
DE-NeRF: DEcoupled Neural Radiance Fields for View-Consistent
Appearance Editing and High-Frequency Environmental

Relighting
Tong Wu

Beijing Key Laboratory of Mobile Computing and
Pervasive Device, Institute of Computing Technology, CAS

and University of Chinese Academy of Sciences
China

wutong19s@ict.ac.cn

Jia-Mu Sun
Beijing Key Laboratory of Mobile Computing and

Pervasive Device, Institute of Computing Technology, CAS
and University of Chinese Academy of Sciences

China
sunjiamu21s@ict.ac.cn

Yu-Kun Lai
School of Computer Science and Informatics,

Cardiff University
United Kingdom

LaiY4@cardiff.ac.uk

Lin Gao∗
Beijing Key Laboratory of Mobile Computing and

Pervasive Device, Institute of Computing Technology, CAS
and University of Chinese Academy of Sciences

China
gaolin@ict.ac.cn

ABSTRACT
Neural Radiance Fields (NeRF) have shown promising results in

novel view synthesis. While achieving state-of-the-art rendering
results, NeRF usually encodes all properties related to geometry
and appearance of the scene together into several MLP (Multi-Layer
Perceptron) networks, which hinders downstream manipulation
of geometry, appearance and illumination. Recently researchers
made attempts to edit geometry, appearance and lighting for NeRF.
However, they fail to render view-consistent results after editing
the appearance of the input scene. Moreover, high-frequency envi-
ronmental relighting is also beyond their capability as lighting is
modeled as Spherical Gaussian (SG) and Spherical Harmonic (SH)
functions or a low-resolution environment map. To solve the above
problems, we propose DE-NeRF to decouple view-independent
appearance and view-dependent appearance in the scene with a
hybrid lighting representation. Specifically, we first train a signed
distance function to reconstruct an explicit mesh for the input
scene. Then a decoupled NeRF learns to attach view-independent
appearance to the reconstructed mesh by defining learnable dis-
entangled features representing geometry and view-independent
appearance on its vertices. For lighting, we approximate it with
an explicit learnable environment map and an implicit lighting
network to support both low-frequency and high-frequency re-
lighting. By modifying the view-independent appearance, rendered
results are consistent across different viewpoints. Our method also
supports high-frequency environmental relighting by replacing
the explicit environment map with a novel one and fitting the im-
plicit lighting network to the novel environment map. Experiments
∗Corresponding author is Lin Gao (gaolin@ict.ac.cn).

Input Images Geometry Appearance Lighting

Figure 1: Given a set of input images, we train a neural radi-
ance field that decouples geometry, appearance, and lighting.
Our method supports not only the geometry manipulation
and appearance editing but also the rendering of the cap-
tured or modified scene in a novel lighting condition.

show that our method achieves better editing and relighting perfor-
mance both quantitatively and qualitatively compared to previous
methods.

CCS CONCEPTS
• Computing methodologies → Image-based rendering.

KEYWORDS
neural radiance fields, inverse rendering, editing

Tong Wu, Jia-Mu Sun, Yu-Kun Lai, and Lin Gao

1 INTRODUCTION
Neural Radiance Fields (NeRF) [Mildenhall et al. 2020] have

shown promising results in scene reconstruction and novel view
synthesis. Compared with traditional geometry and appearance
representations, such as textured meshes, NeRF does not require
precise geometry and texture reconstruction and can produce realis-
tic rendering results. However, besides visualization, editing is also
an important task in computer graphics. Traditional 3D modeling
applications allow users to edit mesh geometry via modifying face
connections or vertex locations and edit the appearance by painting
from a given viewpoint. Lighting conditions are also changeable
by replacing the environment map. But in conventional NeRF, the
geometry is represented by a density function that does not well
reflect the real geometry and its appearance is an entanglement of
material and lighting, which increases the difficulty of editing.

On the geometry editing side, a few methods propose to deform
neural radiance fields by deforming sample points on a ray [Garbin
et al. 2022; Peng et al. 2022; Xu and Harada 2022; Yuan et al. 2022].
For appearance editing, researchers try to decompose geometry,
material and lighting from 2D images in an implicit way so that each
component can be edited independently. PhySG [Zhang et al. 2021a]
and NeRD [Boss et al. 2021a] use MLP (Multi-Layer Perceptron)
networks to predict BRDF (Bidirectional Reflectance Distribution
Function) materials and approximate lighting with Spherical Gauss-
ian functions. But their geometry is still in an implicit form and
lighting representation is smooth so high-frequency environmental
relighting is beyond their limits. For better material estimation, NeR-
Factor [Zhang et al. 2021b] predicts material parameters with a pre-
trained BRDF decoder and represents lighting with a low-resolution
image, which prevents it from representing high-frequency light-
ing. RefNeRF [Verbin et al. 2022] proposes not to explicitly de-
compose BRDF materials but instead learns view-dependent and
view-independent appearance simultaneously. Although achieving
high-quality reconstruction results, RefNeRF [Verbin et al. 2022]
can only edit a scene by adjusting its color network’s outputs and
is unable to deform the geometry or relight the input scene.

To transfer editing from one viewpoint to other viewpoints seam-
lessly, NeuTex [Xiang et al. 2021] maps sample points to a unified
2D texture space and uses traditional UV mapping to query cor-
responding colors. After training, the appearance of the scene is
baked into the 2D texture image. Users can edit the neural radiance
field by painting the 2D texture image. However, the 2D texture gen-
erated by NeuTex [Xiang et al. 2021] is usually distorted and hard
to be edited. To resolve this issue, NeuMesh [Bao et al. 2022] defines
learnable geometry and appearance features on a pre-reconstructed
mesh for the scene and learns to decompose the geometry and ap-
pearance using two MLP networks. Unfortunately, its appearance
is still an entanglement of material and lighting so that rendered
results can be inconsistent with the input editing when viewed from
novel viewpoints and its lighting conditions cannot be changed.

To allow view-consistent appearance editing and high-frequency
environmental relighting, we propose DE-NeRF that decouples the
geometry, appearance and lighting of the input scene. Given a set
of captured 2D images for a scene, we first reconstruct its geome-
try with an SDF (Signed Distance Field) network. Then we define
the geometry and view-independent appearance features on the

reconstructed mesh’s vertices and use the corresponding geome-
try network and appearance network to predict signed distance
values and appearance parameters. By baking geometry and view-
independent appearance features onto mesh vertices, DE-NeRF can
seamlessly transfer the appearance editing from one viewpoint to
other viewpoints and the edited appearance is consistent across
different viewpoints. For lighting, we propose to use a hybrid rep-
resentation, composed of an explicit low-resolution environment
map for efficiency and an implicit lighting network. The explicit
environment map is responsible for low-frequency diffuse lighting
and the implicit lighting network is trained to represent specular
lighting. After training, geometry, view-independent appearance
and lighting are disentangled and they can be separately edited
without influencing other components.

