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Abstract

Background: Although the machine learning model developed on electronic health records has become a promising method
for early predicting hospital mortality, few studies focus on the approaches for handling missing data in electronic health
records and evaluate model robustness to data missingness. This study proposes an attention architecture that shows excel-
lent predictive performance and is robust to data missingness.

Methods: Two public intensive care unit databases were used for model training and external validation, respectively. Three
neural networks (masked attention model, attention model with imputation, attention model with missing indicator) based
on the attention architecture were developed, using masked attention mechanism, multiple imputation, and missing indi-
cator to handle missing data, respectively. Model interpretability was analyzed by attention allocations. Extreme gradient
boosting, logistic regression with multiple imputation and missing indicator (logistic regression with imputation, logistic
regression with missing indicator) were used as baseline models. Model discrimination and calibration were evaluated
by area under the receiver operating characteristic curve, area under precision-recall curve, and calibration curve. In add-
ition, model robustness to data missingness in both model training and validation was evaluated by three analyses.

Results: In total, 65,623 and 150,753 intensive care unit stayswere respectively included in the training set and the test set,withmor-
tality of 10.1% and 8.5%, and overall missing rate of 10.3% and 19.7%. attention model with missing indicator had the highest area
under the receiveroperating characteristic curve (0.869; 95%CI: 0.865 to0.873) in external validation; attentionmodelwith imputation
had the highest area under precision-recall curve (0.497; 95% CI: 0.480–0.513). Masked attention model and attention model with
imputation showed better calibration than othermodels. The three neural networks showed different patterns of attention allocation.
In terms of robustness to data missingness, masked attention model and attention model with missing indicator are more robust to
missing data in model training; while attention model with imputation is more robust to missing data in model validation.

Conclusions: The attention architecture has the potential to become an excellent model architecture for clinical prediction
task with data missingness.
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Introduction
Accurate and early prediction of hospital mortality for
patients in intensive care unit (ICU) is essential for clini-
cians to recognize high-risk patients and take timely inter-
ventions. The Severity-of-Illness score is the most
commonly used tool, such as the Acute Physiology and
Chronic Health Evaluation, the Simplified Acute
Physiology Score and the Mortality Probability Models.1

These severity scores generally use clinical variables mea-
sured within the first 24 h of the ICU stay to predict hospital
mortality based on multivariate logistic regression (LR)
algorithm.2–4 Over the past several years, the fast-emerging
machine learning (ML) technology and the popularization
of electronic health records (EHRs) promote researches
that use EHRs to develop ML models for clinical prediction
tasks. The most frequently applied ML algorithms for early
prediction of hospital mortality include classification and
regression tree (CART).5–7 Naive Bayes model,5,8,9

support vector machine,5,8 random forest,5–11 extreme gra-
dient boosting (XGB)5–8,10–13 and artificial neural
network.7,11,14 Compared to conventional severity scores,
ML models have more sophisticated algorithm for mining
data pattern and show improved predictive performance.
However, data missingness in EHRs is poorly handled for
model development, validation, and implementation in
most of the previous related researches,15 and this is a
crucial issue that undermines the credibility of these ML
models for clinical application.

Missing data is unavoidable in all types of clinical
researches,16 especially in retrospective research on EHRs,
since EHRs are originally designed to monitor patients and
improve clinical efficiency rather than to collect complete
data for specific research objectives. When missing data is
encountered, most ML models are not adaptive and need
for preprocessing approaches which delete, impute or indi-
cate missing data. However, these preprocessing approaches
which modify missing data may lead to biased estimation of
the real association between variables and outcome.17–20

Another sort of approach is the built-in algorithmmechanism
which makes model capable of handling missing data by
itself. Tree-based models are representative examples, such
as CART and XGB. Specifically, when a missing variable
is encountered, CART employs so-called surrogate splits
where a surrogate variable similar to the missing variable
is used to decide the split direction,21 while XGB employs
sparsity aware splitting where a unified default split direction
is used.22 Nevertheless, such built-in algorithms also involve
missing data in their computing processes.

Besides the above approaches,we can also design amodel
which neglects missing data and makes predictions only
based on non-missing data, so as to avoid possible adverse
effect caused by involving missing data into the model com-
putation. Unfortunately, most ML algorithms lack flexible

algorithm mechanisms to realize this design. In recent
years, neural networks based on attention architecture have
become popular in natural language processing 23,24 and
computer vision.25 The core mechanism of attention archi-
tecture can be briefly described as: Given a set of inputs,
the model lets one input to pay “attention” to the other
inputs and to achieve an integrated analysis of these inputs,
where the “attention” is obtained by mathematical opera-
tions. This architecture is characterized by the capability of
capturing the association between any two inputs without
regard to their spatial or temporal order and distance, and
the flexibility of allocating “attention” to concerned inputs
rather than all inputs. These inspire us to design an attention
architecture that is competent for mortality prediction and
adaptive to missing data in EHRs.

In this study, we propose a simple and effective attention
architecture. Based on this architecture, we achieve the
design of filtering out missing data from model computation
by introducing a mask function into the regular attention
mechanism. This masked attention model (MAM) takes a
set of clinical variables within the first 24 h during the
ICU stay as inputs and outputs the predicted hospital mortal-
ity. In addition, we also develop other two neural networks
based on this architecture which employ imputation and
missing indicator to handle missing data respectively.
These attention-based models show a state-of-the-art predict-
ive performance, and furthermore they are robust to data
missingness in model training and validation.

