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Abstract: Evident similarities in pathological features in aging and Alzheimer’s disease (AD) raise
the question of a role for natural age-related adaptive mechanisms in the prevention/elimination of
disturbances in interrelations between different brain areas. In our previous electroencephalogram
(EEG) studies on 5xFAD- and FUS-transgenic mice, as models of AD and amyotrophic lateral sclerosis
(ALS), this suggestion was indirectly confirmed. In the current study, age-related changes in direct
EEG synchrony/coherence between the brain structures were evaluated. Methods: In 5xFAD mice of
6-, 9-, 12-, and 18-month ages and their wild-type (WT5xFAD) littermates, we analyzed baseline EEG
coherence between the cortex, hippocampus/putamen, ventral tegmental area, and substantia nigra.
Additionally, EEG coherence between the cortex and putamen was analyzed in 2- and 5-month-old
FUS mice. Results: In the 5xFAD mice, suppressed levels of inter-structural coherence vs. those in
WT5xFAD littermates were observed at ages of 6, 9, and 12 months. In 18-month-old 5xFAD mice, only
the hippocampus ventral tegmental area coherence was significantly reduced. In 2-month-old FUS
vs. WTFUS mice, the cortex–putamen coherence suppression, dominated in the right hemisphere,
was observed. In 5-month-old mice, EEG coherence was maximal in both groups. Conclusion:
Neurodegenerative pathologies are accompanied by the significant attenuation of intracerebral EEG
coherence. Our data are supportive for the involvement of age-related adaptive mechanisms in
intracerebral disturbances produced by neurodegeneration.

Keywords: aging; 5xFAD mice; FUS mice; electroencephalogram; coherence; cortex; hippocampus;
putamen; ventral tegmental area; substantia nigra

1. Introduction

Similar abnormalities observed in Alzheimer’s disease (AD) and aging [1] are sug-
gested to be associated with disturbances in the functioning of neuronal networks in
different brain structures or between them [2–6]. Some adaptive mechanisms prevent-
ing the functional decline during aging [7] are assumed to be involved in AD-associated
processes [8]. Network alterations, in turn, are accompanied by evident changes in os-
cillatory features generated by the affected circuits [9,10]. Thus, electroencephalogram
(EEG) recordings from various brain structures at different ages are expected to be a useful
tool for the analysis of a role for adaptive mechanisms in the development of cerebral
decline during the combined influence of AD and aging. Indeed, in previous studies on
six- and twelve-month-old 5xFAD mice (an AD model) analyzing the frequency spectra
of EEGs simultaneously recorded from cortical and subcortical areas, we assumed that
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the results might be explained by an involvement of adaptive/compensatory mechanisms
in age-related AD pathology [11,12]. In two- and five-month-old FUS mice (a model of
amyotrophic lateral sclerosis, ALS), the obtained data were in line with this suggestion [13].
However, relative changes in the frequency spectra of EEG recorded from different cerebral
structures are indirect characteristics of their interrelations, whereas a coherence/synchrony
of appearance of instantaneous values for EEGs [14] has been shown to be a direct and
effective measure of “functional connectivity” in normal and diseased brains [15–18]. In
particular, initial dysfunctions in cortical circuits have been shown to possibly initiate the
ALS onset and drive its progression [19], whereas phasic changes in the functioning of
neuronal circuits may characterize their ability to adapt as ALS develops [20]. Finally,
the interaction of circuits with different connectivity and synchronized activities has been
suggested to be involved in neurodegenerative and adaptive/compensatory changes in
ALS [21,22].

