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High‑precision density mapping 
of marine debris and floating 
plastics via satellite imagery
Henry Booth 1,2, Wanli Ma 1 & Oktay Karakuş 1*

The last couple of years has been ground‑breaking for marine pollution monitoring purposes. It has 
been suggested that combining multi‑spectral satellite information and machine learning approaches 
are effective to monitor plastic pollutants in the ocean environment. Recent research has made 
theoretical progress in identifying marine debris and suspected plastic (MD&SP) through machine 
learning whereas no study has fully explored the application of these methods for mapping and 
monitoring marine debris density. Therefore, this article consists of three main components: (1) the 
development and validation of a supervised machine learning marine debris detection model, (2) to 
map the MD&SP density into an automated tool called MAP-Mapper and finally (3) evaluation of the 
entire system for out‑of‑distribution (OOD) test locations. Developed MAP‑Mapper architectures 
provide users with options to achieve high precision (abbv. ‑HP) or optimum precision‑recall (abbv. 
‑Opt) values in terms of training/test dataset. Our MAP‑Mapper‑HP model greatly increases the 
MD&SP detection precision to 95%, while the MAP‑Mapper‑Opt achieves 87–88% precision–recall 
pair. To efficiently measure density mapping findings at OOD test locations, we propose the Marine 
Debris Map (MDM) index, which combines the average probability of a pixel belonging to the MD&SP 
class and the number of detections in a given time frame. The high MDM findings of the proposed 
approach are found to be consistent with existing marine litter and plastic pollution areas, and these 
are presented with available evidence citing literature and field studies.

Current estimates indicate that there are now millions of tons of plastic floating in the world’s oceans, with 
millions more entering each  year1. Since plastics have an extremely slow rate of decomposition, marine plastic 
is rapidly accumulating. Whilst micro-plastics (0.05–0.5 cm) and mesoplastics (0.5–5 cm) are by far the most 
numerous, macro (5–50 cm) and mega-plastics (>50 cm) are thought to make up the majority of the total weight 
of ocean  plastic1. Therefore, effective monitoring and mapping of larger plastic objects are needed to answer key 
scientific questions regarding the sources, distribution, and transportation of plastic in the ocean environment. 
These insights could help advise preventative measures, clean-up operations, and improving their  efficacy2. In 
recent years, machine learning techniques have been successfully applied for classification in various vision-
related areas such as healthcare, text analytics, cybersecurity, and geo-sensing problems such as road extraction 
and land cover  mapping3–5. Furthermore, advances in this field have led to models that can outperform human 
experts in some tasks 6,7. Machine learning algorithms can therefore remove the need for manual labelling, whilst 
maintaining and sometimes improving performance.

The aforementioned technical advance, hence, opens gates for efforts to automatically detect and classify 
marine plastic via machine learning and computational imaging algorithms with the capability to examine large 
areas for plastic  pollution8,9. In an initial study,  Aoyama10 developed a method for identifying marine plastic 
by using two-dimensional scatter diagrams of satellite spectral bands. Pixels that had large spectral differences 
from the surrounding ocean were suspected to be plastic. The method was then validated using a known target 
of a fixed fishing net with buoys. Furthermore, in the 2019 stage of the Plastic Litter Project  (PLP11), Topouzelis 
et. al. 12 suggested investigating three artificially created plastic targets in Greece. The objective of this work was 
to assess the spectral signatures of plastic targets in Sentinel-2 satellite imagery. It was suggested that these find-
ings would help assess which wavelengths offer the best opportunity to differentiate sea foam, white caps, and 
surface-reflected glint from marine debris.

Thanks to the initiative studies mentioned  above10,12, the capability of spectral reflectance information to 
discriminate plastic from other targets has driven further research in this area. Tasseron et. al.13 presented a 
hyper-spectral laboratory setup to collect spectral signatures of 40 virgin macroplastic items and vegetation. 
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Their results returned absorption peaks of plastics (1215 nm, 1410 nm) and vegetation (710 nm, 1450 nm), and 
provided evidence of the utilised spectral indices such as shortwave infrared (SWIR), and near-infrared (NIR) 
whilst developing normalised vegetation difference index (NDVI) and floating debris index (FDI) metrics. 
Knaeps et. al.14 proposed literature with a data set of 47 hyperspectral-reflectance measurements of plastic litter 
samples in dry and wet conditions from the Port of Antwerp. Their results specifically highlighted water absorp-
tion and suspended sediments which could allow future research to appropriately select wavelengths. Garaba et. 
al.15 proposed an analysis of the reflectance measurements collected from virgin and ocean-harvested plastics. 
Their findings showed that ocean-harvested plastics (ropes, foam, etc.) followed identical absorption features 
and had lower reflectance compared to virgin plastics (low-density polyethylene (HDPE, LDPE), polypropylene 
(PP)). Moshtaghi et. al.16 proposed one of the most important hyperspectral reflectance analyses of plastics in 
a controlled environment. The authors analysed reflectances of virgin and natural plastics submerged in water 
with different sediment conditions and depths. Their findings provided evidence to utilise SWIR and visible 
spectrum for plastic detection.

Parallel with the above-mentioned emerging research on investigating spectral features to discriminate marine 
debris and floating plastics from others, researchers also investigated the detection potential of aerial and satel-
lite imagery via exploiting spectral analysis. Moy et al.17 used aerial surveys and manual inspection of images to 
map the quantity and location of macro-plastics on the coastline of the eight main Hawaiian islands. They found 
that windward shorelines had the highest density of plastic and produced a map of the coastline to visualise this. 
This study demonstrates the ability to map marine plastic on coastlines using aerial imagery. Biermann et al.18 
demonstrated that it was possible to train a machine learning algorithm to differentiate between plastic and 
other types of marine debris. This seminal work proposed the FDI—a novel parameter increasing the detect-
ability of suspected plastics via promoting sub-pixel interactions of plastics with the sea surface. Bierman et. 
al.18 used Sentinel-2 multispectral data in their developed models and trained them with several marine debris 
targets extracted via FDI and NDVI from Scotland, British Columbia, Barbados and Durban. In terms of the 
validation stages of the proposed approach, this work utilised the plastic targets developed by Topouzelis et al.12. 
They reported a maximum accuracy of 86% for the classification of suspected plastics among other debris such 
as plumes, timber, and seaweed.