Our contributions can be summarized as follows:

• A neural radiance fields editing method that allows editing
of geometry, appearance and lighting. Appearance editing
from one viewpoint can be seamlessly transferred to other
viewpoints and the rendered results are view-consistent after
editing.

• Our lighting representation supports high-frequency envi-
ronmental relighting and produces more faithful relighting
results compared to previous methods.

2 RELATEDWORK
2.1 Neural Geometry Reconstruction

With the development of neural rendering [Oechsle et al. 2019;
Thies et al. 2019] and implicit geometry representations [Chen
and Zhang 2019; Mescheder et al. 2019; Park et al. 2019], surface-
based rendering methods [Niemeyer et al. 2020; Yariv et al. 2020;
Zhang et al. 2021c] are proposed to learn geometry and appearance
separately to reconstruct an object’s geometry from 2D images
by minimizing the difference between rendered images and in-
put images. Later with the emergence of Neural Radiance Fields
(NeRF) [Mildenhall et al. 2020], researchers start to work on geom-
etry reconstruction with volume rendering. A pioneering work that
builds the connection between implicit geometry representations
and neural radiance fields is NeuS [Wang et al. 2021], which de-
rives an unbiased and occlusion-aware formulation for the neural
radiance field’s density function from a signed distance function
(SDF). UNISURF [Oechsle et al. 2021] instead treats geometry as
an occupancy field that predicts whether a sampled point is on the
object surface and replaces the alpha value in volume rendering
with the occupancy value. Yariv et al. [2021] also transform the SDF
to a density function in volume rendering and their transformation
function is the Cumulative Distribution Function (CDF) of a learn-
able Laplace distribution. To reduce the requirement for the number
of input images, SparseNeuS [Long et al. 2022] extracts 2D features
from images to provide extra information for sample points in the
space via projection. To accelerate the training process of geometry
reconstruction, VOXURF [Wu et al. 2022] defines learnable features
on voxel grids similar to [Fridovich-Keil et al. 2022; Liu et al. 2020]
to speed up training.

DE-NeRF

2.2 NeRF Decomposition
Recently, researchers started to disentangle geometry, material

and lighting from Neural Radiance Fields. NeRV [Srinivasan et al.
2021] decomposes BRDF materials under a given lighting condi-
tion. It models direct illumination and one-bounce indirect illu-
mination and uses a network to predict the visibility of the sam-
ple point. NeRD [Boss et al. 2021a] approximates lighting with
Spherical Gaussian (SG) functions and reduces the learning dif-
ficulty by first extracting view-independent material parameters
and density functions and applying them to the learning of view-
dependent material parameters. For more accurate material esti-
mation, Boss et al. [2021b] predict BRDF materials with a material
autoencoder pre-trained on a BRDF material dataset [Matusik et al.
2003]. NeROIC [Kuang et al. 2022] approximates lighting with
Spherical Harmonic (SH) coefficients and decomposes static ap-
pearance and transient appearance. NeRFactor [Zhang et al. 2021b]
is the first work to learn shadow decomposition under unknown
lighting conditions. Similar to [Boss et al. 2021a], it first trains a
standard NeRF network to determine the geometry. Then it pre-
dicts material with a pre-trained BRDF decoder and optimizes its
lighting which is represented by a low-resolution image. More
recently, RefNeRF [Verbin et al. 2022] implicitly decomposes view-
dependent appearance and view-independent appearance via two
separate networks and can learn high-frequency specular reflec-
tions, but it does not decompose shadow or lighting. Besides the
works mentioned above, there are works that decompose scenes
based on other representations. PhySG [Zhang et al. 2021a] models
geometry as an SDF network and its lighting is approximated by a
composition of several Spherical Gaussian (SG) functions [Wang
et al. 2009]. It utilizes the Disney BRDF model [Bi et al. 2020] and
assumes that the scene can only have one single specular BRDF
material, causing a performance drop on more complex scenes. In-
vRender [Zhang et al. 2022b] further models indirect illumination
with another set of SG functions to handle more complicated ap-
pearances like inter-reflection. NvdiffRec [Munkberg et al. 2022]
and NvdiffRecMC [Hasselgren et al. 2022] use Deep Marching Tetra-
hedra [Shen et al. 2021] as its geometry representation and learn
to decompose the input scene with differential rasterization ren-
dering [Laine et al. 2020] and differentiable Monte Carlo renderer.
They handle high-frequency lighting but struggle when the objects
have a highly glossy surface.

2.3 Neural Radiance Field Editing
Classified by editing targets, previous works can be roughly di-

vided into geometry editing and appearance editing. In terms of
geometry, several works [Garbin et al. 2022; Xu and Harada 2022;
Yuan et al. 2022] share a similar idea to reconstruct an explicit mesh
as a proxy for a static scene and builds correspondence between the
mesh and NeRF. By editing the mesh using As-Rigid-As-Possible
deformation [Sorkine-Hornung and Alexa 2007], sample points in
the rendering process are transformed along with the mesh via
barycentric coordinate interpolation. For appearance editing, sev-
eral methods [Huang et al. 2022; Wang et al. 2022; Zhang et al.
2022a] propose to edit the appearance of NeRF by stylizing it with
an image or text prompt. EditNeRF [Liu et al. 2021] is the first
work that allows users to edit NeRF by editing 2D images, which

greatly reduces the editing difficulty. It models a scene with a shape
code and a color code. Editing is performed by optimizing the
color code. But it requires a large dataset from the same category
to generate plausible editing results. NeuTex [Xiang et al. 2021]
maps sample points in a single scene to UV coordinates and gets
its color from a learnable UV map. After training, the appearance
of NeRF can be edited by painting the UV texture. However, the
learned UV mapping is usually distorted and hard to be edited.
NeuMesh [Bao et al. 2022] reconstructs the geometry of the scene
using NeuS [Wang et al. 2021] and defines learnable geometry and
appearance features on mesh vertices. It allows users to edit NeRF’s
appearance from 2D images by optimizing appearance features sim-
ilar to EditNeRF [Liu et al. 2021]. Since its appearance features do
not disentangle material and lighting, artifacts may occur when ob-
served from a different viewpoint after editing. Our method focuses
on decoupling NeRF into geometry, appearance and lighting for
independent editing, where the geometry and view-independent
appearance are encoded on mesh vertices to ensure view consis-
tency, and a hybrid lighting representation is proposed to support
relighting with high-frequency environmental lighting.

3 METHOD
We propose DE-NeRF, a decoupled geometry, appearance and

lighting editing method for NeRF that allows view-consistent ap-
pearance editing and high-frequency environmental relighting. The
pipeline of our method is illustrated in Fig. 2. We first reconstruct
the geometry of the input scene (Sec. 3.1). To enable geometry
and appearance editing, we define learnable features for geome-
try and appearance on the vertices of the reconstructed mesh to
bake view-independent information onto the reconstructed mesh
to ensure view consistency. For lighting, we propose a hybrid light-
ing representation that supports both low-frequency lighting and
high-frequency lighting. The low-frequency lighting is modeled by
an explicit environment map where each pixel in it represents a
light and all lights in the environment map are integrated at every
sample point in the scene. For high-frequency lighting, it is costly
to represent it with a large environment map. Instead, we model
it with an implicit lighting network and encourage it to be con-
sistent with the explicit environment map. Under the guidance of
the reconstructed geometry and the input images, we decouple the
geometry, appearance and lighting of the scene by optimizing the
learnable features on the mesh vertices, the learnable environment
map, and the lighting network (Sec. 3.2). After decoupling, users
can edit the geometry, appearance, and lighting of the input scene
(Sec. 3.3).

