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Minkowski’s successive minima in convex and discrete ge-
ometry

Iskander Aliev and Martin Henk

Abstract. In this short survey we want to present some of the impact of Minkowski’s
successive minima within Convex and Discrete Geometry. Originally related to the
volume of an o-symmetric convex body, we point out relations of the successive
minima to other functionals, as e.g., the lattice point enumerator or the intrinsic
volumes and we present some old and new conjectures about them. Additionally, we
discuss an application of successive minima to a version of Siegel’s lemma.

1 Introduction

One of the basic questions in Geometry of Numbers, as well as in other areas of math-
ematics like number theory or integer linear programming, is to decide when a set S in
the n-dimensional Euclidean space Rn contains an integral point, i.e., a point of the lattice
Zn, possibly 6= 0, and if necessary to determine such a point. Here “when” usually refers
to certain sizes/properties of the set S, such as volume, thickness, covering or packing
properties etc.

With respect to the class Knos of o-symmetric convex bodies, i.e., non-empty convex and
compact sets K ⊂ Rn satisfying K = −K, and the volume vol(·), i.e., the n-dimensional
Lebesgue measure, Minkowski’s classical, so called convex body theorem gives a beautiful
answer.
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Theorem 1.1 (Minkowski’s convex body theorem,1893,[62]). Let K ∈ Knos with vol(K) ≥ 2n.
Then K contains a non-trivial lattice point, i.e., K ∩ Zn \ {0} 6= ∅.

The lower bound on the volume is best possible, as, e.g., the cube Cn := [−1, 1]n shows
and Minkowski called any convex body K ∈ Knos with vol(K) = 2n and int(K)∩Zn = {0},
where int(·) denotes the interior, an extremal convex body. These are – up to a factor of 2
– exactly those convex bodies, actually polytopes, which tile the space via Zn, i.e., Zn is
a covering lattice as well as a packing lattice of 1

2
K (see Section 2 for precise definitions).

In his 1896 published book ”Geometrie der Zahlen”, Minkowski describes this result
as “. . . ein Satz, der nach meinem Dafürhalten zu den fruchtbarsten in der Zahlenlehre zu
rechnen ist.” ([63], p. 75), and indeed this theorem has numerous applications in different
areas for which we refer to [16, 40, 59, 70, 71].

Actually, in [62] Minkowski proved Theorem 1.1 as an inequality relating the volume
of K and the minimal norm of a non-trivial lattice point, measured with respect to the
gauge body K. In order to state this inequality – and later to generalize it – we will use
his 1896 introduced “kleinstes System von unabhängig gerichteten Strahlendistanzen im
Zahlengitter” ([63], p. 178), the so called successive minima.

For K ∈ Knos, dim(K) = n, and 1 ≤ i ≤ n, the i-th successive minimum λi(K) is the
smallest dilation factor λ such that λK contains at least i linearly independent lattice
points, i.e.,

λi(K) := min{λ > 0 : dim(λK ∩ Zn) ≥ i}.
For instance, if B = B(a1, . . . , an) := [−a1, a1]× · · · × [−an, an] is a box with

a1 ≥ a2 ≥ · · · ≥ an > 0,

then λi(B) = 1/ai, 1 ≤ i ≤ n.
The successive minima form a non-decreasing sequence and, in particular, λ1(K) is the

smallest number λ such that λK contains a non-trivial lattice point. Hence, Theorem 1.1
is equivalent to

Theorem 1.2. Let K ∈ Knos, dimK = n. Then

λ1(K)n vol(K) ≤ 2n.

The proof is based on the observation that due to the symmetry of K and the definition
of λ1(K), Zn is a packing lattice of 1

2
λ1(K)K and so its volume is at most 1. Minkowski’s

so-called theorem on successive minima is a far reaching extension of Theorem 1.2 in which
λ1(K)n is replaced by the product of all successive minima. In addition, in this way a lower
bound is also possible which does not exist in Theorem 1.2.

Theorem 1.3 (Minkowski’s theorem on successive minima,1896,[63, Kapitel 5]). Let K ∈ Knos,
dimK = n. Then

2n

n!
≤ λ1(K)λ2(K) · · ·λn(K) vol(K) ≤ 2n. (1)
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The lower bound follows by an inclusion argument and it is attained, e.g., for the
regular cross-polytope Cn

? := conv({±ei : 1 ≤ i ≤ n}), where conv(·) denotes the convex
hull of a set, and ei are the canonical unit vectors. The crucial part is the upper bound,
which is considered as a deep and important result in Geometry of Numbers. There are
many alternative proofs available for this result (see, e.g., [41, Section 9 and Section ii], [40,
Section 23], [76, Section 3.5] and the references within), but, maybe, the most geometric
one is still Minkowski’s original proof (see, e.g., [40, Theorem 23.1]).

The applications of the upper bound in Theorem 1.3 are probably not as numerous as
those of its precursor Theorem 1.2, but, in general, they are also less “elementary”. For
instance, the bound is used in order to prove Minkowski’s finiteness theorems in reduction
theory (see, e.g., [80]), it appears in the proof of W. M. Schmidt of his (strong) subspace
theorem [70, pp. 162] or it is also used in proofs of Freiman’s theorem in additive combi-
natorics (see, e.g., [25]). Another prominent application is the Bombieri-Vaaler extension
of Siegel’s lemma which we will discuss in more detail in Section 6.

Since Minkowski’s introduction of the successive minima they have become an impor-
tant tool/measure in different areas of mathematics. In this short survey we want to present
some of their impact within convex and discrete geometry by showing relations of the suc-
cessive minima to other functionals (e.g., lattice point enumerator, intrinsic volumes) as
well as presenting some old and new conjectures related to them. For their immense im-
pact on Diophantine Geometry we refer to [16, 70] and for algorithmic questions related
to them see [59, 65].

