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The application of deep generative models in urban form generation 

based on topology: a review 

Abstract: Integrating deep generative models into urban form generation is an 

innovative and promising approach to support the urban design process. 

However, most deep generative urban form models are based on image 

representations that do not explicitly consider topological relationships among 

urban form elements. Toward developing an urban form generation framework 

aided by deep generative models and considering topological information, this 

paper reviews urban form generation, deep generative models/deep graph 

generation, and the state of the art of deep generative models in architectural 

and urban form generation. Based on the literature review, a topology-based 

urban form generation framework aided by deep generative models is 

proposed. The hypotheses of street network generation by deep generative 

models for graph generation and plot/building configuration generation by 

deep generative models/space syntax and the feasibility of the proposed 

framework require validation in future research. 
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1. Introduction 

According to National Unions (2014), 66% of the world’s population is expected to 

live in urban areas by 2050. By 2030, the global urban area will triple compared with 

that of the start of the twentieth century (Seto, Güneralp, and Hutyra 2012). An 

increasing significance is attached to urban design to fulfill the requirement of rapid 

urbanization. 



Urban design is a complicated process. The UK’s former Social Science 

Research Council located the discipline of urban design at “the interface between 

architecture, landscape architecture, and town planning, drawing on the design 

tradition of architecture and landscape architecture and the environmental 

management and social science tradition of contemporary planning”(Bentley and 

Butina 1991). Carmona (2021) argues urban design is not only a simple interface but 

also encompasses and sometimes subsumes many disciplines and activities, such as 

architecture, town planning, landscape architecture, surveying, property development, 

environmental management, and protection, etc. Cowan (2001) has similar arguments 

to Carmona and contends that producing an urban design framework or masterplan 

needs a lot of skills, such as interpreting policy, assessing the local economy and 

property market; appraising a site or area in terms of land use, ecology, landscape, 

ground conditions, social factors, history, archaeology, urban form and transport, 

managing and facilitating a participative process, drafting and illustrating design 

principles, and programming the development process. Urban designers need to 

consider all these aspects and work with various clients frequently with conflicting 

interests and aims. Instead of one single solution, varied solutions have to be 

developed. The process requires a lot of time and labour. When drawing urban 

masterplans, designers should define the street network, blocks, parcels, and buildings 

(Miao, Koenig, Knecht, Konieva, Buš, and M. C. Chang 2018). In the early stage of 

urban design, urban designers have to spend a lot of time in designing urban forms 



with different characteristics. Extensive urban forms are required in the early stage of 

urban design to ensure high urban performance in the final construction. 

To improve the efficiency and creativity of urban design, multiple generative 

urban design methods have been put forwards, which are effective in urban design to 

some extent (Beirão, Duarte, & Stouffs 2011; Luca 2007; Miao, Koenig, Bus, et al. 

2017; Miao et al. 2018; Rakha & Reinhart 2012). However, the influence of these 

approaches is still limited in the mainstream practice of urban design. These urban 

form generation methods are based on procedural modelling with a series of manually 

defined rules. Although these approaches significantly reduce the cost of designing 

urban forms, many tedious processes are still required as these rules are hand-

engineered and inflexible to use (Hartmann et al. 2017). For example, repetitive 

manual tuning of many parameters is demanded to generate urban forms similar to 

targeted real urban forms.  

With the rapid development of artificial intelligence (AI), technology is 

updated continuously, especially machine learning. Machine learning gives computers 

the ability to learn how to perform a given task from demonstrations without being 

explicitly programmed (Samuel 2000). With AI, people will not need to define the 

rules manually as discussed above. Instead, the "rules" can be learned from data. It 

revolutionized many scientific fields, such as computer vision and natural language 

processing. Deep generative models, an approach of machine learning that learns 

from and interprets data to synthesize designs through multiple layers of artificial 

neurons, have shown the ability to generate realistic images of faces and everyday 



objects (Karras, Laine, and Aila 2019; Ruthotto and Haber 2021; Wang et al. 2018; 

Zhu et al. 2017). Many researchers have made a lot of effort to translate this success 

to the urban form generation. Hartmann et al. (2017) and Kempinska and Murcio 

(2019) attempt to generate road network layouts automatically by deep generative 

models. Shen et al. (2020) put forward an urban filling method assisted by deep 

generative models.  

However, most urban form generation approaches assisted by deep generative 

models rely on pixel or image representations. There are limitations of this data 

format, although the data format of the two-dimensional (2D) images seems 

compatible with the representation of the urban design which is mainly demonstrated 

through city plans and drawings. The urban space is complicated and topologically 

associated, and the topology is important in urban form. Images only encode topology 

information implicitly. On the other hand, graphs encode topology information 

explicitly. This potentially makes graphs a more suitable representation for modelling 

urban forms and in turn applying machine learning to urban forms. A promising 

method to generate urban forms with topological information is deep generative 

models for graph generation, which is a novel research topic in general (Borgwardt et 

al. 2020; Kriege and Mutzel 2012; Orsini, Frasconi, and De Raedt 2015). To date, 

most works have considered the problem of generating graphs corresponding to 

molecules (Cao and Kipf 2018; Jin, Barzilay, and Jaakkola 2018; Popova et al. 2019; 

Samanta et al. 2019; You, Liu, et al. 2018). Astrazeneca uses such models for drug 

discovery (Mercado et al. 2020). Only a handful have considered the problem of 



generating graphs corresponding to street networks (Chu et al. 2019; Owaki and 

Machida 2020). Molecules are small graphs while street networks are very large 

graphs, so the problems are different. To generate urban form with topological 

information, we should understand the topological information of urban form first. 