3.1 Geometry Reconstruction
Recent neural implicit representations [Chen and Zhang 2019;

Mescheder et al. 2019; Park et al. 2019] and neural rendering tech-
niques [Mildenhall et al. 2020] have achieved great success in the
scene reconstruction task. In this work, we use the Signed Dis-
tance Function (SDF) as our geometry representation for smooth
geometry reconstruction. The SDF can be parameterized as an MLP
network 𝑠 = F (x). It takes a sample point 𝑥 (𝑡) = 𝑜 +𝑣 ·𝑡 as input and
outputs its signed distance 𝑠 to the surface, where 𝑜 is the origin
of a camera ray, 𝑣 is the ray direction, and 𝑡 is the parameter that

Tong Wu, Jia-Mu Sun, Yu-Kun Lai, and Lin Gao

Geometry Reconstruction

Input Multi-view Images

SDF Network

Scene Decomposition
Triangle Mesh

KNN Feature Interpolation

Pre-Vertex Learnable Features

Geometry
Diffuse

Roughness
Specular

Distance to mesh

SDF Decoder

Appearance
Decoder Learnable Env.Map

Hemisphere
 Integral

Gradient

Normal View

lg
la
lr
lp

lwg

lwr

lwp

lwa

h

E d

n v
s

a
p
r cl

cs
cd c

Fg

Fr

Fp

Fa

Figure 2: Given a set of images, we learn a signed distance function to reconstruct the geometry. Then, on the vertices of
the reconstructed mesh, we set up learnable geometry features 𝑙𝑔 and appearance features 𝑙𝑎, 𝑙𝑟 , 𝑙𝑝 (corresponding to diffuse,
roughness and specular components) to decompose geometry, appearance, and lighting in the scene. A sample point’s geometry
feature 𝑙𝑤𝑔 and appearance features 𝑙𝑤𝑎 , 𝑙𝑤𝑟 , 𝑙𝑤𝑝 are obtained by KNN (K-nearest neighbor) interpolation. The geometry feature 𝑙𝑤𝑔
and the distance to the mesh ℎ are fed into an SDF decoder to predict its signed distance value 𝑠. Similarly, appearance features
𝑙𝑤𝑎 , 𝑙𝑤𝑟 , 𝑙𝑤𝑝 , and distance ℎ go through several appearance decoders to predict diffuse albedo 𝑎, roughness value 𝑟 , and specular
tint 𝑝. A learnable environment map 𝐸𝑑 is integrated with the diffuse albedo to get diffuse color 𝑐𝑑 . We also train a specular
lighting decoder 𝐹𝑠 to predict specular lighting 𝑐𝑙 , which is multiplied by the specular tint 𝑡 to produce the specular color 𝑐𝑠 .
Combining 𝑐𝑑 and 𝑐𝑠 , we get the color 𝑐 for this point.

determines the sample point on the ray. To learn the SDF from
multi-view images of the scene, we adopt the occlusion-aware and
unbiased volume rendering technique from NeuS [Wang et al. 2021]
to render the SDF of the scene. Same as NeuS, we define the geom-

etry density based on SDF as 𝜎 (𝑡) = max
(
−
𝑑Φ𝑠
𝑑𝑡

(𝑓 (𝑥 (𝑡))
Φ𝑠 (𝑓 (𝑥 (𝑡)) , 0

)
, where

Φs (x) = (1 + e−sx)−1 and s is a trainable deviation parameter.
Generally, this formulation works well. However, for scenes with

specular reflection, a point on the surface can present totally differ-
ent colors when observed from different viewpoints, making it hard
to be learned by a single color network conditioned on the view-
point as NeuS does. To fake the complicated view-dependent effects,
NeuS tends to wrongly construct a concave surface so that, from
different viewpoints, the camera will not see the same surface point
but different points with different colors. To address this issue,
we divide the color network into two branches following RefN-
eRF [Verbin et al. 2022] to model view-independent appearance and
view-dependent appearance respectively, which reduces the learn-
ing difficulty of the color network. The view-independent branch
takes a sample point as input and outputs its view-independent
color cd and its specular tint p. Both the sample point and the ray
direction 𝑣 are fed into the view-dependent branch to predict the
view-dependent color 𝑐𝑙 . The final color of a sample point can be
formulated as c = cd + p · cl .

To calculate the color of each camera ray 𝐶 (𝑣), we integrate the
colors of the sample points on the ray by the volume rendering
equation: 𝐶 (𝑣) =

∑𝑁
𝑖=1𝑇𝑖𝛼𝑖𝑐𝑖 , where 𝑇𝑖 is accumulated transmit-

tance defined as𝑇𝑖 =
∏𝑖−1

𝑗=1 (1−𝛼 𝑗); and 𝛼𝑖 represents opaque value
at point 𝑥𝑖 . We learn to reconstruct the input scene’s geometry and

appearance by optimizing the following loss function:

𝐿𝑔 = 𝐿𝑐 +_𝐿𝑒 =
∑︁
𝑣∈𝑉

𝐶 (𝑣) −𝐶𝑡 (𝑣)
+_ ∑︁

𝑣∈𝑉

𝑁∑︁
𝑖=1

∥∇𝑥𝑣,𝑖 ∥ − 1
2
2 , (1)

where 𝑉 the camera rays in a training batch. 𝐶𝑡 (𝑣) represents the
ground truth pixel color for a ray 𝑣 . 𝑥𝑣,𝑖 is the 𝑖th sample point on
the ray 𝑣 . ∥∇𝑥𝑣,𝑖 ∥ is the spatial norm of the SDF network 𝐹 (𝑥)’s
gradient at point 𝑥𝑣,𝑖 .