Furthermore, Kikaki et al.19 investigated the plastic pollution problem in the Bay Islands of Honduras by 
using remote-sensing observations from 2014 to 2019. It was noted that detectable plastics generally follow lin-
ear patterns. An automated plastic pollution monitoring approach for the river surfaces using bridge-mounted 
camera imagery was presented by van Lieshout et. al.20. The authors performed an experimental analysis of five 
different rivers in Jakarta, Indonesia with the highest 69% precision of plastic detection . Park et. al.21, instead of 
Sentinel-2, utilised very high geospatial resolution 8-waveband WorldView-3 imagery in order to observe floating 
plastic litter in the Great Pacific Garbage Patch (GPGP). They applied various spectral analysis approaches and 
investigated anomalies to infer the presence of suspected plastic litter.  Ciappa22 proposed a detection approach 
for marine litter patches from Sentinel-2 offshore Hawaii’s Big Island. The author focused on the discrimination 
between the sargassum and plastics where the findings suggested that the red-edge spectra were more likely to 
provide differences between the targets. Kremezi et al.23 leveraged the potential of satellite hyper-spectra remote 
sensing imagery in marine plastic litter detection purposes for the first time in the literature. The authors used 
PRISMA satellite data with fine spectra but low spatial resolutions. In order to increase the spatial resolution, 
Kremezi et al.23 proposed exploiting pansharpening with the panchromatic data that enhance spatial resolution.

Up to this point, all the literature pieces have been using their own data sets and/or some non-open-access 
field studies except for a couple of initiatives  (PLP11) that share their data for further research. However, the avail-
able amount of data was not enough to drive marine debris monitoring research to further advanced machine 
learning stages similar to the one e.g. in computer vision research. Thanks to a recent work published in 2022, 
marine debris monitoring research obtained its first detailed open-access data set to further develop machine 
learning approaches. In this milestone study, Kikaki et al.24 produced a Marine Debris Archive (MARIDA) data 
set which contains 1381 patches with 837,357 annotated pixels from 63 Sentinel-2 scenes acquired between 2015 
and 2021. The patches are distributed over eleven countries. MARIDA dataset is based on Sentinel-2 multi-
spectral satellite data providing 15 thematic classes including (marine debris, dense sargassum, natural organic 
material, clouds, foam, etc.). MARIDA contains 3339 ( 0.4%) Marine Debris pixels in total which were defined 
as “floating plastic and polymers, mixed anthropogenic debris”. Of these plastic pixels, 1625 pixels were digitised 
and annotated with high confidence. This study also investigated the effectiveness of different machine-learning 
algorithms in detecting marine debris. Three variations of the random forest model were examined, as well as a 
U-net model where Random Forest models outperformed the U-net model.

When discussing the  MARIDA24 dataset and the models developed using it, “marine debris” will be used along 
with the term “suspected plastic” (MD&SP shortly) for the rest of this work. This increases clarity since plastic 
is thought to make up the vast majority of floating anthropogenic  debris25. We also believe that this prudent 
approach in defining the detected pollutants is also aligned with the cautious note on spectral interpretations 
published by Hu  recently26. Lastly, the literature covers various other important works which can be seen as less 
relevant to the approaches reported in this paper. Thus, interested readers are recommended to refer to two newly 
published review  papers27,28 for more details on artificial intelligence utilisation in marine litter/plastic detection 
approaches to further expand the research area.

Consequently, this paper explores an optimised machine-learning method with the primary aim of assess-
ing the feasibility of mapping MD&SP density on multi-spectral satellite imagery. Whilst reaching the afore-
mentioned aim, we (1) develop a machine learning algorithm to enable precise detection of pollutants on the 
ocean surface, (2) develop an automated data pipeline that is capable of gathering, pre-processing and making 
predictions on satellite data, (3) use the data-pipeline to generate marine debris density maps for the test loca-
tions. To address the aforementioned aims, this work proposes a novel end-to-end automated system, named 
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as MAP-Mapper, consisting of two main components: (i) a high-precision MD&SP detection machine learning 
algorithm, and (ii) a scientific tool/pipeline to facilitate MD&SP density mapping for any region of interest (ROI) 
in any given time frame. We evaluate the proposed detection algorithm with the MARIDA data set whilst Topou-
zelis et. al.11’s PLP 2021 data set is used to validate the MAP-Mapper architectures. Six test locations including 
polluted areas such as Manila - Philippines, and Mumbai - India are used to test the proposed MAP-Mapper 
system. In order to efficiently quantify the density mapping findings, we propose a pixel-level parameter - the 
Marine Debris Map (MDM) index, that combines the average probability of belonging to the MD&SP class and 
the number of detections within the given time interval. High MDM findings of the MAP-Mapper algorithms 
have been found to be aligned with the existing marine debris and plastics pollution areas, and these are presented 
with existing evidence referring to the literature and field studies.

Results
Model evaluation with MARIDA data set. Baseline models provided by Kikaki et al.24 used to test the 
MARIDA data set had significant problems in terms of run-time and/or precision. Particularly, Kikaki et al.24 
models had a tendency to misclassify targets such as marine water, sea foam, ships, and clouds as suspected 
plastics. This raises a problem of low precision in terms of performance for future applications since the miss-
classified targets generally accommodate together in a natural sea environment. The aforementioned fact can be 
seen as evidence that shows the importance of the high-precision  models29. Low precision is likely to result in 
significant numbers of false positives. Consequently, current models lack the precision required and are likely to 
produce inaccurate MD&SP density maps.

