
Publishers page: http://dx.doi.org/10.1016/j.fuel.2023.128475
<http://dx.doi.org/10.1016/j.fuel.2023.128475>

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Synergistic effects of nanosecond plasma discharge and hydrogen on ammonia combustion

Mohammad Shahsavari a, *, Alexander A. Konnov b, Xue-Song Bai c, Agustin Valera-Medina d, Tie Li e, Mehdi Jangi a

a Department of Mechanical Engineering, University of Birmingham, United Kingdom
b Division of Combustion Physics, Department of Physics, Lund University, Sweden
c Division of Fluid Mechanics, Department of Energy Science, Lund University, Sweden
d College of Physical Science and Engineering, Cardiff University, United Kingdom
e Institute of Power Plants and Automation, Shanghai Jiao Tong University, PR China

ARTICLE INFO
Keywords:
Ammonia/hydrogen combustion
Plasma-assisted combustion
Nanosecond-pulsed plasma discharge

ABSTRACT
Synergistic effects of nanosecond plasma discharge and hydrogen on the combustion characteristics of ammonia/air are numerically studied under conditions relevant to gas turbine combustion chambers. It is shown that increasing the plasma contribution in assisting the flame results in lower NOX emissions by up to 27% than those in flames assisted by hydrogen for the range of operating conditions considered in this study. Plasma makes the consumption speed of the reactants less prone to the strain rate than that in flames assisted by hydrogen. It is found that discharging plasma with the pulse energy density of 9 mJ/cm3 alongside using 12% hydrogen by volume in the fuel increases the flame speed of ammonia/air to those of conventional fossil fuels such as methane—an improvement that is not achievable by just using hydrogen, even at a high concentration of 30%. Furthermore, raising the pulse energy density beyond a specific value broadens the reaction zones by generating radical pools in the flame preheating zone, which is expedited in fuel-rich conditions with high H2 fuel fractions. Investigations show that the simultaneous utilization of high-energy plasma and hydrogen reduces the NOX emissions by activating the mechanisms of nitrogen oxide denitrification (DeNOX) in preheating and post-flame zones, being more significant under the lean condition as compared with rich and stoichiometric cases. It is shown that increasing mixture pressure significantly deteriorates the impacts of plasma on combustion. Such unfavorable effects are weakly controlled by changes in the reduced electric field caused by pressure augmentations.

1. Introduction
Hydrogen carriers have become a viable source of energy in the face of increasingly stringent environmental legislation enacted to reduce greenhouse gas emissions. Unfortunately, utilizing some of these energy carriers, e.g., pure hydrogen, on an industrial scale is burdened with strenuous and expensive production, storage, and transportation technologies. Ammonia is known as one of the promising alternatives at hand, thanks to its well-established mass production and utilization as a fertilizer in agricultural sectors [1]. Nevertheless, the direct combustion of pure ammonia in conventional combustors is dismayed by its relatively lower reactivity than that of typical hydrocarbon fuels [2].

Co-burning ammonia with highly reactive fuels is considered a practical method to enhance the reactivity of ammonia [3–8]. However, utilizing ammonia as a dual fuel or a blend mixed with other hydrocarbon fuels compromises the advantages of ammonia as a carbon-free fuel since a considerable amount of hydrocarbon fuels is needed to stabilize ammonia flames [9]. Hydrogen is one of the best carbon-free additives to enhance ammonia combustion thanks to its substantial reactivity [10,11]. Extensive valuable studies have addressed this topic in the literature [12–17], which showed that a noticeable volume fraction of hydrogen in the blend, e.g., 20–50%, is required to burn ammonia in engines properly [14]. Wiseman et al. showed that a mixture comprised of 45% of H2 by volume in NH3/N2 considerably reduces the susceptibility of the flame to blow out due to the fast preferential diffusion of hydrogen into the preheating layer [11]. Nevertheless,
increasing the hydrogen volume fraction in the range of 0–30% in fuel-lean mixtures substantially increases the NOx emissions [13,14], which would be due to a larger quantity of OH radicals in the NH₃/H₂ flames compared with that of pure ammonia flames [18,19]. Burning NH₃/H₂ blends under very lean conditions may result in thermoacoustic instabilities, flame instabilities, and noticeable NO and N₂O emissions [13,20,21], while burning fuel-rich mixtures results in incomplete combustion [13]. Therefore, co-burning ammonia with hydrogen is a trade-off between combustion stability and pollutant emissions. Preheating the fresh mixture is another method for assisting ammonia flames [22,23]. However, NH₃/Air mixtures must be preheated by a few hundred degrees Kelvin to stabilize the flame and prevent incomplete combustion [22,23].

Plasma is a promising method to assist combustion [24,25]. A commendable number of investigations have been carried out to elucidate the impacts of plasma on combustion by focusing on widely used fuels, e.g., CH₄ [26–28] and H₂ [29–33]. These investigations showed that plasma could assist combustion by accelerating fuel dissociation [26], increasing radical pools [30], and raising the mixture temperature [31]. Recently, this novel method has been applied to ammonia combustion. Faingold et al. [34,35] utilized zero-dimensional simulations to evaluate the impact of nanosecond plasma discharge (NSD) on the ignition delay time (IDT) of ammonia. They showed that the required number of pulses and plasma repetition frequency to substantially assist ammonia ignition are highly dependent on the initial mixture temperature [34]. Taneja et al. numerically studied plasma-assisted ammonia combustion [36]. They indicated that ignition delay time drops proportionally by raising the pulse frequency and energy density per pulse. They also showed that pressure-dependent recombination reactions delay the ignition by reducing the reactive radicals at high-pressure conditions [36]. In a brief communication, Choe et al. reported that NSDs could improve the lean blowout limit and reduce NOx emissions in NH₃/Air flames [37]. Similar findings have also been reported by Lin et al. [38], Kim et al. [39], and Tang et al. [40] for a range of NH₃/Air flames assisted by high-energy gliding arc plasma, dielectric barrier discharges, and AC powered gliding arc discharges, respectively. Our recent study showed that NOx emissions in plasma-assisted ammonia flames change non-monotonically with the level of pulse energy density, E_p [41]. NOx emissions noticeably increase by discharging low-energy NSDs in ammonia flames. Increasing E_p beyond a specific value, e.g., 17 mJ/cm² for NH₃/O₂/N₂ with an equivalence ratio of 0.8 and an initial fresh mixture temperature of 850 K, accelerates the NO consumption rate [41], which would finally result in considerable NOx reduction at very high pulse energy densities. Our investigations also showed that increasing the plasma energy alters the preheat zone of ammonia flames toward the flameless mode of combustion [41].

