

where B : R∗+ × R
∗+ → R is the Beta function

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt . (A.10)



A theoretical liquid crystal elastomer model... Page 7 of 7     4 

For the random coefficients given by (A.6), the corresponding mean values are

μ
1

= R1μ, μ
2

= μ − μ
1

= (1 − R1)μ, (A.11)

and the variances and covariance take the form, respectively,

Var [μ1] = (μ − 2b)2Var[R1] + (R1)
2Var[μ] + Var[μ]Var[R1], (A.12)

Var [μ2] = (μ − 2b)2Var[R1] + (1 − R1)
2Var[μ] + Var[μ]Var[R1], (A.13)

Cov[μ1, μ2] = 1

2
(Var[μ] − Var[μ1] − Var[μ2]) . (A.14)
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