To provide a solution to the aforementioned problem, we conducted a development procedure of multiple 
U-net-based machine learning models to produce an optimised model and enable more accurate and high-
precision density maps. Kikaki et. al. 24 MARIDA dataset was used to train and evaluate the proposed models. 
Particularly, we developed two different MAP-Mapper models to provide (1) high precision (abbv. -HP) and (2) 
theoretically optimum - in terms of precision-recall values—(abbv. -Opt). The comparison results and perfor-
mance metrics for MARIDA data tests are given in Table 1.

Model validation with PLP 2021 data set. The Island of Lesvos, Greece has been the site of the Plas-
tic Litter Project since 2018. The experiment conducted by the University of Aegean’s Marine Remote Sensing 
Group in 2021 was selected for validation of the MAP-Mapper tools based on the certainty of the target position, 
material, and size. This is giving us the chance to explore the strengths and weaknesses of the MAP-Mapper 
 algorithms11. For the PLP 2021, two large targets were deployed, both approximately 28 meters in diameter 
(Fig. 1a). One comprised high-density polyethylene (HDPE) plastic mesh and the other was made of wood. At 
a threshold of 0.5 in Fig. 1b, 10 pixels of the HDPE target and 6 of the wooden target were classified correctly. 
4 out of 6 of these wooden pixels were then masked by F-mask30. A number of false positives were observed 
which appear to be the result of a ship or wake. At a threshold of 0.99 in Fig. 1c, 4 HPDE pixels were classified as 
suspected plastic, whilst no pixels from the wooden target were classified. 1 false positive was seen at a threshold 
of 0.99. F-mask appears to mask part of the natural wooden target but did not mask the plastic target. Figure 1d 
depicts the probability map for this scene. It can be seen that high-probability pixels mostly overlap with the 
correct plastic pixels with a few low-probability detections on the left side of Fig. 1d.

MD&SP density mapping. This experiment case enables the assessment of MAP-Mapper model perfor-
mances in different test regions and their global applicability. Marine debris density maps were produced from 
data spanning around a year for each test location. By following news about mass pollution events and also data 
from OpenOceans Global 31 and the OceanCleanUp river monitoring software 32, we decided on 6 test locations 
which are (1) the Gulf of Honduras, (2) Manila - Philippines, (3) Mumbai - India, (4) Hong Kong, (5) Cornish 
coastline, UK and (6) Chubut, Patagonia, Argentina. The first three test locations accommodate potentially high 
MD&SP coverage and are selected to test proposed approaches in high-density scenarios whilst the remaining 
three are chosen to test the proposed approaches’ capabilities in locations with no/low MD&SP. The details and 
data information of each test location is presented in Table 2.

MD&SP density maps for each test location are shown in Figs. 2 and 3. In each figure, the hexagonal width was 
set to 5km and for all plotted images each hexagonal area was fixed at approximately 22 km2 . Colour coding in 
each hexagon shows 50% left trimmed average (values lower than the median of each hexagon removed and not 

Table 1.  Metrics for plastic detection and model comparison. + MD&SP refers to Marine Debris and 
Suspected Plastics. ∗ Due to the large class imbalance, the overall precision of all classification models were 
close to, and thus rounded to, 1.00, regardless of other metrics. Best performing model values are shown in 
bold.

Model

MD&SP+ Overall

mIoU Precision F1 -score mIoU Precision F1-Score

Kikaki et al.24 U-net 0.33 0.35 0.49 0.66 1.00∗ 0.74

Kikaki et al.24 RF 0.67 0.79 0.83 0.70 N/A 0.81

MAP-Mapper-Opt 0.78 0.87 0.88 0.89 1.00∗ 0.94

MAP-Mapper-HP 0.60 0.95 0.75 0.80 1.00∗ 0.88
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included for average calculations) MDM values considering each hexagon includes a multitude of pixels having 
0 or small (up to 0.2) MDM values. This enables us to remove pixels that do not contribute to the density analysis 
in each hexagon and to better quantify the novel MDM metric for the purposes of MD&SP density mapping. For 
each test location, we also displayed the top 10 highest MDM values as scatter points.

Gulf of Honduras. The Gulf of Honduras is an important inlet in the Caribbean Sea including coastal areas of 
Honduras, Guatemala and Belize. Even though it is seen as one of the important spots of a diverse and unique 
ecosystem due to the effects of strong ocean currents, the Gulf of Honduras is also one of the well-known plastic 
hotspots that have been the research site of numerous studies investigating marine-plastic pollution.

The MAP-Mapper density mapping results highlight three important regions in this test location. The first 
area is in the Bay of Amatique. Most of the detections appear to be contained within a relatively small area (4 
hexagons in total). This location was identified as the coasts of Macho Creek, Puerto Barios, and Bahia La Gra-
ciosa. This area contains all the highest MDM-valued locations and has an average MDM of around 2.45 with 
maximum MDM values of around 7.00 (1 in Fig. 2a). The second region (2 in Fig. 2a) is off the coast of Punta 
Gorda. There is one hexagon with an average MDM value of 1.52. The third area of high MD&SP density is noted 
off the coasts of Omoa, near the Motagua river mouth, which is located southwest of Omoa. This area has two 
dense hexagons with average MDM values of around 1.00 (3 in Fig. 2a).

