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Study of Spatio-Temporal Modeling in
Video Quality Assessment

Yuming Fang, Senior Member, IEEE, Zhaoqian Li, Jiebin Yan, Xiangjie Sui, Hantao Liu, Member, IEEE

Abstract—Video quality assessment (VQA) has received re-
markable attention recently. Most of the popular VQA mod-
els employ recurrent neural networks (RNNs) to capture the
temporal quality variation of videos. However, each long-term
video sequence is commonly labeled with a single quality score,
with which RNNs might not be able to learn long-term quality
variation well. A natural question then arises: What’s the real
role of RNNs in learning the visual quality of videos? Does it
learn spatio-temporal representation as expected or just aggre-
gating spatial features redundantly? In this study, we conduct
a comprehensive study by training a family of VQA models with
carefully designed frame sampling strategies and spatio-temporal
fusion methods. Our extensive experiments on four publicly
available in-the-wild video quality datasets lead to two main
findings. First, the plausible spatio-temporal modeling module
(i.e., RNNs) does not facilitate quality-aware spatio-temporal
feature learning. Second, sparsely sampled video frames are
capable of obtaining the competitive performance against using
all video frames as the input. In other words, spatial features
play a vital role in capturing video quality variation for VQA.
To our best knowledge, this is the first work to explore the issue
of spatio-temporal modeling in VQA.

Index Terms—Video quality assessment, spatio-temporal mod-
eling, recurrent neural network.

[. INTRODUCTION

ITH the rapid development of digital devices and Inter-

net, the amount of videos has tremendously increased
in various areas, such as entertainment and video surveillance.
At present, videos have become one of the important elements
of entertainment in our daily life. However, videos may
encounter quality degradation in the process of compression,
storage, and transmission [1], which significantly degrades
the quality of experience of the end users. Therefore, how
to measure the quality of videos is critical in multimedia
processing systems, since it can be used to optimize the video
processing algorithms as well as performance monitoring of
video processing systems. Video quality assessment (VQA) in-
cludes subjective assessment and objective assessment, where
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Fig. 1. Generally, the videos are viewed in order by human beings, thus
it is straightforward to feed the video frames into the VQA model (e.g., the
popular framework: CNN-RNN) in sequence. To explore the plausible answer
to whether it is necessary to follow the popular VQA model framework, we
carefully design several experiments, including disrupting the order of input
video frames and discarding partial video frames via sparse sampling.
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the former means quality evaluation by human beings, and
the latter denotes designing objective VQA models for visual
quality evaluation instead of human labors. Since VQA models
can be easily embedded in the real applications, the research
on VQA models has attracted much attention from both
academia and industry communities.

According to the availability of reference video, objective
VQA models can be classified into three types: full-reference
VQA (FR-VQA) models [2]-[8], reduced-reference VQA
(RR-VQA) models [9], and no-reference VQA (NR-VQA)
models or blind-VQA models. The first two types of VQA
models require full or partial reference information when being
used to evaluate video quality, while the last type of VQA
models do not need any reference information at hand and
they have been widely used in the real applications. Traditional
VQA models [10]-[12] mainly rely on extracting perceptually
relevant hand-crafted features to quantify the visual quality
of videos. With the prevalence of deep learning, there have
been many deep neural network (DNN) based VQA models
proposed recently [13]-[15]. Most of the DNN based VQA
models follow the similar paradigm, in which a convolutional
neural network (CNN) is used to capture spatial features,
and the recurrent neural network (RNNs) are subsequently
employed to learn the long-term quality variation of videos.
However, a long-term video sequence is commonly labeled
with a single quality score, with which RNNs might not be
able to learn long-term quality variation well. As revealed in
these studies [16], [17], feeding video frames disorderly in the
associated models has little influence on prediction accuracy.



As shown in Figure 1, these facts naturally prompt us to arise
a question: Does the RNNs module contribute to learn quality-
aware spatio-temporal features of videos?

In this paper, we carefully design three types of experiments,
where we choose a VQA model, i.e., VSFA [13], as the
backbone to construct various variants to testify our idea, since
VSFA shows excellent performance in VQA. The first type
of experiments is called Frame-Level, in which we shuffle the
order of video frames in both training and testing stages, while
other settings are the same with those in the original paper
[13]. The second type of experiments is called Cube-Level,
whose difference from the first type is that we replace the
default input, i.e., feature vectors extracted from ResNet-50
[18], with the spatio-temporal features using a 3D CNN [19].
The last type of experiments is named Sample-Level, where
we attempt to take a close look at how sparse frame samplings
affect the performance of VSFA. Our extensive experiments
are conducted on four publicly available in-the-wild video
quality datasets, including Konvid-1K [20], CVD2014 [21],
LIVE-Qualcomm [22] and LIVE-VQC [23].