To analyze an involvement of adaptive/compensatory processes in interrelations
between AD and aging [7,8], we measured the levels of baseline EEG coherence between
the cortex (MC), hippocampus (HPC)/striatum (putamen, Pt), ventral tegmental area
(VTA), and substantia nigra (SN) in six-, eight-, twelve-, and eighteen-month-old 5xFAD
mice versus their wild-type (WT5xFAD) littermates. In this study, coherence between EEGs
from cortical and subcortical areas and from those containing dopamine neurons (VTA
and SN) was measured given the evidence about the losing of these neurons in both AD
groups [23], in particularly, in 5xFAD mice [11], and in WT5xFAD (C57BL/6J) mice [24].
Additionally, we measured the levels of baseline EEG coherence between MC and Pt in two-
and five-month-old FUS mice versus WTFUS littermates with symmetrically implanted
electrodes into these brain areas to control possible interhemispheric differences observed
in normal and ALS-affected brains [25]. EEG coherence between MC and Pt is analyzed
in this study because of an evolvement of basal ganglia–cortical functional connectivity
at both normal development and pathological disturbances associated with basal ganglia
dysfunctions [26].

2. Materials and Methods

In the “AD” groups, we used male transgenic mice with five familial AD mutations
maintained on a C57BL/6J genetic background (5xFAD mice) at ages of 6, 9, 12, and
18 months (n = 11, 9, 9, and 7, respectively) and non-transgenic wild-type (WT5xFAD)
littermates (n = 14, 8, 7, and 7, respectively). In the “ALS” groups, male transgenic mice
with truncated human FUS lacking a nuclear localization signal maintained on the CD-
1 genetic background (FUS mice, ∆FUS(1-359)) at ages of 2 and 5 months (n = 8 and 6,
respectively) and WTFUS littermates (n = 6 and 7, respectively) were used in this study.
All mice were originally obtained from the Center for Collective Use of the Institute of
Physiologically Active Compounds RAS (Chernogolovka, Russian Federation). Mice were
housed in a standard environment (12 h light/dark cycle, 22–25 ◦C RT, 50–55% relative
humidity) with food and water ad libitum. The procedures were carried out in compliance
with the principles enunciated in the Directive 2010/63/EU on the protection of animals
used for scientific purposes, and approved by the local institute’s ethics review committee.
All efforts were made to minimize the number of animals and their suffering.

2.1. Implantation of Electrodes

Each mouse was narcotized by subcutaneous injection of the mixture of tiletamine/
zolazepam (25 mg/kg, Zoletil®, Virbac, France) and xylazine (2.5 mg/kg, Rometar®,
Bioveta, Czech Republic). In the 5xFAD mice, EEG recording electrodes were positioned in
the left motor cortex and dorsal hippocampus (MC and HPC; AP: +1.1; ML: 1.5; DV: −0.75
and AP: −2.8; ML: −2.7; DV: −1.7 mm, respectively) or putamen (Pt; AP: +1.1; ML: 1.5;
DV: −2.75 mm, in “12-month” group), in the left ventral tegmental area (VTA; AP: −3.1;
ML: −0.4; DV: −4.5), and in the right substantia nigra (SN; AP: −3.2, ML: +1.3, DV: −4.3)
accordantly with the mouse brain atlas [27], where AP, ML, and DV are the distances from
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the coronal suture, midline suture, and skull surface, respectively). Within the brain areas
analyzed in this study, the opposite hemisphere for SN was chosen to exclude possible
mutual damage during electrode implantations in the same hemisphere because of SN
proximity to VTA. Furthermore, it is well known that the contralateral SN is the dominant
source of DA in the opposite hemisphere.

Two varnish-insulated nichrom wires (100 µm in diameter) glued together (3M Vet-
bondTM Tissue Adhesive, St. Paul, MN, USA) with both tips free from insulation for
100 µm were used during the preparation of electrodes for EEG recordings from all brain
structures. One of wires in the electrode for EEG recordings from MC and Pt was shortened
by 1 mm to simultaneously reach both brain areas. Thus, the prepared electrodes were
sufficiently inflexible and had a more beneficial surface–volume ratio than a single-wire
electrode of 200 µm diameter. The reference and ground electrodes (stainless steel wire,
0.4 mm in diameter) were implanted over the caudal part of the brain (AP: −5.3; ML: ±1.8;
DV: −0.5). A computerized 3D stereotaxic StereoDrive (Neurostar, Tübingen, Germany)
was used for the precise positioning of all electrodes. The latter were fixed to the skull with
dental cement and soldered to a dual row socket connector (Sullins Connector Solutions,
San Marcos, CA, USA). Each of the nichrom wires was soldered to one of the connec-
tor’s pins. After electrode implantation, mice were housed individually for the recovery,
followed by the experimental sessions and postmortem verification of the electrode tip
location (see the examples and histological details in [11,12]).

