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Abstract

Oriented normals are common pre-requisites for many geometric algorithms based on point clouds, such as
Poisson surface reconstruction. However, it is not trivial to obtain a consistent orientation. In this work, we
bridge orientation and reconstruction in the implicit space and propose a novel approach to orient point cloud
normals by incorporating isovalue constraints to the Poisson equation. In implicit surface reconstruction,
the reconstructed shape is represented as an isosurface of an implicit function defined in the ambient space.
Therefore, when such a surface is reconstructed from a set of sample points, the implicit function values at the
points should be close to the isovalue corresponding to the surface. Based on this observation and the Poisson
equation, we propose an optimization formulation that combines isovalue constraints with local consistency
requirements for normals. We optimize normals and implicit functions simultaneously and solve for a globally
consistent orientation. Thanks to the sparsity of the linear system, our method can work on an average laptop
with reasonable computational time. Experiments show that our method can achieve high performance in
non-uniform and noisy data and manage varying sampling densities, artifacts, multiple connected components,
and nested surfaces. The source code is available at https://github.com/Submanifold/IsoConstraints.

Keywords: Point normal orientation, Surface reconstruction, Unoriented point clouds, Poisson equation

1. Introduction

Point sets with consistently oriented normals are pre-requisites for many applications in computer graphics,
such as modeling, rendering, and reconstruction (Schertler et al., 2017; Metzer et al., 2021). Although it
is easy to obtain unoriented normals via local plane or surface fitting (Pearson, 1901; Cazals and Pouget,
2005), globally consistent orientation—where all normals point to the same side of the surface—cannot be
completely determined locally. This makes normal orientation a challenging task in geometric modeling.

Many traditional orientation approaches focus on local consistency, i.e., adjacent points should have
similar orientations (Hoppe et al., 1992; Xie et al., 2003; König and Gumhold, 2009). This is typically
achieved by propagating the normal orientation along a minimum spanning tree. However, the propagation
process can be easily affected by noise or sharp features. Moreover, local errors may be propagated to large
areas due to the lack of global supervision. Wang et al. (2012) and Schertler et al. (2017) formulate the
orientation process as an energy optimization problem. Although the minimization is globally optimal, the
constraints are mainly dominated by local consistency. When the orientation of a region is inconsistent with
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the surrounding regions, the energy function only increases near the boundary of this region. Therefore,
local errors may still cause large-scale inconsistent orientation. Given that local consistency is usually not
sufficient to guarantee robustness, some approaches consider other types of conditions. Katz et al. (2007)
check the visibility of points and achieve view-dependent orientation and reconstruction. Metzer et al. (2021)
propose a dipole propagation scheme and orient point patches in a global electric dipole field. Robust global
orientation remains a non-trival problem with room for improvements.

The problem of implicit unoriented reconstruction, where an implicit surface is reconstructed from a
point cloud without normals, is also closely related to normal orientation. It is pointed out in Mullen et al.
(2010) that the two tasks are of nearly the same difficulties. Some remarkable unoriented reconstruction
approaches have appeared in recent years such as PGR (Lin et al., 2022) and iPSR (Hou et al., 2022). In
this work, we mainly focus on bridging orientation and reconstruction in the implicit space.

In implicit surface reconstruction, the surface is expressed as the isosurface of an implicit function in the
ambient space. For consistency between the extracted surface and the point cloud shape, the function values
at the sample points should be close to the isovalue corresponding to the surface. We call this property the
isovalue constraints. In this work, we incorporate isovalue constraints to the Poisson equation and propose a
new optimization approach that solves for normals and the implicit function in one linear equation.

The Poisson equation gives the relationship between the implicit function and the vector field generated
by the point normals (Kazhdan et al., 2006; Kazhdan and Hoppe, 2013). Therefore, we aim to search for a
globally consistent normal orientation so that the sample points satisfy the isovalue constraints. Given a set
of sample point positions, we optimize their normals and the implicit function values simultaneously with
an appropriate boundary condition. We minimize a target function that enforces the isovalue constraints,
the Poisson equation, as well as the local consistency of normals. To numerically solve the optimization, we
discretize the Poisson equation and transform the minimization into a sparse linear least squares problem.
To the best of our knowledge, this is the first work that optimizes both the implicit function and normals in
a single target function on the Poisson reconstruction framework.

We conduct experiments on a variety of datasets with both synthetic and real scanned point clouds. The
results show that our method can achieve competitive performance on a common laptop CPU, and produce
robust global orientation on datasets with different sampling densities, noise levels, thin structures, and
sharp features. It is also suitable for surfaces with nested structures and multiple connected components.
Moreover, we demonstrate that our approach can be effectively extended to large-scale data with millions of
points by globally subsampling representative point sets and orienting the dense point cloud normals based
on the implicit field generated by the reference set.

2. Related works

Although unoriented normals of point clouds can be directly estimated by local fitting using PCA (Pearson,
1901) or Jets (Cazals and Pouget, 2005), it is difficult to determine whether the normal is pointing inward or
outward of the surface via local properties only (Metzer et al., 2021). Hence, deriving a consistent orientation
of point cloud normals is a challenging problem. In this section, we review several existing techniques on
normal orientation and implicit unoriented reconstruction. The techniques are classified into two categories:
(1) orientation based on local consistency, and (2) orientation dominated by other factors. When classifying
a method into the second category, we do not mean completely ignoring local properties, but mean applying
additional supervision to ensure normal consistency. Unoriented reconstruction approaches are generally
classified into the second category.