3.2 Scene Decoupling
After reconstructing the scene’s geometry and appearance, we

extract a mesh using the marching cubes [Lorensen and Cline 1987]
algorithm. To decouple geometry, appearance and lighting compo-
nents for editing, we define learnable features on the vertices of the
mesh, denoted as 𝑙𝑔 for geometry features, 𝑙𝑎 for diffuse features,
𝑙𝑝 for specular features, and 𝑙𝑟 for roughness features. For a sam-
ple point 𝑥 , its features 𝑙𝑔 (𝑥), 𝑙𝑎 (𝑥), 𝑙𝑝 (𝑥), 𝑙𝑟 (𝑥) are defined by the
weighted average of its K nearest neighbors from the reconstructed

mesh vertices as 𝑙𝑤∗ (𝑥) =
∑𝐾
𝑖=0 𝑤𝑖 (𝑥)𝑙∗,𝑖 (𝑥)∑𝐾

𝑖=0 𝑤𝑖 (𝑥)
similar to NeuMesh [Bao

et al. 2022] and PointNeRF [Xu et al. 2022]. 𝑙𝑤∗ (𝑥) represents the
interpolated learnable features, i.e., 𝑙𝑤𝑔 (𝑥), 𝑙𝑤𝑎 (𝑥), 𝑙𝑤𝑝 (𝑥) and 𝑙𝑟 (𝑥).
the weight𝑤𝑖 (𝑥) is the inverse of the distance between 𝑥 and its
𝑖th nearest neighbor 𝑥𝑖 :

𝑤𝑖 (𝑥) =
1

∥𝑥𝑖 − 𝑥 ∥2
. (2)

Next, we use a geometry network that takes the geometry feature
𝑙𝑤𝑔 (𝑥) and the distance ℎ(𝑥) from 𝑥 to the reconstructed mesh as
input to predict the signed distance value 𝑠 of point 𝑥 . The distance

DE-NeRF

ℎ(𝑥) is also calculated by the weighted average of the distances to
its K nearest neighbors, where the weights are defined in Eqn. 2.
Similarly, we feed the features 𝑙𝑤𝑎 , 𝑙𝑤𝑝 , 𝑙𝑤𝑟 into separate MLPs to
infer diffuse albedo 𝑎, specular tint 𝑝 , and roughness value 𝑟 . The
signed distance value and appearance parameter predictions can
be formulated as follows:

𝑠 = 𝐹𝑔 (𝑙𝑤𝑔 , ℎ);𝑎 = 𝐹𝑎 (𝑙𝑤𝑎 , ℎ);𝑝 = 𝐹𝑝 (𝑙𝑤𝑝 , ℎ); 𝑟 = 𝐹𝑟 (𝑙𝑤𝑟 , ℎ) . (3)

On the lighting side, the diffuse lighting is represented by an
explicit environment map 𝐸𝑑 where each pixel can be seen as a
light so that the diffuse color 𝑐𝑑 for a point can be obtained by
integrating all lights in the environment map 𝐸𝑑 at this point via
𝑐𝑑 =

∫
Ω

𝑎
𝜋 𝐿𝑖𝑛 · 𝜔𝑖𝑑𝜔𝑖 . 𝜔𝑖 is the direction of incident light 𝐿𝑖 . 𝑛

is the normal direction for point 𝑥 derived by the gradient of the
geometry network 𝐹𝑔 and · denotes dot product.

For specular lighting that may contain high-frequency details, it
is costly to represent it with a high-resolution environment map
and integrate the environment map and the material parameters us-
ing the rendering equation. Inspired by the Split-Sum [Karis 2013]
approximation in real-time rendering and the recent work RefN-
eRF [Verbin et al. 2022] that decouples lighting from the rendering
equation, we model a sample point’s specular color 𝑐𝑠 = 𝑝 · 𝑐𝑙 as
the multiplication of its specular tint 𝑝 and the light color 𝑐𝑙 that
comes from the reflected direction 𝜔𝑟 = 2(𝜔𝑜 · 𝑛) − 𝜔𝑜 of the view
direction 𝜔𝑜 = −𝑣 w.r.t. its normal direction 𝑛. Here, the light color
𝑐𝑙 is predicted by a specular lighting decoder 𝐹𝑠 (·) that takes a
sample point’s roughness 𝑟 , the dot product cos\ = 𝑛 · 𝜔𝑜 of the
normal direction 𝑛 and the view direction 𝜔𝑜 , and the reflected
direction 𝜔𝑟 as input:

𝑐𝑙 = 𝐹𝑠 (𝑟, cos\, 𝜔𝑟) . (4)

Combining the diffuse color 𝑐𝑑 and the specular color 𝑐𝑠 , we get
the sample point’s color 𝑐 = 𝑐𝑑 + 𝑐𝑠 and render a pixel color using
volume rendering. For training, we minimize the following loss:

𝐿 = 𝐿𝑐 + 𝐿𝑠𝑑 𝑓 + _1𝐿𝑒 + _2𝐿𝑔𝑠 + _3𝐿𝑒𝑐 , (5)

where 𝐿𝑐 and 𝐿𝑒 are the same as those in Eqn. 1. 𝐿𝑠𝑑 𝑓 is the loss
between the predicted signed distance value 𝑠 at a sample point
and the ground truth signed distance value 𝑠𝑡 to the reconstructed
mesh.

𝐿𝑠𝑑 𝑓 =
∑︁
𝑣∈𝑉

𝑁∑︁
𝑖=1

𝑠𝑣,𝑖 − 𝑠𝑡𝑣,𝑖

2
2
. (6)

𝐿𝑔𝑠 is a smoothness loss that penalizes differences between adjacent
vertices’ geometry features and is defined as:

𝐿𝑔𝑠 =
∑︁
𝑖

∑︁
𝑗∈N(𝑖)

∥𝑙𝑔𝑖 − 𝑙𝑔𝑗 ∥2, (7)

whereN(𝑖) is the indices of the adjacent vertices for the 𝑖th vertex.
𝐿𝑒𝑐 denotes the environment map consistency loss, which en-

forces the environment map 𝐸𝑑 to be consistent with the specular
lighting generated by the specular lighting decoder 𝐹𝑠 . However,
our specular lighting has an implicit representation so it is im-
possible to directly compare it with diffuse lighting. Recall Eqn. 4
that the light color 𝑐𝑙 from the reflected direction 𝜔𝑟 at a point
with roughness 𝑟 is 𝐹𝑠 (𝑟, cos\, 𝜔𝑟). Following the approximation in
SplitSum [Karis 2013], when the reflected direction 𝜔𝑟 is the same

Unwrap

Environment MapSky Sphere

x

wo

x

Multiple Directions

Figure 3: Given a sample point in the scene (the red point),
we sample multiple directions 𝜔𝑜 from the sample point to
points (black points on the blue frame) on the sky sphere.
We treat these directions as view directions and feed them
along with the roughness value of the sample point into the
specular lighting decoder to get the specular lighting col-
ors from different view directions. These predicted specular
lighting colors are unwrapped to the 2D image space as an
environment map.

as the view direction 𝜔𝑜 , the normal direction is the same as the re-
flected direction 𝜔𝑟 and the view direction 𝜔𝑜 , so cos\ = cos 0 = 1.
In this case, the output of the specular lighting decoder 𝐹𝑠 is an
approximation of the environment map as shown in Fig. 3. Thus
𝐿𝑒𝑐 is defined as:

𝐿𝑒𝑐 =

𝑃∑︁
𝑗=1

| |𝐹𝑠 (𝑟, 1, 𝜔𝑜 𝑗) − 𝐸𝑑 (𝜔𝑜 𝑗) | |, (8)

where 𝑃 is the number of pixels in the environment map 𝐸𝑑 . 𝑟 is
the roughness value for a randomly sampled point on the mesh
surface and 𝜔𝑜 𝑗 is the 𝑗th unit vector starting from the origin to
the 𝑗th pixel’s location in 𝐸𝑑 on an extremely large sky sphere.