Figure 1.  Gulf of Lesvos suspected plastic detection. (a) Sentinel-2 false colour image, (b) MAP-Mapper-Opt, 
(c) MAP-Mapper-HP, (d) Probability map. The scene includes two targets covering an area of more than 600 
m2. The original work did not state the exact number of target pixels since the aim was to guarantee at least 
one %100 plastic pixel. From the visual analysis, both targets cover around 9 pixels (6 of which with a high 
reflectance return) shown in (a). The colour bar on the right corresponds only to subfigure (d) and presents 
probability values of pixels where green is the land and grey ones are F-masked pixels. For the model in (b), 10 
pixels of the HDPE and 6 of the wooden were classified correctly. 4 out of 6 of these pixels were then masked by 
F-mask. A number of false positives can be seen on the left of the figure, which appears to be the result of a ship 
or wake. For the model in (c), 4 HPDE pixels were classified as plastic, whilst no pixels from the wooden target 
were classified. 1 false positive was seen at a threshold of 0.99.

Table 2.  Details and data information of each test location evaluated for MD&SP density mapping.

Test location Date interval # of dates Location coordinates Area (km2)

Bay of Honduras
1 Jan 2022

25
(16◦11′56′′ N , 88◦48′29′′W)

5221.87
13 Sep 2022 (15◦40′38′′ N , 87◦58′03′′W)

Cornish coastline, UK
12 Jan 2022

30
(50◦31′13′′ N , 5 ◦48′03′′W)

6955.98
26 Oct 2022 (49◦56′39′′ N , 4 ◦17′05′′W)

Hong Kong
4 Jan 2022

37
(22◦21′11′′ N , 113◦59′48′′E)

320.96
26 Oct 2022 (22◦11′42′′N , 114◦10′26′′E)

Manila, Philippines
7 Jan 2022

15
(14◦51′25′′ N , 120◦39′13′′E)

1605.43
3 Nov 2022 (14◦30′03′′ N, 121◦01′51′′E)

Chubut, Patagonia, Argentina
9 Jan 2022

44
(45◦13′07′′ S, 67◦37′08′′W)

5846.64
28 Oct 2022 (45◦58′30′′ S, 66◦43′13′′W)

Mumbai, India
2 Jan 2022

21
(19◦33′43′′ N, 72◦30′08′′E)

5574.59
3 Nov 2022 (18◦39′31′′ N, 73◦01′54′′E)
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Manila—Phillipines. Manila is the capital city of the Philippines sitting in the metropolitan area of Metro 
Manila which is the 5 th populous metropolitan area in the world. Manila has also a negative reputation for hav-
ing a pollution problem and is another important globally acknowledged MD&SP hotspot via accommodating 
three out of five most pollutant rivers in the  world31.

MAP-Mapper density mapping results are highlighted under three regions as given below. The first region 
is Manila centre and its north coastlines. In this area, 6 hexagons ( ≈130km2 ) are having average MDM values 
higher than 1.00 (with the highest 2.87). All 10 highest pixel-level MDM values recorded within this area values 
of which are changing between 9.00 and 17.00 (5 in Fig. 2b). Cavite City having the highest average MDM value 
of 3.55 includes 3 hexagons higher than 1.00 MDM (6 in Fig. 2b). Compared to the other two regions highlighted 
above, the third region has less MD&SP coverage however worth highlighting here. There are 2 densely polluted 
hexagons off the coasts of San Pascual, and 1 off the coast of Santa Cruz with average MDM values around 0.90 
(4 in Fig. 2b).

Mumbai—India. Mumbai is the capital city of Maharashtra state of India and named the 8th highest-populous 
city in the world. Mumbai is known as polluted in terms of its seashores and inland waters especially due to hav-
ing the world’s 3rd most polluted river of Ulhas.

The MAP-Mapper density mapping findings can be summarised under three regions: The most MD&SP 
problematic area of Mumbai is the south coasts of the main Mumbai Island coasts of Arabian Sea near Mahim 
Bay, Mumbai Harbour of Thane Creek, and Back Bay. This area has 4 densely polluted hexagons valued over 
1.00 with the highest of 2.40 (7 in Fig. 2c). The second area is inside the city consisting of Navi Mumbai coasts, 
Panvel creek, and Thane Creek with three high average MDM hexagons with a maximum of 2.05 (8 in Fig. 2c). 
The mouth of Thane creek opening to the Arabian Sea off the coasts of Uran at the south of Mumbai includes 
two high MDM hexagons both of which are higher than 2.00 MDM with a highest of 2.77 (9 in Fig. 2c).

Cornish coastline, UK & Hong Kong & Chubut, Argentina. The Cornish coastline is located in the Southwest of 
England, also known as the Cornwall coastline. This area is one of the most tourist-visiting regions in the UK and 

Figure 2.  Potentially polluted test location MD&SP density maps. The colour bar corresponds to 50% left-
trimmed average MDM values of each hexagon. Each figure also includes the top 10 highest pixel-level MDM 
values as scatter points where brighter markers correspond to higher MDM values. Each hexagon has a width of 
5 km and an area of ≈22km2 . Each subplot shows south-to-north directions from bottom to top, respectively.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6822  | https://doi.org/10.1038/s41598-023-33612-2

www.nature.com/scientificreports/

is known for its outstanding natural beauty. A recent study has indicated that the Cornish coastline is the most 
plastic-polluted coastline in the  UK33. However, the severity of the problem is far less than in the aforementioned 
test locations. Hong Kong is a special administrative region in South China, that can be listed as one of the most 
densely populated regions in the world. Despite its relatively smaller area of land, Hong Kong is one of the most 
important regions in the world in terms of import/export traffic. Chubut province in South Argentina, located 
in the Andes mountains to the west and the Atlantic Ocean to the east, is one of the important wildlife tourist 
places in the world especially via accommodating one of the globally largest Magellanic Penguin breeding areas.