2 Preliminaries

Here we briefly introduce some more basic notation, for a thorough treatment we refer
to [22, 41, 40, 72]. Let Kn be the family of all non-empty convex bodies in Rn, i.e., compact
convex sets K ⊂ Rn, and let Kno ⊂ Kn be the set of those convex bodies with 0 ∈ int(K).
The subfamily of centered convex bodies, i.e., those K ∈ Kno whose centroid

1

vol(K)

∫
K

x dn x

is at the origin is denoted by Knoc. The n-dimensional Euclidean unit ball is denoted by
Bn and its volume by ωn. According to a result of Steiner the volume of K + ρBn, ρ ≥ 0,
is a polynomial of degree n in ρ which we can write as [72, Section 4.2]

vol(K + ρBn) =
n∑
i=0

ωi Vn−i(K)ρi.

The coefficient Vi(K) is called the i-th intrinsic volume of K, i = 0, . . . , n; in particular,

Vn(K) = vol(K), Vn−1(K) =
1

2
F(K), V0(K) = 1, (2)
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where F(K) is the surface area of K. We remark that intrinsic volumes are, up to some
normalization, are mixed volumes for which we refer to [20, 72].

For K ∈ Kno the polar set K?, defined as

K? := {y ∈ Rn : 〈x,y〉 ≤ 1 for all x ∈ K},

is again a convex body. Here 〈·, ·〉 denotes the standard inner product on Rn. The set of
all m-dimensional lattices Λ ⊂ Rn will be denoted by Lnm, i.e.,

Lnm := {BZm : B ∈ Rn×m, rank(B) = m}.

In the case m = n we just write Ln. As usual, for Λ = BZm ∈ Lnm, det(Λ) :=
√

det(BᵀB)
is called the determinant of Λ. The polar lattice of Λ is given by

Λ? := {y ∈ lin(Λ) : 〈x,y〉 ∈ Z for all x ∈ Λ},

and it is det(Λ?) = 1/ det(Λ). Here lin(·) denotes the linear hull.
With respect to a convex body K ∈ Kno and a general lattice Λ ∈ Ln, the i-th successive

minimum λi(K,Λ) is given by

λi(K,Λ) := min{λ > 0 : dim(λK ∩ Λ) ≥ i},

where the dimension of a set S is always meant with respect to its affine hull aff(S). In
case Λ = Zn we write λi(K) and if K = Bn, we abbreviate λi(Bn,Λ) by λi(Λ), which is
also called the i-th successive minimum of the lattice Λ. Since for Λ = BZn ∈ Ln we have
λi(B

−1K) = λi(K,Λ) and vol(B−1K) = vol(K)/ det(Λ), Minkowski’s Theorem 1.3 can be
equivalently stated for arbitrary lattices and K ∈ Knos as

det(Λ)
2n

n!
≤ λ1(K,Λ)λ2(K,Λ) · · ·λn(K,Λ) vol(K) ≤ 2n det(Λ). (3)

A lattice Λ ∈ Ln will be called a covering lattice of K ∈ Kn if Rn = Λ + K and
a packing lattice if int(a + K) ∩ int(b + K) = ∅ for all a 6= b ∈ Λ. Given a K ∈ Kn and
a lattice Λ ∈ Ln, then

λ1(K −K,Λ) = max{ρ : Λ packing lattice of ρK}

and

δ(K) := max

{
vol
(
λ1(K −K,Λ)K

)
det(Λ)

: Λ ∈ Ln
}

(4)

is called the density of a densest lattice packing of K. Here the ratio

vol(λ1(K −K,Λ)K)/ det(Λ)

describes the proportion of space which is occupied by the packing Λ + λ1(K − K)K.
Observe, that 0 < δ(K) ≤ 1.
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The covering counterpart to λ1(K −K,Λ) is the so called covering radius

µ(K,Λ) = min{µ > 0 : µK + Λ = Rn},

i.e., the smallest µ > 0 such that Λ is a covering lattice of µK. In analogy to (4), the
minimum of vol(µ(K,Λ)K)/ det(Λ) with respect to all lattices leads to the density of
a thinnest lattice covering, but we do not need this quantity here.

By definition we have λ1(K −K,Λ) ≤ µ(K,Λ) and more generally,

λn(K −K,Λ) ≤ µ(K,Λ) ≤ λ1(K −K,Λ) + · · ·+ λn(K −K,Λ).

This was shown in the symmetric case by Jarńık (see [40, Theorem 23.4]). The general case
was treated by Kannan and Lovász in [49, Lemma 2.4], where they also introduced the so
called covering minima µi(K,Λ), 1 ≤ i ≤ n, which can be regarded as covering counterparts
to the successive minima. For more information on these functionals see,e.g., [49, 39].

3 Possible Tightenings and Generalizations of Minkowski’s theorem

First we state a straightforward extension of Minkowski’s Theorem 1.3 to arbitrary,
not necessarily o-symmetric convex bodies. To this end we consider for K ∈ Kn its central
symmetrical

Ks :=
1

2
(K −K) ∈ Knos.

Obviously, Ks = K for K ∈ Knos and by the classical Brunn-Minkowski inequality [72,
Section 7] we know that

vol(K) ≤ vol(Ks)

with equality if and only if K and Ks are translates of each other. Thus, the upper bound
in (3) applied to Ks gives

λ1(Ks,Λ)λ2(Ks,Λ) · · ·λn(Ks,Λ) vol(K) ≤ 2n det(Λ),

and it is also easy to see that the corresponding lower bound in (3) holds true (see, e.g., the
discussion in [43]). Hence, Minkowski’s Theorem 1.3 can be stated in a bit more general
form.

Theorem 3.1. Let K ∈ Kn, dimK = n, and let Λ ∈ Ln. Then

det(Λ)
2n

n!
≤ λ1(Ks,Λ)λ2(Ks,Λ) · · ·λn(Ks,Λ) vol(K) ≤ 2n det(Λ). (5)
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In fact, the body Ks is a rather natural candidate for such an extension. As Λ is
a packing lattice of λ1(K − K,Λ)K we get by the definition of the density of a densest
lattice packing (4) the inequality

λ1(Ks,Λ)n vol(K) = 2nλ1(K −K,Λ)n vol(K) ≤ δ(K) 2n det(Λ)

which is a tightening of Minkowski’s Theorem 1.2 (for general K ∈ Kn and Λ ∈ Ln). If
such an improvement is also possible for the upper bound in Minkowski’s Theorem 1.2 is
the content of a famous problem posed by Davenport.