In sum, the main contributions of this work are shown as
follows:

« We present the first study to deeply explore the relation-
ship between spatio-temporal feature learning and VQA,
aiming to investigate the core part in capturing video
quality degradation by learned spatio-temporal features.
All experiments are conducted based on the modifications
of an effective VQA model.

o We carefully design three types of experiments, namely
Frame-Level, Cube-Level and Sample-Level. The former
two types of experiments are used to investigate the
influence of disordered input on the VQA model, while
the third type of experiments is employed to verify the
redundancy of video frames for the VQA task.

« We conduct comprehensive experiments oriented by the
input format and spatio-temporal information fusion, and
conclude that spatial information of video plays a more
important role in capturing video quality variation than
the learned temporal features for VQA.

II. RELATED WORK

In this section, we first review hand-crafted and deep
learning-based spatio-temporal feature modeling methods that
are commonly used in video processing tasks. We then briefly
describe the NR-VQA models and the studies about evaluation
of models’ pros and cons.

A. Spatio-temporal Feature Modeling

Generally, a video contains rich static and dynamic infor-
mation. Modeling the spatio-temporal features of the videos
can automatically analyze the task-dependent information, it is
therefore an essential module in many video processing tasks.
Almost all of the early video spatio-temporal feature modeling
algorithms are based on hand-crafted features. Specifically,
according to specific methods of feature extraction, these
algorithms can be divided into: optical flow algorithm based

algorithms [6], [8], [24], [25], frame difference based algo-
rithms [26], [27], background subtraction based algorithms
[28]-[30], histogram of oriented gradients based algorithms
(HOG) [31], and motion boundary histogram (MBH) based
algorithms [32]. The performance of the deep learning based
algorithms gradually surpasses the traditional algorithms, and
hand-crafted algorithms gradually fade out of our attention.

Deep learning provides an automatic way to model the
spatio-temporal features of videos. In particular, some excel-
lent network architectures, e.g., CNNs, long short-term mem-
ory (LSTM) network [33], and gate recurrent unit (GRU) [34],
make the performance of the deep learning-based algorithms
gradually surpass traditional algorithms. The deep learning-
based spatio-temporal feature modeling algorithms can be
roughly divided into three types, including the two-stream
based networks [16], [35]-[37], 3D CNNs based networks
[38]-[41], and CNN-RNNs based networks [13], [14], [42],
[43]. The two-stream based networks [16], [35]-[37] mainly
include two modules, one of which extracts spatial features
and the other one extracts temporal features. The 3D CNNs
based networks [38]-[41] employ 3D CNNs to extract spatio-
temporal features. The CNN-RNNs based networks [13], [14],
[42], [43] employ the pre-trained CNNs to extract the spatial
features, and then use the GRU/LSTM module to extract
temporal information.

B. NR-VQA Models

The NR-VQA models could be divided into two types,
including distortion-specific models and general-purpose mod-
els. In [44], Branddo et al. proposed a NR-VQA model
for compressed videos. The model first estimates errors and
then weights the errors to obtain the final objective score.
Wu et al. [45] proposed a NR-VQA model to evaluate the
user experience of streaming videos. It utilizes the decoded
video to extract image features, then uses a linear model to
obtain a quantitative quality score. Liu et al. [46] proposed a
deep learning-based multi-task model, called V-MEON, which
utilizes the 3D CNNs to capture spatio-temporal information
for video codec classification and quality assessment.

Moreover, with the popularity of the network and the
development of multimedia techniques, a growing number of
videos are generated by mobile phones and digital cameras.
These videos are usually captured in the wild, and they may
suffer from authentic distortions. Traditional general-purpose
VQA methods commonly extract low-level features to predict
the visual quality. Saad et al. [11] proposed a NR-VQA model
namely V-BLINDS, which extracts spatio-temporal features in
the discrete cosing transform (DCT) domain and quantifies
motion coherency with a motion model. Mittal er al. [12]
proposed to use the intrinsic statistical regularities to predict
video quality scores. Tu et al. [47] proposed a fusion-based
model called VIDEVAL, which employs a feature selection
strategy and a support vector regressor (SVR) as the regres-
sion model to learn the feature-to-score mapping. Compared
with traditional NR-VQA methods, the deep learning-based
models can effectively capture high-level semantic features
of videos, and show the better performance. Li et al. [48]



proposed a NR-VQA metric based on the spatio-temporal
natural video statistics in the 3D discrete cosine transform (3D-
DCT) domain. Zhang et al. [49] proposed a weakly supervised
learning-based model with an eight-layer CNNs module and
a resampling strategy. VSFA [13] and RIRNet [14] are CNN-
RNNSs based networks, which first employ CNNs to explicitly
capture the spatial semantic features of the video frames and
then use RNNSs to focus on learning the temporal quality-aware
features.