All these three aforementioned test locations are sharing the same basis in terms of marine pollution that 
historically either no or low mass marine pollution problems reported in these areas, and all three test locations 
are going to be used to test the MAP-Mapper in no/low-density MD&SP coverage. We summarise the MAP-
Mapper findings for these test locations as:

• Density maps of all three locations presented in Fig. 3 show similar characteristics as expected. Nearly all 
the hexagonal regions have brighter colour coding that corresponds to no/low MD&SP density with MDM 
values less than 0.5.

• Chubut’s highest pixel MDM values are also low and close to 0.00 whilst Hong Kong has some values around 
1.50 MDM.

• Even though it, in general, shows low MDM and MD&SP density mapping findings, the Cornish coastline 
data has some high pixel-level MDM detections ( ≈7.00), especially near Falmouth estuary (10 in Fig. 3a), 
that appears to coincide with large quantities of boats at their moorings.

Discussion
Previous work in the marine debris detection research area has demonstrated that detecting MD&SP using 
satellite data and machine learning is possible. However, the capabilities of these approaches have not yet been 
explored on how they can be applied to real-world data for the purpose of automated mapping of marine debris 
density. With the development of the MARIDA data  set24, it has now been possible to train new machine learning 

Figure 3.  Potentially no- or less-polluted test location MD&SP density maps. The colour bar corresponds to 
50% left-trimmed average MDM values of each hexagon. Each figure also includes the top 10 highest pixel-level 
MDM values as scatter points where brighter markers correspond to higher MDM values. Each hexagon has 
a width of 5 km and an area of ≈22 km2 . Each subplot shows south-to-north directions from bottom to top, 
respectively.
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models and evaluate their effectiveness in density mapping. Consequently, we developed an automated tool—
MAP-Mapper—to assess suspected plastic concentration and to highlight patterns of debris distribution, and 
identify key areas of aggregation.

Both -Opt and -HP versions of the MAP-Mapper obtained considerable results and performance improve-
ments compared to the MARIDA baseline models as seen in Table 1. In particular, MAP-Mapper models 
improved the MD&SP detection performance up to 16% and 5% in terms of the precision and F1-Score metrics 
compared to the Kikaki et. al. baseline models. On the other hand, the validation of the Plastic Litter Project 
targets has been promising. These results show that the model can detect plastic of different types. Furthermore, 
at lower thresholds, the model is able to detect plastic on the sub-pixel scale. It is unsurprising that a few plastic 
pixels were detected at a threshold of 0.99. Man-made targets often only covered a small percentage of a pixel. 
For the larger target, much higher probabilities were assigned to pixels containing 100% plastic. Additionally, the 
targets were made of a single type of plastic and contained no other types of debris. In the marine environment, 
plastic patches are extremely unlikely to be this uniform. They usually consist of many different types of plastic 
and/ or a mix of natural organic  material18,34. For this reason, the training data is likely to follow this pattern and 
thus, spectral characteristics of the training data and plastic targets differ to some degree. Finally, the shape and 
size of the targets are significantly different from the plastic patches in the MARIDA dataset. These contextual 
factors may help explain why many of the plastic pixels are not predicted as plastic when using high thresholds.

Furthermore, our analysis demonstrates that F-mask has a tendency to mask sargassum patches. Presumably, 
this is because its spectral signature is similar to terrestrial vegetation, and this is masked as land. Considering 
plastic is commonly found embedded within sargassum patches 34, this was thought to be a potential problem that 
can cause mask MD&SP pixels. For this reason, we further analysed the prediction files before and after masking 
and concluded that F-mask did not mask any pixel that was identified as MD&SP. This is a promising finding 
which suggests that the F-mask is surely a suitable algorithm for plastic detection by not masking MD&SP pixels.

Despite this promising performance of the proposed approaches, manual inspection is needed to be con-
ducted to investigate areas of high plastic density and verify the results of the out-of-distribution test locations 
where possible. This would help ascertain the strengths and weaknesses of the proposed models. The Bay of 
Amatique (1 in Fig. 2a) in the Gulf of Honduras was found to have a high density of MD&SP in two different areas 
as shown in Fig. 2a. The coast off Macho Creek between Livingston and Puerto Barrios is one of the potential 
MD&SP gathering points for the litter coming out of Rio Dulce that is the source of 16 million kg of mismanaged 
plastic per year 32. The Bay of Amatique has an offshore gyre that rotates counterclockwise and potentially carries 
the Rio Dulce and other sources of debris to the bays of Puerto Barrios and Bahia La Graciosa. Apart from the 
Bay of Amatique, Punta Gorda (2 in Fig. 2a) near the Maya Mountains Marine Corridor and the coasts of Omoa 
(3 in Fig. 2a) appeared as the densely polluted areas which follow academic research for these areas 35. With 
being home to 4 of the world’s 6 most polluted rivers, Manila of the Philippines has become the highest densely 
MD&SP polluted place in MAP-Mapper analysis. North shores of Manila (4 in Fig. 2b) show some pollution 
problems with average MDM values of approximately 0.9. MAP-Mapper highlighted the mouths of the world’s 
first two highest-polluted rivers of Pasig and Tullahan (5 in Fig. 2b). These two rivers are responsible for 550 
and 96 million kilograms of mismanaged marine plastic pollutants, respectively 32. Moreover, Cavite City near 
the Freedom Islands (6 in Fig. 2b) has the highest average MDM in the analysis one of the reasons for which is 
the Paranaque River. This river and its branches are responsible for 10 million of kg mismanaged marine plastic 
pollutants 32. Similarly to the Gulf of Honduras and Manila results, the proposed MAP-Mapper density mapping 
tools achieved realistic detection results in Mumbai, India test location. Mahim Bay (7 in Fig. 2c) with one of the 
highest average MDM-valued places in the analysis, also known to be one of the most polluted bays in the world. 
The world’s third plastic-polluted river Ulhas is also located in Mumbai, and the mouth of this river which is 
opened to Thane and Panvel Creek (8 in Fig. 2c) is also mapped as a polluted area by the MAP-Mapper tools with 
MDM values higher than 2.00. South coasts of Mumbai opening to the Arabian Sea are also detected by the MAP-
Mapper (9 in Fig. 2c) with two hexagons with MDM approximately of 3.00. The high MDM prediction for this 
area is expected since all the polluted rivers mentioned above for Mumbai reach the Arabian sea at this mouth.