Problem 3.2 (Davenport, 1946, [26]). Let K ∈ Kn. Is it true that

λ1(Ks,Λ) · · ·λn(Ks,Λ) vol(K) ≤ δ(K) 2n det(Λ)? (6)

Actually, Davenport formulated it for K ∈ Knos but this is equivalent to the above
statement. So far it has only been verified for n = 2 and for ellipsoids by Minkowski
(see [63, pp. 196], [41, pp. 195]), the case n = 3 has been settled by Woods [83]. For more
information see [41, Section 18].

The inequalities in Theorem 5 have the nice properties that they generalize the sym-
metric setting and they are invariant with respect to translations of K. A different way
to extend the class Knos is to consider centered convex bodies K ∈ Knoc. For those bodies
Ehrhart posed in 1964 the following conjecture as an analog to Minkowski’s convex body
Theorem 1.1.

Conjecture 3.3 (Ehrhart, 1964, [30]). Let K ∈ Knoc with vol(K) ≥ (n + 1)n/n!. Then K
contains a non-trivial lattice point, i.e., K ∩ Zn \ {0} 6= ∅.

Moreover, he conjectured that the bound is best possible only (up to Zn preserving
linear transformations) for the simplex

Tn := −
n∑
i=1

ei + (n+ 1) conv{0, e1, . . . , en}. (7)

Ehrhart proved his conjecture in various special cases, e.g., in the plane [28] and for
simplices [31]. Berman and Berndtsson [12] proved it for a special class of n-dimensional
lattice polytopes including so called reflexive polytopes (see also [64]). The best known
bound for which the conclusion of Conjecture 3.3 holds true is based on a lower bound for
the ratio

α(K) :=
vol(K ∩ (−K))

vol(K)
, K ∈ Knoc,

since then vol(K) ≥ α(K)−12n implies by Minkowski’s Theorem 1.1 that K ∩ (−K) and
thus K contains a non-trivial lattice point.
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Milman and Pajor [60] proved α(K) ≥ 2−n, this was improved by Huang et al. [47] to
2−nec

√
n where c is an absolute constant, and recently it was shown by Campos et al. [21,

Theorem 4.1] that

α(K) ≥ 2−n ec n/L
2
n ,

where Ln is the so called isotropic constant (see, e.g., [19]). Together with the very recently
announced upper bound of O(

√
log(n)) onto Ln by Klartag [50], the result of Campos et

al. shows that K ∈ Knoc contains a non-trivial lattice point if vol(K) ≥ 4ne−c n/ log(n)2 (cf. [21,
Theorem 1.4]); observe that (n + 1)n/n! ∼ en and it is believed that α(K) is minimized
for a simplex which would give “almost” a bound of en.

In view of Minkowski’s successive minima it is also tempting to consider the following
generalization of Ehrhart’s conjecture (see [43]).

Problem 3.4. Let K ∈ Knoc and Λ ∈ Ln. Is it true that

λ1(K,Λ) · · ·λn(K,Λ) vol(K) ≤ (n+ 1)n

n!
det(Λ)?

By the same reasoning as above and the monotonicity of the successive minima such
an inequality exists with 4ne−c

√
n instead of (n + 1)n/n!, and in [43] it is also verified in

some special cases, e.g., in the plane. Moreover, in analogy to Minkowski’s lower bound in
Theorem 1.3, the authors of [43] prove that for K ∈ Knoc,

n+ 1

n!
det(Λ) ≤ λ1(K,Λ) · · ·λn(K,Λ) vol(K)

along with a characterization of the equality case. In particular, if Λ = Zn, equality is
attained for

Tn
? = conv{−(e1 + · · ·+ en), e1, . . . , en}. (8)

As the volume is a particular intrinsic volume Vi(K) (see (2)) one may also ask for
inequalities relating these functionals to the successive minima. The Vi(K), however, are
not invariant under linear transformations of determinant 1 and so results for Zn cannot
be equivalently formulated for arbitrary lattices as in the case of the volume inequalities
presented so far.

As the i-th intrinsic volume is not smaller than the volume of any intersection of K with
an i-dimensional plane, the lower bound in Theorem 3.1 implies for K ∈ Kn, dimK = n,
and Λ = Zn (see [82])

2i

i!
≤ λ1(Ks) · · ·λi(Ks) Vi(K), 1 ≤ i ≤ n. (9)

An o-symmetric convex body without non-trivial lattice points, but with a large i-dimen-
sional section shows there is no upper bound on the right hand side for i ≤ n− 1. On the
other hand, it was shown in [42] that for K ∈ Kn, dimK = n,

λi+1(Ks) · · ·λn(Ks) < 2n−i
Vi(K)

vol(K)
, 1 ≤ i ≤ n− 1, (10)
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and that this inequality is best possible. Actually, both inequalities (9) and (10) were
originally proved for o-symmetric convex bodies, but the proofs also work in this slightly
more general setting. We also remark, that in general the ratio Vi(K)/ vol(K) in (10)
is not bounded from above in terms of the successive minima. To generalize (10) to the
setting of arbitrary lattices is still an open problem.

Conjecture 3.5 (Schnell, 1995, [73]). Let K ∈ Kn, dimK = n, and let Λ ∈ Ln. Then

λi+1(Ks,Λ) · · ·λn(Ks,Λ) < 2n−i
Vi(K)

vol(K)

det(Λ)

deti(Λ)
, 1 ≤ i ≤ n− 1,

where deti(Λ) is the smallest determinant of an i-dimensional sublattice of Λ.

Schnell made this conjecture only for K ∈ Knos, but in view of (10) it is quite plausible
that it holds true for any K ∈ Kn.

The case i = n− 1 in (10) gives the particularly nice inequality

λn(Ks) <
F(K)

vol(K)
, (11)

where F(K) is the surface area of K (cf. (2)). In (26) we will also see a kind of discrete
counterpart to (11).