Space Syntax, a technique developed under the theory of city as flows, is a well-

known quantitative analysis approach to describe urban form based on topology. 

Regarding the configurational relations, urban space is represented as a graph in 

which discrete spatial elements (e.g., convex space, segment, axial line, or isvoist
1

) 

are shown as nodes, and the connection between each other is denoted as an edge 

(UCL Space Syntax, 2021). 

This research aims to develop a topology-based urban form generation 

framework aided by deep generative models. The studies on urban form generation, 

deep generative models/deep graph generation, and the application of deep generative 

models in urban form generation are reviewed. Consequently, there are three parts to 

this review. We review the approaches to urban morphology, urban form elements, 

classification of urban forms, and generative urban design models in section 2, and 

deep generative models/deep graph generation in section 3, and the state of the art of 

deep generative models in architectural and urban form generation based on topology 

in section 4. Following these reviews, a topology-based urban form generation 

 
1

 An isvoist means a group of points visible from a defined vantage point and related to the 

environment (Benedikt 1979). 



framework aided by deep generative models is proposed in section 5. Finally, section 

6 summarizes the study and puts forward an outlook on future research.  

2. A review of urban form generation 

This subsection presents the review of urban form generation by introducing 

approaches to urban morphology, urban form element, classification of urban form, 

and generative urban design models. 

2.1 Approaches to urban morphology 

Different approaches have different perspectives on understanding urban form. Kropf 

(2009, 2017) proposed four broad approaches, namely, typo-morphological, 

configurational, historico-geographical, and spatial analytical. Oliveira (2016) 

presented four similar main morphological approaches: the historico-geographical 

approach, process typological approach, space syntax, and spatial analysis. Shi (2017) 

reviewed the approaches to urban morphology and put forwards five approaches: 

historico-geographical approach, complex-systematic approach, typological approach, 

functional zoning, and defining the constraints that build up an urban design 

prototype. This section presents the following four approaches to urban morphology, 

i.e., historico-geographical approach, configurational approach (Space Syntax), 

typological approach, and spatial analytical approach. The historico-geographical 

approach and spatial analytical approach have the same origin of the geography field, 

and the typo-morphological and configurational approaches come from the fields of 

architecture and urbanism (Kropf 2017). 



(1) Historico-geographical approach 

The historico-geographical approach to urban morphology explains the urban form 

through analysis of urban constituent elements and the process of urban development. 

This approach originated from the early 19 century when people attempted to identify 

and explain the diversity of places, such as von Humboldt’s holistic approach to 

geography, cultural landscape, and urban geography (Kropf 2017). The research of 

German geographers in the early twentieth century had an significant influence on 

urban morphology until the 1930s. A lot of research was conducted on the plan of 

medieval towns in Germany (Oliveira 2016; Zhang 2010). Most of the research 

focused on the layout and rarely considered the integration of urban social, economic, 

and architectural research. A town should be regarded as an organism in a regional 

economic system rather than merely a layout (Hofmeister 2004). After the 1930s, this 

approach lost weight in German human geography. However, the historico-

geographical approach gained new vitality and further developed in UK when MRG 

Conzen emigrated to the UK. Conzen published “Alnwick, Northumberland: A Study 

in Town-Plan Analysis” and provided a comprehensive framework for analysing and 

designing the urban physical forms (Conzen 1960). The method of urban form 

evolution in the process of urban development was utilized to analyze urban elements: 

streets and their arrangement in a street system, plots and their aggregation in blocks, 

and block plans of buildings. Afterward, the historico-geographical approach was 

consistently developed by the Urban Morphology Research Group (UMRG) at the 

University of Birmingham established by Jeremy Whitehand in 1974. There were 



many well-regarded researchers in UMRG, such as Kropf, Lilley, Slater, and the 

research topics included medieval towns, suburban expansion and transformation in 

the 20th century, the relationship among urban economics, real estate development 

mechanisms, and urban forms, etc. (Kostof 1999a, 1999b; Kropf 2009, 2011, 2014, 

2017; Lilley 2009; Slater 1990).  

The historico-geographical approach focuses on hierarchy and time (Shi et al. 

2017). The research objects of the urban landscape include the town plan, the building 

fabric and land, and building utilization (Conzen 1960). The town plan has a 

hierarchy of plan elements, including streets, plots, and buildings (Conzen 1960). In 

terms of time, this approach is an evolutionary research approach analyzing the 

chronological sequence of town plans. The historico-geographical approach explains 

the settlements’ complexity through the elements’ morphogenetic processes at 

different levels (Kropf 2017).  

(2) Configurational approach  

The ideas of the configurational approach stem from the mathematical and 

quantitative study of architectural and urban forms conducted in the 1960s, especially 

in the UK. Inspired by the allometric studies (Thompson 1992) and the analytical 

potential of graph theory and topology (Euler 1741), many studies have been 

conducted on the configurational approaches. These approaches focus on the 

geometric and topological attributes of built form to understand the relationships 

among different measures and attributes and how spatial configurations influence the 



use of urban buildings and environments (Kropf 2017). Besides, these approaches 

also aim to predict and improve the function and performance of architectural and 

urban forms. The research methods of the configurational approach include 

topological and quantitative methods, combinatorial analysis, and the idea of possible 

forms (Kropf 2017). There are four similarities in the configurational approaches. 

Firstly, the elements are defined by positions in the configuration. Secondly, the 

interdependence of geometric parameters is demonstrated through the exploration of 

forms and configurations. Thirdly, the spatial form is the result of the generation 

process. Fourthly, the form is generated by local generative rules. 