C. Evaluation of Models’ Pros and Cons

In recent years, with the development of deep learning
theory and hardware technology, computer vision has made
breakthrough progress. More and more models have been
proposed to solve problems encountered in the real world
applications. Although deep learning models have shown
excellent performance in many fields, models’ robustness is
still a big challenge due to dataset scale [20], [23], [50],
data leakage [51], adversarial attack [52]-[54], and model
architecture [16], [17], [55]. For these problems encountered
in computer vision community, researchers in different re-
search fields have proposed analytical methods from different
perspectives. Gotz-Hahn et al. [51] pointed out that some
models achieved state-of-the-art performance due to data leaks
in fine-tuning and quality prediction stages. Xie et al. [55]
built an effective and efficient video classification system by
exploring the relationship between 2D CNN and 3D CNN,
taking into account the relationship between the model’s speed
and accuracy. In addition, a growing number of works have
explored the relationship between the labels in the dataset and
the prediction accuracy of models. Hoiem et al. [56] proposed
a method that studies the relationship between object features
and detection performance, as well as the frequency and
impact of different types of false positives. In order to explore
how to quantify a semantic segmentation model, Csurka et
al. [57] proposed a new evaluation criterion based on contours,
which is suitable for unsupervised semantic segmentation
models. Besides, some researchers introduced the concept of
MAximum Discrepancy (MAD) [58] in evaluation IQA [59]
and semantic segmentation [60] models.

III. THE PROPOSED FRAMEWORK FOR DIAGNOSING VQA
A. Motivation

Spatio-temporal feature modeling has been a long-standing
problem in video understanding field [19], [36], [41], [55],
[61], and it is one key element of the video understanding
models. In the video understanding tasks which pursue for the
balance between effectiveness and efficiency, some researchers
tried to reduce the number of input frames by sparsely sam-
pling with the consideration of the fact that there exists much
redundant information in consecutive frames, and achieved
promising performance [62]-[64]. In addition, some studies
[55], [65] found that the validity of video understanding
models may depend on particular databases, e.g., the videos in
the something-something database [66] are temporally relevant
while that in some databases [67], [68] are not. Motivated
by these video understanding studies [55], [62]-[65], in this

paper, we focus on studying two problems that have been ig-
nored in VQA: (1) Does the spatio-temporal module contribute
to learn quality-aware spatio-temporal features? (2) Does the
VQA model require all video frames as the input?

To answer these two questions, we carefully design three
types of experiments, named Frame-Level, Cube-Level, and
Sample-Level. All experiments are conducted on four datasets,
including KoNViD-1k [20], CVD2014 [21], LIVE-Qualcomm
[22], and LIVE-VQC [23]. For these three types of exper-
iments, VSFA [13] is selected as the backbone with the
corresponding modifications. The first two sets of experiments,
i.e., Frame-Level and Cube-Level, are used to explore to what
extent the popular spatio-temporal feature modeling module
contributes to capture video quality variation. To be more
specific, we input frames in temporal order or disorderly when
training and testing on the four datasets. The last type of
experiment aims to explore whether it is possible to use only
a few frames to capture video quality variation, where we
adopt different sampling strategies in the training stage and
investigate whether there is a significant difference among the
results of different sampling strategies.

B. The Detailed Framework

In this section, we explain three variants of VSFA designed
for the aforementioned three types of experiments. Each vari-
ant uses different frame input modes and sampling strategies.
The detailed framework is summarized in Figure 2.

In the Frame-Level experiments, we use the original VSFA
[13] model for training and testing. The original VSFA uses
the ResNet-50 [18] as spatial feature extractor and a Gated
Recurrent Unit (GRU) as temporal feature extractor. During
training, validation, and testing stages, we feed all frames of
each video into VSFA.

In order to explore the impact of short-term video sequences
on the VQA model, we design the Cube-Level experiments by
using 3D CNNs. We replace ResNet-50 in the VSFA model
with 3D ResNet-101 [19] in feature extraction stage. Each
video sequence is divided into K cubes, while each cube
contains 16 video frames. 3D ResNet-101 is used to extract
the features of 16 video frames, and the extracted features are
then fed into the following module.

The model in the Sample-Level experiments is the same as
that in the Frame-Level experiments. The difference is that
we randomly extract video frames with different sampling
strategies (see Section IV-C for details) as the input. The
remaining experimental configurations are the same as that
in the Frame-Level experiments.

IV. EXPERIMENTAL METHODOLOGY
A. Datasets

We conduct experiments on four in-the-wild datasets:
KoNViD-1k [20], CVD2014 [21], LIVE-VQC [23], LIVE-
Qualcomm [22]. Table I summarizes these four datasets.

« CVD2014 [21] video quality database uses complex
distortions of real cameras introduced during video ac-
quisition rather than introducing distortions via post-
processing. The quality dimensions of videos include
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Fig. 2. The proposed framework for diagnosing VQA. Three sets of experiments provide three models, respectively: Frame-Level model, Cube-Level model
and Sample-Level model. Each model uses different frame input modes and sampling strategies.