For K ∈ Knos and i = n− 1, (9) was improved in [43] to the tight inequality

2n

(n− 1)!
≤

(
n∑
i=1

n∏
j=1, j 6=i

λj(K)2

) 1
2

F(K).

A corresponding best possible inequality for K ∈ Kn, or with respect to arbitrary lattices
or for other intrinsic volumes is not known (see the discussion in [43]).

4 Successive Minima and polarity

In the context of so-called transference theorems in number theory the goal is (roughly
speaking) to establish relations between integral solutions of different linear Diophantine
approximation problems (see, e.g., [41, Section 45], [40, Section 23.2]). From a geometric
point of view, this means to relate functionals such as volume or successive minima ofK and
K?. The study of this fruitful interplay goes back to Kurt Mahler in 1930s (see, e.g, [32]),
and in [53] he studied for K ∈ Knos the linearly invariant volume product vol(K) vol(K?),
today also known as Mahler volume.

Conjecture 4.1 (Mahler, 1939, [53]). Let K ∈ Knos. Then

4n

n!
= vol(Cn) vol(Cn

?) ≤ vol(K) vol(K?). (12)
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Mahler [52] verified the conjecture in dimension 2, and it was also recently proved in
dimension 3 [48]. He also proved a lower bound of 4n/(n!)2 and an upper bound on the
product of 4n. The best known general bounds are

πn

n!
≤ vol(K) vol(K?) ≤ ω2

n. (13)

The apparently best possible upper bound, which was also conjectured by Mahler [53], is
known as the Blaschke-Santaló Theorem [68]. The lower bound is due to Kuperberg [51].
In the general case, i.e., for K ∈ Kn it is conjectured, and also attributed to Mahler, that

(n+ 1)n+1

(n!)2
= vol(Sn) vol(Sn

?) ≤ vol(K) vol(K?), (14)

where Sn is any simplex with the centroid at the origin, e.g., Tn from (7). This is only
known to be true in the plane [52]. For more information on the Mahler volume and its
central role within Convex Geometry we refer to [34].

Combining the upper bound in Minkowski’s inequality (5) for K? with the conjectured
lower bound in Mahler’s Conjecture (4.1) leads for K ∈ Knos to the following conjectural
inequality, which is also due to Mahler.

Conjecture 4.2 (Mahler, 1974, [54]). Let K ∈ Knos and Λ ∈ Ln. Then

2n

n!
det(Λ) λ1(K?,Λ?) · · ·λn(K?,Λ?) ≤ vol(K). (15)

The inequality would be best possible, for instance, for the cross-polytope Cn
?, and

the previously mentioned results on the volume product imply that it is true for n = 2, 3.
Even the weaker inequality (as an analogue to Theorem 1.2),

2n

n!
det(Λ) λ1(K?,Λ?)n ≤ vol(K), (16)

which has also been studied by Mahler, is open for n ≥ 4. For general convex bodies the
same problem was studied by Makai Jr.

Conjecture 4.3 (Makai, Jr., 1978, [55]). Let K ∈ Kn and Λ ∈ Ln. Then

n+ 1

n!
det(Λ) λ1(Ks

?,Λ?)n ≤ vol(K). (17)

It was shown to be true for n = 2 by L. Fejes Tóth and Makai, Jr. [33] (see also [39]
for applications). In view of (15) one might even conjecture the stronger inequality

n+ 1

n!
det(Λ)λ1(Ks

?,Λ?) · · ·λn(Ks
?,Λ?) ≤ vol(K), (18)
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which would be also best possible as the simplex Tn
? from (8) shows. For n = 2, (18) is

an immediate consequence of the upper bound in (5) and Eggleston’s [27] inequality

6 ≤ vol(K) vol(Ks
?) (19)

for planar convex bodies K. Actually, taking into account all successive minima, there
seems to be stronger lower bounds possible than the one in (18). For the planar case
see [45]. In contrast to Minkowski’s Theorem 3.1, here upper bounds on vol(K) in terms
of λi(K

?,Λ?) are the easy part. In [45] it was shown that for K ∈ Kn

vol(K) ≤ 2n det(Λ)λ1(Ks
?,Λ?) · · ·λn(Ks

?,Λ?),

and if K ∈ Knoc then

vol(K) ≤ (n+ 1)n

n!
det(Λ)λ1(Ks

?,Λ?) · · ·λn(Ks
?,Λ?).

Both inequalities are best possible as the usual suspects show.
The inequalities (16) and (17) have a nice geometric interpretation in terms of the so

called lattice width. For K ∈ Kn we have by the definition of the polar set that

λ1((K −K)?,Λ?) = min
a?∈Λ?\{0}

max
y∈K−K

〈a?,y〉 =: w(K,Λ), (20)

and w(K,Λ) is the lattice width of K with respect to Λ. It describes, roughly speaking, the
minimal number of parallel lattice hyperplanes of the lattice Λ intersecting K; a lattice hy-
perplane is a hyperplane containing n affinely independent lattice points of Λ. Hence, (16)
and (17) claim that the volume of a convex body of lattice width 2 is at least the volume
of Cn

? if K is symmetric and, otherwise, at least the volume of Tn
?.

An interesting weaker inequality than (17) was conjectured in the context of isosystolic
inequalities for optical hypersurfaces.

Conjecture 4.4 (Álvarez Paiva et al., 2016, [5]). Let K ∈ Kno and Λ ∈ Ln. Then

n+ 1

n!
det(Λ) λ1(K?,Λ?)n ≤ vol(K), (21)

with equality if and only if K is a simplex whose vertices are its only non-trivial lattice
points.

It was pointed out in [45] that in general there is no upper bound on vol(K) in this
setting. For possible extensions of Makai’s conjecture (17) via covering minima (instead
of the successive minima) we refer to González Merino and Schymura [39].