Methods

Source of data

We implemented a retrospective cohort study on two large
public ICU databases: The Medical Information Mart for
Intensive Care IV (MIMIC-IV)26 and the eICU Collaborative
Research Database (eICU-CRD).27 MIMIC-IV database con-
tained clinical records of patients admitted to ICUs of the Beth
Israel Deaconess Medical Center between 2008 and 2019,
while eICU-CRD contained records of patients admitted to
335 ICUs in 208 hospitals in the US between 2014 and
2015. These two databases were mutually independent,
without overlapped data. Local ethical review board (ERB)
approvalswere achieved for both the twodatabases and all per-
sonal information was deidentified in accordance with the
Health InsurancePortability andAccountabilityAct standards,
thus an ERB approval from our institution was exempted.

Participants and data extraction

In this study, we used clinical data within the first 24 h of an
ICU stay to predict hospital mortality. In order to develop a
general prediction model, we included all patients from the
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two databases rather than restricting our target population
in a specific disease group. For patients with multiple
hospitalizations, every hospitalization was included; for
hospitalizations with multiple ICU stays, only the first
ICU stay was considered as it provided the earliest clin-
ical data for mortality prediction. The exclusion criteria
were as follows: 1. age not between 18 and 89 years
old at ICU admission; 2. not the first ICU stay of a hos-
pitalization. We extracted all available records of demo-
graphic characteristics, comorbidities, vital signs,
Glasgow Coma Score, laboratory tests, ventilator para-
meters, vasoactive drugs, etc. Each included ICU stay
was treated as a sample in this study. Categorical vari-
ables were represented as 0 for absence and 1 for pres-
ence. One-hot encoding was employed for gender and
admission type. Continuous variables which were prob-
ably observed for multiple times during the first 24 h
were represented as the maximum, minimum, mean,
and standard deviation as appropriate. The finally
employed variables and their ID numbers were summar-
ized in Supplemental Table 1. The label of each sample
was the survival state of the patient at discharge (0 for
survival and 1 for death).

Study design

We selected the eligible samples in MIMIC-IV as the train-
ing set and the eligible samples in eICU-CRD as the test set.
Then a 5-fold cross-validation was implemented on the
training set, where the training set was randomly and
equally split into five mutually exclusive subsets and in
each fold four of them were used for model training and
the rest one was used for internal validation. Thus, for
each type of model, a total of five model instances were
developed. Then all instances were evaluated by the exter-
nal validation on the test set, and the performance of the five
instances was aggregated for final evaluation of a model
type.

Neural networks based on attention architecture

In this section, we introduced the three neural networks
based on our attention architecture: MAM, attention
model with imputation (AM_imp) and attention model
with missing indicator (AM_ind). The proposed attention
architecture contained three major components: embed-
ding layer, multi-head attention layer, and fully con-
nected linear layer. Firstly, the embedding layer was
applied to transform clinical variables into numerical
vectors, followed by layer normalization.28 Then layer-
normalized vectors were sequentially fed into a multi-
head attention layer with the residual connection.29

Finally, a linear layer followed by Sigmoid function
was applied to project the output of the previous layer
to predicted mortality. In addition, we also explored the

interpretability of these models by analyzing the alloca-
tion of attentions on clinical variables.

Model architecture of MAM. MAM was derived from the
attention architecture where a mask function was
introduced in the multi-head attention layer
(Figure 1(a)). We took MAM as an example to provide
a detailed explanation of our attention architecture as
the following.

Embedding layer. The model input was a set of clinical
variables, with each variable containing its textual name
and numerical value (we used the phrase of “numerical
value” here to distinguish it from the conception of
“value” used in the attention mechanism). For example,
when the age of a patient was 75 years old, the textual
name was “age” and the numerical value was “75.” We
transformed clinical variables to numerical vectors by
the embedding layer. The specific procedures included:
(a) erroneous numerical values out of reasonable range
were treated as missing values; (b) a word embedding
layer30 was applied to map each textual name to a
2-dimensional numerical vector; (c) numerical values of
continuous variables were normalized by subtracting
the mean and dividing by the standard deviation, where
the mean and the standard deviation were derived from
the training set; (d) all missing numerical values were
set to zero (although missing variables would be filtered
out in the next layer, this step was needed for running
python code without null error); (e) each clinical variable
was represented as a 3-dimensional vector by concatenat-
ing its name-embedding vector and its normalized
numerical value (Figure 1(c)).