2.1. Orientation based on local consistency

The main idea of local consistency-based approaches is to propagate the known orientations to neighboring
points. The seminal work in Hoppe et al. (1992) constructs a minimum spanning tree (MST) based on the
similarity between adjacent normals and propagates the orientations along the tree. However, noise and
sharp features may cause incorrect propagation paths. In addition, local errors may be propagated to larger
areas and cause severe degradation of the performance. Although several improved flip criterion methods

2



have been proposed (Xie et al., 2003; König and Gumhold, 2009), their robustness is still unsatisfactory
for varying inputs. Some methods formulate orientation as a global optimization problem instead. Wang
et al. (2012) minimize a combination of the Dirichlet energy and the coupled-orthogonality deviation to
ensure that the normals are consistent with the adjacent points and perpendicular to the surface. Schertler
et al. (2017) formulate normal propagation as a graph-based energy minimization problem and solve it by
quadratic pseudo-Boolean optimization (QPBO) (Boros et al., 1991). Jakob et al. (2019) propose a parallel
greedy solver on the GPU for graph-based minimization. The objective functions of these methods are still
dominated by local consistency items. When inconsistent orientation occurs in a region, the energy function
only increases near the region boundary. Thus, local errors may still cause large-scale inconsistent orientation
due to the lack of global supervision. Moreover, these approaches may fail when orienting point clouds with
multiple connected components or nested structures.

2.2. Implicit unoriented reconstruction and orientation based on other factors

Since local consistency is usually not sufficient to obtain robust orientation for varying inputs, some works
apply other strategies to determine orientation. Mello et al. (2003) construct a signed distance function
defined on a simplicial decomposition of a bounding box, where the sign of the distance value indicates
the in/out information with respect to the input point set. Xie et al. (2004) cluster the point set into
singly-oriented groups and determine the global orientation by the active contours. Katz et al. (2007)
utilize a visibility-based heuristic to recognize outer surfaces and generate view-dependent orientation and
reconstruction. Alliez et al. (2007) build a tensor field from the Voronoi diagram and solve for an implicit
function whose gradient aligns with the principal axes of the field. Mullen et al. (2010) obtain a signed
distance function from an unsigned distance approximation by ray shooting and sign propagation.

In recent years, researchers have made considerable progress in implicit unoriented reconstruction.
VIPSS (Huang et al., 2019) sets up gradient norm constraints of the signed distance function and solves it by
Duchon’s energy. This method achieves good performance on sparse samples and 3D sketches. However, the
cubic time and space complexity restrict its application on larger-scale problems. PGR (Lin et al., 2022)
regards normals and surface elements in the Gauss formula as unknowns and optimizes the parametric
function space. However, it involves a dense linear system that needs to be solved on the GPU to achieve
reasonable efficiency, which makes it impractical for large-scale problems. By contrast, our method only
needs to solve a sparse linear system and can work on a common laptop CPU with high orientation accuracy
and scalability. iPSR (Hou et al., 2022) runs Poisson reconstruction in an iterative manner and updates
normals using the generated surface of the last iteration. Although it exhibits outstanding performance and
generates high-fidelity results, it currently lacks a theoretical guarantee for convergence. Different from iPSR,
our method establishes an optimization problem in the implicit function space, which can be solved using a
single sparse linear system. Our method also performs well on thin structures with noise.

In addition to traditional approaches, deep neural networks have been applied to gather information of
different scales for orientation and reconstruction (Guerrero et al., 2018; Park et al., 2019; Erler et al., 2020;
Xiao et al., 2022; Wang et al., 2022). Among them, Wang et al. (2022) utilize local patches for unoriented
normal estimation and apply the global features for consistent orientation. However, these methods usually
require substantial training data. Some works learn the implicit function directly from the input point
cloud and eliminate the need for training data (Atzmon and Lipman, 2020; Gropp et al., 2020; Ma et al.,
2021; Wang et al., 2021; Ben-Shabat et al., 2022). However, they need to operate an individual network
for each shape. Peng et al. (2021) propose a differentiable Poisson solver for both optimization-based and
learning-based unoriented reconstruction. Different from other approaches, the point positions are also
optimized in their work. Metzer et al. (2021) apply deep networks for local patch orientation and propose a
dipole propagation strategy across the coherent patches to achieve global consistency. However, the patch
partition strategy may affect the robustness of this method, especially on thin structures.

3. Method

In this section, we present our optimization formulation that bridges orientation and reconstruction in
the implicit function space. We treat normals as variables and optimize them such that the isosurface of the
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implicit function is consistent with the sample points, i.e., the function values at the sample points are close
to the isovalue, which forms the isovalue constraints. Our method incorporates the isovalue constraints to
the discretized Poisson equation, which forms the target function together with the local consistency energy.
The resulting formulation optimizes the implicit function and the point normals simultaneously, which can
be solved using a sparse linear least squares system.

3.1. Discretizing the Poisson equation

To formulate our optimization for both the implicit function and the normals, we need to first establish a
relationship between them. In this work, we model their correlation using a discretized Poisson equation
similar to the one used in Poisson surface reconstruction (PSR) (Kazhdan et al., 2006; Kazhdan and Hoppe,
2013). In the following, we first provide a brief review of PSR as preliminaries.