Applying Minkowski’s upper bound in (5) to K,Λ and K?,Λ? gives with (13)

λ1(K,Λ)λ1(K?,Λ?) · · ·λn(K,Λ)λn(K?,Λ?) ≤ 4n

πn
n!
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and, in particular,
λ1(K,Λ)λ1(K?,Λ?) ≤ c n,

where, in the following c denotes an absolute constant which may vary from line to line.
This easily derived inequality is essentially best possible, as Banaszczyk [8, Lemma 2]
proved that in every dimension n there exist a lattice Λ ∈ Ln with

c n ≤ λ1(K,Λ)λ1(K?,Λ?). (22)

In the case K = Bn this was shown earlier by Conway and Thompson [61, Chapter II,
Theorem 9.5].

For products of the type λi(K,Λ)λj(K
?,Λ?) one can only expect a non-trivial lower

bound if j ≥ n+ 1− i and an upper bound if j ≤ n+ 1− i.
In the already mentioned paper [53], Mahler was the first who studied the products

λi(K,Λ)λn+1−i(K
?,Λ?) and proved for K ∈ Knos the bounds

1 ≤ λi(K,Λ)λn+1−i(K
?,Λ?) ≤ n!.

The lower bound is clearly optimal, but the upper bound has been improved considerably
in the last decades. The currently best bounds are due to Banaszczyk and are based on
his groundbreaking Gaussian-like measures on lattices introduced in [7]. In [8] he proves
for K ∈ Knos

λi(K,Λ)λn+1−i(K
?,Λ?) ≤ c n(1 + log(n)),

which, in view of (22) is close to optimal. Moreover, he also shows that the (1 + log(n))
term can be improved for various classes of symmetric convex bodies. In particular, for
K = Bn it was already shown in [7] that

λi(Λ)λn+1−i(Λ
?) ≤ n.

If K ∈ Kn is lattice point free with respect to a lattice Λ. i.e., int(K) ∩ Λ = ∅,
then the covering radius is at least 1, i.e., µ(K,Λ) ≥ 1. Hence, any upper bound on
µ(K,Λ)λ1(Ks

?,Λ?), K ∈ Kn, is a bound on the so-called flatness constant flt(n), the
maximal lattice width of a lattice point free convex body in Rn.

That this quantity can be indeed bounded by a constant only depending on the dimen-
sion was first shown by Khinchin [46].

For K ∈ Knos, Banaszczyk [8] proved

µ(K,Λ)λ1(K?,Λ?) ≤ c n log(n) (23)

and so flt(n) ≤ c n log(n) for all convex bodies having a center of symmetry. For general
K ∈ Kn, the following bound was very recently announced by Reis and Rothvoss [66] (see
also [67], [9] for the former best known bounds)

flt(n) ≤ c n log(n)8.

Actually, their main result implies the astonishing relation

µ(K,Λ) ≤ c log(n)7µ(K −K,Λ),

which gives the bound on the flatness constant via the symmetric case (23). The best
lower bounds on flt(n) are of order n (see [9, 58] and the references within).
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5 Successive Minima and lattice point enumerator

Since the successive minima measure or reflect lattice point properties of a convex body
one may also ask for direct relations between the successive minima and the lattice point
enumerator G(K,Λ) := #(K∩Λ); in the case Λ = Zn we just write G(K). A result in this
spirit is again due to Minkowski who proved in analogy to his convex body Theorem 1.1.

Theorem 5.1 (Minkowski, 1896, [63, p. 79]). Let K ∈ Knos, dimK = n and G(K) ≥ 3n + 1.
Then K contains a non-trivial lattice point in its interior.

The cube Cn shows that the bound cannot be improved in general. Minkowski also
proved a sharper bound of 2n+1 − 1 for the class of strictly o-symmetric convex bodies,
but for simplification we will deal only with the general case and we refer to [41, p. 63] for
details, and to [38] for an interesting generalization of these statements of Minkowski.

Betke et al. [13] embedded the above result of Minkowski in an inequality for o-
symmetric convex bodies in the sense of Theorem 1.2 which was later extended to K ∈ Kn
by Malikiosis [56]. Let K ∈ Kn and Λ ∈ Ln. Then

G(K,Λ) ≤
⌊

2

λ1(Ks,Λ)
+ 1

⌋n
.

And, obviously, the conjecture is that this can also be improved via the product of all
successive minima as in Minkowski’s Theorem 1.3 on successive minima.

Conjecture 5.2 (Betke et al.[13]; Malikiosis [56]). Let K ∈ Kn and Λ ∈ Ln. Then

G(K,Λ) ≤
⌊

2

λ1(Ks,Λ)
+ 1

⌋
· · ·
⌊

2

λn(Ks,Λ)
+ 1

⌋
.

The cube, or more generally, a box [−l1, l1] × · · · × [−ln, ln], li ∈ N, shows that the
bound would be tight. Again Betke et al. just considered the symmetric case, in which
they also proved a best possible lower bound [13, Corollary 2.1] if λn(K,Λ) ≤ 2:

1

n!

(
2

λ1(K,Λ)
− 1

)
· · ·
(

2

λn(K,Λ)
− 1

)
≤ G(K,Λ).

In [56], Malikiosis proved the Conjecture 5.2 for n = 3, and in general he showed that

G(K,Λ) ≤ 4

e

√
3
n−1
⌊

2

λ1(Ks,Λ)
+ 1

⌋
· · ·
⌊

2

λn(Ks,Λ)
+ 1

⌋
, (24)

where
√

3 can be replaced by 3
√

40/9 if K = −K. Moreover, in [57] he verified it for
ellipsoids in every dimension.

Recently, Tointon [78] presented a different type of upper bound on G(K,Λ) in terms
of the successive minima:

G(K,Λ) ≤
(

1 +
λk(K,Λ)

2

)
2

λ1(K,Λ)
· · · 2

λk(K,Λ)
,
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where the index k is chosen such that k = max{j : λj(K,Λ) ≤ 2} which can be replaced
in the symmetric setting by k = max{j : λj(K,Λ) ≤ 1}. Tointon’s inequality improves
on (24) in the symmetric case, as well as in various cases for general K ∈ Kn. Moreover, it
has, as well as Conjecture 5.2, the nice and important feature that it implies the continuous
case, i.e., the upper bound in Minkowski’s Theorem 3.1. The reason is that, roughly
speaking, for “fat” convex bodies there is almost no difference between vol(K) and G(K),
or, more precisely, the Jordan measurability of convex bodies gives

lim
ρ→∞

vol(ρK)

det(Λ) G(ρK,Λ)
= 1. (25)

In order to control the gap between vol(K) and G(K) for “thin” convex bodies, Betke
et al. also started to study bounds on G(K)/ vol(K) in terms of the successive minima.
And here the following inequalities could be true.