Masked attention layer. The attention mechanism could
be mathematically described as a function that mapped a
query and a set of key-value pairs to an output.
Generally, attentions of the query on every key-value pair
should be computed. In MAM, we employed a masked
attention layer that only allocated attentions to the key-
value pairs of non-missing clinical variables. Specifically,
we firstly introduced a 3-dimensional constant vector c
(c = [1, 1, 1]), then the query, keys, and values were com-
puted as:

q = c WQ (1)

K = X WK (2)

V = X WV (3)

where WQ ∈ R3X3, WK ∈ R3X3, WV ∈ R3X3 were learn-
able weight matrices for generating query, key, and
value, respectively; c ∈ R1X3 was the constant vector
and q ∈ R1X3 was the query vector of c; X ∈ RnX3 was
the matrix containing all clinical variables, where n was
the number of employed variables and each row of X
was an 3-dimentional vector from the embedding layer;
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K ∈ RnX3 and V ∈ RnX3 were matrices for corresponding
keys and values of X. Then the masked attention was
computed as:

a(q, K, V) = softmax mask
q KT���
dk

√
( )( )

V (4)

where scalar dk was the dimension of key (dk = 3) and
q KT��
dk

√ was a n-dimentional vector. The ith element of the

vector q KT��
dk

√ represented the scaled dot-product attention23

between the constant vector c and the ith clinical vari-
able. Then a mask function was used to set scaled dot-
product attention on missing variable to approximate

negative infinity. Given s = q KT��
dk

√ , the ith element of

mask function applied to s was defined as:

mask(s)i = si , for non-missing variable
−109, for missing variable

{
(5)

The softmax function in formula (4) ensured that final
attentions of c on all the clinical variables summed to
1. Given m = mask(s), the ith element of softmax

function applied to m was defined as:

softmax(m)i =
emi∑
j e

mj
(6)

Thus, final attention on missing variables approximately
equaled to zero, which meant that missing variables were
filtered out from the attention-weighted sum of value
vectors and had no impact on the output a(q, K, V) ∈
R1X3 in formula (4). At last, we introduced residual con-
nection in the masked attention layer. That was, the final
output was computed as:

output(q, K, V) = q+ a(q, K, V) (7)

The above algorithm of masked attention was illustrated
in Figure 1(b).

Masked multi-head attention. The multi-head attention
performed multiple sets of above attention algorithm in par-
allel, where each set of attention algorithm was referred to
as a head. Each head had its own learnable weight matrices
WQ, WK , WV , thus multiple heads were capable of captur-
ing different data patterns. For masked multi-head attention
with h heads, a total of h vectors with size of 1 X 3 were

Figure 1. Model architecture of masked attention model (MAM). (a) Overall architecture. (b) Masked attention layer. (c) Embedding layer.
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produced, then the h outputs were concatenated to form an
output vector with size of 1 X 3h . Finally, this output
vector was processed by layer normalization and fed into
the linear layer (Figure 1(a)). The quantity of heads was
an important hyperparameter of the attention architecture.
In this study, we respectively used 1, 3, 5, 7, 9 heads in
multi-head MAM, and the number of heads with the
highest average area under the receiver operating characteristic
curve (AUROC) in the 5-fold cross validation was selected for
subsequent research. For a fair comparison, AM_imp and
AM_ind used the same quantity of heads as MAM.

Attention model with imputation. AM_imp had the same
architecture as MAM except that it did not employ the
mask function. In the embedding layer missing numerical
values were not set to zero. We employed multiple imput-
ation (MI) using multivariate imputation by chained equa-
tions31 to preprocess missing data. Specifically, we
employed multivariate regression models as imputation
models and used the training set to train them. We included
all the clinical variables except the outcome variable in the
imputation procedure to avoid leaking information of the
outcome to prediction model. A total of five imputed data-
sets were created in MI, then estimated regression coeffi-
cients of imputation models in the five imputations were
combined using Rubin’s rules32 to form the final imputation
model. Notably, as it was irrational to impose imputed ven-
tilator parameters to non-ventilation patients, this part of
missing data was to zero as default.

Attention model with missing indicator. AM_ind used a
missing indicator instead of the mask function to handle
missing data. Its architecture was illustrated in Supplemental
Figure 1. In the embedding layer, we set all missing numerical
value to zero, added a binary indicator (0 for non-missing vari-
able and 1 for missing variable), so each clinical variable was
represented as a 4-dimentional vector. And the mask function
was removed from the attention layer.

Interpretability of the attention-based neural networks. We
explored the interpretability of our attention-based neural
networks by analyzing their attention allocations to the
employed clinical variables. As mentioned above, the atten-
tion architecture integrated multiple clinical variables
through the weighted sum of their value vectors, where
the weight of each clinical variable was the attention of
vector c allocated to this variable. Thus, a clinical variable
acquiring higher attention had greater contribution to model
output and was more important for hospital mortality pre-
diction. In order to inspect variable importance captured
by our attention-based models, for all heads of all trained
instances of MAM, AM_imp, and AM_ind, we analyzed
the average acquired attention for all employed clinical
variables among samples in the external validation.
Notably, in MAM, a variable had participated in model

computation only among the samples in which this variable
is non-missing (in the other samples the masked mechanism
made this variable acquiring zero attention). Thus, the
importance of a variable with high missing rate would be
underestimated if its average acquired attention was com-
puted among all samples of the test set. For this reason,
in each head of MAM, the average acquired attention of
the ith variable was defined as 1

ni

∑ni
j=1 ai,j, where ni was

the number of samples whose ith variable was not
missing, and ai,j was the attention value of the ith variable
for the jth sample in the test set. While for AM_imp and
AM_ind, missing variables that were imputed or indicated
also acquired attention and participated in model computa-
tion, so the average acquired attention in these two models
was computed over all samples in the test set.

Baseline models

We employed three baseline models for comparison: XGB,
LR with imputation (LR_imp) and LR with missing indica-
tor (LR_ind).