Space syntax is an acknowledged configurational approach. Similar to spatial 

analytical approaches, space syntax argues that the configuration is complex and 

emergent and the global configuration develops from local processes (Batty 2007). 

The theoretical basis of space syntax is the relations between spatial structure and 

movement (Hillier 1996). Configuration of urban form is the primary generator of 

movement (Hillier et al. 1993). In terms of form notion, space syntax emphasizes the 

space and spatial configuration rooted in the analysis of buildings (Hillier 2003). 

Spatial configuration means the relationships between two spaces in a global system 

considering relationships with all the other spaces in the system rather than only 

considering the spatial relationship between two spaces (Hillier, Hanson, and Graham 

1987). In the urban scale, space syntax mainly focuses on the voids of structure and 

the urban form is presented as a graph constituted by discrete spatial elements, such as 

convex space, axial line, segment, or isvoist (Hillier 2003). The topological measures 



can be extracted from graphs to quantify the characteristics of spatial configuration. 

Integration and choice are two main measures reflecting two elements of movement: 

the selection of a destination and the selection of route. Integration measures 

accessibility and choice measure the passing flow. Space syntax can be developed as 

interpretive models to analyze, describe, explain, and predict spatial and socio-

economic phenomena, such as urban movement, urban crime, centrality, spatial 

intelligibility (UCL Space Syntax 2021). Besides, space syntax can be utilized to help 

generate urban form and predict the distribution of building use based on topology 

(Al-Sayed 2013; Thirapongphaiboon and Hanna 2019; Xie 2011). 

(3) Typological approach 

The typological approach refers to typo-morphological approach or process 

typological approach. This approach developed based on the architectural and urban 

design practice and education in the first half of 20 century, mainly in France and 

Italy. The typological approach studies the built environment as a context for 

development and formative processes and evolution of building types to inform 

architectural and urban design proposals (Cataldi, Maffei, and Vaccaro 2002). It aims 

to develop a design with local tradition and in harmony with the context. Saverio 

Muratori was a representative of researchers supporting this approach in the early 

stage who combined the research methods of architectural typology and urban 

morphology to protect the sense of historical continuity in architectural and urban 

design through the study of architectural and urban history (Cataldi 2003). These 



researchers opposed modernist architecture and emphasized the protection of 

historical and cultural heritage in the 1950s and 1960s (Zhang 2010). Afterward, 

Caniggia, Rossi, and Krier were another three influential researchers. Caniggia (2003) 

connected the urban typological processes to the different phases of urban history. 

Rossi (1999) defined typology as elements that cannot be further reduced. Rossi’s 

typological approach mainly reflected people’s way of living rather than a physical 

form itself. He argued that a city should be built with the typology of the city. Many 

European cities developed with the remained urban physical form and evolving 

program behind the form. Krier (1984) proposed to guide design through typological 

study and imitated the pre-industrial cities for design. However, the typology of a city 

is not always constant, and the urban elements are continuously transforming with the 

change in people’s lifestyles (Moundon 1997). Thus, the prediction of urban typology 

in the future through the study of the evolution of people’s lifestyles is important in 

urban form generation (Shi et al. 2017). 

(4) Spatial analytical approach 

The spatial analytical approach mainly focuses on people’s activity as sets of spatial 

interaction. It utilizes a series of quantitative methods, such as mathematical models 

(entropy-based, fractal, and other non-linear forms in particular), agent-based models, 

cellular automata, graph theory, and network analysis (Kropf 2017). This approach 

originates from initial analytical ideas, such as economic geography and the dynamic 

models of urban structure (Adams 2005; Thünen 1966). According to the spatial 



analytical approach, cities are complicated adaptive systems involving the 

relationships of social and economic interactions and settlements’ physical forms. In a 

city, there are flows of people and resources (including natural flows, such as sunlight, 

wind, and water, and people-related flows, such as goods, energy, information, and 

waste) (Batty and Cheshire 2011; Kropf 2009). Flows mean the changes occur among 

points defined by locations and time in Eulerian and Lagrangian frames of reference 

(Batty and Cheshire 2011). The city is regarded as a network of flows (Batty 2013). 

The pattern of people and resource flows generate urban physical forms and are also 

influenced by urban physical forms. Thus, in the early phase of projects, designers 

should figure out the principles and relationships of flows in the system. The elements 

are defined and differentiated by their positions in a structure or configuration. The 

interrelationships of elements and the elements working as a whole are analyzed. The 

form and structure are the results of the generative process of formation and 

transformation.  

2.2 Urban form elements 

The urban physical form consists of several elements. Scheer (2001) divided the 

urban form into five layers, i.e., site, superstructure (e.g. highways and boundaries 

before urban settlements), infill (e.g. paths, plots), buildings, and objects (e.g. 

vegetation, fences). Beirao et al. (J. Beirão 2012) proposed City Ontology with five 

main elements, i.e., networks, blocks, zones, landscapes, and focal points. In Koenig’s 

model of DecodingSpace, the urban form consisted of three basic urban elements, i.e., 



street networks, parcels, and buildings (Miao, Koenig, Bus, et al. 2017). Oliveira 

proposed that all cities and their urban tissues were comprised of four urban elements, 

i.e., streets, street blocks, plots, and buildings (Oliveira 2016). A well-accepted simple 

urban form includes three basic elements, i.e., streets, plots, and buildings (Conzen 

1960; Kropf 2009, 2017; Moundon 1997; Whitehand 2001). Single space shelters are 

organized to create buildings; buildings and enclosures are combined to generate 

plots; plots and routes form streets (Kropf 2017). These urban elements come together 

organically and form a compositional hierarchy. 