Utilizing plasma and hydrogen is known as the best assessment for ammonia combustion to date. The above-mentioned studies have shown that each of these methods can enhance the IDT and flame speed (S_f) of ammonia. Nevertheless, there is no data publicly available in the literature comparing these methods in assisting ammonia combustion. Besides, to the best of the authors’ knowledge, the synergistic effects of plasma and hydrogen on ammonia combustion have not been addressed in the literature. By using numerical simulations, the main objectives of the present paper are to compare plasma and hydrogen and to evaluate the synergistic effects of these methods on the characteristics of ammonia flames, e.g., IDT, S_f, flame thickness (FT), extinction strain rate (κ_e), and NOx emissions.

2. Numerical method and settings

2.1. Numerical solver

Non-equilibrium plasma-assisted combustion was modeled by coupling the open-source Boltzmann equation solver, ZDPlaskin [42], with Cantera [43] codes. The former solves the chemical reaction during the plasma discharge, while the latter codes integrate the ODEs of thermal reactions. This two-way coupling was set up to resolve plasma-combustion interactions accurately. This methodology is computationally affordable in zero- and one-dimensional simulations. However, utilizing this two-way coupling in three-dimensional CFD simulations would require mapping the chemical kinetic mechanisms to a lower dimensional thermodynamic space to speed up the numerical integration of the chemical reaction rates [44,45]. Here, IDT was calculated in an adiabatic constant-volume reactor coupled with ZDPlaskin (Fig. 1 (a)). As schematically shown in Fig. 1 (b), to obtain laminar premixed flame characteristics, i.e., S_f, FT, κ_e, and pollutant emissions, the fresh mixture is first stimulated by 20 NSDs in an adiabatic constant-pressure reactor in Cantera coupled with ZDPlaskin. Here, the number of pulses was selected based on the typical flow residence time between plasma dielectrics. Furthermore, plasma is discharged upstream of the flame in the fresh reactant, an effective location to assist a premixed flame [46]. Then, the stimulated mixture from the constant-pressure reactor was used as the reactants for the one-dimensional freely-propagating flame and twin premixed flame models to simulate unstrained and strained premixed flames, respectively. In Fig. 1, T is temperature, $[X]$ is species molar concentration, P is pressure, V is volume, and the subscript “v” shows reactant specifications in one-dimensional freely propagating flame and twin premixed flame models. The plasma discharge was modeled by a square-shaped wave, as shown in Fig. 2. The integration time steps were specified by using an adaptive temporal refining method to accurately resolve reactions with a broad range of timescales, from picosecond electron impact reactions to microsecond thermal reactions. A schematic of the adaptive method can be found in Fig. 2.

2.2. Kinetic models

The kinetics of ammonia/hydrogen oxidation was modeled by using the mechanisms developed by Han et al. [47,48]. These kinetic models include reactions of excited species, such as O2(a1Δg) and O(1D) [49]. The previous study by Gotama et al. [10] showed that the mechanism published in [47] can accurately predict the laminar burning velocity of NH₃/H₂/air mixtures for the range of equivalence ratios, i.e., 0.8 $<$ ϕ $<$ 1.3 and 0.8 $<$ ϕ $<$ 1.05, at p = 1 and 5 bar, respectively. Our previous studies also showed this mechanism precisely predicts the ignition delay time of ammonia/air [41]. However, as it can be found from the details presented in the Supplementary Materials (Fig. S1), the latest version of the Han et al. mechanism [48] predicts the extinction strain rates of ammonia/air more accurately than the one published in [47]. Therefore, the latest version of the Han et al. mechanism [48] is used here to study the effects of plasma discharge on extinction strain rates, while other flame properties were obtained by utilizing the mechanism provided in [47].

Here, a plasma kinetic mechanism was developed by combining the mechanism presented by Faingold et al. for NH₃/O₂/He [34] with the plasma reactions for N₂ and H₂ from the study of Zhong et al. [50] and Mao et al. [51], respectively. The electron-species collision cross-sections were obtained from the LXCat database [52]. The developed plasma kinetic model comprises 790 elementary reactions, including excitations, ionizations, quenching, recombination, charge exchanges, and neutral state reactions for NH₃/H₂/O₂/N₂ mixtures. Kinetic models and the utilized collision cross-sections can be found in the Supplementary Materials.

2.3. Modeling parameters

In this study, equivalence ratio, ϕ, and pressure, p, were varied in the range of 0.8–1.2 and 1–5 atm, respectively. The initial mixture temperature, T_{ini}, was kept constant at 850 K, at which the ammonia oxidation rate is considerably slow and weak without using plasma or hydrogen [41,53]. To compare the effects of NSD and hydrogen with those of pure preheating on ammonia combustion, characteristics of
studies showed that NSDs have the most pronounced effects on the combustion characteristics of ammonia/air when the reduced electric field is set at 350 Td [41]. For plasma-assisted pressurized mixtures, plasma settings were set based on N, i.e., the electric field constant, E/N, was calculated based on the specified E/N and calculated N. Simulations were also performed by keeping E constant, in which E/N was updated during each iteration based on N. The pulse energy density, E_p, was varied in the range of $0–10$ mJ/cm2 to study the effects of pulse energy on plasma-assisted combustion. The utilized E_p values are in the range of the ones used in the literature [26,32,34,38,50,57–59], for which the number density of electrons is always less than 10^5 cm$^{-3}$ while the electron temperature is 5 eV. This indicates that the plasma is in the non-thermal (cold) phase [60]. Here, an adaptive pulse width, w, was used to ensure that the specified E_p was released during each pulse.