XGBwaswidely applied in previous researches aiming to
early predict hospital mortality for ICU patients and showed
improved predictive performance over other ML models.5–
8,10–13 As mentioned before, XGB owned a built-in mechan-
ism to handle missing data, which made it competent for our
dataset. For optimizing hyperparameters of XGB, we per-
formed a grid search on different combinations of the follow-
ing hyperparameter settings: n_estimators (400, 600, 800),
learning_rate (0.01, 0.05, 0.1), colsample_bytree (0.6, 0.8),
subsample (0.4, 0.6, 0.8), max_depth (4, 6, 8), min_child_-
weight (1.0, 2.0), gamma (0.2, 0.4), and determined the
optimal setting to achieve the highest average AUROC in
the 5-fold cross-validation on the training set.

LR_imp was a LR model with L1 weight regularization.
And the missing data was preprocessed by the same imput-
ation model used in AM_imp.

LR_ind was another LR model which set missing vari-
able to zero and added a binary indicator for each variable
(0 for non-missing variable and 1 for missing variable) as
model input. Thus, LR_ind took double-quantity inputs
compared to LR_imp.

Statistical analysis and evaluation of model
performance

For both the training set and the test set, clinical variables
were compared between samples in survival group and
death group, using either Student t test, rank-sum test or
Chi-square test as appropriate. Continuous variables were
described as mean (standard deviation) or median [inter-
quartile range], and categorical features were described as
number (percentage). In addition, the number and percent-
age of missing data for each variable were also counted.
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The AUROC and the area under the precision-recall
curve (AUPRC) were employed to evaluate the discrim-
inative ability of models. The mean and 95% confidence
interval (CI) for each type of model were obtained by
aggregating the measurements of five model instances
developed in the 5-fold cross-validation. The calibration
curve was employed to visualize model calibration.33 We
adopted the average predicted probabilities of five model
instances as the final predicted probability for each
sample, and plotted means of decile-binned predicted
probabilities versus corresponding means of actual prob-
abilities in the samples in each bin. The calibration was
assessed by inspecting the proximity between the calibra-
tion curve and the identity line of y= x which represented
perfect calibration.

The attention-based models were built using Pytorch
version 1.7.1, and the XGB, LR, and imputation model were
built using Scikit-learn package version 0.23.1. Statistical ana-
lysis was performed using SciPy package version 1.5.2. Two
tailed P<0.05 was considered as statistical significance.

Model robustness to missing data

We estimated model robustness to data missingness in
both model validation and model training, by analyzing
the alteration of model performance under increasing
missing rate in the test or training set. A total of three ana-
lyses were performed. At first, we focused on the impact
of the inherent missingness in the test set on model valid-
ation. We performed a subgroup analysis in which the

samples in the test set were divided into five subgroups
based on their missing rate: 0%−10%, 10%−20%, 20%
−30%, 30%−40% and more than 40%. Then, we
employed the previously developed prediction models
and imputation models without retraining, and evaluated
their AUROCs and AUPRCs on the above subgroups
respectively. In the second analysis, we focused on the
impact of random missingness on model validation. We
introduced additional random missingness in the raw
test set, by artificially setting every piece of non-missing
variable to missing data under a certain probability P,
while the training set, the previously developed predic-
tion models and imputation models were still fixed.
Then we validated our models on the modified test sets
which were produced under the P of 0.2, 0.4, 0.6, and
0.8. And for each setting of P, we repeated this random
modification on the test set ten times to obtain the mean
and 95% CI of AUROC and AUPRC. In the third analysis,
we focused on the impact of random missingness on
model training. This time the repeated random modifica-
tion under different P values was performed on the raw
training set, while the test set was not modified. For
each modified training set, we retrained our prediction
models and imputation models (for AM_imp and
LR_imp), where 80% of the modified training set was ran-
domly selected for model training and 20% were for
internal validation, and then retrained models were exter-
nally validated on the unmodified test set. We did not
change any architecture or hyperparameters of our
models during model retraining.

Figure 2. Flow chart of patient selection.
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Results

Participants and clinical variables

We ultimately included 65,623 ICU stays for 50,354
patients from MIMIC-IV and 150,753 ICU stays for
126,804 patients from eICU-CRD (Figure 2). In-hospital
death occurred for 6659 (10.1%) and 12,878 (8.5%) ICU
stays in the training set and the test set respectively.
Comparison of the baseline characteristics between
samples in survival and death group for both the training
set and the test set was provided in Table 1. And compari-
son of the other employed clinical variables and statistics of
their missing rate was provided in Supplemental Table 2.
Our results demonstrated the statistical difference of vari-
ables between survival and death group. Regarding to
data missingness, overall missing rate was 10.3% for the
training set and 19.7% for the test set. As shown in
Supplemental Table 2, the test set had a higher missing

rate for most clinical variables compared to the training
set. The four ventilator parameters (Max_TV_setting,
Max_Ppeak, Max_Pplat, Max_PEEP) showed the highest
missing rates in both the training set (>62% in the survival
group and >38% in the death group) and the test set (>79%
in survival group and >49% in death group). As ventilator
parameters for non-ventilation patients were treated as
missing variables, this result was related to the correspond-
ing ventilation rate in the training set (37.3% for survival
group and 61.3% for death group) and the test set (21.2%
for survival group and 53.2% for death group). Other high-
missing variables included Mean_pH, Min_PaO2,
Mean_PaCO2, Min_PaO2/FiO2, Max_Lactate,
Max_TBil, Max_ALT, Max_AST, etc. For these high-
missing variables, the missing rate was obviously higher
in survival group than in the death group, while for the
other variables the difference of missing rate between sur-
vival and death group was relatively small.