All the aforementioned explanation shows us that the developed MAP-Mapper tools are realistic and gener-
alisable to out-of-distribution data. The results also suggest that MAP-Mapper Tool is clearly useful for mapping 
MD&SP density in areas of high pollution. In these regions, the presence of false positives is far less detrimental 
to the overall density map. True positives appear to outnumber false positives in each of the three polluted test 
locations above, thus suggesting that MAP-Mapper is a useful tool for mapping the MD&SP density regions like 
this. In order to show MAP-Mapper’s applicability in regions with known lower plastic pollution, we investigated 
Cornish Coastline, UK, Hong Kong, and Chubut, Argentina. The results presented in the previous section for 
these regions show that MAP-Mapper maps these regions with relatively low mean MDM values. Considering 
the regions of interest for each test location historically do not have important mass MD&SP pollution events, 
this is parallel with our results and provides shreds of evidence for the global applicability of the MAP-Mapper 
tools. Cornish Coastline somewhat diverges from Hong Kong and Chubut in terms of pixel-level MDM detec-
tions. Both of these regions have the highest pixel level MDM values of around 1.00 whilst Cornish Coastline has 
values higher than 5.00. The detailed analysis in this region suggests that these pixels are most likely waves and/
or sea foam. These features follow the linear trajectory that is typical of the marine debris pixels in the MARIDA 
dataset but the prevalence leads to the conclusion that some of these detections are likely to be false positives. 
Although it is not possible to verify every pixel, it is likely that the MARIDA dataset does not contain enough 
examples of sea foam (0.15% of the whole data set) for the model to differentiate effectively between foam/waves 
and plastic in this region. Another clear example of miss-classification is found in the Falmouth estuaries (10 in 
Fig. 3a). Some of the small boats are potentially misclassified as MD&SP. Interestingly, larger boats with wakes 
were not misclassified. This suggests that more training data is needed to improve model performance when 
differentiating MD&SP from some types of static watercraft. The results for Cornish Coastlines, especially for 
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pixel level detections around the Lizard (11 in Fig. 3a), St. Ives & St. Agnes (12 in Fig. 3a), can also be read as 
evidence to the work by Nelms et. al. 33 stating that the beaches of these regions are potentially the highest litter 
accommodating beaches in England.

Table 3 show eight example regions that MAP-Mapper models recognised as high MD&SP density problems 
with their corresponding average and highest MDM values. The ”Evidence” column in Table 3 refers to refer-
ences of news/blog pages including real photographs of MD&SP problems in each of these ROIs, and provides 
evidence regarding the generalisation capabilities of the proposed MAP-Mapper models. The importance of 
these representations is that, even though the test data is coming from out-of-distribution locations, high-valued 
MDM density map locations are aligned with the real field studies.

MAP-Mapper is an initial product from a detailed remote sensing computational imaging project for the 
purpose of detecting and tracking MD&SP. Our next steps to improve on MAP-Mapper Tool(s) would include 
(non-exhaustive):

(1) In order to improve the global applicability of MAP-Mapper and to address issues with potential miss-
classifications, we plan an expansion of the MARIDA dataset particularly from under-represented regions and 
predominantly focus on the inclusion of more plastic, foam, ships/boats, and cloud pixels, as well as pixels 
affected by sun glint. The current version of MAP-Mapper algorithms’ accuracy seriously depends on training 
data. Due to the limited and unbalanced training data mentioned above, the network is prone to showing less 
performance for some parts of the world such as the arctics and icy locations. In addition, compared to the open 
sea locations, the proposed version of MAP-Mapper algorithms (due to MDM usage instead of detections) is 
more suitable for detecting MD&SP gathering points such as inner waters, and coastal and shoreline places, 
rather than their trajectories.

MDM currently depends on the percentage of detections in the selected time interval. For scenes that have a 
high number of images as in the examples in this paper, MDM provided to-the-point evaluation values. However, 
for scenes having a low number of images (e.g. 4-5) in the given time interval, this might make MDM hard to 
compare with other scenes with a high number of images. This case is currently under investigation and planned 
to be improved in future releases.

(2) MAP-Mapper was designed to provide insights into the concentration, distribution, and pathways of 
marine plastic. Therefore, to help enhance scientific analysis, historical weather queries will also be integrated 
into the analysis stage. This would make it possible to investigate how recent rainfall correlates with riverine 
plastic output, especially in locations with poor waste management, e.g. around the mouths of River Motagua 
in Guatemala and River Pasig in Manila.

(3) MAP-Mapper would benefit from a better assessment of its validity for MD&SP density mapping. To 
achieve this, suspected plastic detections should be explored with very high-resolution satellite data, ground 
truth reports, or aerial imagery. This would help certify that pixels are not being miss-classified and help to 
determine their validity.

(4) The model trained with only 4 bands (the ones contributing to calculating FDI and NDVI) demonstrated 
good performance than using all 13 Sentinel-2 bands. However, it is possible that other band combinations 
could improve model performance. Removing some of the lower resolution bands, as well as bands where 
wavelengths do not correlate with plastic materials, may reduce noise in the data set. Development of future 
models should trial different band combinations to assess which bands provide the best performance, alongside 
run-time reduction.

(5) As suggested by Chuanmin  Hu26 in their cautious note on spectral interpretations, spectrally distorted 
shapes have an important impact on the visibility of suspected plastics from multi-spectral satellite imagery. 
For this, we plan to conduct an investigation on the validity of satellite imagery spectral returns with in-situ real 
marine debris and floating plastics targets.