3. Validations

Despite the valuable investigations that delved into ammonia combustion in the past, no experimental data are available in the literature about the time history of species mole fractions or temperature for plasma-assisted ammonia combustion. In this light, the present numerical solver was first validated against Faingold et al. numerical results on plasma-assisted NH$_3$/He/O$_2$ ignition at $\phi = 1$ and $p = 1$ atm [34]. These validation results were also presented in our previous study on plasma-assisted ammonia combustion [41]. Comparisons presented in Fig. 2 show that the present numerical results are in good agreement with those of reference [34]. However, the OH mole fraction during the pulses and in the post-plasma phase, i.e., time >0.1 ms, obtained here, is lower than that reported in the reference. Such discrepancies are not due to the numerical resolutions, as efforts were made in the present study to obtain temporal resolution-independent results by varying the time step size, Δt, as can be seen in Fig. 2. It should be noted that the details of the numerical method and initial conditions are not provided in reference [34]. Thus, the discrepancies could be attributed to the use of different initial conditions. In the present study, the initial number density of electrons was set at 1 cm$^{-3}$, while other radicals, charged and electronically excited species, were set to zero at the initial conditions.

Further model validations were carried out by reproducing the experimental data obtained by Lefkowitz et al. on plasma-assisted CH$_4$/O$_2$/He mixtures with 75% dilution [60]. To such an aim, the plasma kinetic mechanism developed by Mao et al. comprised of 629 reactions, was used [28]. Fig. 3 shows the temporal distribution of temperature during and after 300 NSDs with the $PPR = 30$ kHz and $E/N = 180$ Td in a constant-volume reactor. The initial mixture temperature and pressure are 300 K and 60 Torr, respectively. Here, a similar heat loss term as that used in reference [61] was added to the energy equation to include the conduction heat transfer to the dielectrics. The uncertainty of the experimental data reported by Lefkowitz et al. [61] is also shown in Fig. 3. Simulations were carried out with different Δt values to achieve...
temporal resolution-independent results, as can be seen in Fig. 3. The results show that the present numerical platform can well reproduce experimental data on plasma-assisted combustion.

4. Results and discussions

4.1. Effects of NSD and H₂ on ammonia combustion

Fig. 4 shows the IDT of ammonia/hydrogen/air as a function of X_{H_2} and E_p, colored by the required preheat temperature (ΔT) to achieve the same level of enhancements in IDT without using NSD or hydrogen. It should be mentioned that 290 cases were simulated by varying X_{H_2} and E_p values to obtain the results presented in Figs. 4–6, 10 and 11 by keeping the other plasma settings, including E/N, number of pulses, and PRF, constant. The ignition delay time of methane/air at an identical initial condition, i.e., $\phi = 1$, $T_{in} = 850$ K, and $p = 1$ atm, calculated by utilizing GRI-Mech 3.0 mechanism [62], is also shown for reference. The dashed line in Fig. 4 shows all the possible values of X_{H_2} and E_p, using which the IDT of ammonia/air increases to the methane/air counterpart.

The results show that either only 1.7% of X_{H_2} or 20 NSDs with $E_p = 0.45$ mJ/cm3 is needed to reduce the IDT of ammonia/air from 49.3 s to the methane/air counterpart, i.e., 9.6 s. The same enhancement in IDT is achievable by preheating the NH$_3$/air mixture by $\Delta T = 71$ K. To compare plasma-assisted combustion with preheating in terms of energy consumption, the required energy by each of these methods to reduce IDT of ammonia from 49.3 s to 9.6 s was calculated. It is found that plasma and preheating require 24 and 89 kJ/kg of the stoichiometric NH$_3$/O$_2$/N$_2$ mixture, respectively. This shows that using plasma is considerably cheaper than preheating the mixture to elevate the reactivity of ammonia. Fig. 4 also indicates that adding 4% hydrogen by volume to the fuel decreases the ignition delay time of ammonia by ten times, which is equivalent to preheating the NH$_3$/air mixture by $\Delta T = 146$ K.

Contrary to IDT, considerably higher E_p and X_{H_2} values are needed to 0.45 mJ/cm3 is needed to reduce the IDT of ammonia/air from 49.3 s to the methane/air counterpart, i.e., 9.6 s. The same enhancement in IDT is achievable by preheating the NH$_3$/air mixture by $\Delta T = 71$ K. To compare plasma-assisted combustion with preheating in terms of energy consumption, the required energy by each of these methods to reduce IDT of ammonia from 49.3 s to 9.6 s was calculated. It is found that plasma and preheating require 24 and 89 kJ/kg of the stoichiometric NH$_3$/O$_2$/N$_2$ mixture, respectively. This shows that using plasma is considerably cheaper than preheating the mixture to elevate the reactivity of ammonia. Fig. 4 also indicates that adding 4% hydrogen by volume to the fuel decreases the ignition delay time of ammonia by ten times, which is equivalent to preheating the NH$_3$/air mixture by $\Delta T = 146$ K.

This result is in line with previously reported experimental data on the effects of hydrogen on ammonia ignition delay time [63,64]. Fig. 4 also shows that utilizing both plasma discharge and hydrogen simultaneously reduces the required X_{H_2} or E_p to achieve a target IDT. For instance, discharging 20 NSDs with $E_p = 0.2$ mJ/cm3 and $X_{\text{H}_2} = 0.7$% is adequate to reduce the IDT of ammonia/air from 61.8 s to 9.6 s.