2.2. EEG Recording

Three–four days after implantation of the electrodes, each mouse was allowed to adapt
for several days (one hour per day) to the experimental environment, including an internal
cage (Perspex, 15 cm × 17 cm × 20 cm) taken place in an electrically shielded chamber and
a cable (five 36- gauge wires, Plexon Inc, Dallas, TX, USA) plugged in a digital Neuro-MEP
amplifier (Neurosoft Ltd., Ivanovo, Russian Federation). Baseline EEG was recorded on
day 8 for 30 min, starting after 20–30-min adaptation of the animal to the experimental cage.
The experiments were performed during a daylight period (9:00 a.m.–6:00 p.m.), keeping
the illumination at a relatively stable level by combination with an artificial light source if
it was necessary.

2.3. EEG Coherence Computation

EEG signals were amplified, filtered (0.1–35 Hz), and sampled (1 kHz) online using
the amplifier and kept in the memory of an operational computer for further analysis.
The program allowed for both the automatic and manual rejection of EEG fragments
containing artifacts and epileptic spikes. In the raw EEGs, evident differences in cerebral
synchronization were observed between 5xFAD and WT5xFAD mice (Figure 1).

EEG data were processed using custom prepared software (see Attachment A1). Spec-
tral coherence was estimated by averaging over 12 s epochs of baseline EEGs derived from
a 1–30 Hz range, initially in a 1 Hz wide band (Figure 2).

Afterwards, EEG coherence values were evaluated in the range of 1–30 Hz with the
averaging of data in “classical” EEG bands (in Hz): delta 1 (1–2), delta 2 (2–4), theta (4–8),
alpha (8–12 Hz), beta 1 (12–20), and beta 2 (20–30). The values of coherence in each of
the frequency bands were averaged in each of the three consecutive 10 min intervals (for
further statistical analysis) and for 30 min in total (for illustrations).

2.4. Statistics

Differences between transgenic and non-transgenic mice in the EEG coherency aver-
aged in each of three consecutive 10 min intervals in frames of both the whole frequency
spectra and individual frequency bands were analyzed by two-way ANOVA for repeated
measures with Bonferroni’s post hoc test for multiple comparisons (STATISTICA 10; Stat-
Soft, Inc., Tulsa, OK, USA). All sets of data were preliminary tested on Gaussian distribution.
There were 36 parameters for coherence: six “classical” frequency bands X six combinations
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of inter-structural coherence. Results were considered statistically significant at p < 0.05.
All data are shown as mean ± SEM.
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calibration is 1 sec, amplitude calibration is 100 µV. 

Figure 1. Typical patterns in 12 s fragments of baseline EEG in wakeful and behaviorally active
six-month-old WT5xFAD mouse and 5xFAD littermate (A and B, respectively) in the motor cortex
(MC), hippocampus (HPC), ventral tegmental area (VTA), and substantia nigra (SN). On A and B,
time calibration is 1 sec, amplitude calibration is 100 µV.
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Figure 2. Inter-structural coherence distributions (A–F) in six-month-old 5xFAD mouse and WT5xFAD

littermate (filled and open circles, respectively) in 10 min baseline EEGs from the motor cortex (MC),
hippocampus (HPC), ventral tegmental area (VTA), and substantia nigra (SN), in different frequency
bands denoted on horizontal axis (abscissa). Inter-structural coherence is denoted on the plates as
MC-HPC (A); MC-VTA (B); MC-SN (C); HPC-VTA (D); HPC-SN (E), and VTA-SN (F). Ordinate is the
average value of EEG coherence in each of 1 Hz bands. Five vertical lines separate “classical” EEG
frequency bands (from left to right: delta 1, delta 2, theta, alpha, beta 1, and beta 2, respectively). Red
dashed lines show maximal coherence value.