3.3 Scene Editing
With geometry, appearance and lighting decoupled by the net-

work, our method allows users to edit each component individually
without affecting other components. For example, lighting can be
changed without influencing the geometry or appearance. At a finer
level, we can also edit appearance parameters like diffuse albedo,
roughness, and specular tint independently. In the following, we
elaborate on how to edit each component.

3.3.1 Geometry Editing. Similar to NeuMesh [Bao et al. 2022], we
apply As-Rigid-As-Possible deformation [Sorkine-Hornung and
Alexa 2007] to the reconstructed mesh to deform the scene.

3.3.2 Appearance Editing. Our appearance editing supports editing
all appearance features, including diffuse, specular and roughness
components by painting a rendered image of the scene. Given a
painted image, we can locate the corresponding mesh vertices for
editing by applying raycasting from the camera to the reconstructed
mesh. The appearance features 𝑙𝑒∗ of these vertices are then treated
as trainable parameters while the features of other vertices remain
the same. The optimization target function can be formulated as
follows:

argmin
𝑙𝑒∗

∑︁
𝑣∈𝑉 𝑒

| |𝐶# (𝑣) −𝐶𝑒 (𝑣) | |, ∗ ∈ {𝑎, 𝑟, 𝑝}, (9)

where 𝑉 𝑒 denotes the corresponding camera rays of the painted
pixels. 𝐶𝑒 (𝑣) stands for the color of a painted pixel. 𝐶# (𝑣) is a
rendered component’s pixel color after volume rendering, e.g., the
diffuse color 𝑐𝑑 .

Tong Wu, Jia-Mu Sun, Yu-Kun Lai, and Lin Gao

3.3.3 Relighting. As mentioned in Sec. 3.2, our lighting mechanism
has two parts, namely diffuse lighting and specular lighting. The
diffuse l ighting i s represented by an explicit environment map
and the specular lighting is represented by an MLP network. For
relighting, the diffuse lighting can be easily changed by replacing
the environment map with the target environment map. However,
as the specular lighting has an implicit representation, it cannot
be directly changed. Instead, we optimize the specular lighting
network 𝐹𝑠 to fit the target environment map 𝐸 𝑡 by minimizing the
following loss:

𝐿𝑟𝑒𝑙𝑖𝑔ℎ𝑡 =

𝑆∑︁
𝑖=1

𝑃∑︁
𝑗=1

| |𝐹𝑠 (𝑟𝑖 , 1, 𝜔𝑜 𝑗) − 𝐸𝑡 (𝜔𝑜 𝑗) | |, (10)

where 𝑆 denotes the number of sample points on the mesh surface,
and 𝑃 is the number of pixels in the target environment map image
𝐸𝑡 . 𝑟𝑖 is the roughness value of the 𝑖th sample point, respectively,
and 𝜔𝑜 𝑗 is the 𝑗th unit vector starting from the origin to the 𝑗th
light’s location in the target environment map 𝐸𝑡 on an extremely
large sphere. Note that we make the same assumption as in Eqn. 8
that the normal direction 𝑛 is the same as the view direction 𝜔𝑜 , so
cos\ = cos 0 = 1.

However, Eqn. 10 only works for those sample points with small
roughness values so that it can well preserve the lighting from the
environment map. Directly applying Eqn. 10 to those sample points
with large roughness values may result in unexpected results, such
as a rough surface looking like a mirror after relighting (please
refer to Fig. 7). Thus, we construct a mipmap of the target environ-
ment map by computing pre-filtered environment maps at different
roughness levels by Monte-Carlo sampling:

𝐿(𝑗) =
∫
Ω
𝐿𝑖 (𝜔𝑖) (𝜔𝑖 · 𝑛) 𝑑𝜔𝑖 ≈

∑𝐽
𝑗=1 𝐿𝑖 (𝜔

𝑗
𝑖
)
(
𝜔
𝑗
𝑖
· 𝑛

)
∑𝐽

𝑗=1

(
𝜔
𝑗
𝑖
· 𝑛

) (11)

where 𝐿𝑖 (𝜔𝑖) is the light coming from direction 𝜔𝑖 and 𝐽 is the
number of sampled incident light directions. The sampling process
is determined by the roughness value and can be quickly performed
using [Krivánek and Colbert 2008]. After integrating over incoming
lighting at different roughness levels, we can construct a mipmap
of the environment map which has a fixed roughness value at each
mip level. The specular lighting can be quickly queried from the
mipmap based on the sample points’ roughness 𝑟 and the view
direction 𝜔𝑜 . So Eqn. 10 can be further improved:

𝐿𝑟𝑒𝑙𝑖𝑔ℎ𝑡 =

𝑆∑︁
𝑖=1

𝑃∑︁
𝑗=1

| |𝐹𝑠 (𝑟𝑖 , 1, 𝜔𝑜 𝑗) −𝑀 (𝜔𝑜 𝑗 , 𝑟 𝑗) | | (12)

where 𝑀 is the pre-filtered environment mipmap computed by
Eqn. 11 and𝑀 (𝜔𝑜 𝑗 , 𝑟 𝑗) is the light color viewed from direction 𝜔𝑜 𝑗

and interpolated by roughness 𝑟 𝑗 .

4 RESULTS AND EVALUATIONS
4.1 Datasets and Evaluation metrics

We conduct our experiments on two synthetic datasets, NeRF
Synthetic [Mildenhall et al. 2020] and Shiny Blender [Verbin et al.
2022] datasets, and the real DTU [Jensen et al. 2014] dataset. To
evaluate the quality of the reconstructed meshes, we use Chamfer

(a) Input (b) NeuS (c) PhySG (d) NvDiffRec (e) Ours (f) GT

Figure 4: Qualitative comparison of geometry reconstruction.
Our method can recover better surface details compared to
NeuS [Wang et al. 2021], PhySG [Zhang et al. 2021a], and
NvDiffRec [Munkberg et al. 2022].

Table 1: Quantitative comparison of geometric reconstruc-
tion quality using Chamfer distance metric. All values have
been mutiplied by 10 for easier reading.

Dataset NeuS PhySG NvDiffRec Ours
NeRF Synthetic 0.269 0.511 0.362 0.266
Shiny Blender 0.341 0.344 0.385 0.303

Distance between the reconstructed meshes and the correspond-
ing ground truth geometry. Regarding rendering quality, we use
SSIM [Wang et al. 2004], PSNR, and LPIPS [Zhang et al. 2018] met-
rics to evaluate the similarity between the rendered images and the
corresponding ground truth images. For editing results, we evaluate
the image quality by calculating the Fréchet Inception Distance
(FID) [Heusel et al. 2017] between the image set before editing and
after editing, which has been widely used in image generation and
editing tasks. For training details and the network architecture,
please refer to the supplementary material.