Contrary to IDT, considerably higher E_p and X_{H_2} values are needed to...
noticeably increase the ammonia/air laminar flame speed. Fig. 5 shows the SL of unstrained ammonia/hydrogen/air as a function of X\textsubscript{H2} and E\textsubscript{p} colored by the required preheat temperature to achieve the same level of enhancements in SL without using NSD or hydrogen. The flame speed of methane/air at a similar initial condition is also shown for reference. The results show that even very high X\textsubscript{H2} values, e.g., 35%, or 20 plasma pulses with E\textsubscript{p} = 11 mJ/cm3, are not solely enough to raise the ammonia/air flame speed to the methane/air counterpart. However, the dashed line drawn in Fig. 5 shows that combinations of plasma discharge and H\textsubscript{2} addition augment the SL of ammonia to that of methane/air. Using 20 plasma pulses with E\textsubscript{p} = 9 mJ/cm3 and X\textsubscript{H2} = 12% or E\textsubscript{p} = 7 mJ/cm3 and X\textsubscript{H2} = 21% raises the SL of ammonia/air from 0.88 m/s to 2.7 m/s, the methane/air flame speed. This enhancement can also be achieved by preheating the NH\textsubscript{3}/air mixture by ΔT = 379 K.

Despite the advantage of using the above methods to assist ammonia reactivity, NO\textsubscript{X} emissions calculated downstream of the flame, plotted in Fig. 6, show that both high-energy NSDs and H\textsubscript{2} addition aggravate the level of NO\textsubscript{X} emissions, being more pronounced at high X\textsubscript{H2} values. Comparing the NO\textsubscript{X} emissions in ammonia flames assisted by plasma and hydrogen to achieve the same level of enhancements in the flame speed, shown in Fig. 5, indicates that using plasma results in lower NO\textsubscript{X} emissions than that in ammonia flames assisted by H\textsubscript{2}. For instance, either using 20 NSDs with E\textsubscript{p} = 9 mJ/cm3 or X\textsubscript{H2} = 33.7% raises ammonia flame speed from 0.88 m/s to 2 m/s. It can be found from Fig. 6 that NO\textsubscript{X} emissions are 3675, 4350, and 5537 ppm in the pure ammonia flame without NSD, pure ammonia flame assisted by 20 NSDs with E\textsubscript{p} = 9 mJ/cm3, and a blend of ammonia and hydrogen flame with X\textsubscript{H2} = 33.7%, respectively. Accordingly, assisting the flame with NSDs

<table>
<thead>
<tr>
<th>Reaction</th>
<th>NO</th>
<th>NH\textsubscript{3}+</th>
<th>H\textsubscript{2}+</th>
<th>OH+</th>
<th>NH\textsubscript{3}+</th>
<th>OH+</th>
<th>H\textsubscript{2}+</th>
<th>O(D)+</th>
<th>O+</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNO+NH\textsubscript{2}</td>
<td>17</td>
<td>45</td>
<td>4.8</td>
<td>3.9</td>
<td>3.6</td>
<td>3.3</td>
<td>10.3</td>
<td>3.4</td>
<td>0.0</td>
</tr>
<tr>
<td>HNO+H\textsubscript{2}</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>NH\textsubscript{3}+H\textsubscript{2}</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

Fig. 7. Production and consumption rates (mol/m3s) of NO during the plasma (dashed-arrows) and thermal (arrows) phases in plasma-assisted NH\textsubscript{3}/H\textsubscript{2}/air combustion with E\textsubscript{p} = 3 mJ/cm3 and X\textsubscript{H2} = 34.5% (PAAC1-blue) and E\textsubscript{p} = 9 mJ/cm3 and X\textsubscript{H2} = 12% (PAAC1-red) for ϕ = 1 and p = 1 atm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Percentage of production and consumption of selected species during the plasma phase in NH\textsubscript{3}/H\textsubscript{2}/air mixtures as a function of X\textsubscript{H2} for ϕ = 1, p = 1 atm, and E\textsubscript{p} = 5 mJ/cm3.

Fig. 9. Path flux of production and consumption of OH in plasma (dash lines) and thermal (lines) phases in NH\textsubscript{3}/H\textsubscript{2}/air mixtures as a function of X\textsubscript{H2} for ϕ = 1, p = 1 atm, and E\textsubscript{p} = 5 mJ/cm3.

Fig. 10. Laminar flame thickness of NH\textsubscript{3}/H\textsubscript{2}/air colored by radical pool upstream of the flames as a function of X\textsubscript{H2} and E\textsubscript{p} for ϕ = 1 and p = 1 atm.
results in 27% lower NOx emissions than the flame assisted by hydrogen for the above specific enhancement in the flame speed.

Above, two cases are compared to further evaluate the impacts of H2 and NSDs on NOx emissions of ammonia flames. In PAAC1, the flame is assisted more by H2 rather than plasma, in which X_{H2} and E_p are 34.5% and 3 mJ/cm², respectively. In the second case (PAAC2), the mixture comprised 12% of H2 assisted by plasma pulses with $E_p = 9$ mJ/cm². Both cases increase the flame speed of ammonia/air from 0.88 m/s to 2.7 m/s. Fig. 7 shows the rates of production (RoP) and consumption (RoC) of NO over 20 plasma pulses for PAAC1 and PAAC2. In Fig. 7, reactions during the thermal and plasma phases are shown by arrows and dashed arrows, respectively. Here, the “thermal phase” denotes the simulation results between the pulses, while the “plasma phase” indicates the results over the pulse width. It can be noted that HNO plays a crucial role in NO formation in both cases. As expected, replacing NH3 with H2 encourages HNO to react with H rather than NH2 to generate NO. Moreover, the plasma phase accounts for <10% of the total NO formation predominantly via, e.g., $N_2(\text{D}) + O_2 \rightarrow O(\text{D}) + NO$ chain branching reaction. In both cases, NO is consumed mostly in NO → NH + H2O reaction, while the RoC of NO via this reaction is higher in PAAC2 since the concentration of NH2 is larger in PAAC2 than in PAAC1. Fig. 7 also indicates that both RoP and RoC of NO considerably increase by magnifying the contribution of the plasma discharge to assist combustion. The overall RoPs of NO are 0.057 and 0.138 kmol/m²s for PAAC1 and PAAC2, while the RoCs of NO in the above cases are 0.084 and 0.217 kmol/m²s, respectively. This shows that the RoP and RoC of NO increase, respectively, by a factor of 2.4 and 2.6 when PAAC1 is used instead of PAAC2. Therefore, the RoC of NO increases more than its RoP when the ammonia flame is assisted more by plasma discharge rather than H2. This reveals why high-energy plasma discharges with low X_{H2} values have superior effects on ammonia combustion in terms of NOx emissions as compared with low-energy plasma discharges with high X_{H2} values. Further investigations are needed to alleviate NOx emissions in ammonia/hydrogen flames assisted by NSDs, e.g., using the staged combustion method [65,66].