Given the oriented sample points S = {(pi, ni)
N
i=1} where pi ∈ R3 is the point position and ni ∈ R3 is

the normal, PSR first builds an octree O from the point cloud. Then a vector field V⃗ is computed from the
normals as

V⃗ (q) =
∑

si=(pi,ni)∈S

F̃si(pi, q) · ni (1)

with

F̃si(pi, q) =
1

W (pi)

∑
o∈ND(si)

αo,siFo(q), (2)

where ND(si) denotes the set of neighbor nodes for si in the octree of the same depth D. αo,si is the
coefficient for trilinear interpolation. Fo(q) is an approximated Gaussian smooth function, whose value
decreases when o and q are far apart. W (pi) is related to the local sampling density. For more details, please
refer to Section 4 of Kazhdan et al. (2006). In general, the vector field of a point q ∈ R3 is dominated by
the normals of its nearby sample points. In the inset figure below, we illustrate the vector field generated
by a set of samples. Here the red points represent the sample points, whereas the blue arrows indicate the
generated vector field.

We can express Equation 1 in a matrix form by concatenating
the normals into a vector n = (nT

1 , n
T
2 , . . . , n

T
N )T ∈ R3N , such

that there exists a 3× 3N matrix F (q) where

V⃗ (q) = F (q)n. (3)

We can ignore the small entries of F (q) due to the locality of
the Gaussian function, so that F (q) becomes a sparse matrix.
Equation 3 indicates that the vector field can be expressed as a
linear function of the point normals.

The indicator function χ(q) is a typical implicit function with
values of 0 outside and 1 inside the surface. By aligning the
gradient of the indicator function χ(q) with the vector field V⃗ ,
the indicator function and the vector field should satisfy the
Poisson equation

∆χ = ∇ · V⃗ . (4)

In PSR, the indicator function is represented as a linear combination of a set of compactly supported B-spline
basis functions, where each octnode o ∈ O is assigned with a basis at the node center, i.e.,

χ(q) =
∑
o∈O

xoBo(q), (5)

where {xo} are the interpolation coefficients to be solved, and Bo(q) is a three-dimensional B-spline basis
function of degree two centered at o. In addition, the Poisson equation 4 is also projected onto a series of
basis functions. This results in a sparse linear system

Ax = b, (6)

4



where x concatenates the coefficients {xo} for the basis functions, and the matrix A and the vector b has
components

Aij =< ∇Bi,∇Bj >[0,1]3 , bi =< ∇Bi, V⃗ >[0,1]3 . (7)

For details of the projection process, please refer to Section 3 of Kazhdan and Hoppe (2013).
Different from PSR which solves the Equation 6 to obtain the coefficients x for the indicator function, we

treat both x and the normals n as unknowns and use Equation 6 to derive their relation. To this end, we
note that the vector field V⃗ is represented as a linear function of the normals in Equation 3. Therefore,

bi =< ∇Bi, V⃗ >=

∫
[0,1]3

(∇BT
i (q)V⃗ (q)) dq = [

∫
[0,1]3

(∇BT
i (q)F (q)) dq] n. (8)

Using this condition, we can write the vector b as a linear function of n:

b = Bn, (9)

where B is a sparse matrix due to the locality of Bi and F . It follows that the coefficients x and the normals
n should satisfy the relation

Ax = Bn. (10)

This condition will be used to formulate the objective function of our optimization problem.

3.2. Formulation of the objective function

In this section, we formulate the objective function of our optimization for the indicator function coefficients
x and the point normals n by enforcing a set of constraints that they should satisfy.

3.2.1. Poisson equation constraints

In the previous subsection, we use the Poisson equation to derive the relation 10 between the the indicator
function and the normals. As we treat both the coefficients x and the normals n as variable, the condition 10
needs to be enforced by our optimization. To this end, we introduce the following term into the objective
function to penalize the violation of the condition:

EPoi(x, n) = ||Ax−Bn||2. (11)

3.2.2. Isovalue constraints

In implicit reconstruction, the reconstructed surface corresponds to an isosurface of the indicator function.
Given a point cloud that is sampled from the surface, the indicator function values at the sample points
should be close to the isovalue of the surface. In this way, the extracted isosurface is consistent with the
point shape. Therefore, we enforce such isovalue constraints in our optimization. Our goal is to make the
indicator function equal to 0 outside the surface and 1 inside the surface. If the normals are well oriented,
then the indicator function value changes rapidly from 0 to 1 near the surface. Thus, we choose the isovalue
to be the midpoint 1

2 , and use it as the indicator function value at the sample points. Then the isovalue
constraints can be written as

χ(pi) =
∑
o∈O

xoBo(pi) =
1

2
, i = 1, 2, ..., N. (12)

This can be written in a matrix form

Ux =
1

2
1⃗, (13)

where the matrix U ∈ RN×|O| has coefficients uij = Bj(pi) (i is index of the sample point and j is index

of the sorted octnode o ∈ O), and 1⃗ is a vector whose components are all 1s. Note that the B-spline basis
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functions are compactly supported, U is a sparse matrix. Then we enforce the isovalue constraints via the
following term in the objective function:

Eiso(x) = ||Ux− 1

2
1⃗||2. (14)

Remark. In screened Poisson surface reconstruction (SPSR) (Kazhdan and Hoppe, 2013), point constraints
are introduced in their formulation to fit the isovalue. The major difference between the isovalue constraints
in method and the point constraints in SPSR is that SPSR requires point normals as input, while our method
treats normals as variables. Therefore, the isovalue constraints of our approach can be spread to normals
during optimization with the bridging of Equation 11.

The isovalue constraints and the aforementioned Poisson equation constraints in Section 3.2.1 are basic
terms of our formulation. They allow us to search for a globally consistent normal orientation such that the
indicator function values of Poisson reconstruction are equal to the isovalue on the sample points.