(6) From a technical point of view, similar to MARIDA baseline models, the MAP-Mapper architectures utilise 
supervised learning approaches. These are dependent on the labelled training data, and any problem in the train-
ing data set, such as low confidence labels or greatly unbalanced class distribution might cause wrong classifica-
tions. In the following versions of MAP-Mapper tools, we promote using minimal-supervision (semi-, self- and/
or un-supervised) approaches that exploit the usage of unlabelled data to extract further useful information.

Table 3.  Some regions recognised as high MD&SP density by the MAP-Mapper models.

Test Location Location details Avg MDM Highest MDM Position in Figs. 2 and 3 Evidence

Gulf of Honduras

A beach near Livingston, Guatemala 1.87 3.83 Area 1 Ref36

Punta Gora - Maya Mountain Marine 
Corridor 1.51 3.18 Area 2 Ref35

Off the coasts of Omoa 0.96 3.21 Area 3 Ref37

Manila, Philippines
Coasts of Freedom Island 2.90 9.15 Area 6 Ref38

Pasig River 1.90 16.29 Area 5 Ref39

Mumbai, India
Mahim Bay 2.40 9.43 Area 7 Ref40

Panvel Creek 2.07 8.89 Area 8 Ref41

Cornish Coastline, UK Polurrian beach on the Lizard Pen-
insula 0.43 6.99 Area 11 Ref42
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Methods
Measuring density with a marine debris metric. Developing a density map only taking into consider-
ation the number of detected MD&SP pixels is not suitable considering pixel probabilities in single-date imagery 
might be high due to several reasons: e.g. misclassifications, dynamic nature of MD&SP, etc. A combination of 
this with the long time interval and the high number of images for each ROI will strongly affect the accuracy of 
the MD&SP density maps and create wrong meanings. In order to solve this problem—in the context of density 
mapping in a time interval—we develop a metric that promotes average pixel probabilities and detection thresh-
old values:

where 1pijk≥T is the indicator function that returns 1 when the condition pijk ≥ T is satisfied, and 0 otherwise. The 
pixel-level probability of being MD&SP is denoted as pijk on pixel (i, j) and date k whilst T refers to the threshold 
value to determine whether a pixel is MD&SP or not. Thus, Dij becomes the percentage of the number of detec-
tions within the selected time interval whilst similarly P̄ij refers to the average probability of being MD&SP on 
pixel (i, j) for the given time frame.

From the above description, we can see that MDMij is a positively valued metric where 0 means no MD&SP 
problem, and a higher MDM value corresponds to a polluted location on the maps. On the other hand, MDM can 
be seen as a metric in which the average probability value of a pixel is positively weighted if the total number of 
detections is high in that corresponding pixel (e.g. 10 dates out of 20 dates in the time interval means 50%). This 
is giving us a better picture to measure the MD&SP density maps in a global time scale with the MAP-Mapper 
approach. MDM can also be seen to be a universal metric to compare different locations on the earth considering 
the utilisation of the fixed area of hexagons and the averaging over the given time interval.

MAP‑Mapper pipeline. The development of the tool was divided into separate components. These compo-
nents were then integrated and conducted in sequence to produce outputs for the ROI. A flow diagram of this 
process can be seen in Fig. 4.

Data gathering Since the MARIDA dataset consists of Sentinel-2 data, MAP-Mapper requires first to collect 
Sentinel-2 data for an ROI and date range. This is achieved by querying the Copernicus Open Access Hub API 
for the required Sentinel-2 data. Querying requires entering corner coordinates of the selected rectangle ROI and 
desired time interval. MAP-Mapper then downloads Sentinel-2 imagery to a local machine for further processing.

Atmospheric correction Once the data is downloaded, the ACOLITE software is used to perform the atmos-
pheric correction. This ensured that both training data and input data were corrected with the same algorithm. 
The ACOLITE is a suitable tool for atmospheric correction of coastal and ocean regions and its validity for use 

(1)MDMij =

[

100

N

N
∑

k=1

1pijk≥T

]

×

[

1

N

N
∑

k=1

pijk

]

(2)= Dij × P̄ij

Figure 4.  Flow diagram showing the MAP-Mapper pipeline. The above system is fully automated via the 
Python terminal entering a single command line including the ROI coordinates and several parameters of the 
network.
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in marine-plastic detection has been previously investigated and  verified12,19. Dark spectrum filtering is used to 
ensure consistency with the training data set and sun glint correction is also applied.

Machine learning step for prediction and thresholding Following the atmospheric correction, the ACOLITE 
outputs are combined into one large multi-banded GeoTiff file and input patches are created. These patches 
are then given to the MAP-Mapper network architectures to make predictions showing a probability of each 
pixel in an image being MD&SP. Therefore, thresholding is applied to produce binary classification outputs of 
“MD&SP” or “not-MD&SP”. The dataset is split via the 2:1:1 procedure into the train (694 patches), validation 
(328 patches), and test (359 patches) samples.

Cloud and land masking It has been previously shown that cloud masking reduces not only the presence of 
clouds in analysis but also the chance of miss-classification. Cloud and cloud shadow masking was implemented 
by integrating Python F-mask into the tool. F-mask takes raw Sentinel-2 data as an input and produces a mask 
with integer values of 0-5 representing (0) land, (1) water, (2) cloud shadow, (3) snow, (4) cloud, and (5) no 
observation, respectively. For the purpose of MAP-Mapper density mapping, water pixels are kept and all other 
pixels are then masked.

Despite having land pixels after the F-mask operation, the land class is not good enough. The main important 
reason behind this is that F-mask is a tool developed for land masking. Hence, their performance especially for 
border regions (coastal areas in this paper) was not as expected. This performance might be neglected in a less 
sensitive application but should be addressed in marine debris monitoring. Therefore, an additional land mask-
ing operation is also implemented by cropping a worldwide geospatial vector file to the ROI to apply more strict 
masking to promote better discrimination on land/sea borders. The output of the abovementioned process is 
then used to mask all land so that only ocean regions are kept for further analysis.