TABLE I
SUMMARY OF DATASETS
Name Year Resolution Number Distrotion Type Format MOS
KoNViD-1k [20] 2017 540p 1200 In-the-wild MP4 1.220-4.640
LIVE-Qualcomm [22] 2017 1080p 208 In-the-wild YUV420 16.562-73.643
CVD2014 [21] 2016 720p, 480p 234 In-the-wild AVI -6.500-93.380
LIVE-VQC [23] 2019 1080p-240p 585 In-the-wild YUV420 6.224-94.287

sharpness, graininess, color balance, darkness, and jerki-
ness. The database consists of 234 videos captured by 87
cameras. The videos last 10s-25s with 11-31 frames per
second (FPS). The MOSs range from —6.500 to 93.380.

o LIVE-Qualcomm [22] video quality database consists of
208 videos with the resolution of 1920 x 1080. The videos
are captured by 8 different portable devices. The database
includes six types of in-capture distortions, including arti-
facts, color, exposure, focus, sharpness, and stabilization.
Each video lasts 15s with 30 FPS. The MOSs range from
16.562 to 73.643.

o KoNViD-1k [20] consists of 1200 public-domain videos
with the resolution of 960 x 540. The videos come from
a sizeable public video dataset, i.e., YFCC100m [69].
The videos suffer from authentic distortions, e.g., motion
blur and color distortion, and each video lasts 8s with
24/25/30 FPS. The MOSs range from 1.220 to 4.640.

o LIVE-VQC [23] video quality database consists of 585
videos, which are captured using 101 different devices.
The videos are distorted by authentic distortions, such as
poor exposures, motion blur, haziness, imperfect color
representations, compression artifacts, etc. The MOSs
range from 6.224 to 94.287.

B. Backbone

Here, we describe the backbone, i.e., VSFA [13], used in our
framework in detail. It consists of two sub-modules: a feature
extraction module and a temporal modeling module. In the
feature extraction module, VSFA uses ResNet-50 [18] to ex-
tract the content-aware feature maps from its top convolutional
layer for each video frame. After feature extraction, VSFA
uses a temporal modeling module for long-term dependency

modeling. The detailed framework can refer to the original
paper [13]. Specifically, for the feature maps extracted from
each video frame, the 4096-dimensional content-aware feature
vector is obtained by two spatial global pooling (GP) opera-
tions, which include a spatial global average pooling (GPycan)
and a spatial global standard deviation pooling (GPstq). Then,
considering the high dimension of content-aware features, a
dimension reduction operation is added before the GRU. A
single fully connected layer is used as the dimension reduction
module, so as to reduce the 4096-dimensional feature vector
to a 128-dimensional feature vector. After that, the reduced
feature vectors are fed into the GRU. The output of the GRU
is used to predict the frame-level quality score. Finally, by
using the subjectively-inspired temporal pooling method to
fuse frame-level quality scores, the network can get the final
video-level quality score.

C. Implementation Details

In this section, we explain the experimental details, in-
cluding training/validation/testing splits, frame input modes,
sampling strategies, model structures, training details, and
evaluation criteria.

Datasets For each dataset, we use 60% videos for training,
20% videos for validation, and 20% videos for testing. The
videos in these three sub-sets are non-overlapping. Each exper-
iment repeats ten times, and the mean and standard deviation
(std) of the results of the ten runs are reported.

Frame Input Modes. In training and testing stages, we
design two input modes. The first is to feed the frames into the
network in the temporal order, while the second is to input the
frames into the network disorderly. Since the model includes
the training, validation, and testing stages, there are two input



modes in the training stage and two input modes in the testing
stage while keeping the same frame input mode in the training
and validation stages. Therefore, four frame input modes and
four types of experimental results can be obtained on each
dataset (see Tables II, IIl and IV for detailed experimental
results):

1. Input the video frames in temporal order during training
and testing stages. This mode is denoted by OO.

2. Input the video frames in shuffled order during training
stage and in temporal order during testing stage. This
mode is denoted by SO.

3. Input the video frames in order during training stage and
shuffle the video frames randomly during testing stage.
This mode is denoted by OS.

4. Input the video frames in the shuffled order during
training and testing stages. This mode is denoted by SS.

We choose four frame input modes for Frame-Level and
Cube-Level experiments. In Sample-Level experiment, we just
test the first frame input mode.

Sampling Strategies. We design four sampling strategies:
sample-0, sample-4, sample-8, sample-16. Sample-0 denotes
that the entire video sequence is used as the input of the
network. Sample-K (K=4, 8, or 16) means that a video is
divided into N cubes and each cube contains K frames. The
value of NV depends on frame number and K. If the last cube’s
frame number is less than K frames, we let the last cube to
contain the last K frames of a video. Then, we randomly
select a frame from each cube, and these frames are fed
into the network as a video sequence. We choose sample-
0 as the sampling strategy for Frame-Level and Cube-Level
experiments.