To further analyze plasma-assisted ammonia oxidation in the presence of H2, the percentage of production and consumption fluxes of the key radicals and species controlling ammonia oxidation are plotted in Fig. 8 for different X_{H2} values. The fluxes were obtained over 20 NSDs with $E_p = 5$ mJ/cm². Here, for the sake of brevity, only the details of the reaction path fluxes of OH are shown in Fig. 9, while conspicuous details of path flux analyses of other species are summarized as follows. Fig. 8 shows that increasing X_{H2} reduces the plasma contribution in cracking the fuel. In the pure ammonia case, NH3 + OH → NH2 + H2O, O(\text{D}) + NH3 → OH + NH2, and NH3 + O → NH2 + H2O reactions are responsible for 81.6%, 6.5%, and 4.5% dissociation of the fuel, respectively. However, for instance, for $X_{H2} = 30\%$, NH3 + OH → NH2 + H2O and NH3 + O → NH2 + H2O dissociate 87% and 10% of the fuel, while O(\text{D}) + NH3 → OH + NH2 reaction contributes by <2% in NH3 dissociation. As one of the key radicals for NH3 dissociation, O in pure ammonia case is mainly produced during the plasma phase via O2+ + H → OH + O, e + HO2 → e + O + H, e + OH → e + O + H reactions with 33.6%, 19.7%, and 12.6% contributions, respectively, while 12% of O originates from the thermal phase, i.e., from H + O2 → OH + O reaction. Adding H2 to the fuel increases the impact of the thermal phase in producing O, as shown in Fig. 8, e.g., 50.4% of O routes from H + O2 → OH + O when X_{H2} is 30%.

Fig. 8 shows that both plasma and thermal phases account for almost an identical amount of OH production, the other key radical in NH3 dissociation. The percentage contribution of plasma in generating OH is less dependent on X_{H2} than that in generating O radical. Furthermore, Fig. 8 shows that the contribution of the plasma phase in producing OH changes non-monotonically with X_{H2}. This radical in the pure ammonia case is predominantly produced via NH3 + NO → NNH + OH reaction, as shown in Fig. 9. The contribution of this reaction in OH production is overtaken by O2+ + H2 → OH + OH’ and H + O2 → OH + O reactions when the X_{H2} is >2% and 15%, respectively. This can be a manifestation of shifting ammonia oxidation pathways from N-species reactions to the H2/O2 system as the X_{H2} increases. Fig. 9 shows that although OH production via e + HO2 → e + OH + O drops by raising X_{H2}, O2 + H2 → OH + OH’ generates more OH radicals at high X_{H2} values than at low X_{H2}. This indicates why the contribution of plasma in OH production changes non-monotonically by altering X_{H2}. The results also show that NH3 and H2 compete for OH, which is in line with previous studies on NH3/H2 oxidation [10,67]. The key reactions consuming OH, shown in Fig. 9, respond almost linearly to changes in X_{H2}. The slope of the linear curves fitted to OH consumption via H2 + OH → H + H2O, NH3 + OH → NH2 + H2Oe, and e + OH → e + O + H reactions as functions of X_{H2} for 0 < X_{H2} < 30% are ~0.7, 0.5, 0.2, respectively. This shows that H2 competes more with NH3 than e + OH → e + O + H electron impact reaction for OH.

Abrupt changes in the flame speed observed in Fig. 5 would be a symptom of manipulations in the flame’s inner structure, as reported in our previous study on pure ammonia flames assisted by NSDs [41]. Fig. 10 shows the unstrained flame thickness of NH3/H2/O2/N2 assisted by NSDs. The flame thickness is defined as $(T_p - T_b) / \left(\frac{dT}{dX}\right)_{\text{Max}}$, where T_b is the temperature of the burnt gases, T_p is the mixture temperature at the end of the constant-pressure reactor, and $(dT/dX)_{\text{Max}}$ is the maximum temperature gradient through the flame [68]. The result is colored by the radical pool comprising O, OH, H, and HO2 recorded at the inlet of the reactor used to model the one-dimensional freely-propagating flame, i.e., at the end of 20 plasma pulses discharged in the adiabatic constant-pressure reactor.

The results show that unstrained flame thickness decreases either by using NSDs with $E_p < 10$ mJ/cm² or by adding H2 to the mixture. Intriguingly, using NSDs with 4.1 < E_p < 6.8 mJ/cm³ in NH3/H2 blends with high X_{H2} values, e.g., 22 < X_{H2} < 35%, thickens the flame structure. Similar thickenings were observed in our previous investigations for ammonia/air flames assisted by NSDs with considerably higher pulse energy density values, i.e., $E_p > 20$ mJ/cm³ [41]. Interestingly, Fig. 10 reveals that adding H2 to the fuel expedites the thickening process by lowering the required pulse energy density values to establish the thickened flame. At low E_p values, regardless of the X_{H2}, there is a negligible radical pool upstream of the flame. However, the concentration of radicals dramatically rises when both E_p and the X_{H2} values are increased simultaneously. This shows that the flame-thickening process is highly dependent on the radical pool generated by the plasma discharges, which boosts the chemical reactions on the low-temperature side of the flame, broadening the reaction zone.