Conjecture 5.3 (Betke et al., 1993). Let K ∈ Kn, dim(K) = n and Λ ∈ Ln. Then
n∏
i=1

(
1− iλi(Ks,Λ)

2

)
≤ G(K,Λ)

vol(K)
det(Λ) ≤

n∏
i=1

(
1 + i

λi(Ks,Λ)

2

)
,

where for the lower bound nλn(Ks,Λ) ≥ 2 is assumed and G(K) might be replaced by
G(int(K)).

Actually, in [13, Conjecture 2.2] Betke et al. state only a conjecture about a corre-
sponding lower bound for symmetric convex bodies in which the is in the factors of the
product are replaced by 1, and they pose the problem to consider also upper bounds.

The bounds in the Conjecture 5.3 would be tight as, e.g., positive integral multiples of
the standard simplex conv{0, e1, . . . , en} show (see [35]). Freyer and Lucas verified in [35]
the upper bound in Conjecture 5.3 in the plane and the lower bound for planar lattice
polytopes. In arbitrary dimensions they proved the following weaker inequalities

n∏
i=1

(
1− nλi(Ks,Λ)

2

)
≤ G(K,Λ)

vol(K)
det(Λ) ≤

n∏
i=1

(
1 + n

λi(Ks,Λ)

2

)
.

Observe that the upper bound together with Minkowski’s upper bound (5) give

G(K,Λ) ≤
(

2

λ1(K,Λ)
+ n

)
· · ·
(

2

λn(K,Λ)
+ n

)
,

which in turn via (25) implies Minkowski’s upper bound (5) [35].
A different point of view on Conjecture 5.2 is given by Ehrhart theory from Discrete

Geometry. By the monotonicity of the successive minima it suffices to prove the conjecture
instead of for K ∈ Kn for the associated lattice polytope P := conv(K ∩ Λ). A polytope
is called a lattice polytope (with respect to a lattice Λ) if all its vertices are lattice points
of Λ. According to a result due to Ehrhart [29] we have for k ∈ N

G(k P,Λ) =
n∑
i=0

Gi(P,Λ)ki,
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which is also known as the Ehrhart-polynomial. The coefficients Gi(P,Λ) have been the
subject of intensive investigations over the last decades (see [11]) and (at least) three of
them have a very clear geometric meaning

Gn(P,Λ) =
vol(P )

det(Λ)
, Gn−1(P,Λ) =

1

2

m∑
i=1

voln−1(Fi)

det(aff(Fi) ∩ Λ)
, G0(P,Λ) = 1,

where F1, . . . , Fm are the facets of P , and G0(P,Λ) corresponds to the Euler-characteristic
of P . Hence, one may also ask for relations of the other coefficients (apart from the volume)
to the successive minima. In [44] it was shown for o-symmetric lattice polytopes

Gn−1(P,Λ)

Gn(P,Λ)
≤ 1

2

n∑
i=1

λi(P,Λ). (26)

The inequality is best possible, e.g., for Cn and Cn
?, and maybe regarded as a discrete

counterpart to (11) for o-symmetric lattice polytopes. For generalizations to not necessarily
symmetric polytopes or lattice polytopes having their centroid at the origin we refer to [43].
Here we want to point out one nice feature of the above inequality for symmetric polytopes;
together with Minkowski’s upper bound it gives the best possible inequality

Gn−1(P,Λ) ≤
n∑
j=1

∏
i 6=j

2

λi(P,Λ)
.

Hence, in view of Minkowski’s upper bound on the volume it is tempting to conjecture
that Gi(P,Λ) is bounded by the i-th elementary symmetric function of the successive
minima. This, however, fails already for i = n− 2 as shown in [14, Proposition 1.1], but,
on the positive side it is true for special lattice polytopes, as parallelepipeds and symmetric
lattice-face polytopes (see [14]).

The problem of counting lattice points inside a convex body may also be considered
from the more general point of view of covering lattice points by a minimum number of
k-dimensional affine subspaces. For those types of covering problems we refer to [6, 10,
15, 18, 37] and here, as an appetizer we only state the following result by Balko et al. [6,
Theorem 2.5]: Let K ∈ Knos containing n linearly independent lattice points of Λ and let
1 ≤ k ≤ n − 1. Then up to constants depending on k and n the lattice points of K ∩ Λ
can be covered by

(λk+1(K,Λ) · · ·λn(K,Λ))−1

k-dimensional affine subspaces and the bound is optimal – up to constants depending on
k and n.

6 An application: Bombieri-Vaaler extension of Siegel’s lemma

Let A = (aij) ∈ Zm×n, m < n, be an integral matrix of rank m. Consider the system
of homogeneous linear equations

Ax = 0 . (27)
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Since m < n, the system (27) has a non–trivial solution in integers. If the entries of A
are relatively small integers, then it is reasonable to expect that there will be a solution
in relatively small integers. This principle was applied by Thue in [77] to a problem from
Diophantine approximations. Siegel [74, Bd. I, p. 213, Hilfssatz] was the first to state this
idea formally.

Let us denote by ‖A‖∞ the maximum absolute value of an entry of A, that is ‖A‖∞ =
maxij |aij|. Following Siegel’s work, one can obtain the following result (included with
proof in Schmidt [71]).

Theorem 6.1 (Siegel’s Lemma). The system (27) has a solution x ∈ Zn with

0 < ‖x‖∞ < 1 + (n‖A‖∞)m/(n−m) . (28)

Notably, the exponent m/(n −m) on the right hand side of (28) is optimal. Siegel’s
lemma type results have been motivated by their numerous applications in number theory
(see e.g. [17, 71, 36]). In more recent years, new applications have been developed, in
particular in mathematical optimization [3, 4].