4.2 Scene Reconstruction
As shown in Fig. 4, unlike NeuS [Wang et al. 2021], PhySG [Zhang

et al. 2021a] and NvDiffRec [Munkberg et al. 2022], our method
avoids concave surfaces in geometry reconstruction for scenes
with specular reflection by learning view-dependent and view-
independent appearances separately. Quantitative results in Table 1
also show that our method outperforms these baselines.

We present novel view synthesis results in Fig. 5 and compare
them with PhySG [Zhang et al. 2021a], NeRFactor [Zhang et al.
2021b], NvDiffRec [Munkberg et al. 2022], and NeuMesh [Bao et al.
2022]. PhySG fails to recover the details in the scene, due to its
smooth lighting representation and its assumption that the whole
scene shares the same specular BRDF material. NeRFactor uses an
environment map of size 32×16 as its lighting representation, which

DE-NeRF

(a) PhySG (b) NeRFactor (c) NvDiffRec (d) NeuMesh (e) Ours (f) GT

Figure 5: Novel view synthesis comparisons with
PhySG [Zhang et al. 2021a], NeRFactor [Zhang et al. 2021b],
NvDiffRec [Munkberg et al. 2022], and NeuMesh [Bao et al.
2022].

Table 2: Quantitative comparison of novel view synthesis
results using SSIM, PSNR, and LPIPS metrics.

Methods
NeRF Synthetic Shiny Blender

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
PhySG 20.60 0.861 0.144 26.21 0.921 0.121

NeRFactor 27.86 0.944 0.044 27.04 0.913 0.123
NvDiffRec 29.05 0.939 0.081 28.11 0.935 0.076
NeuMesh 30.94 0.951 0.043 27.20 0.949 0.082
Ours 29.18 0.959 0.035 28.79 0.967 0.072

is unable to express sharp lighting effects. NvDiffRec may recover
incorrect geometry ormaterial with their tetrahedral representation.
NeuMesh does not decompose lighting but learns the appearance
with a single MLP network, which may cause wrong or blurry
rendered results. Compared with these methods, our method learns
decoupled appearance using two different MLP networks and uses
a hybrid lighting representation so it has a better rendering quality.
Quantitative comparisons are reported in Table 2.

4.3 Scene Editing
As mentioned in Sec. 3, we support editing on geometry, appear-

ance and lighting. Our geometry editing is similar to NeuMesh [Bao
et al. 2022] and we show geometry editing results in the supple-
mentary material. In this section, we focus on the appearance and
lighting editing tasks.

4.3.1 Appearance Editing. We show appearance editing compar-
isons with NeuMesh [Bao et al. 2022] in Fig. 8. NeuMesh renders
plausible results from the editing viewpoint after optimization, but
the rendered results from another viewpoint become inconsistent
with the input editing. Our method optimizes the learnable features
of diffuse albedo 𝑙𝑎 to minimize the difference between rendered
diffuse color and editing target using Eqn. 9 so the edited appear-
ance matches the input editing viewed from other viewpoints and

Table 3: Quantitative comparison of appearance editing re-
sults with NeuMesh [Bao et al. 2022] using the FID metric
(the lower the better).

Methods NeRF Synthetic Shiny Blender
NeuMesh 216.06 196.37
Ours 194.70 164.73

Table 4: Quantitative comparison of novel view synthesis
results after relighting using SSIM, PSNR, and LPIPS metrics.
Results are averaged over ten different viewpoints with eight
different environment maps.

Methods
NeRF Synthetic Shiny Blender

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
PhySG 17.56 0.722 0.0885 18.399 0.899 0.0939

InvRender 19.72 0.770 0.0780 18.690 0.908 0.0873
NeRFactor 19.35 0.815 0.0942 19.791 0.916 0.0858
NvDiffRec 19.69 0.820 0.0771 20.703 0.889 0.113

NvDiffRecMC 20.09 0.816 0.0760 21.605 0.922 0.0988
Ours 19.98 0.811 0.0727 23.993 0.956 0.0409

the view-dependent appearance can be preserved. We compare
the image set before editing and after editing using the Frèchet
Inception Distance (FID) [Heusel et al. 2017] metric to evaluate the
image quality after editing in Table 3. Compared with NeuMesh,
our rendered images score higher in all datasets, indicating higher
image quality after editing. We show the specular and roughness
editing results that NeuMesh does not support in the supplementary
material.

4.3.2 Relighting. We compare with recent PhySG [Zhang et al.
2021a], InvRender [Zhang et al. 2022b], NeRFactor [Zhang et al.
2021b], NvDiffRec [Munkberg et al. 2022], and NvDiffRecMC [Has-
selgren et al. 2022] that learn to decompose geometry, material and
lighting in Fig. 9. PhySG, InvRender and NeRFactor fail to express
high-frequency environmental lighting due to their smooth or low-
resolution lighting representations. NvDiffRec and NvDiffRecMC
can handle high-frequency lighting with their high-resolution en-
vironment map but may fail to reconstruct correct geometry or
material, leading to less faithful results. Our method extracts more
accurate geometry and produces better relighting results with the
hybrid lighting representation. We also evaluate the relighting
results using PSNR, SSIM, and LPIPS metrics in Table 4 by compar-
ing the relighting results with ground truth images generated by
Blender. Overall, our relighting results have higher quality.

4.4 Ablation studies
In this subsection, we evaluate several design choices in our

pipeline by conducting ablation studies on them.

4.4.1 Hybrid Lighting. We use a hybrid lighting representation
of an environment map and a lighting network. To evaluate this
representation, we compare it with a baseline that renders both the
diffuse color and specular color using the explicit environment map
with the microfacet model [Walter et al. 2007] in Fig. 6 and Table 5.

Tong Wu, Jia-Mu Sun, Yu-Kun Lai, and Lin Gao

(a) Explicit (b) Hybrid (c) GT (d) Explicit (e) Hybrid (f) GT

Figure 6: Qualitative comparison of reconstruction results
with the explicit lighting baseline.

Table 5: Quantitative comparison of reconstruction results
with the explicit lighting baseline on the Shiny Blender
dataset.

Setting PSNR ↑ SSIM ↑ LPIPS ↓
Explicit 25.06 0.894 0.221
Hybrid 28.79 0.967 0.072

(a) Input (b) w/o mipmap (c) w/ mipmap (d) Input (e) w/o mipmap (f) w/ mipmap

Figure 7: Qualitative comparisons between relighting results
without and with mipmap interpolation. The relit scene
can better preserve the roughness of the input scene when
mipmap is applied.

Table 6: Quantitative comparison of relighting results with
mipmap and without mipmap on the Shiny Blender dataset.

Setting PSNR ↑ SSIM ↑ LPIPS ↓
Without Mipmap 19.52 0.853 0.103
With Mipmap 25.22 0.933 0.050

The baseline struggles to reconstruct high-frequency lighting effects
and our hybrid lighting representation outperforms it in terms of
reconstruction quality.