Besides the unstrained flame characteristics, it is important to eval-

![Fig. 11](image-url)
uate the effects of NSDs on strained flame features. Fig. 11 shows the extinction strain rate (κ_e) of plasma-assisted NH$_3$/H$_2$/air flames. The extinction strain rate of CH$_4$/air flame at a similar thermodynamic condition is shown in Fig. 11 for reference. The results show that using 24.8% of H$_2$ in the fuel alongside NSD with $E_p = 7$ mJ/cm3 raises the extinction strain rate of ammonia/air from 1888 s$^{-1}$ to 14200 s$^{-1}$, the extinction strain rate of CH$_4$/air. The same enhancements in κ_e are achievable by preheating the NH$_3$/air mixture by $\Delta T =$ 585 K. To compare the response of ammonia flames assisted by plasma with those aided by hydrogen to strain, consumption speeds of four flames are plotted in Fig. 12 as functions of the imposed strains. The extinction strain rates of cases with $E_p = 3$ mJ/cm3 & $X_{H2} = 0\%$ and $E_p = 0$ mJ/cm3 & $X_{H2} = 6.6\%$ are 2530 s$^{-1}$, while those for $E_p = 7$ mJ/cm3 & $X_{H2} = 0\%$ and $E_p = 0$ mJ/cm3 & $X_{H2} = 17\%$ are 4190 s$^{-1}$. Linear curves are fitted to the numerical data, and the corresponding slopes are presented in the legend in Fig. 12 to properly compare different cases. It should be noted that the effective Lewis numbers of the selected cases calculated by using the method proposed by Bechtold and Matalon are in the range of 0.96–0.98 [69], which indicates that the selected conditions have nearly the same differential diffusion of heat and mass. Here, the consumption speed is calculated below,

$$CS = \int_{L/2}^{L/2} \frac{\rho b u b}{\rho_b(T_b - T_s)} \, dx$$

where L is the length of the computational domain between two burners, HHR is the volumetric heat release rate, C_p heat capacity at constant pressure, T_s is the temperature of burnt gases, and ρ_b and T_b are the mixture density and temperature at the end of the constant-pressure reactor, respectively.

In Fig. 12, consumption speeds and strain rates are normalized by the corresponding values at the extinction state. The results show that the magnitudes of the slopes are lower when the flame is assisted by plasma rather than by H$_2$, which shows that the consumption speed is less prone to the strain rate value in plasma-assisted ammonia flames than that in ammonia flames assisted by hydrogen for a given enhancement in the extinction strain rate. This is because the heat transfer from the reaction zone to the preheat zone is fast at a high strain rate. When the strain rate is high enough, e.g., above the extinction strain rate, the heat loss from the reaction zone is faster than the heat release in the reaction zone, and as a result, the reactions in the flame are quenched. In plasma-assisted flames, the production of radicals is boosted by plasma discharge, which is not sensitive to local temperature and heat loss from the reaction zone.

4.2. Effects of equivalence ratio on plasma-assisted NH$_3$/H$_2$/air combustion

Fig. 13 shows NO$_X$ emissions from ammonia flames with different equivalence ratios assisted by plasma pulses and hydrogen. NO$_X$ emissions in most cases increase monotonically with E_p and X_{H2} for the present selected plasma settings. Interestingly, the combination of high-energy NSDs, i.e., with $E_p > 6$ mJ/cm3, and high H$_2$ fuel fractions, e.g., $X_{H2} = 30\%$, reduces NO$_X$ emissions of lean ammonia flames. This can be a manifestation of the DeNO$_X$ process. To address this, the NO$_X$ emissions through the flames assisted by NSDs are plotted in Fig. 14. In high-energy plasma cases, NO$_X$ levels are considerably high in the preheating zone. Nevertheless, a portion of this NO$_X$ is consumed in the flame preheating zone, shown by DeNO$_X$ in Fig. 14. The results show that NO$_X$ is also consumed in the post-flames, DeNO$_X$ in Fig. 14, being more noticeable under low-energy plasma discharges for the rich mixture. This is in line with previous investigations by Shmakov et al. in which they showed that DeNO$_X$ is more intense in the post-flame of rich H$_2$/O$_2$/N$_2$/NO/NH$_3$ mixtures than that for lean mixtures [70]. It can be found from Fig. 14 that DeNO$_X$ results in 382 and 271 ppm reduction in NO$_X$ in lean and rich mixtures assisted by plasma discharges with $E_p =$ 9 mJ/cm3, while 90 and 80 ppm of NO$_X$ are consumed by DeNO$_X$ in the lean and rich cases assisted by high-energy plasma discharges, respectively. This shows that both DeNO$_X$ and DeNO$_X$ are more intense in the lean mixture than those in the rich flame assisted by high-energy plasma pulses. This reveals why NO$_X$ emissions drop by discharging high-energy pulses in lean NH$_3$/H$_2$/air flames with $X_{H2} =$ 30%, observed in Fig. 13. It should be mentioned that for all the mixtures, there is a certain value of E_p beyond which further increases in E_p decrease NO$_X$ emissions. For instance, our previous investigations showed that NO$_X$ emissions of NH$_3$/air flames with $\phi = 0.8$ initially at $T_m =$ 850 K and $p =$ 1 atm drop if $E_p >$ 16 mJ/cm3 [41], while Fig. 13 shows that a lower E_p, i.e., 6 mJ/cm3, is needed to reduce NO$_X$ in lean NH$_3$/H$_2$/air flames.

Further analyses were carried out to find the key mechanisms controlling DeNO$_X$ processes in ammonia/hydrogen flames assisted by plasma. Fig. 15 shows the RoP and RoC of NO in NH$_3$/H$_2$/air flames with $X_{H2} =$ 15% and $\phi =$ 0.8 and 1.2 assisted by plasma discharges with $E_p =$ 0.1 and 9 mJ/cm3. The rates were obtained over 20 plasma pulses. The

Fig. 12. Normalized consumption speed as a function of normalized strain rate for NH$_3$/H$_2$/air flames at $\phi =$ 1 and $p =$ 1 atm.