3.2.3. Local consistency constraints

Our formulation also enforces the consistency between normals at adjacent points. Inspired by Wang
et al. (2012), we adopt a Dirichlet energy term ED(n) to penalize the difference between adjacent normals,
and a coupled-orthogonality deviation term ECOD(n) to enforce the orthogonality condition between the
normal vectors and the underlying surface. First, we construct a graph E for the sample points using their
k-nearset neighbors (KNN), where two points i and j are connected with an edge when i is in the KNN of j
or j is in the KNN of i (we set k = 10 in our experiments). Using this graph, we define the terms ED(n) and
ECOD(n) as follows:

ED(n) =
1

2

∑
i

∑
j∈N (i)

wij ||ni − nj ||2, (15)

ECOD(n) =
∑
i

∑
j∈N (i)

wij [(
pj − pi

||pj − pi||
)T (ni + nj)]

2

=
∑
i

∑
j∈N (i)

wij [(ni + nj)
T (pj − pi)(pj − pi)

T

||pj − pi||2
(ni + nj)], (16)

where

wij = exp

(
−||pi − pj ||

ρ2

)
, ρ = max

(pi,pj)∈E

||pi − pj ||
2

. (17)

The rationale for the term ECOD(n) can be explained as follows. Suppose pi and pj are two nearby points
on a quadratic surface patch and their geodesic midpoint is the center of the surface patch (see the inset
figure below). Then their normal vectors ni and nj should satisfy (Rusinkiewicz, 2019)

(
pj − pi

∥pj − pi∥
)T (ni + nj) = 0. (18)

𝑝𝑗 − 𝑝𝑖

𝑛𝑖 + 𝑛𝑗
𝑛𝑗𝑛𝑖

𝑝𝑖 𝑝𝑗

Since a smooth surface can be locally approximated around each
point using a quadratic height-field surface over the tangent plane
at the point, two nearby points on the surface and their normals
should satisfy condition 18 approximately. Thus we use the term
ECOD(n) to enforce this condition.

We introduce the local consistency energy Eloc(n) as the sum
of ED(n) and ECOD(n). Similar to Lin et al. (2022), we apply the
L2 regularizer to ensure the stability of optimization and avoid
oscillation especially for noisy inputs. Therefore,

Eloc(n) = ED(n) + ECOD(n) + nTn. (19)

6



From Equation 15 and 16, we notice that ED(n) and ECOD(n) are quadratic functions of n =
(nT

1 , n
T
2 , . . . , n

T
N )T ∈ R3N . Thus, there exists a matrix M such that

Eloc(n) = nTMn. (20)

M is sparse due to the locality of nearest neighbors.
Local consistency constraints mainly act as a regularizer and do not dominate the optimization. Decent

reconstructions can also be achieved without the local consistency energy. However, enforcing local consistency
is beneficial for our method especially for noisy inputs. We will show that they improves the reconstruction
quality both qualitatively and quantitatively in the experiments.

3.2.4. Boundary condition

Combining Equation 11, 14 and 20, the overall objective function E(x, n) can be written as

E(x, n) = Eiso(x) + αEPoi(x, n) + βEloc(n), (21)

where α and β are weights specified by the user. During experiments, the parameter α keeps unchanged. β
differs for noisy and noise-free inputs and is relatively small, mainly to maintain stability and avoid oscillation.
The parameters do not need to be adjusted frequently.

We want the indicator function to be 0 outside the surface, 1
2 on the surface, and 1 inside the surface.

Therefore, the overall objective function E(x, n) in Equation 21 must be minimized subject to a Dirichlet
boundary condition, that is, the indicator value on the bounding box should be 0. Otherwise, a trivial
solution χ(x) = 1

2 ,∀x ∈ R3 and n = 0⃗ exists. We set the bounding box to be slightly larger than the original
object. Let B be the octnodes of the border, we force the coefficients of the basis functions at B to be 0, that
is

minx,n E(x, n)

s.t. xi = 0, i ∈ B.
(22)

According to the Poisson equation, the variation of the indicator function is mainly caused by the vector
field formed by the point normals. As shown in the inset figure below, if the indicator function equals to 0 at
the bounding box and 0.5 at the surface (represented by the green outline), then we can predict the normal
directions to be vertical to the circle and pointing inward according to the variation of the indicator values.
The indicator function transitions from 0 to 0.5, similar to “surrounding” the surface from the bounding box.
Therefore, our method is good at identifying the inward (outward) normals of the outermost surfaces, which
is helpful for noisy thin structures.

3.3. Solving

Surface

𝝌 𝒙 = 𝟎. 𝟓

Bounding box 𝝌 𝒙 = 𝟎

From Equation 21, the objective function can be ex-
pressed as follows:

E(x, n) = ||Ux− 1

2
1⃗||2 + α||Ax−Bn||2 + β(nTMn). (23)

The boundary condition xi = 0, i ∈ B can be enforced
by crossing out the boundary components of x and the
corresponding columns of matrices A and U in the equation.
This optimization problem can then be transformed into an
unconstrained least squares problem by ∇xE(x, n) = 0 and
∇nE(x, n) = 0. It is equivalent to solving the linear system

Ãx̃ = b̃, (24)

where

Ã =

(
UTU + αATA −αATB

−αBTA αBTB + βM

)
, x̃ =

(
x
n

)
, b̃ =

(
UT 1

2 1⃗
0

)
. (25)
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We solve this linear system by the conjugate gradient method (CG) (Hestenes and Stiefel, 1952). U,A,B
and M are all sparse matrices. It is worth noting that we do not explicitly calculate the matrix Ã during the
solving process because UTU,ATA and BTB are not necessarily sparse. However, each step of the conjugate
gradient algorithm can be written as the product of a matrix and a vector, or the inner product of two
vectors. For instance, UTUx = (UT (Ux)), xTUTUx = (Ux,Ux). Therefore, the sparsity of the matrices can
be maintained during the solving process. For more details, please refer to Appendix A.