4.4.2 Mipmap Relighting. We construct a mipmap of the target
environment map based on the roughness values for the relighting
task. We show comparisons between the relighting results with
and without mipmap interpolation in Fig. 7. The relit scenes may
have a mirror-like appearance if mipmap is not applied while the
roughness can be well preserved when we utilize mipmap interpo-
lation, leading to more faithful relighting results. We also evaluate
it quantitatively in Table 6 and the rendered images of the relit
scenes have a higher image quality when the mipmap strategy is
applied.

5 DISCUSSION AND CONCLUSION
In this paper, we present a geometry, appearance and lighting

editing method for neural radiance fields. The technical core is a ge-
ometry, appearance and lighting decoupling network that optimizes
the learnable geometry and appearance features defined on mesh

vertices, the environment map, and the specular lighting network
all at once. Building upon this decoupling network, appearance
editing from a given viewpoint can be seamlessly transferred to
other viewpoints. In addition, our hybrid lighting representation
composed of an explicit environment map and an implicit lighting
network can well simulate the lighting effects in the scene and sup-
ports high-frequency environmental relighting. Nevertheless, our
approach still has the following limitations: Firstly, our method does
not jointly optimize the geometry in the decoupling step, which
may lead to poor reconstruction of thin structures (see the first row
of Fig. 8). Secondly, our method works better on relatively convex
objects since it does not consider shadow or inter-reflection and pro-
duces wrong decoupled results when shadow and inter-reflection
exist in the scene as shown in Fig. 10. For future exploration, we
would like to learn geometry, appearance and lighting in an end-
to-end manner so that all components can be optimized jointly. It
is also possible to combine generative models and neural radiance
field editing, for example, we can leverage newly developed dif-
fusion models [Rombach et al. 2022] to help with image editing
or apply deep geometric generative models [Gao et al. 2019] and
texture generative models [Gao et al. 2021; Wang et al. 2014] to
neural radiance fields.

ACKNOWLEDGMENTS
This work was supported by grants from the National Natural

Science Foundation of China (No. 62061136007), the Beijing Munic-
ipal Natural Science Foundation for Distinguished Young Scholars
(No. JQ21013), and Royal Society Newton Advanced Fellowship (No.
NAF\R2\192151).

REFERENCES
Chong Bao, Bangbang Yang, Zeng Junyi, Bao Hujun, Zhang Yinda, Cui Zhaopeng,

and Zhang Guofeng. 2022. NeuMesh: Learning Disentangled Neural Mesh-based
Implicit Field for Geometry and Texture Editing. In ECCV. 597–614.

Sai Bi, Zexiang Xu, Kalyan Sunkavalli, David J. Kriegman, and Ravi Ramamoorthi.
2020. Deep 3D Capture: Geometry and Reflectance From Sparse Multi-View Images.
In CVPR. 5959–5968.

Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Barron, Ce Liu, and Hendrik
Lensch. 2021a. NeRD: Neural reflectance decomposition from image collections. In
ICCV. 12684–12694.

Mark Boss, Varun Jampani, Raphael Braun, Ce Liu, Jonathan T. Barron, and Hen-
drik P.A. Lensch. 2021b. Neural-PIL: Neural Pre-Integrated Lighting for Reflectance
Decomposition. InAdvances in Neural Information Processing Systems. 10691–10704.

Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape
modeling. In CVPR. 5939–5948.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields Without Neural Networks. In
CVPR. 5501–5510.

Lin Gao, Tong Wu, Yu-Jie Yuan, Ming-Xian Lin, Yu-Kun Lai, and Hao Zhang. 2021.
TM-NET: Deep Generative Networks for Textured Meshes. ACM Trans. Graph. 40,
6 (2021), 263:1–263:15.

Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and Hao Zhang.
2019. SDM-NET: deep generative network for structured deformable mesh. ACM
Trans. Graph. 38, 6 (2019), 243:1–243:15.

Stephan J Garbin, Marek Kowalski, Virginia Estellers, Stanislaw Szymanowicz, Shideh
Rezaeifar, Jingjing Shen, Matthew Johnson, and Julien Valentin. 2022. VolTeMorph:
Realtime, Controllable and Generalisable Animation of Volumetric Representations.
arXiv:2208.00949 (2022).

Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg. 2022. Shape, Light, and
Material Decomposition from Images using Monte Carlo Rendering and Denoising.
In Advances in Neural Information Processing Systems.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. 2017. GANs Trained by a Two Time-Scale Update Rule Converge to
a Local Nash Equilibrium. In Advances in Neural Information Processing Systems.
6626–6637.

DE-NeRF

Yi-Hua Huang, Yue He, Yu-Jie Yuan, Yu-Kun Lai, and Lin Gao. 2022. StylizedNeRF:
consistent 3D scene stylization as stylized NeRF via 2D-3D mutual learning. In
CVPR. 18342–18352.

Rasmus Ramsbøl Jensen, Anders Lindbjerg Dahl, George Vogiatzis, Engin Tola, and
Henrik Aanæs. 2014. Large Scale Multi-view Stereopsis Evaluation. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision. 406–413.

Brian Karis. 2013. Real Shading in Unreal Engine 4. (2013).
Jaroslav Krivánek and Mark Colbert. 2008. Real-time Shading with Filtered Importance

Sampling. Comput. Graph. Forum 27, 4 (2008), 1147–1154.
Zhengfei Kuang, Kyle Olszewski, Menglei Chai, Zeng Huang, Panos Achlioptas, and

Sergey Tulyakov. 2022. NeROIC: Neural Object Capture and Rendering from Online
Image Collections. Computing Research Repository (CoRR) abs/2201.02533 (2022).

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo
Aila. 2020. Modular Primitives for High-Performance Differentiable Rendering.
ACM Trans. Graph. 39, 6 (2020), 194:1–194:14.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.
Neural sparse voxel fields. Advances in Neural Information Processing Systems (2020),
15651–15663.

Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard Zhang, Jun-Yan Zhu, and Bryan
Russell. 2021. Editing conditional radiance fields. In ICCV. 5773–5783.

Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura, and Wenping Wang. 2022.
SparseNeuS: Fast Generalizable Neural Surface Reconstruction from Sparse views.
ECCV (2022), 210–227.

William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH. 163–169.

Wojciech Matusik, Hanspeter Pfister, Matthew Brand, and Leonard McMillan. 2003. A
data-driven reflectance model. ACM Trans. Graph. 22, 3 (2003), 759–769.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. 2019. Occupancy networks: Learning 3d reconstruction in function space.
In CVPR. 4460–4470.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing scenes as neural radiance fields
for view synthesis. In ECCV. 405–421.

Jacob Munkberg, Wenzheng Chen, Jon Hasselgren, Alex Evans, Tianchang Shen,
Thomas Müller, Jun Gao, and Sanja Fidler. 2022. Extracting Triangular 3D Models,
Materials, and Lighting From Images. In CVPR. 8270–8280.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. 2020. Dif-
ferentiable Volumetric Rendering: Learning Implicit 3D Representations without
3D Supervision. In CVPR. 3501–3512.