Fig. 13. NO$_X$ emissions of different flames as a function of X_{H2}, E_p, and ϕ for $p =$ 1 atm.
results show that the RoP and RoC of NO are slightly higher in the rich mixture than those in the lean case when the mixtures are stimulated by a low pulse energy density value. In such a condition, the overall RoP of NO is higher than the RoC in both lean and rich mixtures. The overall RoCs of NO are noticeably higher in the lean mixture than the corresponding values in the rich mixture. However, as the pulse energy increases, HNO + H \rightarrow NO + H_2 overtakes HNO + NH_2 \rightarrow NH_3 + NO in producing NO, since the higher \(E_p \), the faster fuel dissociation down to H radical. This shows that NO is produced through fuel chemistry rather than thermal NO pathways, e.g., \(N_2 + O \rightarrow N + NO \) and \(N + O_2 \rightarrow NO + O \), which is in agreement with previous studies on NH_3/H_2/Air flames [20]. In all the selected cases, NO mainly reacts with NH_2 to generate H_2O and N_2. However, a considerable amount of NO reacts with NH_2 in high pulse energy density cases to produce OH radicals, which subsequently boost the chemical reactions to further dissociate the fuel.

Fig. 16 shows the unstrained flame thickness for different equivalence ratios as a function of \(E_p \) and \(X_{122} \). The results reveal that the selected pulse energy density values are not adequate to thicken the pure ammonia flames. Interestingly, lower \(E_p \) values are needed to broaden the reaction zone of the rich NH_3/H_2/air flames than those required by the lean and stoichiometric mixtures. For instance, the rich flame with \(X_{122} = 30\% \) is thickened by discharging plasma with low \(E_p \) values, e.g., \(E_p = 1 \) mJ/cm\(^2\), while plasma pulses with \(E_p = 3 \) mJ/cm\(^2\) are needed to broaden the reaction zones in lean and stoichiometric mixtures with \(X_{122} = 30\% \).

In order to find an explanation for the above observation, the temperature and radical pools upstream of the one-dimensional premixed flames with \(X_{122} = 15\% \) are plotted in Fig. 17 as functions of \(E_p \). As expected, the lean mixture assisted by 20 pulses of plasma contains slightly higher O radicals, especially when the pulse energy density is higher than 6 mJ/cm\(^3\). This is due to the abundant concentration of O_2 in lean mixtures. On the other hand, compared to the lean and stoichiometric mixtures, H concentration is considerably higher in the rich mixture even for very low \(E_p \) values, e.g., 1 mJ/cm\(^3\). However, the OH radical is almost independent of the equivalence ratio for a given \(E_p \). It is interesting to note that the temperature is slightly higher in the lean mixture than those in the rich and stoichiometric cases for a given \(E_p \), which indicates that the thickening process is a non-thermal process and is directly controlled by the radical pool, especially by H. It should be mentioned that further details of the effects of equivalence ratio on IDT, \(S_{tr} \), and \(k_e \) of ammonia/air flames for various \(E_p \) and \(X_{122} \) values are presented in the Supplementary Materials (Figs. S2–S4). The range of \(E_p \) and \(X_{122} \) were selected based on the analyses presented in section 4.1 to properly assist ammonia flames.
4.3. Effects of pressure on plasma-assisted NH\textsubscript{3}/H\textsubscript{2}/air combustion

Previous investigations by Wolk et al. on methane/air ignition by utilizing microwave spark plugs showed that increasing the mixture pressure abates the impacts of microwave on the ignition, believed to be due to the decreases in E/N \cite{71}. Increasing the mixture pressure raises the number density of neutrals, which in turn reduces E/N for a given plasma setting, i.e., E. However, our previous study showed that characteristics of ammonia combustion are non-monotonically dependent on changes in E/N \cite{41}. The questions posed here are, “how do characteristics of plasma-assisted ammonia combustion change by pressurizing the mixture?” and “how are such changes related to E/N variations caused by changing the mixture pressure?”. To properly answer these questions, two sets of simulations were performed, namely by keeping (1) E and (2) E/N constant. In the first strategy, in each case, E is kept constant, which is calculated by multiplying the reduced electric field, i.e., 350 Td, by the number density of neutrals in the fresh reactants in atmospheric cases. This strategy results in a proportional reduction of E/N with pressure augmentations. In the latter strategy, E increases by raising the mixture pressure since the higher p, the more N, and correspondingly the higher E needed to keep E/N constant. It should be mentioned that both strategies result in a unique solution under atmospheric conditions for a given mixture composition.

Fig. 18 shows the IDT of a selected number of cases with different E\textsubscript{p}, X\textsubscript{H2}, and p values. Here, lines show the results obtained by keeping the E/N constant, while lines with symbols indicate the numerical results in which E was kept constant. The results show that increasing the mixture pressure weakens the impacts of plasma and H\textsubscript{2} in reducing the IDT of ammonia, being more pronounced for plasma effects. For instance, IDT of the non-plasma ammonia/air case, i.e., E\textsubscript{p} = 0 mJ/cm2, drops by 90% at p = 1 atm by injecting 4% H\textsubscript{2} in the fuel, while the corresponding reduction in IDT at p = 5 atm is 75%. Moreover, discharging 20 pulses with a fixed E and E\textsubscript{p} = 0.5 mJ/cm2 reduces the IDT of the non-plasma ammonia/air mixture by 83% and 45% at p = 1 and 5 atm, respectively. The corresponding reduction in IDT by keeping E/N constant is 66% for p = 5 atm. This shows that, as expected, the impacts of plasma on IDT intensify by increasing the electric field. However, adding to E proportionally with pressure augmentations does not lead to an identical flame enhancement as that under atmospheric conditions. Therefore, it can be concluded that E/N is not the only controlling parameter depleting the plasma effects on ammonia ignition delay time under pressurized conditions.