Let |O| be the number of octnodes, the size of matrix A is |O| × |O| and dominates the main time and
space resources during calculation since |O| is always larger than the point number N . Fortunately, the
matrix is sparse with nonzero element O(|O|log(|O|)). The reason is that the construction of A is similar
to that of PSR. Thus, the number of its nonzero elements is equivalent to the complexity of executing the
Algorithm 1 of Kazhdan and Hoppe (2013). The logarithm occurs due to the octree depth. For B and
U , each sample point is only related to the nearby nodes and corresponding basis functions at each depth.
Therefore, they will not exhibit higher complexity. When conducting multiplication of a sparse matrix and a
vector, the time complexity mainly depends on the number of nonzero elements of the matrix. The time
complexity of the optimization process is O(m|O|log(|O|)), where m is the number of conjugate iterations.

3.4. Orientation and reconstruction

Let (x̂, n̂) be the solution of Equation 22, due to memory and time limitation, we set the max tree
depth to be 7 during optimization and perform 300 CG iterations. This may be not enough for high-fidelity
reconstruction, but is sufficient for deciding the orientation of normals in most cases. Therefore, we do not
apply the optimized indicator coefficients x̂ for reconstruction. Instead, we apply the optimized normals n̂ for
orientation and input the oriented normals to screened Poisson surface reconstruction (SPSR) (Kazhdan and
Hoppe, 2013) with max depth 10. SPSR uses a conforming cascadic solver depth by depth without solving
the large linear system including the octnodes of all depths.

To conduct normal orientation, we treat the optimized normals n̂ as references. For each point, we
estimate its unoriented normal (no inside/outside information) ñi by Jets (Cazals and Pouget, 2005). We
also have an optimized normal n̂i from Equation 22. We set the final normal prediction of this point to
ñi if ñi · n̂i ≥ 0 and −ñi otherwise. In this manner, we can obtain the inward normals—the normals of
the outermost surface are pointing inward. For most cases, using oriented Jets normals (i.e., Jets normals
oriented by our method) results in slightly higher accuracy than directly using the optimized n̂ because Jets
method mainly focuses on local properties and usually generates accurate unoriented normals. However, in
cases when the local surface fitting is inaccurate such as the extremely sparse 3D sketch inputs (the first two
examples of Figure 8), we apply the optimized n̂ (after normalization) as the normal prediction.

Our approach can support per-point optimization (i.e., feeding all the point normals for optimization) for
more than 100K points in common devices. For large-scale point clouds (entailing millions of points), we
can subsample a representative point set from the dense point cloud and orient the whole point cloud using
the implicit field generated by the representative set. When the representative set is well oriented by our
method, we run SPSR to generate the implicit function of the set. The gradient field of the implicit function
can be calculated by ∇χ(q) =

∑
o∈O xo∇Bo(q). For each point p̃j in the dense point cloud with unoriented

Jets normal ñj , we calculate ∇χ(p̃j) · ñj to determine the normal orientation (flip the normal if the inner
product is lower than 0). This implicit orientation method is simple but effective, as the optimization of
Equation 22 is dominated by isovalue constraints and does not rely on density sampling when the basic shape
is included. In most cases, such a scale is sufficient to contain the entire basic shape and decide the normal
orientation of the dense point cloud. Then, a high-fidelity reconstruction can be achieved by the oriented
dense point cloud. In addition, excessive many variables are not beneficial to carry out optimization. The
use of representative sets can relax the complexity of our optimization. The representative set approach is
mainly inspired by Metzer et al. (2021). The difference is that Metzer et al. (2021) utilize the dipole implicit
field, whereas our approach applies the Poisson implicit field.
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4. Experiments

We conduct various qualitative and quantitative experiments on orientation accuracy and reconstruction
quality to demonstrate the efficacy of our approach. The experiments are performed on different datasets
with varying noise, sampling densities, and artifacts.

4.1. Comparisons

We compare our method with representative and state-of-the-art orientation and unoriented reconstruction
approaches. For the dataset, we use the benchmark data complied by a recent survey paper (Huang et al.,
2022) that collects a large number of shapes from different repositories such as 3DNet (Wohlkinger et al.,
2012), ABC (Koch et al., 2019), Thingi10K (Zhou and Jacobson, 2016), and 3D Scans (Oliver, L. et al.).
The shapes are classified as simple, ordinary, or complex according to the complexity of the shape topology
and the difficulties for reconstruction.

 MST Hermite curve QPBO Dipole Ours

Figure 1: Qualitative comparisons with MST (Hoppe et al., 1992), Hermite curve (König and Gumhold, 2009), QPBO (Schertler
et al., 2017) and Dipole (Metzer et al., 2021) in terms of orientation accuracy. Our method achieves high performance in point
clouds with complex topology, thin structures, and noise.