 Street network is public and democratic of the city, where we meet and 

interact in social terms. Streets define the street blocks and are accessible to everyone 

(Oliveira 2016). There are many categories of streets with different functions, shapes, 

sizes, and relations to other streets. The characters of streets are affected by plots on 

one or two sides of the street, the buildings of their height, the location of buildings in 

plots (the distance from buildings and street), the length of frontage, and the 

distribution of the movement of pedestrians and vehicles (Gehl 2011; Oliveira 2016). 

 Plot is also known as parcel, property, and lot. The plot system is the 

organizational framework of urban form separating the public domains and the 

different private domains (Bobkova et al. 2019). The definition of plots involves the 

relation of the plot to the street, the position of the plot within the plot system, and the 

shape, dimension, and proportion of the plot. The plots influence the buildings within 

these plots and further affect the urban landscape. The dimension of street blocks and 

plots is a significant element in describing the physical urban form. In general, the 



dimension of blocks and plots increases from the historical center to the peripheral 

parts of the city except for some conditions, such as the fringe belt (Oliveira 2016). 

On the contrary, the number of plots per street block decreases from the historical 

center to the peripheral parts of the city generally (Oliveira 2016). 

 Building is one of the most important and visible elements of urban form. 

Buildings have the character of the positions in plots, the dimension of buildings and 

the utilization of buildings, etc. The position of buildings within their plots is an 

important characteristic of urban form. According to Oliveira (2016), buildings were 

aligned continuously in an apparent organization in most cities before the end of the 

nineteenth century. However, many theories developed over the twentieth century 

supporting the variation in the position of buildings within plots. There are two 

critical indicators of building dimension: building height and the relationship between 

building height and the width of the street where the buildings are located. The 

building height and street width influence the sense of street space. The sense of 

eclosure in street space increases if the ratio of building height to street width 

increases. The utilization of buildings lays out the activities within a building. The use 

of buildings includes residential, commercial, service, mix of use, etc. There are other 

essential characteristics of buildings, such as facade, building material, organization 

of dwellings.  

 

 



2.3 Classification of urban forms 

The urban form demonstrates a series of repeating arrangements or configurations of 

urban elements: street networks, plots, and buildings (Conzen 1960; Kropf 2009, 

2017; Moundon 1997; Whitehand 2001). The repeating patterns are regarded as form 

types and represent the organization of urban form. Different types of urban elements 

are combined in different patterns (streets incorporate plots and plots incorporate 

buildings) and generate different types of urban forms. There are various 

classification methods for urban form. Table 1 shows the classification of urban 

forms, including urban indicators for classification, urban form types, and 

classification method. Table 2 demonstrates the most used urban indicators 

quantifying urban form, i.e., connectivity, centrality, density, dimension, shape, and 

usage. 

In summary, the urban indicators describing urban elements are utilized to 

classify urban types. The most used indicators quantifying urban form are 

connectivity, centrality, density, dimension, shape, and usage. The most used 

classification methods are clustering analysis and self-organizing maps (SOM). The 

different urban form types result from the classification of urban forms using different 

urban indicators and classification methods. 

2.4 Generative urban design models 

There are multiple urban form generation models. In this section, several widely 

accepted urban generative design models are introduced. 



Koenig et al.’s model consists of three steps (Koenig et al. 2017; Miao, 

Koenig, Bus, et al. 2017; Miao, Koenig, Knecht, Konieva, Buš, and M.-C. Chang 

2018; Miao, Koenig, and Knecht 2017). Firstly, street networks are generated. Then, 

through extraction from the street networks, blocks are defined. Finally, buildings are 

placed on the parcels, which are sliced from blocks. This model has the advantage of 

being able to generate a fast prototype of urban design. However, the generation of 

plots relies on street networks based on the defined parameter and initial street 

segments. Also, no component is integrated for data analysis and evolutionary multi-

criteria optimization.  

Beirão put forward an urban form generation model called CItyMaker in 2012. 

It consists of three modules, i.e., formulation module, generation module, and 

evaluation module (Beirão, Duarte & Stouffs 2011; J. N. Beirão 2012). The 

formulation module analyses the urban context of the site. The generation module 

leverages the generative method of shape grammar. The evaluation module evaluates 

the generated design and leads the design to meet the target. The rules of urban 

induction patterns are used to define the compositional guidelines of the plan, grids or 

the main street structure, urban units including squares and other public spaces, and 

designing details (e.g., street profiles and materiality) (Beirão, Duarte and Stouffs 

2011; J. N. Beirão 2012). However, this model lacks integrated calculations or tools 

for topology evaluation. 

Rakha and Renhart’s model (Rakha and Renhart 2012) has two steps, i.e., the 

generation of street networks and buildings and the optimization based on walkability 



by genetic algorithms. The advantage of this model is that it can work on terrain. 

However, the types of building massing in this model are limited, and the void open 

space is not considered. 

Luca (2007) utilizes cellular automata and agent-based modeling for 

generation on the urban and regional scales. This model has two steps, namely, data 

collection and form generation. The forms generated to meet the tasks in the spatial, 

temporal, and scale hierarchy are based on the dataset. However, Luca’s model does 

not generate urban and building functions. 

Shi et al. (2017) propose a general workflow with three steps of data 

collection, generation, and optimization for simulation-based urban form generation 

and optimization modeling. However, the computation cost of the simulation is rather 

high, and the simulations and analysis in the research are not validated by 

measurement data. 