To establish a link between Siegel’s lemma and successive minima, we follow the work of
Bombieri and Vaaler [17]. They have proved, by using geometry of numbers, the following
advanced version of Siegel’s lemma.

Theorem 6.2. The system (27) has n−m linearly independent solutions x1, . . . ,xn−m in
Zn, with

n−m∏
i=1

‖xi‖∞ ≤
√

det(AAT )

gcd(A)
,

where gcd(A) is the greatest common divisor of all m×m subdeterminants of A.

Recall that Cn = [−1, 1]n and let ker(A) = {x ∈ Rn : Ax = 0}. Consider the
section S(A) = Cn ∩ ker(A) of the cube Cn and the lattice Λ(A) = Zn ∩ ker(A). The
lattice Λ(A) has determinant det(Λ(A)) =

√
det(AAT )/ gcd(A). The (n−m)-dimensional

subspace ker(A) can be considered as a usual Euclidean (n−m)-dimensional space. This
immediately extends the definition of successive minima to o-symmetric bounded convex
sets with nonempty relative interior in ker(A) and (n−m)-dimensional lattices in ker(A).
Theorem 6.2 is an immediate corollary of the following result.

Theorem 6.3. Let A ∈ Zm×n, m < n, be an integral matrix of rank m. Then the inequality

n−m∏
i=1

λi(S(A),Λ(A)) ≤ det(Λ(A)) (29)

holds.
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Proof. By a result of Vaaler [79], we have voln−m(S(A)) ≥ 2n−m. Hence, Minkowski’s
theorem on successive minima in the form (3) gives

n−m∏
i=1

λi(S(A),Λ(A)) ≤ 2n−m det(Λ(A))

voln−m(S(A))
≤ det(Λ(A)) .

In what follows, we will focus on the special case m = 1, that is when A is just an
n-dimensional nonzero row vector. Theorem 6.2 implies that for every nonzero vector a in
Zn, n ≥ 2, there exists a vector x in Zn, such that

〈a,x〉 = 0 , 0 < ‖x‖n−1
∞ ≤

√
n‖a‖∞ . (30)

The exponent n− 1 in the latter bound is optimal. Let us define

c(n) = sup
a∈Zn\{0}

inf
x∈Zn\{0}

〈a,x〉=0

‖x‖n−1
∞

‖a‖∞
.

That is c(n) is the optimal constant in the bound (30).
It is easy to see that c(2) = 1. Further, the equality c(3) = 4/3 is implicit in [24].

Namely, the inequality c(3) ≤ 4/3 is contained in [24, Lemma 4], while the inequality
c(3) ≥ 4/3 is a consequence of [24, Lemma 7]. We have also c(4) = 27/19. The inequality
c(4) ≥ 27/19 was proved by Chaladus in [23] and its counterpart c(4) ≤ 27/19 was obtained
in [1] (see also [69]). For n > 4, the exact values of the constants c(n) remain unknown.

In this vein, Schinzel [69] proved the following general result that gives a geometric
interpretation for the constant c(n). Given K ∈ Knos we denote by ∆(K) its critical
determinant, defined as

∆(K) = min{det(Λ) : 2Λ is a packing lattice for K} .

In terms of the density δ(K) (see (4)), we have

∆(K) =
vol(K)

2nδ(K)
.

Theorem 6.4. For n ≥ 3
c(n) = sup ∆(Hα1,...,αn−3)

−1 ,

where Hα1,...,αn−3 is a generalised hexagon given by

Hα1,...,αn−3 =

{
x ∈ Rn−1 : ‖x‖∞ ≤ 1,

∣∣∣∣∣
n−3∑
i=1

αixi + xn−2 + xn−1

∣∣∣∣∣ ≤ 1

}

and the supremum is taken over all rational numbers α1, . . . , αn−3 in the interval (0, 1].

Based on the values of c(n) for n ≤ 4, the following conjecture was proposed in [2].
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Conjecture 6.5. The equality
c(n) = ∆(H1,...,1)−1

holds. Here H1,...,1 is a generalised hexagon in Rn−1.

From the perspective of Theorems 6.2–6.3 and the successive minima, it is natural to
consider for n ≥ 2 the constant

s(n) = sup
a∈Zn\{0}

inf
x1,...,xn−1

∏n−1
i=1 ‖xi‖∞
‖a‖∞

, (31)

where the infimum is taken over all linearly independent integer vectors x1, . . . ,xn−1 ∈ Zn
such that 〈a,x1〉 = · · · = 〈a,xn−1〉 = 0.

The bound in Theorem (6.2) immediately implies

s(n) ≤
√
n . (32)

In [2], the constant s(n) was estimated as

s(n) ≤ σ−1
n , (33)

where σn is the sinc integral

σn =
2

π

∫ ∞
0

(
sin t

t

)n
dt .

The bound (33) asymptotically improves on (32) with factor
√
π/6. The numbers σn

are rational, the sequences of numerators and denominators of σn/2 can be found in [75]
(sequences A049330 and A049331).

Clearly, s(2) = c(2) = 1. In this section we prove the following result, mentioned
without proof in [2, Remark 1 (ii)].

Theorem 6.6. For n ∈ {3, 4} we have s(n) = c(n). That is

s(3) =
4

3
and s(4) =

27

19
.

Proof. Observe that for any nonzero a ∈ Zn

inf
x∈Zn\{0}

〈a,x〉=0

‖x‖n−1
∞

‖a‖∞
≤ inf

x1,...,xn−1

∏n−1
i=1 ‖xi‖∞
‖a‖∞

,

where the latter infimum is taken over the same set as in (31). Hence for all n ≥ 2 we have

c(n) ≤ s(n) . (34)



52 Iskander Aliev and Martin Henk

In view of (34), it is sufficient to show that s(3) ≤ 4/3 and s(4) ≤ 27/19. To achieve
this goal, we will first express s(n) in terms of successive minima. Given a nonzero a ∈ Zn,
let ker(a) = {x ∈ Rn : 〈a,x〉 = 0}, and consider the lattice

Λ(a) = Zn ∩ ker(a) ,

and the (n− 1)-dimensional section

S(a) = Cn ∩ ker(a)

of the cube Cn. Then, by the definition of successive minima, we have

s(n) = sup
a∈Zn\{0}

∏n−1
i=1 λi(S(a),Λ(a))

‖a‖∞
. (35)

Given K ∈ Knos, its anomaly a(K) is defined as

a(K) = sup
Λ∈Ln

∆(K)
∏n

i=1 λi(K,Λ)

det(Λ)
.