We carry out our experiments on two different sampling styles: 1. non-uniform but nearly no noise and 2.
varying noise. For non-uniform sampling, we choose the complex shapes (total 162 shapes) and directly apply
the point clouds provided by the benchmark (Huang et al., 2022) with 160K points per shape. They are
scanned by the Blensor simulator (Gschwandtner et al., 2011). In our approach, we use a representative set
of 1

3 original points (about 53K) for optimization and orient the whole point cloud according to the reference
set. We set the parameters to α = 104 and β = 10−4 for no-noise inputs.

For var-noise sampling, we use the ordinary shapes (total 486 shapes) and directly sample 40K points
from the surface by trimesh (Haggerty, D. et al., 2019). To obtain varying noise, we add randomized Gaussian
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Table 1: Quantitative comparisons with MST (Hoppe et al., 1992), Hermite curve (König and Gumhold, 2009), QPBO (Schertler
et al., 2017) and Dipole (Metzer et al., 2021) in terms of orientation accuracy.

Method
Complex non-uniform Ordinary var-noise

Avg. Acc.> 97% Avg. Acc.> 90%
MST 97.1% 87.2% 86.4% 66.6%

Hermite curve 98.6% 92.3% 90.2% 76.6%
QPBO 98.4% 89.1% 87.2% 67.9%
Dipole 95.8% 77.8% 90.1% 73.0%
Ours 99.3% 96.3% 93.7% 85.2%

noise with varying noise ratio [0.5, 1.0] and varying noise standard derivation [0.002, 0.01] for each shape.
The noise ratio represents the proportion of noisy points among all points and is different for each shape. We
conduct per-point optimization (no representative set is required) for var-noise sampling and set parameters
to α = 104 and β = 10−2. The parameter settings are maintained throughout the experiment.

During qualitative comparison, we also select several data from Berger et al. (2013), some 3D sketches
from Huang et al. (2019) and some real scanned point clouds from the aforementioned benchmark (Huang
et al., 2022).

First, we compare our results with four orientation methods MST (Hoppe et al., 1992), Hermite
curve (König and Gumhold, 2009), QPBO (Schertler et al., 2017) and Dipole (Metzer et al., 2021) in
terms of orientation accuracy, which indicates the proportion of correctly oriented normals (where the dot
product with the ground truth normal is greater than zero) among all sample points. The unoriented normals
are all predicted by Jets (Cazals and Pouget, 2005). For non-uniform sampling, the ground truth normal
of a point is taken as the surface normal of the ground truth mesh where the point is located. For noisy
sampling, the ground truth normal of a point is taken as the normal when it is sampled. Table 1 shows the
quantitative comparisons. In addition to average accuracy, we also count the proportion of shapes whose
accuracy is greater than a certain threshold for each method (97% for complex non-uniform dataset and 90%
for ordinary var-noise dataset). For instance, our approach achieves orientation accuracy higher than 97% in
96.3% (156/162) of the shapes in the complex non-uniform dataset. The results indicate that our method
achieves high performance. Local consistency-based methods (MST, Hermite curve and QPBO) may fail
in orienting point clouds with multiple connected components in one process. Therefore, these shapes are
removed when calculating the accuracy of them.

Input without 𝐸𝑙𝑜𝑐 with 𝐸𝑙𝑜𝑐

Figure 2: The reconstruction results with and without the local consistency energy Eloc of two noisy inputs. We use black
rectangles to emphasize the differences. It can be seen that Eloc brings about better orientation consistency and improves the
reconstruction quality near the zigzag region of the input shapes.
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   Input PGR PGR  LSEs  +  SPSR Ours

Figure 3: Qualitative comparisons with PGR (Lin et al., 2022). PGR may over-smoothen the surface in noisy inputs. Our
method performs better orientation accuracy and generates more details.

The qualitative comparisons are shown in Figure 1. The oriented point clouds are visualized by Mesh-
Lab (Cignoni et al., 2008). The first three examples are noise-free, and the last two contain thin structures
with noise. Our method shows good orientation accuracy. MST, Hermite curve and QPBO are local
consistency-based approaches. Therefore, local errors may cause large-scale inconsistent orientation. More-
over, their performances degrade when the noise is large. Dipole separates the point clouds into patches,
reducing its robustness when the wrong partition occurs, especially when thin structures exist. It is also
sensitive to parameters and requires careful adjustment for complex shapes. Our approach exhibits high
robustness for complex topology, thin structures, and noise.

If the L2 regularizer in Equation 19 is removed, then the orientation accuracy of our method on the
ordinary var-noise dataset is reduced by 0.2%. Removing the entire Eloc reduces the accuracy by 0.6%. This
scenario indicates that our approach is dominated by isovalue constraints and achieves decent results without
the local consistency energy. Meanwhile, the local consistency energy improves the average orientation
accuracy of our method. We also visually demonstrate its effectiveness in Figure 2, where we show the
reconstruction results with and without the local consistency energy Eloc of two noisy inputs. We use black
rectangles to emphasize the differences. It can be seen that Eloc brings about better orientation consistency
and improves the reconstruction quality near the zigzag region of the input shapes.

In addition to orientation approaches, we also compare the reconstruction performance of our method
with the most recent unoriented reconstruction approaches PGR (Lin et al., 2022) and iPSR (Hou et al.,
2022). In iPSR (and SPSR), point weight is an important parameter that controls the degree of fitting points.
We set the point weight to 10.0 for noise-free inputs and 1.0 for noisy inputs. In PGR, parameters kw and α
control its ability to manage noise. We set kw = 7, α = 2.0 for noise-free inputs and kw = 64, α = 5.0 for
noisy inputs.