Training. We use PyTorch [70] to implement the three
variants. In Frame-Level and Sample-Level experiments, the
ResNet-50 [18] pre-trained on ImageNet [71] is chosen for
feature extraction. The L1 loss and Adam [72] optimizer with
an initial learning rate of 0.00001 are used for training models
in the Frame-Level and Sample-Level experiments. The batch
size is set to 128 for the Frame-Level and 256 for Sample-
Level experiments, respectively.

In the Cube-Level experiments, the 3D ResNet-101 [19]
pre-trained on Kinetics [67] is chosen for feature extraction.
In order to match the dimension of the temporal modelling
module, we use 3D ResNet-101 to extract 2048 feature maps
for each cube. Then, through spatial global pooling (GP), 2048
feature maps will get a 4096-dimensional feature vector for
each cube. We use L1 loss and Adam [72] optimizer with an
initial learning rate of 0.00001 and set the training batch size
as 4096. During the training stage, we freeze the parameters
in pre-trained ResNet-50 [18] and 3D ResNet-101 [19]. For
the temporal modeling stage, we select the GRU [34] and the
same pooling strategy adopted in VSFA.

Evaluation Criteria. In the modeling of the objec-
tive VQA method, Spearman’s rank-order correlation coef-
ficient (SROCC), Kendall’s rank-order correlation coefficient
(KROCC), Pearson’s linear correlation coefficient (PLCC),
and root mean square error (RMSE) are used as performance
evaluation criterion. Among them, SROCC and KROCC are
used to evaluate the monotonicity of model predictions. PLCC

and RMSE are used to evaluate the accuracy of the model
prediction. The larger the absolute value of SROCC, KROCC,
and PLCC, the better, while the smaller the value of RMSE,
the better. As suggested by Video Quality Experts Group
(VQEG) [73], before calculating PLCC and RMSE values,
we adopt a four-parameter logistic function for mapping the
objective score to the subjective score s:

flo) = —
l1+e ™

LESk S (1)

where 71 to 74 are fitting parameters initialized with 7 =
max(s), 7o = min(s), 73 = mean(o), 74 = std(o)/4.

V. DIAGNOSTIC ANALYSIS
A. Analysis of Temporal Information

In the Frame-Level experiments, we train the original VSFA
[13] model on each dataset to verify whether the temporal
module can effectively extract the quality-aware temporal
information among video frames. The experimental results
are shown in Tables II, III and IV. To intuitively observe the
results showed in Tables II, III and IV, we show the difference
between the SROCC results of the variant with default input
mode (i.e., input video frames into the network in order in
training and testing stages) of that of the variant with other
input modes in Figure 3(a).

As shown in Figure 3, OS, SO and SS represent the
difference between the SROCC results of this mode and
the OO mode. The positive part of the Y-axis denotes that
experiments’ performance of the variants with other modes
is better than that of the variant with default input mode
and vice versa. In the KoNViD dataset, the performance of
the variant with the third input mode improves by 0.38%
compared with that of the variant with default input mode.
In the CVD2014 dataset, the performance of the variant with
the second input mode improves by 0.96% compared with
that of the variant with default input mode. In the LIVE-
Qualcomm dataset, the performance of the variant with the
second input mode improves by 1.53% compared with that
of the variant with default input mode. In the LIVE-VQC
dataset, the performance of the variant with the second input
mode improves by 1.90% compared with that of the variant
with default input mode. As this regard, we can find that the
temporal module can not effectively extract the quality-aware
temporal information between video frames. This may result
from the possibility that the spatial features contain hints on
temporal features, e.g., the motion blur can be captured by the
spatial features extracted from a single frame.

In the Cube-Level experiments, we explore the relationship
between short-term temporal information and quality-aware
video features. The existing video understanding tasks show
that 3D CNNs can extract short-term temporal and spatial
information, thus, we use 3D ResNet-101 instead of ResNet-50
to extract video frame features in the Cube-Level experiments.
The results are shown in Table III and Figure 3(b). It is worth
noting that, with the experimental results of the Frame-Level
and Cube-Level experiments, we find that the experimental
results of the Cube-Level-based model are worse than those



TABLE II
PERFORMANCE COMPARISON OF THE FRAME-LEVEL EXPERIMENTS. MEAN AND STANDARD DEVIATION (STD) OF THE PERFORMANCE VALUES IN 10
RUNS ARE REPORTED.