All the models mentioned above have the steps of data collection and 

generation. The collected data step includes physical, social-economic data of the 

environment, the context of the site, and users’ preferences. The generation step is the 

generation of urban form elements based on generative methods and constraint sets, 

and the primary urban form elements include street networks, plots, and buildings. 

 

 



3. A review of deep generative models and deep graph generation 

3.1 Deep generative models 

In general, deep generative models are the models with many layers of stochastic or 

deterministic variables to approximate complex and high dimensional probability 

distributions (Beirão 2012; Beirão et al. 2011). According to Turhan and Bilge (2018), 

deep generative models can be categorized into five types, namely, unsupervised 

fundamental models, Autoencoder (AE) based models, autoregressive models, 

Generative Adversarial Networks (GAN) based models, and AE-GAN hybrid models. 

At the end of 2019, another kind of deep generative model, i.e., diffusion models, 

became very popular (Dieleman 2022). These six types of deep generative models are 

introduced as follows. 

(1) Unsupervised fundamental models 

A lot of research has been conducted on using unsupervised fundamental models for 

texture synthesis and classification of handwritten digits, but the generated images are 

blurry (Creswell and Bharath 2016; Hu et al. 2018; Ou 2018; Ruthotto and Haber 

2021). Boltzmann Machine, introduced by Geoffrey Hinton et al. in 1983, aims to 

search for combinations of “hypotheses” satisfying some constrained input maximally 

(Turhan and Bilge 2018). Restricted Boltzmann Machine is inspired by the binary 

Boltzmann Machine and has more freedom and flexibility (Ackley, Hinton, and 

Sejnowski 1985; Fahlman, Hinton, and Sejnowski 1983). Deep Boltzmann Machines 

and Deep Belief Networks are more powerful generative models based on the 



building block of Restricted Boltzmann Machine (Oussidi and Elhassouny 2018). 

Deep Boltzmann Machine can generate images based on latent representation by 

generative decoders with Gibbs sampling (Salakhutdinov 2015; Xu, Li, and Zhou 

2015) and Deep Belief Network can provide features from representations at high 

levels (Salakhutdinov and Hinton 2009). The unsupervised fundamental models are 

widely applied in image processing, speech recognition, information retrieval, etc. 

(Fischer and Igel 2012). 

(2) Autoencoder models 

Autoencoder models are neural networks trained to reconstruct input as output 

consisting of two parts, i.e., encoder and decoder. These models aim to learn the 

pattern and characteristics of the data distribution and generate new examples similar 

to the training examples. There are four kinds of autoencoder models, i.e., 

undercomplete autoencoders, denoising autoencoders, sparse autoencoders, and 

variational autoencoders (VAE) (Salakhutdinov 2015; Xu et al. 2015). VAE is one of 

the widely used and efficient deep generative models (Nikolaev 2018). It is a direct 

model using learned approximate inference and trained through the gradient based 

method (Nikolaev 2018). Through VAE, the input image can be encoded as a low-

dimensional representation storing the input information. 

(3) Autoregressive models 

Autoregressive models use a linear combination of past values of valuables to forecast 

the target variables, and they are very flexible in dealing with different kinds of time 



series (Kingma and Welling 2014). In terms of images, autoregressive models handle 

images pixel by pixel rather than whole images (Hyndman 2018). Masked 

Autoencoder for Distribution Estimation (MADE), an autoregressive model modified 

by autoencoder network, uses the autoregressive property to forecast the distribution 

from a set of samples (Turhan and Bilge 2018). PixelCNN Decoder, an autoregressive 

model based on Convolutional Neural Network (CNN), can generate images 

conditionally (Uria et al. 2016). PixelRNN uses the dependency between pixels closer 

together to generate images sequentially based on Long Short-Term Memory (LSTM) 

(Oord et al. 2016). Recurrent Neural Networks (RNN) are a class of neural networks 

modeling the information in sequential order, widely used in time series and natural 

language (Guo and Zhao 2020). However, RNN only performs well in short-term 

dependency and has not been proven useful in long-term dependency. LSTM, a 

special type of RNN, can seamlessly store and repeatedly utilize long-term 

information (Oussidi and Elhassouny 2018; Tensorflow n.d.). PixelVAE is a VAE 

model with an autoregressive model based on pixelCNN for natural image modeling 

(Oussidi and Elhassouny 2018). Variational Lossy Autoencoder learns the global 

representation for 2D images by combining VAE with neural autoregressive models, 

such as RNN, MADE, PixelCNN, and PixelRNN (Gulrajani et al. 2017). Graphgen, 

GraphRNN, and DeepGMG utilize autoregressive models to generate graphs (Goyal, 

Jain, and Ranu 2020; Li et al. 2018; You, Ying, et al. 2018). 

 

 



(4) Generative Adversarial Networks (GAN) based models 

GAN is based on the game theory of the minimax game, where a generator and a 

discriminator compete with each other (Chen et al. 2017). The generator learns to 

generate new data from the stochastic noise and the discriminator learns to distinguish 

the generated fake data from the real data. GAN is one of the most successful 

generative models based on deep learning, especially in generating realistic high-

resolution images. Based on GAN, there are many improved models developed, such 

as Conditional Generative Adversarial Networks (CGAN) (Goodfellow et al. 2014), 

Deep Convolutional Generative Adversarial Networks (DCGAN) (Gauthier 2014), 

Style-Based Generator Architecture for Generative Adversarial Networks (StyleGAN) 

(Radford, Metz, and Chintala n.d.), Unpaired Image-to-Image Translation using 

Cycle-Consistent Adversarial Networks (CycleGAN) (Karras et al. 2019), Image-to-

Image Translation with Conditional Generative Adversarial Networks (Pix2Pix) (Zhu 

et al. 2017). Pix2PixHD is also proposed for high-resolution image synthesis and 

semantic manipulation with conditional GAN (Wang et al. 2018). In addition to the 

models for 2D image generation, GAN is extended to generate three-dimensional 

(3D) objects (Wu et al. 2016) and graphs (Fan, Tech, and Huang 2019; Wang et al. 