PGR optimizes the product of normals and surface elements (also named as linearized surface elements
(LSEs) in Lin et al. (2022)) in the Gauss formula. The linear system of PGR is dense. Therefore, it is always
executed on GPU and limits to about 50K points in 2080Ti with 11GB memory. By contrast, our approach
solves a sparse linear system and can work entirely on CPU. We can carry out per-point optimization of 100K
points in common devices. Moreover, our method exhibits better average orientation accuracy in complex
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Input iPSR Ours Input iPSR Ours

Figure 4: Qualitative comparisons with iPSR (Hou et al., 2022). Our method is good at identifying the normal orientation of
the outermost surface and performs better in thin structures with noise.

Table 2: Running time of our approach on a usual laptop CPU. The time includes all IOs and reconstructions.

Model Node count Point number Representative set Running time
kitten (3rd Figure 8) 67, 753 5, 210 - 23s

bar chair36 (5th Figure 9) 155, 953 40K - 85s
think10k66952 (2nd Figure 9) 167, 761 160K 53K 119s

mailbox (4th Figure 9) 209, 929 0.7M 100K 239s
buddha (6th Figure 8) 267, 897 5M 100K 456s

non-uniform and ordinary var-noise datasets. When normalized, the LSEs in PGR can also represent normals.
The average orientation accuracy of PGR is 96.4% in no-noise data and 91.9% in var-noise data, and that of
our approach is 99.3% and 93.7%, respectively. In PGR, the surface elements are in the optimized variable.
Moreover, several approximations are required to solve the singularity of the Gauss formula. Hence, the
difference between LSEs and normals is evident. In Figure 3, we show the reconstruction of PGR and the
results of taking the normalized LSEs for orientation and reconstructing by SPSR. The results show that our
method generates good details, for instance, the crab legs. PGR also over-smoothens the surface for noisy
inputs.

iPSR iteratively processes SPSR and computes the normals from the surface of the preceding iteration.
Although iPSR is an outstanding work and always performs high-fidelity reconstructions in complex topologies,
its convergence currently has no theoretical proof due to the lack of explicit formulation of isosurfacing.
Our method optimizes the normals in the implicit space and represents the solution by a linear equation.
In Section 3.2.4, we demonstrate that our method is good at identifying the outermost surface and the
corresponding inward (outward) normals. Therefore, we can achieve good performance in thin structures
with noise. This is shown in Figure 4 and the 5th example of Figure 9. In Figure 4, the wall of the wine
bottle and the base of the chair is thin with big noise. Therefore, judging whether the normal of a point
should be inward the surface or outward is difficult. The results show that our approach deals with this
situation better.

4.2. Managing various situations

In this section, we examine the ability of our approach in handling various kinds of inputs, including
artifacts not performed in Section 4.1 such as missing parts, sharp edges, and nested surfaces. We test our

12



 iPSR Ours Original shape

Input

External

Internal

Figure 5: Results on the sampling with missing parts in the sunken cylinder of an anchor from both external and internal view.
Our method achieves better orientation and reconstruction performance.

 Hermite curve QPBO

Dipole iPSR Ours

Figure 6: Results on sharp edges. All methods encounter some challenges to orient the sharp acute angle. Hermite curve even
generates wrong orientation in the whole top side surface. Our approach achieves a relative decent effect in this situation.

approach in different sampling densities from hundreds to millions. Moreover, we utilize real scanned point
clouds to validate the effectiveness of our method.

Figure 5 shows an anchor model with missing parts in the point cloud. The original shape of the anchor
is shown in the rightmost column. The first row is the external view, and the second row is the internal
view (looking from the internal of the shape). However, the sunken cylinder of the anchor is not scanned
completely, causing a missing region in the input. The left two columns are orientation and reconstruction
performances of iPSR and ours with the scanned data. It can be seen from the external view that our method
generates correct normal orientation for the sunken cylinder although only a few points are scanned in this
region. Therefore, we achieve better reconstruction performance which is obvious from the internal view.

Figure 6 shows a comparison of sharp edges among different approaches. We can see that all methods
encounter some challenges to orient the sharp acute angle. Hermite curve even generates wrong orientation
in the whole top side surface. Our approach achieves a relative decent effect in this situation. In Figure 7,
we exhibit an example of nested surface with three layers at r = 0.5, r = 0.75, and r = 1.0. We show the
orientation result and the implicit space generated by the oriented point cloud. The green color represents
the isovalue. Our method generates correct normal orientation: the normals are alternative in and out among
adjacent layers. Managing nested surfaces is also one of the advantages of our method over visibility-based
and propagation-based approaches.

Figure 8 shows our reconstructions of different sampling densities from 3D sketch of 999 points to dense
sampling with 5 million points. Our method exhibits high performance for these examples. In Figure 9, we
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1.0

Figure 7: Our reconstruction on the nested surface with three layers on r = 0.5, r = 0.75, and r = 1.0. We show the orientation
results and the implicit space generated by the oriented point cloud. The green color represents the isovalue.

  

  

 

 

999 points 1001 points
5210 points

160K points 1M points 5M points

Figure 8: Our reconstructions on point clouds of different sampling densities from 3D sketch of 999 points to dense sampling
with 5 million points.

show qualitative comparisons on a variety of inputs involving extremely sparse samplings, complex topology,
multiple connected components, outliers, and noise. It can be seen that our method effectively manages
these situations and achieves well-rounded performance among all methods. In Figure 10, we show our
reconstructions of several real scanned point clouds provided by Huang et al. (2022). Our method produces
consistently oriented normals and therefore generates detailed reconstruction when the scanned point cloud
is accurate. Even when the scanned point cloud is noisy with missing regions, our method can still achieve a
decent performance.