MDM calculation and density map creation In order to obtain MD&SP density maps, we first obtain prob-
ability (direct network output) and detection (thresholded to become a binary output) maps. Each pixel coordi-
nate is then converted to coordinate reference system points, consisting of a longitude and latitude where their 
corresponding probability and detection values are used to calculate a novel metric of MDM to visualise the 
MD&SP density.

MD&SP density map visualisations For each pixel coordinate, the calculated MDM values are then plotted 
on the map using hexagonal binning. Regardless of their area, for each test location, the width of a hexagon is 
set to 5km and for all plotted images each hexagonal area was fixed at approximately 22 km2 . Please note that 
the choice of 5 km/22 km2 is empirical considering the varying sizes of each test location. For some locations 
such as Honduras, bigger hex sizes can also be chosen, but this time smaller scenes such as Hong Kong suffers 
from this choice. In order to make all the figures representative enough (subjectively) we decided on this choice 
for the purposes of this paper. The horizontal distance of each area is calculated by using the haversine function. 
This is then divided by 5 km—the width of each hexagon, and we obtain the horizontal hexagon number. This 
number is not always an integer thus we round the calculated number of hexagons into integers.

In order to better quantify the density mapping findings 50% left trimmed average MDM values are used 
for each hexagon whilst colour-coding the findings. Further detailed analysis of MDM values from each scene 
shows that at least 80% of the MDM calculations are 0.2 or lower for each test data set. Trimming the first 50% 
of the sorted MDM values only removes these small values in order to make the average MDM analysis con-
sistent for the purpose of discriminating polluted hexagons from fewer ones. We would also like to emphasise 
that trimming only affects polluted region hexagons, and makes us highlight polluted regions in a proper way. 
Interested readers are suggested to choose smaller trimming levels for their research, but here in this paper, we 
would like to stick to the value of a descriptive statistic - which is the median, and thus selected %50 trimming 
level for MDM visualisations.

We used mapbox and plotly packages in Python to create density maps. We selected OpenStreetMaps option 
in Mapbox which renders maps and map tiles with the Web Mercator projection using the EPSG:3857 projected 
coordinate system (sometimes called EPSG:900913).

MAP‑Mapper network architecture. Starting from a generic U-net architecture, we performed several 
optimisation/improvement stages in order to develop the MAP-Mapper architectures such as changes in input 
channels, output channels, batch size, patch size, thresholding, and the number of feature maps in each layer.

The first novel improvement has been achieved by reducing the utilisation of all Sentinel-2 bands. Biermann 
et. al.  FDI18 and NDVI indexes only require 4 of the spectral bands available in Sentinel-2 images. This suggests 
that some of the bands encode more salient information about material type than others. Also, other bands may 
be introducing noise as they may not correlate with material type. Thus, extra bands may increase computational 
complexity, without improving detection. For these reasons, MAP-Mapper machine learning architectures are 
trained with only 4 input Sentinel-2 bands of 4, 6, 8, and 11. In our initial tests, this provided promising results 
and was just as effective as a model trained with all bands. This significantly reduces (i) the amount of data 
required for MD&SP detection, and (ii) MAP-Mapper architectures’ run-time.

In architectures like U-net, feature maps of the first layer extract simple features whilst the feature maps in 
later levels extract increasingly complex features. Consequently, even though increasing the number of feature 
maps increases the number of model parameters, this typically increases the model’s ability to learn. On the 
other hand, complex models have a tendency to over-fit, take longer to train, and take longer to make predictions 
on input data. Therefore, a balance is required. The MAP-Mapper development stages showed us the highest 
number of feature maps among 64, 128, 256, and 512 for each corresponding encoder layer achieved the best 
performance, so thus set as the MAP-Mapper architecture parameter.

We found out that (parallel with the expectations) smaller batch and patch sizes were correlated with signifi-
cantly more gradual and longer model training times. It was found that smaller patches and batch sizes resulted 
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in better model performance. Therefore, MAP-Mapper architectures consist of a batch size of 64 and a window 
size of 32.

Binary classification requires a threshold to discriminate whether the class is MD&SP or not. In general, 
the decision boundary line was set at 0.5. Therefore, any pixel that is predicted to be MD&SP with a probability 
greater than 0.5 was classified as MD&SP. Thresholding changes this value to influence the recall and precision 
of a model. A precision-recall curve was created to enable the identification of the optimal threshold, which 
resulted in the threshold of 0.815 producing an F1 of 88% with a precision of 0.87 and a recall of 0.88 (Threshold 
of the MAP-Mapper-Opt architecture).

Map-Mapper-Opt precision value of 0.87 can be seen as low for a reliable MD&SP monitoring application. 
This is because of concerns about false positives being detrimental to the validity of the results. Therefore, the 
threshold was increased further to achieve higher precision values. MAP-Mapper-HP achieves a precision of 
0.95 with a threshold of 0.99 whilst still maintaining a reasonable recall value of 0.63 ( F1 of 75%).

There is one clear consequence that users could choose one setup over another. MAP-Mapper-HP is designed 
to increase the detection of MD&SP pixels where other classes do not have importance for the purpose of the 
study. However, if detecting MD&SP is equally important in a multi-class detection problem, in this case, the 
MAP-Mapper-Opt version should be chosen over -HP since it is optimised to maximise the F1 score via weight-
ing false positives and false negatives equally.

Data availibility
The Python code for the MAP-Mapper software v.1.0 has been published on the GitHub page https:// github. com/ 
CoDIS- Lab/ MAP- Mapper. Further updates of the software will follow.
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