Table 1. Comparison of baseline characteristics.

Training set from MIMIC-IV
(n= 65623)

P

Test set from eICU-CRD (n= 150753)

P
Survival
(n= 58964)

Death
(n= 6659)

Survival
(n= 137875)

Death
(n= 12878)

Gender（male），n (%) 33430 (56.696) 3716 (55.804) 0.168 75246 (54.6) 6977 (54.2) 0.391

Age (y, mean (SD)) 62.53 (16.31) 68.66 (14.35) <0.001 61.4 (16.7) 68.2 (14.4) <0.001

Admission type <0.001 <0.001

Medical, n (%) 41298 (70.0) 5540 (83.2) 109777 (79.6) 11849 (92.0)

Unscheduled surgical, n (%) 15912 (27.0) 1087 (16.3) 25623 (18.6) 910 (7.1)

Scheduled surgical, n (%) 1754 (3.0) 32 (0.5) 2475 (1.8) 119 (0.9)

SOFA (median [IQR]) 3.0 [1.0, 5.0] 6.0 [4.0, 9.0] <0.001 2.0 [1.0, 4.0] 6.0 [3.0, 9.0] <0.001

SAPS II (median [IQR]) 33.0 [25.0, 42.0] 55.0 [43.0, 68.0] <0.001 29.0 [21.0, 38.0] 50.0 [37.0, 65.0] <0.001

Length of ICU stay (hours, median [IQR]) 44.3 [25.8, 79.9] 67.3 [28.2, 155.1] <0.001 39.0 [21.0, 70.0] 51.0 [19.0, 119.0] <0.001

SOFA Sequential Organ Failure Assessment, SAPS Simplified Acute Physiology Score; ICU: intensive care unit; MIMIC-IV: Medical Information Mart for Intensive
Care IV; eICU-CRD: eICU Collaborative Research Database.

Table 2. AUROCs for MAM with different attention heads in 5-fold cross-validation.

Heads 1 3 5 7 9

AUROC [95%CI] 0.888 [0.880−0.895] 0.892 [0.884−0.900] 0.889 [0.880−0.898] 0.896 [0.885−0.907] 0.894 [0.885−0.903]

AUROC: area under the receiver operating characteristic curve; MAM: masked attention model.
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Model performance

Our result showed that 7-head MAM had the highest
average AUROC in the 5-fold cross-validation
(Table 2). Thus, we selected 7-head MAM for subse-
quent research, and the same setting was used in
AM_imp and AM_ind for comparison. The optimized
hyperparameters of XGB were as following: n_estima-
tors= 600, learning_rate= 0.05, colsample_bytree=
0.8, subsample= 0.6, max_depth= 6, min_child_-
weight= 2.0, gamma= 0.2. In terms of model discrim-
ination, we showed the AUROCs and AUPRCs in the
5-fold cross-validation and the external validation for
all the models in Figure 3. In the external validation,
AM_ind had the highest AUROC (0.869; 95% CI:
0.865–0.873) and AM_imp had the highest AUPRC
(0.497; 95% CI: 0.480–0.513), while LR_ind had the
lowest AUROC (0.781; 95% CI: 0.774–0.788) and
AUPRC (0.364; 95% CI: 0.349–0.378). In terms of
model calibration, we provided the calibration curves
of the models in Figure 4. MAM and AM_imp
showed a better calibration with their curves closely
around the diagonal, while the curves of the other
four models deviated from the diagonal more obviously.
MAM slightly underestimated the risk in low-risk bins
and slightly overestimated the risk in high-risk bins;
AM_ind, LR_imp, and LR_ind overestimated the risk
in middle-risk bins (from 0.3 to 0.7 bins); XGB overes-
timated the risk in almost in all risk bins (from 0.3 to
1.0 bins).

Model interpretation

For all trained instances of MAM, AM_imp, and AM_ind,
the average acquired attentions of all employed variables in
the external validation were shown in Figure 5. We com-
pared the attention allocations among model types, model
instances, and attention heads, respectively. Firstly, at the
level of model type, the three models showed different pat-
terns of attention allocation. Some variables were treated as
important predictors in one model but were neglected in
another. For example, variable 10 (Cerebrovascular
disease) and 57 (Mean white blood cell) had high average
acquired attention in most heads of the five instances of
MAM, but they had relatively low attention in AM_imp
and AM_ind. Such a difference demonstrated the influence
of the approach for handling data missingness on attention
allocation. Secondly, at the level of model instance, smaller
difference of attention allocation was observed among the
five instances of a model type. As shown in Figure 5, for
most MAM instances, most variables between 40 and 51
and between 57 and 70 acquired high attention, while
most variables between 27 and 34 acquired low attention;
for most AM_imp instances, variables between 35 and 45
mostly acquired high attention and variables between 8 and
18mostly acquired low attention; for most AM_ind instances,
the attention allocation was more focused on several vari-
ables, such as variable 3 (Admissiontype_medical), 5
(Admissiontype_unscheduled_surgical), 6 (Age), 51
(Minimum Glasgow Coma Score), 80 (Urine output) and
81 (Invasive mechanical ventilation). Lastly, at the level of

Figure 3. AUROCs and AUPRCs for 5-fold cross validation and external validation. MAM: masked attention model, AM_imp: attention model
with imputation, AM_ind attention model with missing indicator, XGB: extreme gradient boosting, LR_imp: logistic regression with
imputation, LR_ind: logistic regression with missing indicator; AUROC: area under the receiver operating characteristic curve.
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attention head, attention allocations of most heads in one
instance were relatively consistent except for several heads
which showed a different attention allocation, such as the 7th
head of the MAM instance 1, the second and the sixth head
of the AM_imp instance 3, and the fifth head of the AM_ind
instance 4. This indicated that the models were capable of cap-
turing different data patterns through multiple heads.