4.3. Running time

Table 2 exhibits the running time of our approach in a laptop with AMD Ryzen 5 5600H CPU @ 3.3GHz
and total of 24GB memory in two memory slots. The running time includes all processes: IOs, orientations,
reconstructions, representative point samplings, etc. We show the tree node count (during optimization),
point number, representative set point number, and running time of several examples. If the representative
set point number is “-” in the table, then we have conducted per-point optimization (no representative set is
used) in this shape. For the buddha model with 5 million points, we sample 100K points for the representative
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Figure 9: Qualitative comparisons on a variety of inputs involving extremely sparse samplings, complex topology, multiple
connected components, outliers, and noise. Our method effectively manages these situations and achieves well-rounded
performance among all methods.

set. The time for orienting representative points is 214s, and the time for other processes (all IOs, orienting
the dense point cloud by the representative set) is 242s, for a total of 456s. For other examples, most time is
spent on optimization.

We take bar chair36 with 40K points for comparison among different methods. The running time includes
orientation and reconstruction. We do not apply representative set in this example and records 85s. Local
consistency-based methods MST, Hermite curve and QPBO are fast in CPU and only take 4s, 12s and 4s
respectively. iPSR spends 49s in 17 iterations. Dipole applies a deep neural network to keep local orientation
consistency. Therefore, it relies on GPU and takes 211s on a server with Intel(R) Xeon(R) Silver 4210 CPU @
2.20GHz and RTX 2080Ti GPU. PGR solves a dense linear system and relies heavily on computing resources
with time complexity quadratic to the point numbers. We change its kdtree implementation from “KDTree”
to “cKDTree” in SciPy (Virtanen, P. et al., 2019) to achieve fast width calculation. It takes about 87s on the
RTX 2080Ti GPU. If executed in CPU, then it takes several hours. Applying a representative set reduces
the running time of our method. For example, our approach takes 239s for mailbox, and iPSR takes 854s in
30 iterations.
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Figure 10: Our reconstructions on real scanned point clouds.

0.004
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Figure 11: Our method may produce inaccurate orientation in non-outermost surfaces that are very close to each other. This is
a limitation of our method.

5. Conclusion and future works

In this work, we propose an orientation and reconstruction approach that incorporates isovalue constraints
to the Poisson equation. We bridge orientation and reconstruction in the implicit space and express the
orientation problem into a sparse linear system. Our method shows competitive performance for varying
noise and artifacts, and works on an average laptop CPU. We believe that communicating orientation and
reconstruction in the implicit function space is interesting and follow-up works can be carried out.

Our method still has some limitations. Although our approach does not rely on GPU, the solving process
of the linear system still requires a large amount of memory (about 10.9GB for mailbox and 12.6GB for
buddha). It mainly depends on the tree node count. However, most laptops have more than one memory slots
to support the usage of 16GB to even 32GB. In the future, we can try the depth-by-depth solving similar to
SPSR instead of including all nodes in a large linear system. Moreover, our method may produce inaccurate
orientation in non-outermost surfaces that are very close to each other. Figure 11 shows the error map of our
reconstructions relative to the ground truth meshes. The high error places demonstrate this limitation. The
possible reason is that the indicator function changes rapidly in this area. However, the octree depth during
optimization is not sufficiently high (recall that the implicit space is spanned by B-spline basis functions
centered at octnodes). Conducting depth-by-depth solving is still a potential solution to support large depth
during optimization.
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Appendix A. Details of the conjugate gradient optimization

This appendix presents the details of the conjugate gradient optimization of our method. It also explains
why the sparsity of the matrices can be maintained during the solving process. In Section 3.3, the optimization
problem is transformed into a solution of a linear system

Ãx̃ = b̃, (A.1)

where

Ã =

(
UTU + αATA −αATB

−αBTA αBTB + βM

)
, x̃ =

(
x
n

)
, b̃ =

(
UT 1

2 1⃗
0

)
. (A.2)

Let x̃(k) = (x(k), n(k)) be the results of the k-th iteration and is initialized as x(0) = 1e−3 × 1⃗, n(0) = 0⃗.
The conjugate graident algorithm can be written as follows: let r̃(0) = b̃− Ãx̃(0), p̃(0) = r̃(0), where

Ãx̃(0) =

(
UTUx(0) + αATAx(0) − αATBn(0)

−αBTAx(0) + αBTBn(0) + βMn(0)

)
. (A.3)

Denote

p̃(k) =

(
p
(k)
x

p
(k)
n

)
, r̃(k) =

(
r
(k)
x

r
(k)
n

)
, (A.4)

then, for each iteration,
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x̃(k+1) = x̃(k) + αkp̃
(k), (A.6)

r̃(k+1) = r̃(k) − αkÃp̃(k), (A.7)
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p̃(k+1) = r̃(k+1) + βkp̃
(k), (A.9)

where

Ãp̃(k) =

(
UTUp

(k)
x + αATAp

(k)
x − αATBp

(k)
n

−αBTAp
(k)
x + αBTBp

(k)
n + βMp

(k)
n

)
. (A.10)

Note that UTUx = (UT (Ux)) and xTUTUx = (Ux,Ux). Therefore, each step of the conjugate gradient
algorithm can be written as the product of a matrix and a vector, or the inner product of two vectors. The
sparsity of the matrices can then be maintained during the solving process. The complexity and the number
of iterations are described in Section 3.3.
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