Michael Oechsle, Lars M. Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas
Geiger. 2019. Texture Fields: Learning Texture Representations in Function Space.
In ICCV. 4530–4539.

Michael Oechsle, Songyou Peng, and Andreas Geiger. 2021. Unisurf: Unifying neural
implicit surfaces and radiance fields for multi-view reconstruction. In ICCV. 5589–
5599.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. Deepsdf: Learning continuous signed distance functions for shape
representation. In CVPR. 165–174.

Yicong Peng, Yichao Yan, Shenqi Liu, Yuhao Cheng, Shanyan Guan, Bowen Pan,
Guangtao Zhai, and Xiaokang Yang. 2022. CageNeRF: Cage-based Neural Radiance
Fields for Generalized 3D Deformation and Animation. In Advances in Neural
Information Processing Systems.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
2022. High-Resolution Image Synthesis With Latent Diffusion Models. In CVPR.
10684–10695.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. 2021. Deep
marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis.
In Advances in Neural Information Processing Systems. 6087–6101.

Olga Sorkine-Hornung and Marc Alexa. 2007. As-rigid-as-possible surface modeling.
In Symposium on Geometry Processing.

Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall,
and Jonathan T Barron. 2021. NeRV: Neural reflectance and visibility fields for
relighting and view synthesis. In CVPR. 7495–7504.

Justus Thies, Michael Zollhöfer, andMatthias Nießner. 2019. Deferred neural rendering:
image synthesis using neural textures. ACM Trans. Graph. 38, 4 (2019), 66:1–66:12.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd E. Zickler, Jonathan T. Barron, and
Pratul P. Srinivasan. 2022. Ref-NeRF: Structured View-Dependent Appearance for
Neural Radiance Fields. In CVPR. 5481–5490.

Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance. 2007.
Microfacet models for refraction through rough surfaces. In Eurographics conference
on Rendering Techniques. 195–206.

CanWang, Ruixiang Jiang, Menglei Chai, MingmingHe, Dongdong Chen, and Jing Liao.
2022. NeRF-Art: Text-Driven Neural Radiance Fields Stylization. arXiv:2212.08070
(2022).

Jiaping Wang, Peiran Ren, Minmin Gong, John Snyder, and Baining Guo. 2009. All-
frequency rendering of dynamic, spatially-varying reflectance. ACM Trans. Graph.
28, 5 (2009), 133.

Miao Wang, Yu-Kun Lai, Yuan Liang, Ralph R. Martin, and Shi-Min Hu. 2014. Bigger-
Picture: data-driven image extrapolation using graph matching. ACM Trans. Graph.
33, 6 (2014), 173:1–173:13.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction. In Advances in Neural Information Processing Systems.
27171–27183.

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image
Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions
on Image Processing 13, 4 (2004), 600–612.

Tong Wu, Jiaqi Wang, Xingang Pan, Xudong Xu, Christian Theobalt, Ziwei Liu, and
Dahua Lin. 2022. Voxurf: Voxel-based Efficient and Accurate Neural Surface Recon-
struction. arXiv:2208.12697 (2022).

Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-Geoffroy, Kalyan Sunkavalli,
and Hao Su. 2021. Neutex: Neural texture mapping for volumetric neural rendering.
In CVPR. 7119–7128.

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and
Ulrich Neumann. 2022. Point-nerf: Point-based neural radiance fields. In CVPR.
5438–5448.

Tianhan Xu and Tatsuya Harada. 2022. Deforming Radiance Fields with Cages. In
ECCV. 159–175.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume Rendering of
Neural Implicit Surfaces. In Advances in Neural Information Processing Systems.
4805–4815.

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Ronen Basri, and
Yaron Lipman. 2020. Multiview Neural Surface Reconstruction by Disentangling
Geometry and Appearance. In Advances in Neural Information Processing Systems.

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. 2022.
NeRF-Editing: Geometry Editing of Neural Radiance Fields. In CVPR. 18332–18343.

Jingyang Zhang, Yao Yao, and Long Quan. 2021c. Learning Signed Distance Field for
Multi-View Surface Reconstruction. In ICCV. 6525–6534.

Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu, Eli Shechtman, and Noah
Snavely. 2022a. ARF: Artistic Radiance Fields. In ECCV. 717–733.

Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and Noah Snavely. 2021a. PhySG:
Inverse Rendering with Spherical Gaussians for Physics-based Material Editing
and Relighting. In CVPR. 5453–5462.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.
586–595.

Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T Freeman,
and Jonathan T Barron. 2021b. NeRFactor: Neural factorization of shape and
reflectance under an unknown illumination. ACM Trans. Graph. 40, 6 (2021), 1–18.

Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei Jia, and Xiaowei Zhou.
2022b. Modeling Indirect Illumination for Inverse Rendering. InCVPR. 18622–18631.

Tong Wu, Jia-Mu Sun, Yu-Kun Lai, and Lin Gao

(a) Source Image (b) Edited Image (c) NeuMesh View #1 (d) NeuMesh View #2 (e) Ours View #1 (f) Ours View #2

Figure 8: Scene appearance editing comparison with NeuMesh [Bao et al. 2022]. NeuMesh [Bao et al. 2022] can generate plausible
rendering results from the editing viewpoint but rendered results from another viewpoint may be inconsistent with the input
editing. Our method produces more faithful editing results from both editing viewpoint and novel viewpoints.

DE-NeRF

(a) Input (b) PhySG (c) InvRender (d) NeRFactor (e) NvDiffRec (f) NvDiffRecMC (g) Ours (h) GT

Figure 9: Scene relighting comparisons with PhySG [Zhang et al. 2021a], InvRender [Zhang et al. 2022b], NeRFactor [Zhang
et al. 2021b], NvDiffRec [Munkberg et al. 2022], and NvDiffRecMC [Hasselgren et al. 2022]. In each row, the input scene and
target environment map are shown in the first column. In other columns, we show relighting results by different methods
and the ground truth relighting result. With the help of our reconstructed geometry and hybrid lighting representation, our
method can produce more faithful relighting results with high-frequency details. We show more relighting comparisons in the
supplementary material.

(a) Input (b) Diffuse Albedo (c) Diffuse Color (d) Specular Tint (e) Specular Color

Figure 10: Failure case: for an input scene with interreflec-
tions (the first row) and shadows (the second row), our de-
composition network may produce wrong decomposition
results and bakes them into appearance.

	Abstract
	1 introduction
	2 Related Work
	2.1 Neural Geometry Reconstruction
	2.2 NeRF Decomposition
	2.3 Neural Radiance Field Editing

	3 Method
	3.1 Geometry Reconstruction
	3.2 Scene Decoupling
	3.3 Scene Editing

	4 Results and Evaluations
	4.1 Datasets and Evaluation metrics
	4.2 Scene Reconstruction
	4.3 Scene Editing
	4.4 Ablation studies

	5 Discussion and Conclusion
	Acknowledgments
	References