2021). 

(5) Autoencoder-GAN hybrid models 

Many studies have been conducted to combine autoencoder and GAN. VAE/GAN can 

learn to encode, generate, and discriminate information (Fan and Huang 2019). The 



discriminative feature learned by GAN is used as the reconstruction objective of VAE. 

Deep perceptual similarity metrics (DeePSiM) uses VAE and GAN to prevent blurry 

reconstructed image in image generation (Anders Boesen Lindbo et al. 2016). Lamb 

et al. propose an autoencoder-GAN hybrid model and show that this model can 

generate samples with higher quality than standard VAE (Dumoulin et al. 2017). 3D-

VAE-GAN is an autoencoder-GAN hybrid model for learning an 2D image to 3D 

model mapping (Lamb, Dumoulin, and Courville 2016). 

(6) Diffusion models 

Diffusion models define a Markov chain
2

 of diffusion steps to add random noise to 

data gradually, and then train a neural network that learns to invert the diffusion 

process to construct expected data samples from the noise (Weng 2021). Diffusion 

models were inspired by non-equilibrium thermodynamics (Sohl-Dickstein et al. 

2015) and developed rapidly after 2019, when noise-conditioned score network was 

proposed (Song and Ermon 2019). Building on Sohl-Dickenstein et al.’s research, Ho 

et al. (2020) put forwards denoising diffusion probabilistic models (DDPM), which 

could match GAN on image generation. Afterward, Denoising Diffusion Implicit 

Models (DDIM) was proposed to accelerate diffusion model sampling to improve 

DDPM (Song, Meng, and Ermon 2020). In 2021, Nichol et al. (2021) released GLIDE 

for text-conditional image synthesis and Dhariwai and Nichol (2021) demonstrated a 

better performance than GAN with diffusion models. Besides, SR3 and Cascaded 

 
2

 Markov chain is a chain formed by a sequence of possibilities of states in a long-run steady-

state level in which the probability of a state relies on the previous state (Glantz and Mun 2011). 



Diffusion Models (CDM) models were released by Google, which could convert low-

resolution images to high-resolution (Ho et al. 2022; Saharia et al. 2022). 

3.2 Deep graph generation 

Graphs are complicated data structures with rich underlying values, and they can 

represent relational and structural information, such as social networks, molecule 

structures, citation networks, traffic networks, biology networks. There are many 

applications of graph generation, for example, drug design, model architecture search, 

network science (Wu et al. 2016). As the wide application, there is a long 

development history of graph generation dating back to the 1960s (Liao et al. 2019). 

The traditional graph generative models focus on modeling families of graphs with 

specific properties, such as random graphs (Erdös and Rényi 1960), small-world 

networks (Erdös and Rényi 1960), and scale-free graphs (Watts and Strogatz 1998). 

However, these models can only model a few statistical properties of graphs and have 

limited ability to model complicated dependencies. Besides, these models only focus 

on the structural property and neglect the assignment of labels to individual graph 

vertices and edges. Considering the limitations of the traditional methods, an 

increasing amount of research pays attention to the deep generative models that can 

directly learn from a set of graphs to generate new and novel graphs with similar 

properties to the set or distribution of training graphs. The use of deep generative 

models can improve the fidelity of generated graphs. Deep generative models for 

graph generation are also called deep graph generation (Albert and Barabási 2002). 



 According to Guo and Zhao (2020), there are two kinds of deep generative 

models for graph generation, namely, unconditional generation and conditional 

generation. Unconditional generation is using deep generative models to learn the 

distribution based on a set of observed realistic graphs from the real distribution. 

Conditional generation is using deep generative models to learn the distribution based 

on a set of observed realistic graphs and auxiliary information, such as labels, 

semantic context, graphs from other distribution spaces, etc. 

There are three critical areas in deep graph generation, i.e., domain-agnostic 

modeling, labeled graph generation, and data scalability (Goyal, Jain and Ranu 2020). 

Many techniques have limitations in these areas. Table 3 demonstrates the limitations 

of deep graph generation techniques. Only Graphgen is domain-agnostic, data 

scalable, and with node labels and edge labels.  

In terms of evaluation metrics for deep graph generation, there are three kinds 

of methods, namely, statistics-based, classifier-based evaluation, and self-quality-

based evaluation (Guo and Zhao 2020). Statistics-based evaluation first computes 

graph statistics measuring different graph properties (including node degree 

distribution, clustering coefficient distribution, orbit count distribution, largest 

connected component, triangle count, characteristic path length, and assortativity) and 

then measures the distance between the distributions of generated graph properties 

and test graph properties. There are two major metrics for calculating the distance 

between two distributions of graph properties, namely, the Kullback-Leibler 

Divergence and the Maximum Mean Discrepancy. There are two ways for the 



distance metrics for scalar-valued statistics (including largest connected component, 

triangle count, characteristic path length, and assortativity). The first is the calculation 

of the disparity between the averaged value of the scalar-valued statistic of the real 

graph and the generated graph. The second is the calculation of the distance between 

the distribution of the scalar-valued statistic of the real graph and the generated graph. 