Laminar flame speed plotted in Fig. 19, as well as the extinction strain rate, flame thickness, and NO\textsubscript{x} emissions presented in Supplementary Material (Figs. S5–S7, respectively) as functions of X\textsubscript{H2}, E\textsubscript{p}, and p support the above conclusions by showing that pressure significantly reduces plasma effects on the characteristics of a one-dimensional pre-mixed flame. Furthermore, E/N plays a negligible role in suppressing plasma impacts on the flame characteristics at high-pressure values.

To elaborate on the impacts of pressure on plasma-assisted combustion, path flux analyses were carried out for four cases by varying the p and E\textsubscript{p} in the ranges of 1–5 atm and 1–9 mJ/cm2, respectively. The other plasma settings, e.g., E, and mixture specifications, were kept constant, including X\textsubscript{H2}, which is set at 15% in all cases. The fluxes were obtained over 20 NSDs. The path fluxes of NH\textsubscript{3}, presented in Supplementary Material (Fig. S8), show that ammonia is mainly dissociated by OH to generate H\textsubscript{2} and H\textsubscript{2}O in all the selected cases, while O(1D) + NH\textsubscript{3} \rightarrow NH\textsubscript{2} + OH contributes to dissociating ammonia by <4%. The path fluxes of OH, as the key radical to dissociate NH\textsubscript{3}, plotted in Fig. 20, show that O\textsubscript{2}+H\textsubscript{2} \rightarrow OH + OH charge exchange and H + O \rightarrow O + H chain branching reactions are the main pathways to generate OH under atmospheric conditions for E\textsubscript{p} = 9 mJ/cm2. Increasing the mixture pressure shifts the OH production path to NH\textsubscript{2} + HO\textsubscript{2} \rightarrow H\textsubscript{2}NO + OH and

![Fig. 16. Flame thickness as a function of X\textsubscript{H2}, φ, and E\textsubscript{p} for p = 1 atm.](image)

![Fig. 17. Radicals and temperature upstream of NH\textsubscript{3}/H\textsubscript{2}/air flames with X\textsubscript{H2} = 15% as functions of φ and E\textsubscript{p} for p = 1 atm.](image)

![Fig. 18. Ignition delay time of ammonia as a function of E\textsubscript{p}, X\textsubscript{H2}, and p for φ = 1. Lines with symbols show simulation results in which E was kept constant, and lines show the results obtained by keeping E/N constant at 350 Td.](image)
NO + HO₂ ↔ NO₂ + OH reactions, which shows the importance of the HO₂ radical in OH production. The path fluxes of HO₂ plotted in Fig. 20 show that increasing the mixture pressure substantially activates the third body reaction H + O₂ + M ↔ HO₂ + M in producing HO₂. However, increasing E_p slightly reduces such impacts by activating other paths to generate HO₂ radicals, e.g., N₂H₃ + O₂ ↔ N₂H₂ + HO₂. This shows that plasma impacts on combustion at high-pressure conditions are suppressed by pressure-dependent reactions.

5. Conclusions

Numerical simulations were performed to study the synergetic effects of nanosecond plasma discharge and hydrogen on ammonia combustion. To this end, a new kinetic model was assembled comprising the excitations, ionizations, quenching, recombination, charge exchanges, and neutral state elementary reactions for NH₃/H₂/O₂/N₂ mixtures. The multi-time-scale chemical reactions during plasma and thermal phases were resolved by utilizing a non-uniform time-step method. The numerical model was used to investigate the impacts of plasma and hydrogen addition on the combustion and emission characteristics of ammonia flames.

The results showed that relatively low energy pulses or low hydrogen fuel fractions are enough to noticeably reduce the ignition delay time of ammonia/air. However, even very high-energy pulses, e.g., 20 pulses with an energy density of 11 mJ/cm³ or high amount of hydrogen addition, e.g., 30% hydrogen by volume in the fuel, are insufficient to raise the flame speed or extinction strain rate of ammonia to those of widely used fuels, e.g., methane. Such enhancements can be achieved by using plasma and hydrogen together, both at moderate levels, e.g., plasma with $E_p = 9$ mJ/cm³ and $X_{H_2} = 12\%$. It was shown that for a specific enhancement in the flame speed, assisting an ammonia/air flame by NSDs results in less NOₓ emissions than those assisted by H₂. Furthermore, plasma increases the resilience of the flame to the strain. The reduction of NOₓ emissions is due to the DeNOₓ mechanisms both at preheating and post-flame zones, which are more pronounced under lean conditions than in the rich and stoichiometric cases. The present study showed that discharging high-energy pulses can thicken reaction zones by generating radical pools upstream of the flame. The required pulse energy density to trigger such manipulations in the flame inner structure drops by increasing the hydrogen fuel fraction. The simulation results revealed that pressurizing the mixture conspicuously deteriorates the plasma effects on combustion. Increasing the electric field linearly with pressure cannot compensate for the suppressing effects of pressure on the plasma discharges. It appears that the effects of pressure on plasma-assisted combustion are not predominantly due to changes in the reduced electric field caused by raising the mixture’s pressure.

CRediT authorship contribution statement

Mohammad Shahsavari: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing – original draft, Writing – review & editing. Alexander A. Konnov:
Conceptualization, Writing – review & editing. Xue-Song Bai: Writing – review & editing. Agustín Valera-Medina: Conceptualization, Writing – review & editing. Tie Li: Writing – review & editing. Mehdi Jangi: Conceptualization, Supervision, Methodology, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This study, as a part of PlasNH3 project, was supported by Marie Skłodowska-Curie Foundation through MSCA-IF-EST action, H2020-MSCA-IF-2020 call. AAK and XSB grateful to the Knut and Alice Wen- lenberg Foundation for the financial support through grant KAW2019.0084 COCALD. Cardiff University gratefully acknowledges the support from the Welsh European Funding Office through “Flexible Integrated Energy Systems”, project 80835.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fuel.2023.128475.

References

Mao X, Chen Q, Rousso A, Chen T, Ju Y. Effects of controlled non-equilibrium excitation on H2/02/He ignition using a hybrid repetitive nanosecond and DC discharge. Combust Flame 2019;206:522–35.