Model robustness to data missingness

The results of our three analyses about model robustness to
data missingness were demonstrated in Figure 6. Each sub-
graph in Figure 6 showed the means and 95% CIs of
AUROC or AUPRC for all types of models in external vali-
dations under corresponding settings.

The first was the subgroup analysis and its result was
provided in Figure 6(a) and Figure 6(b). The sample size
and hospital mortality of the five subgroups with missing
rates of 0%−10%, 10%−20%, 20%−30%, 30%−40% and
>40% were 27,233 (mortality: 18.8%), 80,900 (5.6%),
15,858 (5.9%), 13,462 (7.9%), and 13,300 (8.9%),

respectively. Overall, most models showed lower
AUROCs in subgroups with higher missing rate, especially
in 30%–40% and >40% subgroups. The AUROCs of
MAM, AM_ind and LR_imp kept stable in the first four
subgroups and started to decline in the last >40% subgroup.
The AUROCs of AM_imp and XGB started to decline in
the 30%−40% subgroup, but the AUROC of AM_imp
kept more stable in the >40% subgroup. The AUROCs of
LR_ind started to decline in the 20%−30% subgroup. In
the last >40% subgroup, the three attention-based models
showed higher AUROC than the other baseline models.
Compared to AUROC, the AUPRCs of all models declined
more obviously, especially in 10%−20% subgroup. And
AM_imp showed the most stable and highest AUPRC in
the last >40% subgroup.

The second analysis was supplementary to the first ana-
lysis for evaluating the impact of random missingness on
model validation, and the results were shown in Figure
6(c) and Figure 6(d). Overall, the AUROCs and AUPRCs
of all the models declined as the missing probability P
increased, which indicated that increasing random

Figure 4. Calibration curves for external validation. For each model, the calibration curve plotted means of decile-binned predicted
probabilities versus corresponding means of actual probabilities in the patients in each bin. As shown, each blue point of a calibration
curve represented a bin and the size of the gray circle around represented the sample size of this bin. The dotted line was the identity line
of y= x representing perfect calibration. MAM: masked attention model, AM_imp: attention model with imputation, AM_ind: attention
model with missing indicator, XGB: extreme gradient boosting, LR_imp: logistic regression with imputation, LR_ind: logistic regression with
missing indicator.
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Figure 5. Model interpretation by attention allocations. For the three model types: MAM, AM_imp and AM_ind, five heat-map subgraphs
were used to show attention allocations for their five trained instances. Each small colored square in a heatmap showed the average
acquired attention of a variable in a head of this instance. The color bar on the right indicated the value of the average acquired attention,
from low (light red) to high (dark red). MAM: masked attention model, AM_imp: attention model with imputation, AM_ind: attention model
with missing indicator.
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missingness in the raw test set impaired the predictive per-
formance of our developed models. The two models using
imputation: AM_imp and LR_imp, showed relatively less
decline of AUROC and AUPRC compared to the other
models as P increased.

Finally, the third analysis was for evaluating the impact of
random missingness on model training. As shown in Figure
6(e) and Figure 6(f), the AUROCs and AUPRCs of MAM
kept stable when it was retrained using modified training sets
with increasing missing data. The performance of AM_ind
was also relatively stable, but its AUROC and AUPRC
declined at P of 0.8. The AUROCs and AUPRCs of
AM_imp kept declining as P increased, but the decreased
extent was obviously less than LR_imp which also used MI
to handle missing data. XGB performed slightly better when
it was retrained at P of 0.2 and 0.4 compared to using the
raw training set, but its AUROC and AUPRC declined
below MAM, AM_ind, and even LR_ind at P of 0.8.
LR_imp showed the most sharply declined AUROCs and
AUPRCs in this analysis. At last, LR_ind is robust in this

test. Its AUROCs and AUPRCs rose at P of 0.2, and then
kept relatively stable as P increased.

Discussion
In this study,wepropose an attention architecture for early pre-
diction of hospital mortality. This neural network architecture
can achieve a novel approach of filtering out missing data, and
is also adaptive to regular MI and missing indicator methods.
Our results indicate that the threemodelsbasedon this attention
architecture have excellent performance for early predicting
hospital mortality and are robust to data missingness in
model training and validation.