The classifier-based evaluation compares the generated graphs and real graphs 

through a graph classifier without explicitly defining the graph statistics, including 

accuracy-based and Fréchet Inception Distance-based methods. The classifier is 

trained on the real graphs and then is tested on the generated graphs. The self-quality-

based evaluation directly assesses the generated graphs’ properties, i.e., the generated 

graph’s validity, uniqueness, and novelty. 

 The application of deep graph generation continuously extends to an 

increasing number of fields, such as molecular chemistry, semantic parsing in natural 

language processing, code modeling, and pseudo-industrial Boolean Satisfiability 

instance generation (Guo and Zhao 2020).  

4. State of the art of deep generative models in architectural and urban 

form generation 

Many studies explore applying deep generative models in architectural and urban 

form generation (see Table 4). To date, there have been four kinds of deep generative 

models applied in architectural and urban form generation, i.e., GAN, CNN, VAE, and 

autoregressive models. According to Table 4, GAN is the most widely used deep 

generative model in architectural and urban form generation. Most generation 



objectives model properties relating to building configuration, floor plan, building 

facade, building massing, and street network structure. Evaluating the quality of 

output is a challenge for deep generative models. The metrics refer to measures of 

similarity to determine how similar the generated architectural and urban forms are to 

the set of architectural and urban forms used to train the model. Useful measures of 

similarity are required to train the model. Otherwise, we cannot define whether the 

generated architectural and urban forms have similar properties to the real 

architectural and urban forms used to train the model. There are various metrics to 

evaluate the qualities of architectural and urban forms generated by the deep 

generative models. The metrics can be categorized into two groups, namely, visual 

metrics and statistical metrics. There are two kinds of statistical evaluation. One is 

scoring the indicators manually, and the other one is quantitative indicators, such as 

density, area, and connectivity. Most models use image representations to generate the 

architectural and urban forms. However, the architectural and urban spaces are 

complicated and topologically associated. These models neglect the topological 

relationship among architectural and urban elements. This topological information is 

modeled in the corresponding graph or network representation of architectural and 

urban spaces. On the other hand, image representations do not explicitly encode 

topological information and therefore deep generative models based on such 

representations generate architectural and urban spaces with inaccurate or highly 

unusual topology. The other common limitations of these studies include the low 



quality of design output, limited control over the design output, long training time, 

limited training data, and training based only on one single example.  

5. Topology-based urban form generation framework aided by deep 

generative models 

Through the literature review, two hypotheses are raised: 

• Deep generative models for graph generation can be used for street network 

generation based on topology. 

• Deep generative models and space syntax can be used for plot and building 

configuration generation based on topology. 

Based on the two hypotheses, a topology-based urban form generation framework 

aided by deep generative models is proposed to overcome the most common 

limitations of previous studies of deep generative models in architectural and urban 

form generation: 

• rarely considering topological relationships among urban form elements  

• low quality of design output 

• limited control over the design output 

• limited training data 

• training based only on one single example  

The topology-based urban form generation framework aided by deep 

generative models consists of six modules, i.e., the establishment of the dataset, the 

selection of sub-datasets, the street network generation, the selection of generated 

street networks, the plot and building configuration generation, and the selection of 



generated plots and building configurations (see Figure 1). The user-machine 

interaction workflow is presented in Figure 1. Among the six modules, establishment 

of the dataset, street network generation, and plot and building configuration 

generation are highly automized, and the other three parts require the participation of 

designers. 

This framework consists of tools, data, and interfaces. The tools include 

clustering analysis or SOM for division of sub-dataset, deep generative models for 

graph generation, and deep generative models/space syntax for plot and building 

configuration generation. The urban forms are made up of street networks, plots, and 

building configurations, and there are three interfaces, i.e., sub-dataset decision 

interfaces, design decision interface for street networks, design decision interface for 

plots and building configurations. These interfaces achieve the interaction between 

designers and the machine and allow the designers to influence the process of design 

generation. Figure 2 demonstrates the detailed workflow of the proposed framework. 

In the establishment of the dataset, the data of urban form (including street network, 

plot, and building configuration) is classified into different types, making up several 

sub-datasets, by the classification method of clustering analysis or SOM through the 

urban indicators of connectivity, centrality, density, dimension, usage, and shape. 

Through the sub-dataset decision interface, designers select a sub-dataset whose urban 

form fits the site for learning, considering the context of the site. Then, the street 

networks in the sub-dataset are used for training, and new street networks are 

generated by deep generative models for graph generation. In these generated street 



networks, an optimum street network is selected by designers through the design 

decision interface. Afterward, space syntax is used to analyze the centrality of the 

generated street network and the street networks from the selected sub-dataset. Based 

on the training of a pair of street network centrality analysis maps and plot/building 

configuration maps from the sub-dataset, new plots and building configurations are 

generated with the input of the generated street network in the last step by deep 

generative models. Through the design decision interface, designers choose a set of 

plots and building configurations from the generated plots and building 

configurations. This set of plots and building configurations, together with the 

generated street network selected by designers, makes up the generated urban form as 

design output. This generated urban form is stored in the urban form dataset 

simultaneously. 