Frame-Level
SROCC PLCC KROCC RMSE
00 0.779 (0.030)  0.798 (0.027)  0.586 (0.029)  0.385 (0.021)
(N 0.777 (0.033)  0.796 (0.029) 0.584 (0.031) 0.387 (0.022)
SO 0.782 (0.030)  0.799 (0.024) 0.588 (0.028)  0.385 (0.019)
SS 0.780 (0.031)  0.798 (0.026)  0.587 (0.030)  0.386 (0.020)
00 0.832 (0.031) 0.847 (0.028)  0.645 (0.034)  11.202 (1.130)
oS 0.840 (0.031) 0.851 (0.028)  0.652 (0.033) 11.066 (1.128)
SO 0.825 (0.032)  0.841 (0.025) 0.638 (0.035) 11.428 (1.187)
SS 0.833 (0.027)  0.848 (0.026) 0.648 (0.030) 11.183 (1.110)
00 0.707 (0.073)  0.742 (0.066)  0.516 (0.066)  8.377 (0.934)
oS 0.718 (0.073)  0.753 (0.063)  0.526 (0.067) 8.217 (0.940)
SO 0.699 (0.074)  0.723 (0.081)  0.507 (0.069)  8.601 (1.094)
SS 0.713 (0.075)  0.742 (0.070)  0.522 (0.071)  8.354 (1.029)
00 0.686 (0.038)  0.744 (0.039)  0.500 (0.034)  11.324 (0.536)
oS 0.697 (0.036)  0.749 (0.035) 0.509 (0.032) 11.236 (0.502)
SO 0.686 (0.040)  0.745 (0.041)  0.501 (0.036)  11.293 (0.546)
SS 0.699 (0.035) 0.750 (0.038) 0.512 (0.032) 11.212 (0.507)

KoNViD-1k [20]

CVD2014 [21]

LIVE-Qualcomm [22]

LIVE-VQC [23]

TABLE III
PERFORMANCE COMPARISON OF THE CUBE-LEVEL EXPERIMENTS. MEAN AND STANDARD DEVIATION (STD) OF THE PERFORMANCE VALUES IN 10
RUNS ARE REPORTED.

Cube-Level
SROCC PLCC KROCC RMSE
00 0.589 (0.040) 0.604 (0.038) 0.415 (0.032) 0.511 (0.025)
oS 0.585 (0.037)  0.599 (0.035) 0.411 (0.029) 0.513 (0.023)
SO 0.580 (0.040)  0.596 (0.037) 0.408 (0.031)  0.515 (0.025)
SS 0.576 (0.037)  0.592 (0.034) 0.404 (0.029) 0.517 (0.023)
00 0.750 (0.066)  0.762 (0.069)  0.549 (0.063) 13.479 (1.587)
oS 0.754 (0.066) 0.766 (0.070) 0.552 (0.063) 13.385 (1.584)
SO 0.749 (0.067)  0.758 (0.067)  0.548 (0.063)  13.584 (1.498)
SS 0.754 (0.065) 0.763 (0.072)  0.554 (0.061) 13.435 (1.582)
00 0.524 (0.135) 0.575 (0.115)  0.371 (0.100)  10.215 (1.417)
oS 0.524 (0.135)  0.581 (0.121)  0.374 (0.104)  10.133 (1.410)
SO 0.519 (0.139)  0.569 (0.106)  0.369 (0.104)  10.286 (1.358)
SS 0.520 (0.134)  0.583 (0.112) 0.369 (0.102)  10.139 (1.347)
00 0.544 (0.054)  0.619 (0.055) 0.387 (0.044)  13.303 (0.473)
oS 0.547 (0.052) 0.615 (0.053)  0.390 (0.043)  13.359 (0.508)
SO 0.544 (0.048)  0.618 (0.045) 0.389 (0.041)  13.339 (0.423)
SS 0.546 (0.049)  0.620 (0.046) 0.390 (0.041) 13.317 (0.489)

KoNViD-1k [20]

CVD2014 [21]

LIVE-Qualcomm [22]

LIVE-VQC [23]

TABLE IV
PERFORMANCE COMPARISON OF THE SAMPLE-16 EXPERIMENTS. MEAN AND STANDARD DEVIATION (STD) OF THE PERFORMANCE VALUES IN 10 RUNS
ARE REPORTED.