3. Results

During baseline EEG recordings, the behavior of mice was typically characterized by
relatively intensive exploration of the experimental box, which was occasionally alternated
by short-lasting calm down periods. Baseline EEGs and their frequency compositions have
been described in detail in our previous studies [11–13].

3.1. EEG Coherence in 5xFAD Mice of Different Ages

Differences in the levels of EEG coherence between 5xFAD-mice and their WT5xFAD
littermates were relatively stable in consecutive 10 min intervals that were readily visible in
the spectral profiles of coherence averaged in the whole (30 min) baseline period that was
expressed in very small values of SEMs (Figure 3).

The 5xFAD mice showed significantly lower levels of EEG coherence vs. the WT5xFAD
littermates in most of the analyzed frequency bands (c.f., grey and light blue bars in
Figure 3).

Evident age-related attenuation of the coherence differences between the groups was
observed. The differences were significantly higher in younger mice (two-way ANOVA:
(a) 6-month-old mice: F138 = 17.9, 105, 107, 163, 96.4, and 46.3, for MC-HPC, MC-VTA,
MC-SN; HPC-VTA, HPC-SN; and VTA-SN, respectively, p < 0.001, for all; (b) 9-month-
old mice: F90 = 7.8 and 233, 90.7, 29.2, 36.6, 115, p = 0.006, for MC-HPC and p < 0.001,
for others, respectively; (c) 12-month-old mice: F84 = 11.2, 11.1, 10.8, 11.5, 10.9, and 17.7,
p = 0.001, 0.001, 0.002, 0.001, 0.001, and <0.001, respectively). The coherence differences
practically disappeared in the 18-month-old mice, with the exception of HPC-VTA and
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VTA-SN interrelations: F72 = 1.1, 0.3, 3.6, 13.4, 0.6, and 9.4, p = 0.299, 0.588, 0.063, <0.001,
0.440, and 0.003, respectively (Figure 3D,d; see Figure S2 for clarity). The elimination of
intracerebral coherence differences between the 18-month-old 5xFAD and WT5FAD mice
was evidently associated with the age-related recovery of EEG synchrony in the transgenic
mice. Indeed, at the age of 18 months, 5xFAD mice demonstrated a more significant rising
of EEG coherence vs. that in the younger mice (c.f., grey bars in Figure 3D vs. Figure 3A–C;
two-way ANOVA: (a) D vs. A: F96 = 13.1, 53.8, 127, 33.4, 52.1, and 23, for MC-HPC, MC-
VTA, MC-SN; HPC-VTA, HPC-SN; and VTA-SN, respectively, p < 0.001 for all; (b) D vs. B:
F84 = 110, 39, 97, 26.7, 69, and 17.6, respectively, p < 0.001, for all; (c) D vs. C: F84 = 6.24, 14.9,
46, 0.04, 11.8, and 2.5, p = 0.014, <0.001, <0.001, 0.846, 0.001, and 0.117, respectively).
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Figure 3. Age-related relations between coherence distributions in 5xFAD and WT5xFAD mice (grey
and light blue bars, respectively) for 30 min baseline EEG from the motor cortex (MC), hippocampus
(HPC)/putamen (Pt), ventral tegmental area (VTA), and substantia nigra (SN), in different frequency
bands. Upper- and lower-case letters are used to recognize any age (A–D) and the inter-structural
relations (a–f) denoted on the plates in brackets and by italic fonts, respectively. Ordinate is the aver-
age value of EEG coherence in each of the “classical” bands denoted on the horizontal axes (abscissa).
Red dashed lines show maximal coherence value. Abbreviations of “sin” and “dex” indicate “left”
and “right” hemispheres, respectively. Star symbols denote significant two-way ANOVA differences
in separate frequency bands between 5xFAD and WT5xFAD mice, where *, **, and *** correspond to
p < 0.05, p < 0.01, and p < 0.001, respectively (see Figure A1, for details).
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3.2. EEG Coherence in FUS Mice of Two- and Five-Month Ages