This framework combines the four approaches to urban morphology, i.e., 

historico-geographical approach, configurational approach, typological approach, and 

spatial analytical approach. According to historico-geographical approach, the 

proposed framework dissects the urban form into three components, i.e., street 

networks, plots, and building configurations. The configuration approach is reflected 

by generating urban forms based on topology. The structures of urban forms, i.e., 

street networks, are presented as graphs. The trained deep generative model generates 

new urban forms with similar geometric and topological attributes to the urban forms 

in the training set. In the plot and building configuration generation, space syntax is 

leveraged to analyze the centrality of street networks. Besides, this framework utilized 



a typological approach to divide the urban form dataset into several sub-datasets for 

users to select. In addition, the spatial analytical approach is applied in the plot and 

building configuration generation. In this stage, the city is regarded as a network of 

flows visualized through the street network centrality analysis map. Deep generative 

models learn how flows generate urban physical forms through pairs of street network 

centrality analysis maps and plot/building configuration maps. Plots and building 

configurations are defined and differentiated by their positions by trained deep 

generative models in the street network generated in the last step. 

Besides, this framework overcomes the most common limitations of the 

previous applications of deep generative models in urban form generation. The 

limitation of rarely considering topological relationships among urban form elements 

is surmounted by using deep generative models for graph generation, deep generative 

models, and space syntax to generate urban forms based on topology. Besides, the 

training of deep generative models for graph generation (such as Graphgen) and deep 

generative models (such as Pix2PixHD) is based on multiple data. Also, the limitation 

of low-quality design output is overcome through deep generative models that can 

synthesize high-resolution images, such as Pix2PixHD. In addition, designers’ 

controllability of the model can be improved by dividing the urban form dataset into 

several sub-datasets based on typology. Designers can influence the design process by 

selecting the sub-dataset based on typology of urban form and by choosing the 

optimum street network and the optimum set of plots and building configurations 

from the generated street networks and generated plots and building configurations, 



respectively. Moreover, the problem of limited training data can be surmounted 

through data collection from OpenStreetMap and Digimap, which contain data on 

street networks, plots, and building configurations for most urban areas. 

6. Conclusion and outlook 

In this research, a critical literature review is conducted. At first, the urban form 

generation is reviewed. The approaches to urban morphology are presented, i.e., 

historico-geographical approach, configurational approach, typological approach, and 

spatial analytical approach. The main urban form elements of street networks, plots, 

and buildings are demonstrated. The urban form classification is conducted using the 

different urban indicators and classification methods of clustering analysis or SOM. 

The well-accepted urban indicators include connectivity, centrality, density, 

dimension, usage, and shape. Most generative urban design models involve the steps 

of data collection and generation. The main urban form elements generated include 

street networks, plots, and buildings. Then, deep generative models and deep graph 

generation are reviewed. All the six types of deep generative models (i.e., 

unsupervised fundamental models, autoencoder models, autoregressive models, GAN 

based models, autoencoder-GAN hybrid models, and diffusion models) might be 

helpful for urban form generation. Afterwards, the state of the art of deep generative 

models in architectural and urban form generation is presented. The most common 

limitations of previous studies of deep generative models in architectural and urban 

form generation include:  



• rarely considering topological relationships among urban form elements  

• low quality of design output 

• limited control over the design output 

• limited training data 

• training based only on one single example  

Through the literature review, two hypotheses are raised: 

• Deep generative models for graph generation can be used for street network 

generation based on topology. 

• Deep generative models and space syntax can be used for plot and building 

configuration generation based on topology. 

Based on the two hypotheses, a topology-based urban form generation 

framework aided by deep generative models is proposed to overcome the five most 

common limitations of previous studies of deep generative models in architectural and 

urban form generation mentioned above. This framework integrates historico-

geographical approach, configurational approach, typological approach, and spatial 

analytical approach acquired from the review of approaches to urban morphology in 

section 2.1. There are six modules in this framework, i.e., the establishment of the 

dataset, the selection of sub-datasets, the street network generation, the selection of 

generated street networks, the plot and building configuration generation, and the 

selection of generated plots and building configurations. This framework has three 

kinds of data, three tools, and three interfaces. The urban forms are composed of street 

networks, plots, and building configurations summarized from the review of urban 



form elements in section 2.2. The tools used in the framework include clustering 

analysis or SOM for urban form classification, deep generative models for graph 

generation leveraged for street network generation, and deep generative models/space 

syntax used for plot and building configuration generation. These tools are 

summarized from the review of classification of urban forms in section 2.3, deep 

generative models in section 3.1, deep graph generation in section 3.2, and approaches 

to urban morphology in section 2.1. The three interfaces, including sub-dataset 

decision interface, design decision interface for street networks, and design decision 

interface for plots and building configurations, allow the designers to intervene in the 

design process, which overcomes the common limitation of restrained control over the 

design output by the users in the previous studies summarized in the state of the art of 

deep generative models in architectural and urban form generation in section 4. 

However, this framework is still at a conceptual level. The classification of 

urban form based on typology using clustering analysis and SOM in the step of data 

collection and analysis is validated by previous studies. However, the generation of 

street networks using deep generative models for graph generation and the generation 

of plot and building configurations using deep generative models and space syntax are 

still hypotheses. In future research, these hypotheses and the feasibility of the 

proposed framework will be validated through a design practice methodology 

engaging inputs in concert with the digital generation. We will qualitatively evaluate 

the rationality of the design output and quantitatively test whether the urban form type 

of the output is the same as the type of the urban forms in the selected sub-dataset 



through the urban indicators of connectivity, centrality, density, dimension, shape, and 

usage. Besides, the technology acceptance model will be utilized to obtain feedback 

from early users of the proposed framework through a survey and further improve the 

proposed framework. 
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