Sample-16

SROCC PLCC KROCC RMSE
00 0.774 (0.022)  0.790 (0.019)  0.580 (0.020)  0.393 (0.014)
oS 0.775 (0.027)  0.792 (0.023)  0.581 (0.025)  0.391 (0.018)
SO 0.775 (0.027)  0.793 (0.024)  0.581 (0.024)  0.390 (0.018)
SS 0.774 (0.027)  0.791 (0.023)  0.580 (0.025)  0.392 (0.018)
00 0.868 (0.033) 0.871 (0.037)  0.691 (0.043)  10.226 (1.100)
(ON) 0.866 (0.035)  0.872 (0.036)  0.688 (0.041)  10.227 (1.050)
SO 0.863 (0.033)  0.878 (0.023)  0.685 (0.041)  10.070 (0.970)
SS 0.861 (0.036)  0.878 (0.024)  0.681 (0.041)  10.083 (0.986)
00 0.707 (0.078)  0.750 (0.063)  0.519 (0.069) 8.276 (0.947)
(ON) 0.703 (0.082)  0.736 (0.065)  0.513 (0.076)  8.476 (1.042)
SO 0.708 (0.080) 0.734 (0.062)  0.518 (0.072)  8.516 (1.040)
SS 0.706 (0.084)  0.731 (0.060)  0.515 (0.077)  8.558 (1.024)
00 0.693 (0.040)  0.749 (0.046)  0.505 (0.037) 11.206 (0.588)
os 0.692 (0.039)  0.749 (0.040)  0.505 (0.036) 11.216 (0.534)
SO 0.690 (0.037)  0.745 (0.045)  0.503 (0.036)  11.287 (0.585)
SS 0.688 (0.035)  0.745 (0.039)  0.501 (0.033)  11.292 (0.520)

KoNViD-1k [20]

CVD2014 [21]

LIVE-Qualcomm [22]

LIVE-VQC [23]




TABLE V
PERFORMANCE COMPARISON OF DIFFERENT SAMPLING STRATEGIES ON THE FOUR VQA DATASETS. MEAN AND STANDARD DEVIATION (STD) OF THE
PERFORMANCE VALUES IN 10 RUNS ARE REPORTED

PLCC

KROCC

RMSE

0.798 (0.027)
0.795 (0.026)
0.796 (0.024)
0.790 (0.019)

0.586 (0.029)
0.585 (0.027)
0.587 (0.026)
0.580 (0.020)

0.385 (0.021)
0.388 (0.020)
0.388 (0.018)
0.393 (0.014)

0.847 (0.028)
0.848 (0.032)
0.839 (0.042)
0.871 (0.037)

0.645 (0.034)
0.646 (0.035)
0.653 (0.034)
0.691 (0.043)

11.202 (1.130)
11.177 (1.305)
11.413 (1.384)
10.226 (1.100)

0.742 (0.060)
0.750 (0.062)
0.756 (0.063)
0.750 (0.063)

0.516 (0.066)
0.522 (0.069)
0.524 (0.062)
0.519 (0.069)

8377 (0.934)
8.270 (0.941)
8.186 (0.962)
8.276 (0.947)

0.744 (0.039)
0.745 (0.038)
0.750 (0.038)
0.749 (0.046)

0.500 (0.034)
0.507 (0.031)
0.510 (0.035)
0.505 (0.037)

11.324 (0.536)
11.291 (0.456)
11.201 (0.464)
11.206 (0.588)

0 0.779 (0.030)
KoNViD-1k [20] . 8?3%? ngggi
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Fig. 3. To verify whether the use of RNN network can effectively extract the temporal information of video quality, we conducted three types of experiments.
For each type of experiments, we can get four results on each dataset. We plot their SROCC results relative to the first experiment.

TABLE VI
QUALITATIVE AND QUANTITATIVE ANALYSIS OF TEMPORAL INFORMATION EXPERIMENTAL RESULTS USING THE PAIRED T-TEST

Mode KoNViD-1k  CVD2014  LIVE-Qualcomm LIVE-VQC
00 - - - -
Frame-Level [N 0.1880 0.0377 0.0013 0.0006
SO 0.0079 0.3951 0.3268 0.8614
SS 0.0648 0.4907 0.4165 0.0001
00 - - - -
Cube-Level oS 0.1440 0.3654 0.9409 0.0006
SO 0.0001 0.5931 0.2097 0.8614
SS 0.0126 0.4814 0.3692 0.0001
00 - - - -
Sample-16 oS 0.8893 0.5914 0.4535 0.5244
SO 0.7269 0.1950 0.7006 0.1318
SS 0.7871 0.1972 0.9383 0.1398

of the Frame-Level model. We think there are two factors
that affect the final experimental results: first, spatial informa-
tion plays a more important role in capturing video quality
degradation than temporal information, as demonstrated by
the experimental results; second, as shown in relevant studies,
the features of ResNet-50 trained on ImageNet are effective
in capturing quality variations [74], [75]. In the CVD2014
dataset, the performance of the variant with the second input
mode improves by 0.53% compared with that of the variant
with default input mode. In the LIVE-VQC dataset, the per-
formance of the variant with the second input mode improves

by 0.55% compared with that of the variant with default input
mode. In KoNViD and LIVE-Qualcomm datasets, the results
of the variants with other input modes are still competitive.
In this experiment, we do not find any strong connection
between short-term temporal information and quality-aware
video features.