The differences in the levels of EEG coherence between FUS mice and their WTFUS-
littermates were relatively stable in consecutive 10 min intervals that were readily visible in
the spectral profiles of coherence averaged in the whole (30 min) baseline period that was
expressed in extremely small values of SEMs (Figure 4).
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Figure 4. Age-dependent relations between coherence distributions in FUS and WTFUS mice (grey
and light blue bars, respectively) for 30 min baseline EEG from symmetrical motor cortex (MC) and
putamen (Pt), in different frequency bands. Upper-case letters are used to recognize FUS mice (A,C)
and WT littermates (B,D) at different ages (see in brackets) and the inter-structural relations (a–c)
denoted on the plates by italic fonts. Ordinate is the average value of EEG coherence in each of the
“classical” bands denoted on the horizontal axes (abscissa). Abbreviations of “sin” and “dex” indicate
“left” and “right” hemispheres, respectively. Red dashed lines show maximal coherence value. Star
symbols denote significant two-way ANOVA differences in separate frequency bands between FUS
and WTFUS mice, where *, **, and *** correspond to p < 0.05, p < 0.01, and p < 0.001, respectively (see
Figure A2, for details).

During this period, EEG coherence between MC and Pt in two-month-old FUS mice
was significantly less of that in WTFUS littermates practically in all frequency bands re-
gardless of the brain hemisphere (Figure 4A,B; two-way ANOVA: F72 = 7.3, 16.3, 21.8, 23.2,
12.7, and 15.1, for Mcsin-Ptsin, Mcsin-MCdex, Mcsin-Ptdex, Mcdex-Ptdex, Ptsin-Ptdex,
and Mcdex-Ptsin, respectively; p = 0.008 and <0.001, for others). Interestingly, in the FUS
mice, MC-Pt coherence in the left hemisphere was significantly higher to that on the right
side (c.f., grey bars in Figure 2A,B,a; two-way ANOVA: F1,84 = 7.26, p = 0.008). The EEG
coherence suppression, observed in younger FUS mice, completely disappeared in the
older ones (see Figures 4C,D and S2, for clarity).

4. Discussion

In this study, the age-related suppression of coherence between EEGs from different
brain structures in both 5xFAD and FUS mice was revealed (see Figures 3 and 4, respec-
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tively). This phenomenon has been shown to be characteristic for AD [17,28–30]. However,
we demonstrate that the EEG coherence suppression is age-dependent, which allows the
development of a “functional connectivity” approach for the studying of a role for compen-
satory/adaptive mechanisms in the assessment and correction of age-related AD evolution.
Aging and AD are well known to be characterized by a gradual cognitive deterioration
associated with modifications in the brain structures and their functional interaction [31,32]
that in turn is accompanied by disturbances in neuronal synchrony [33–36]. In the aging
brain, the role of the so-called “repressor element silencing transcription factor” (REST),
which is well known to initiate a specific “stress-response program”, has been highlighted
to be preventive for cognitive decline and AD [8,37]. The REST protein, normally expressed
at low levels in the neurons of young brains, has been shown to be profoundly elevated
in aged brains [8]. In 5xFAD mice, this might be linked with the age-dependent accumu-
lation of synaptosomal mitochondrial dysfunctions [38]. In line with this suggestion, the
accumulation of mitochondrial DNA deletions in dopaminergic neurons has been shown
to trigger neuroprotective compensatory mechanisms [39]. In our study, the genetically
programmed AD is expected to be a powerful “stressor” for the REST’s production, no-
ticeably exceeding that in the aging process alone. Age-dependent suppression of EEG
coherence in 5xFAD mice (see Figure 3) seems to characterize the REST involvement in
a recovery of interrelations between the affected brain structures up to those in control
18-month-old WT5xFAD mice. Residual suppression of HPC-VTA coherence in 5xFAD mice
at this age (Figure 3d,D) highlights enhanced susceptibility of interrelations between these
structures to AD-associated pathological disturbances in the brain. Given the important
modulatory role of VTA in the switching of HPC from inhibition to the enhancement of
its information flow [40], the residual suppression of EEG coherence between VTA and
HPC might be a part of age-related mechanisms of cognitive impairment in AD [41]. The
suppressed EEG synchrony/coherence between VTA and SN are seemingly linked with
the age-related loss of dopaminergic neurons in these areas, where a statistically significant
effect has been shown to start from 9 months of age [41]. A similar phenomenon was
observed in WT5xFAD (C57BL/6) littermates [24]. The age-related expansion of microglia
into the dopamine-producing areas is directed to increase dopamine neuron surveillance
by compensating for the progressive decline in morphological complexity (senescence) of
microglia [42,43]. Thus, an association of senescent cells, brain plasticity and impairments
in cognition might be an attractive target for further studies of interrelations between
mechanisms of aging and AD [44].