The Problem 3.2 of Davenport in terms of the anomaly is asking whether a(K) = 1.
Woods [83] proved that a(K) = 1 holds in dimension up to three. As above, notice that
the hyperplane ker(a) can be considered as a usual Euclidean (n− 1)-dimensional space.
This immediately extends the definition of the critical determinant to o-symmetric convex
sets with nonempty relative interior in ker(a). Hence, for n ≤ 4 we have

n−1∏
i=1

λi(S(a),Λ(a)) ≤ det(Λ(a))

∆(S(a))
=

‖a‖2

gcd(a)∆(S(a))
. (36)

We may assume without loss of generality that a does not have zero entries. Otherwise,
we can replace n with n − 1. Hence, without loss of generality, we may assume that
0 < a1 ≤ · · · ≤ an. Consider the projection π : Rn → Rn−1 that forgets the last coordinate.
Since all entries of a are positive, the mapping π restricted to ker(a) is bijective. Let
K(a) = π(S(a)). One can write K(a) as follows. Given a sequence of rational numbers
0 < α1 ≤ · · · ≤ αn−1 ≤ 1, let

Kα1,...,αn−1 = {x ∈ Rn−1 : ‖x‖∞ ≤ 1, |α1x1 + · · ·+ αn−1xn−1| ≤ 1} .

Then K(a) = Kα1,...,αn−1 with

α1 =
a1

an
, . . . , αn−1 =

an−1

an
. (37)

For any (n − 1)-dimensional lattice Λ ⊂ ker(a), the lattice 2Λ is a packing lattice for
S(a) if and only if 2π(Λ) is a packing lattice for K(a). Hence

∆(S(a)) = ∆(K(a))
‖a‖2

‖a‖∞
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and, by (36),
n−1∏
i=1

λi(S(a),Λ(a)) ≤ ‖a‖∞
gcd(a)∆(K(a))

.

Consequently, by (35), we obtain the inequality

s(n) ≤ sup
a∈Zn\{0}

1

gcd(a)∆(K(a))
. (38)

The main tool of the proof of Theorem 6.6 is the following lemma.

Lemma 6.7. For any n ≥ 3 and any rational numbers 0 < α1 ≤ · · · ≤ αn−1 ≤ 1, the
following statements hold:

(i) If n = 3 then
K1,1 ⊂ Kα1,α2 .

(ii) If n > 3 then there exists rational numbers 0 < β1 ≤ · · · ≤ βn−3 ≤ 1 such that

Kβ1,...,βn−3,1,1 ⊂ Kα1,...,αn−1 .

This result was originally proved for n ≤ 4 in [1], and, subsequently, for all n in [69].
We include a proof for completeness.

Proof. We start with part (i). For x ∈ K1,1, we have

|x1| ≤ 1, |x2| ≤ 1, |x1 + x2| ≤ 1 . (39)

Multiplying the inequality |x2| ≤ 1 by α2/α1−1 and adding it to the last inequality in (39)
we obtain the inequality |α1x1 + α2x2| ≤ α2 ≤ 1. Hence x ∈ Kα1,α2 .

For part (ii) take

β1 =
α1

αn−2

, . . . , βn−3 =
αn−3

αn−2

.

Then if x ∈ Kβ1,...,βn−3,1,1, we have

|xi| ≤ 1, i ∈ {1, . . . , n− 1} ,∣∣∣∣∣
n−3∑
i=1

αi
αn−2

xi + xn−2 + xn−1

∣∣∣∣∣ ≤ 1 .
(40)

Multiplying the inequality |xn−1| ≤ 1 by αn−1/αn−2−1 and adding it to the last inequality
in (40), we obtain the inequality

αn−1

αn−2

≥

∣∣∣∣∣
n−3∑
i=1

αi
αn−2

xi + xn−2 + xn−1

∣∣∣∣∣+

(
αn−1

αn−2

− 1

)
|xn−1| .
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Multiplying both sides by αn−2 we obtain

1 ≥ αn−1 ≥

∣∣∣∣∣
n−3∑
i=1

αixi + αn−2xn−2 + αn−2xn−1

∣∣∣∣∣+ (αn−1 − αn−2) |xn−1|

≥ |α1x1 + · · ·+ αn−1xn−1| .

Hence x ∈ Kα1,...,αn−1 .

For the rest of the proof we choose the numbers αi as in (37). Suppose first that n = 3.
Since K1,1 ⊂ Kα1,α2 we have by Lemma 6.7 part (i)

∆(K(a)) = ∆(Kα1,α2) ≥ ∆(K1,1) .

Further, since the hexagon ∆(K1,1) is a space filling convex body (we refer the reader
to [41, Section 20.4] for details), we have δ(K1,1) = 1 and, consequently,

∆(K1,1) =
vol(K1,1)

4
=

3

4
.

The bound (38) completes the proof in this case.
It remains to consider the case n = 4. By Lemma 6.7 part (ii) there exists a rational

0 < β ≤ 1 such that Kβ,1,1 ⊂ Kα1,α2,α3 . A result of Whitworth [81] implies that ∆(Kβ,1,1)
equals {

3/4 , 0 ≤ β < 1/2 ,
−(β2 + 3β − 24 + 1/β)/27 , 1/2 ≤ β ≤ 1 .

(41)

Hence ∆(Kβ,1,1) takes the minimum in the interval [0, 1] at β = 1 and

∆(K(a)) = ∆(Kα1,α2,α3) ≥ ∆(K1,1,1) = 19/27.

The bound (38) completes the proof of Theorem 6.6.
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