Missing data is inevitable in EHRs and should be care-
fully handled in researches using EHRs to develop predic-
tion model. There are three types of missing mechanism34:
(a) missing completely at random (MCAR): missingness
happens without relationship to any other patient variables;
(b) missing at random (MAR): Missingness is related to
other observed variables; (c) missing not at random

Figure 6. Model robustness to data missingness. Each colored point in a subgraph represented the AUROC or AUPRC in external validation
under a certain setting, and different colors indicated corresponding model types. Points of a model were connected for reflecting the
change tendency and the shadow around indicated the 95% confidence interval. (a, b) AUROCs and AUPRCs for subgroup analysis. (c, d)
AUROCs and AUPRCs when random missingness was introduced in the test set under probability of P. (e, f) AUROCs and AUPRCs when
random missingness was introduced in the training set under probability of P. AUROC: area under the receiver operating characteristic
curve; AUPRC: area under precision-recall curve.
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(MNAR): Missingness is related to some unobserved vari-
ables. In theory,the data-missing mechanism should be
taken into account for handling missing data.35 For
instance, complete case analysis (deleting samples contain-
ing missing data) is generally valid for MCAR but not for
MAR; MI is competent for MCAR and MAR18,19;
missing indicators may introduce bias in handling
MAR.20,36 And all these methods may be inappropriate
for MNAR.34 However, the complication is that sometimes
it is difficult and even impossible to distinguish the missing
mechanism, especially to recognize MNAR since the unob-
served variable is hard to be confirmed. With respect to
practical application, we prefer models with excellent pre-
dictive performance, and furthermore its performance can
keep as stable as possible when increasing missing data is
encountered, which is referred to as robustness.
Therefore, we design the attention architecture and test it
in the most concerned clinical task of mortality prediction.
To the best of our knowledge, this is the first study that uses
masked attention mechanism to handle missing data and
makes a comprehensive analysis of model robustness in
both model training and validation.

This study has several advantages. Firstly, we collect
sufficient data resources for model development and valid-
ation. Two large ICU databases are employed as data source
and the extracted clinical variables covers almost all the
routine physiological measures for ICU patients. We used
MIMIC-IV for model training and eICU-CRD for model
external validation, which ensures that the training set and
the test set are mutually independent. Our statistical ana-
lysis demonstrates heterogeneities between included
samples from MIMIC-IV and eICU-CRD, such as the dif-
ference in the distribution of admission type, utilization of
vasoactive drugs, and proportion of invasive mechanical
ventilation. Besides the observable values of clinical vari-
ables, their missing rates also show the difference. These
challenge the generalization ability of a model when it is
trained and validated on these two data sets respectively,
and increase the persuasiveness of model performance com-
pared to research on single center or database.

Secondly, we propose a simple and effective attention
architecture and a novel approach of filtering out missing
data based on the masked mechanism. This architecture
only contains one embedding layer, one multi-head atten-
tion layer and one linear layer to be tuned during model
training. And in the most computationally expensive atten-
tion layer, we abandon using the self-attention mechanism
proposed in Transformer model,23 as it needs to compute
n (n is the number of employed variables) sets of attentions
where each set of attentions is computed using query of one
variable and key-value pairs of all the variables (including
the query variable itself). We introduce a constant vector
c for computing the query instead, and then only one set
of attentions of c on all the variables is computed. The
advantage of this design is to avoid that missing variable

which is possibly encountered if we use variables to
compute query, and in such a situation this missing variable
responsible for computing query is unable to be filtered out
from model computation. On the other hand, we reduce the
computational cost to 1/n of the self-attention. Based on
such an attention architecture, then we can conveniently
filter out any missing variable by a mask function.

Thirdly, we explore the interpretability of our proposed
attention architecture. We take an insight into the data pat-
terns learned by the three attention-based models through
their allocations of average acquired attention among the
variables in the external validation. Our results show differ-
ent patterns of attention allocation among the three models.
For MAM, considering the masked mechanism restricting
attention allocation to non-missing variables, we wonder
whether MAM can capture potential valuable information
of high-missing variables as these variables are less likely
to be encountered during model training. As the heatmaps
of MAM in Figure 5 shown, some previously mentioned
high-missing variables (69: Max_ALT, 70: Max_AST,
85: PEEP) still acquire high average attention in most
MAM instances; while some low-missing variables (29:
Mean_DBP, 30: Std_DBP, 31: Min_MAP) acquire low
attention. This indicates that a high missing rate will not
lead to low attention allocation by MAM. For AM_imp
and AM_ind, missing variables also obtain attention alloca-
tion like non-missing variables. The heatmaps of AM_imp
show a more evenly allocated average attention among vari-
ables than AM_ind (i.e., attention is unlikely to be inten-
sively allocated to minority variables). The probable
reason is that the MI model is essentially composed of
many multivariate regression models31 which integrate
the information of other non-missing variables to impute
missing variables. Therefore, imputed values of an unim-
portant variable may acquire extra attention when it con-
tains valuable information about other non-missing
variables; while the situation is the opposite for an import-
ant variable. As a result, the disparity of average acquired
attention among all variables will be reduced. Unlike
AM_imp, all missing variables in AM_ind are uniformly
represented by missing indicators. The information about
missingness may be valuable when it happens not at
random and is related to the outcome.37,38 For instance,
less serious patients have no record of ventilator parameters
as they are not intubated. Thus, missingness of ventilator
parameters may imply lower mortality. Nevertheless, our
result shows that in AM_ind most variables with high
average acquired attention are low-missing variables (vari-
able 3, 5, 6, 51, 81). This is probably because most missing
indicators fail to provide sufficient valuable information to
the attention architecture for mortality prediction, so high
attention is still allocated to the most valuable several non-
missing variables. Although the attention allocation makes
the attention-based models interpretable rather than to be a
black-box model like conventional neural networks, the
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clinical rationality of such an interpretation is still needed to
be further evaluation.