In younger (two-month-old) FUS mice vs. control WTFUS (CD-1) littermates, evi-
dent EEG coherence suppression was observed in all cortex–putamen combinations (see
Figure 3A,B). In older transgenic mice, the coherence profiles were practically identical to
those in non-transgenic ones (see Figure 3C,D). This is in line with the suggestion that a
combination of circuits with different connectivity is characteristic for an involvement of
neurodegenerative and adaptive mechanisms in ALS development [21]. Interestingly, in
two-month-old FUS mice, EEG coherence between MC and Pt in the left hemisphere was
noticeably higher than that on the right side (c.f., Figure 4a,A vs. Figure 4B), despite the
lacking differences in interhemispheric asymmetry separately in the cortices and putamen
(c.f., Figure 4b,A,B, respectively). This early characteristic of ALS might be explained by
the impairment of coupled structural and functional connectivity during the development
of the disease [45], thus highlighting the role of cortico–striatal interrelations in age-related
ALS mechanism(s). On the other hand, this allows the development of a special asymmetry-
based approach for the differentiation of ALS from other neurodegenerative pathologies.
The intimate age-related mechanisms of ALS pathogenesis seem to be linked with a fine
balance in the expression of inflammation-associated factors that in turn affects the devel-
opmental profile of disease and survival [46,47]. EEG coherence recovery in five-month-old
FUS mice to control values (Figure 4C,D) is in line with protective microglia functions from
ALS-related degeneration that is observed, in particular, in TDP-43 mice, one of the ALS
models [48].
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In spite of evident total suppression of EEG coherence in younger 5xFAD and FUS mice,
some peculiarities revealed in this study might be preliminarily analyzed. Shortly, different
levels of coherence between EEGs from the brain areas in WT5xFAD- and WTFUS- mice (c.f.,
light blue bars in Figures 3 and 4) appear to be associated with different temporal patterns
of involvement of pro- and anti-inflammatory factors in mechanisms of adaptation in mice
of different phenotypes (C57BL/6J and CD-1, respectively). Secondly, suppressed EEG
coherence between MC and Pt in the right vs. left hemispheres in two-month-old FUS mice
(c.f., grey bars in Figure 4a,B vs. Figure 4A, respectively) highlights the significance of intra-
hemispheric functional interrelations in addition to inter-hemispheric asymmetry shown
in other ALS studies [25]. Interestingly, no interhemispheric asymmetry was separately
observed for MC and Pt in our study (c.f., grey bars in Figure 4b,A,B). Finally, evidently
less EEG coherence between HPC and other brain areas in nine-month-old WT5xFAD mice
(c.f., Figure 3a,d,e,B vs. Figure 3A,C,D) highlights an age dependence of a role of HPC in
the brain functioning, specifically, of cognitive mechanisms in mice [24].