In the Sample-16 experiments, we explore the relationship
between Frame-Level and Sample-Level, and choose sample-
16 sampling strategy and training configuration of Frame-
Level to get four results. Table IV and Figure 3(c) show the
experimental results. The training results on all four datasets



TABLE VII
QUALITATIVE AND QUANTITATIVE ANALYSIS OF SAMPLING STRATEGIES EXPERIMENTAL RESULTS USING THE PAIRED T-TEST

Sample KoNViD-1k CVD2014 LIVE-Qualcomm LIVE-VQC
0 N N N N
Sample-Level 4 0.9858 0.6619 0.1568 0.0015
P 8 0.5265 0.3027 0.2380 0.0010
16 0.3556 0.0005 0.9986 0.0862

0.875
—— KoNViD-1k
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0.825
0.800
Q
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wn
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Fig. 4. The influence of different sampling strategies in different datasets on
SROCC

are very close. Thus, we argue that RNNs could not make use
of temporal information effectively in the context of VQA. In
summary, we can draw a conclusion that the spatio-temporal
module (i.e., RNNs) contributes little to learn quality-aware
spatio-temporal features.

It is worth noting that the conclusion may be only appro-
priate in the context of “in-the-wild” distorted videos, which
suffer from authentic distortions, since the temporal distortion,
in most cases (at least in the current context), can be regarded
as the by-product of the discontinuity between successive
frames. These test datasets don’t consider the temporal arti-
facts, e.g., frame freeze and transmission errors, which are
often studied in the research on quality of experience of
video streaming [76]-[78]. Thus, whether it can be generalized
to other rescarch filed like quality of experience of video
streaming is still an open problem.

B. Analysis of Sampling Strategies

The above mentioned experiments show that the 3D CNNs
and RNNs could not make use of temporal features of VQA
datasets. In the third set of experiments, we verified whether
partial frames could be used for video quality prediction.

Table V summarizes the performance of four different
sampling strategies on the four datasets, which shows that
training with partial frames does not significantly impact the
experimental results, and the performance even improves in
some cases. To visualize the results of Tabel V, Figure 4
shows SROCC results of different sampling strategies on
the four datasets. In Figure 4, for the KoNViD-1k dataset,
we can essentially see that there are some fluctuations in
performance as the sampling strategy changes. We can also
see that compared with sample-0, sample-8 achieves a higher
SROCC value, and sample-16 has the lowest SROCC value. In
contrast, the SROCC value of sample-4 is almost the same as
that of sample-0. The top of Figure 4 shows the training results
of CVD2014 dataset. Interestingly, as the number of video
frames decreases, SROCC increases. More specifically, the
sampling strategy of sample-16 achieves the best performance,
while using the entire video as the input of a model achieves
the worst performance. For the LIVE-Qualcomm dataset, we
can find that sample-8 achieves the best performance, and
sample-0 and sample-16’s SROCC values are almost the same.
As shown in the bottom of Figure 4, the results of the training
in the LIVE-VQC are also surprising. The sample-8 achieves
the best training effect, while sample-0 has the lowest SROCC,
and the performance of sample-4 and sample-16 are almost the
same. Through the above extensive experiments, we argue that
sparse sampling strategy can be used to predict video quality.

C. Statistical Significance

In order to qualitatively and quantitatively analyze the effect
of temporal information and sampling strategies on model
performance, the paired t-test is used to test the statistical char-
acteristics of the experiments on each dataset for significance.
Specifically, a paired t-test was performed on the experimental
results among SROCC values at the 5% significance level,
and the results are shown in the Table VI and Table VII.
When the paired t-test value is less than the significance
level of 0.05, it indicates that there is a significant difference
in the performance of the models, and vice versa, there is
no significant difference. As shown in Table VI, we could
argue that RNNs could not make use of temporal information
effectively in the context of VQA. As shown in Table VII,
the models trained using the sparse sampling strategy do not
have a significant negative impact on the experimental results,
and the performance of the models trained using the sparse
sampling strategy is even significantly improved on some
datasets, so we argue that sparse sampling strategy can be
used to predict video quality.



VI. CONCLUSION

In this paper, we conduct a thorough study on the effec-
tiveness of RNNs on learning quality-aware spatio-temporal
features, aiming to explore the plausible answer to whether the
current dominant design scheme of VQA model is necessary
or not. Specifically, we test various spatio-temporal modeling
strategies with the associated input data format, including
Frame-Level, Cube-Level, and Sample-Level. Based on ex-
tensive experiments, some interesting findings can be clearly
observed. First, the spatio-temporal network can not learn
temporal information for video quality prediction effectively,
at least on the tested four databases. Second, there are too
many redundant frames in the video that we can use to
predict the video quality without using the entire video data.
For video quality prediction, we have to design some more
effective models to extract useful spatio-temporal features for
video quality prediction, and promote the development of other
relevant video processing techniques.
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