Fourthly, we provide a comprehensive analysis of model
robustness to data missingness in both model training and
validation. In the first analysis, our results indicate that all
the models generally have lower AUROC and AUPRC in
subgroups with higher missing rate. Although data missing-
ness inevitably undermines model performance, our trained
attention-based models show advantage of robustness over
the baseline models. AM_imp has higher AUROC and
AUPRC in almost all subgroups than LR_imp (except for
AUROC in the 30%–40% subgroup), and so does
AM_ind compared to LR_ind. This indicates that assisted
by the same approach of MI or missing indicator, the atten-
tion architecture outperforms LR. MAM has comparable
performance as AM_imp and AM_ind in most subgroups
despite that its AUPRC in the >40% subgroup is relatively
low, demonstrating the potential of masked mechanism for
handling data missingness. XGB performs slightly better
than the attention-based models in the first three subgroups
but obviously poorer in the 30%−40% and >40% sub-
groups, which indicates the limited robustness of XGB
for high-missing data. In the second analysis, our results
show that the MI model can maintain the robustness of
AM_imp and LR_imp better than the other approaches
when more random missingness is introduced in the test
set. However, both AM_imp and LR_imp are no longer
so robust when we introduce random missingness in the
training set in the third analysis, especially LR_imp.
Considering that the MI model integrate non-missing vari-
ables to impute missing variables and the missing rate of the
training set is lower than the test set (10.3% vs. 19.7%), a
probable explanation for the above results is that when
MI model is developed on a low-missing training set, it is
more likely to learn a valuable data pattern from sufficient
non-missing data and effectively impute a high-missing
test set; but when a high-missing training set is used,
limited available non-missing data may cause the MI to
learn a misleading data pattern for imputing the test set.
Nevertheless, the final model performance should depend
on the prediction model itself as well, and in the second
and third analyses, AM_imp also shows better robustness
than LR_imp, especially in the third analysis, proving the
advantage of the attention architecture again. On the other
hand, MAM, XGB, AM_ind, and LR_ind show opposite
results in the second and third analyses. These four
models are free of interference by imputed data, and this
probably makes them more competent in capturing general-
izable data pattern from high-missing training set. In add-
ition, we have not retrained our models using the
subgroups in the first analysis to evaluate the impact of
inherent missingness on model training. The reason is that
sample sizes among these subgroups differ largely, and in
this situation the performance of models trained on small
subgroups may not only affect by the missing rate but

also by an insufficient sample size, which prevents us to
make a fair comparison.

As mentioned above, the three attention-based models
show different patterns of attention allocation and different
robustness in model training and validation. Based on their
characteristics, we propose a preliminary principle for
selecting an appropriate model in practice as following:
(a) if the training set is low-missing and contains sufficient
information to develop an effective MI model, AM_imp is
preferred; (b) if the training set is high-missing and the
missingness is strongly related to the outcome, AM_ind is
preferred; (c) if the training set is high-missing and the
missingness is weakly related to the outcome, MAM is
preferred.

Our study has several limitations. Firstly, we are unable
to strictly simulate the missing mechanism of MCAR and
MAR, since there is inherent data missingness in our
extracted data sets and this inherent missingness probably
belongs to MNAR. It is unrealistic to obtain a complete
data set without missing data from EHR database as large
as MIMIC-IV and eICU-CRD. This limitation can be
partly compensated as we analyze the impact of random
missingness where the raw data sets with inherent missing-
ness are treated as baseline. Secondly, this attention archi-
tecture is not capable of analyzing clinical time series
data and providing dynamic prediction. And the so-called
last observation carried forward39 imputation which uses
the last observed value to fill current missingness in a
time series is not employed for comparison in this study.
We plan to design attention-based dynamic prediction
model in our future work. Thirdly, in our attention architec-
ture, the average acquired attention can only interpretate the
contribution proportion of a variable for the prediction, but
is unable to clarify whether the impact of a variable is posi-
tive or negative. For instance, for a variable with high atten-
tion, it is not clear whether a higher value will raise the
mortality or a lower value. At last, we only evaluate our
attention architecture in the task of early predicting hospital
mortality, therefore its performance and robustness to data
missingness are needed to be further validated in other clin-
ical prediction tasks in the future, and our proposed prin-
ciple for model selection is also needed to be further
concretized and validated (such as the detailed criterion
for discriminating low-missing set and high-missing set,
and the method for quantifying the relationship between
the missingness and the outcome).

Conclusion
Our proposed attention architecture is a simple and inter-
pretable neural network architecture. It can achieve a
novel masked mechanism to filter out missing data, and is
also adaptive to conventional imputation and missing indi-
cator for handling missing data. The three attention-based
models show the state-of-the-art performance and excellent
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robustness to data missing in the task of early predicting
hospital mortality in ICU patients. Furthermore, in our pre-
diction task the three models show different patterns of
attention allocation and different robustness in model train-
ing and validation, so the selection of an appropriate model
should depend on the specific situation in practice. Overall,
the attention architecture has the potential to become an
excellent model architecture for clinical prediction tasks
with data missingness, and further research is needed to val-
idate its performance and to clarify its applicable
conditions.
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