5. Conclusions

Our data highlight a crucial role of age-related adaptive mechanisms in the modifica-
tion/elimination of intracerebral disturbances associated with neurodegenerative patholo-
gies (AD and ALS, in particular). We demonstrate that intra-cerebral coherence measure-
ments allow the revealing of the pathologies, their differentiation, and progression. This
approach is apparently useful and effective for the understanding of the inter-structural
mechanisms involved in the development of neurodegenerative processes of different
etiologies. In this respect, further detailed analysis of a role for frequency-specific EEG
oscillations in the functional coupling of different brain areas has a great potential for the
understanding of the interconnected mechanisms of adaptation and pathology.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biomedicines11041151/s1, Figure S1—Short description of custom
prepared soft for calculation of EEG coherence function; Figure S2—Age-related differences between
EEG coherence distributions in 5xFAD and WT5xFAD mice estimated by two-way ANOVA; Figure S3—
Age-related differences between EEG coherence distributions in FUS and WTFUS mice estimated by
two-way ANOVA. Refs. [49–51] are cited in the supplementary materials.
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Brain Areas MCsin-HPCsin (A) 

Age, Months 6 9 12 18 

Bands/Coherence F69 p F45 p F42 p F36 p 
delta1 3.6 0.063 13.9 <0.001 1.2 0.290 0.2 0.643 

delta2 2.3 0.137 2.5 0.124 0.2 0.681 0.7 0.403 

theta 30.8 <0.001 1.4 0.243 7.6 0.008 5.4 0.026 

alpha 24.1 <0.001 2.2 0.144 14.2 <0.001 4.6 0.039 

beta1 16.8 <0.001 3.8 0.057 15.0 <0.001 2.4 0.130 

beta2 4.4 0.041 5.1 0.030 12.1 0.001 0.3 0.563 
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beta1 84.7 <0.001 132 <0.001 8.6 0.005 0.3 0.607 
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Brain Areas Mcsin-SNdex (C) 

Age, Months 6 9 12 18 

Bands/Coherence F69 p F45 p F42 p F36 p 
delta1 47 <0.001 89.7 <0.001 3.4 0.074 0.2 0.661 

delta2 86.8 <0.001 48.8 <0.001 1.4 0.242 5.2 0.028 

theta 85.7 <0.001 26.5 <0.001 7.2 0.010 0.7 0.395 

alpha 59.5 <0.001 30.1 <0.001 9.5 0.004 1.7 0.203 

beta1 45.8 <0.001 45.9 <0.001 6.6 0.014 3.4 0.074 

beta2 20.7 <0.001 62.9 <0.001 6.0 0.019 5.4 0.026 

 

Brain Areas HPCsin-VTAsin (D) 

Age, Months 6 9 12 18 

Bands/Coherence F69 p F45 p F69 p F45 p 
delta1 63.9 <0.001 33.9 <0.001 1.1 0.293 6.13 0.018 

delta2 80 <0.001 18.7 <0.001 0.8 0.377 1.94 0.172 

theta 122 <0.001 15.2 <0.001 7.3 0.009 12.3 0.001 

alpha 114 <0.001 11.3 0.002 7.7 0.008 6.25 0.017 

beta1 79.3 <0.001 10.0 0.003 9.6 0.003 6.54 0.015 

beta2 49.6 <0.001 7.9 0.007 14.5 <0.001 5.2 0.029 

 

Brain Areas PCsin-SNdex (E) 

Age, Months 6 9 12 18 

Bands/Coherence F69 p F45 p F69 p F45 p 
delta1 43.6 <0.001 46.8 <0.001 3.3 0.076 2.6 0.113 

delta2 38.5 <0.001 25.8 <0.001 3.5 0.068 0.1 0.774 

theta 74.2 <0.001 15.0 <0.001 4.4 0.042 1.2 0.282 

alpha 56.5 <0.001 13.5 <0.001 9.2 0.004 0.5 0.492 

beta1 46.3 <0.001 12.1 0.001 4.6 0.038 0.2 0.672 

beta2 35.2 <0.001 10.5 0.002 4.1 0.048 0.8 0.783 
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