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Figure 1: Given a set of multi-view images of the target texture with meso-structure, our model synthesizes Neural Radiance
Field (NeRF) textures, which can then be applied to novel shapes, such as the skirt and hat in the figure, with rich geometric
and appearance details.

ABSTRACT
Texture synthesis is a fundamental problem in computer graphics
that would benefit various applications. Existing methods are effec-
tive in handling 2D image textures. In contrast, many real-world
textures contain meso-structure in the 3D geometry space, such
as grass, leaves, and fabrics, which cannot be effectively modeled
using only 2D image textures. We propose a novel texture synthesis
method with Neural Radiance Fields (NeRF) to capture and synthe-
size textures from given multi-view images. In the proposed NeRF
texture representation, a scene with fine geometric details is disen-
tangled into the meso-structure textures and the underlying base
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shape. This allows textures with meso-structure to be effectively
learned as latent features situated on the base shape, which are
fed into a NeRF decoder trained simultaneously to represent the
rich view-dependent appearance. Using this implicit representation,
we can synthesize NeRF-based textures through patch matching
of latent features. However, inconsistencies between the metrics
of the reconstructed content space and the latent feature space
may compromise the synthesis quality. To enhance matching per-
formance, we further regularize the distribution of latent features
by incorporating a clustering constraint. Experimental results and
evaluations demonstrate the effectiveness of our approach.

CCS CONCEPTS
• Computing methodologies → Image-based rendering.

KEYWORDS
Neural radiance fields, texture synthesis, meso-structure texture
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1 INTRODUCTION
Capturing, modeling, synthesizing, and rendering real-world tex-
tures are fundamental problems in computer graphics and computer 
vision. In the real world, textures with high-frequency geometry 
are ubiquitous, like grass, leaves, fabrics, and cobblestones. Unfortu-
nately, it is intractable to directly model such meso-structure with 
polygons, curves, or voxels [Baatz et al. 2022], like flowers shown 
in Fig. 1. While a conventional texture map can represent a range 
of surface properties, such as color, reflection, transparency, and 
displacement, it remains impractical to accurately portray view-
dependent appearance and meso-structure [Kuznetsov et al. 2022].

Thanks to recently proposed neural implicit rendering approaches 
such as NeRF (Neural Radiance Fields) [Mildenhall et al. 2021], tex-
tures in complex real scenes could be reconstructed from multi-
view images. The vanilla NeRF mixes the representation of ge-
ometry and appearance, which limits the freedom to manipulate 
the reconstructed textures. To support texture swapping and edit-
ing, NeuMesh [Bao and Yang et al. 2022] and NeuTex [Xiang et al. 
2021] make an attempt to disentangle the texture and geometry. 
NeuMesh [Bao and Yang et al. 2022] supports geometry and ap-
pearance editing but is incapable of modeling and synthesizing 
meso-structure textures; NeuTex [Xiang et al. 2021] parameterizes 
the scene content in 3D Euclidean space over 2D UV space, which is 
suitable for modeling smooth surfaces rather than high-frequency 
meso-structure textures.

In computer graphics applications, once texture samples are cap-
tured, texture synthesis is an essential step to produce similar (but 
not repetitive) larger textures to decorate a target surface. Although 
there is extensive research on 2D image texture synthesis, little 
attention has been paid to the synthesis of NeRF-based textures.

In this paper, we propose a novel NeRF-based approach for cap-
turing, modeling, synthesizing, and applying textures with meso-
structure and view-dependent appearance, leveraging multi-view 
images obtained from real-world scenes. Our method only requires 
a set of multi-view images of the texture to acquire as input, which 
can be easily obtained by shooting a short video using a mobile 
phone. Our approach then learns the representations of the texture 
and synthesizes it to the desired size over a UV parameter space, typ-
ically in several minutes. Ultimately, the synthesized NeRF texture 
can be applied to any given shape, enabling real-time rendering.

More specifically, we propose the following key techniques to 
facilitate the modeling and synthesis of the NeRF textures with 
detailed geometry and view-dependent effects:

Firstly, to learn the meso-structure of textures, we disentangle 
the scene with fine geometric details into the meso-structure and 
the underlying base shape. We then learn the meso-structure as 
a NeRF texture through a latent feature field defined on the base 
shape. To achieve this goal, we first extract the base shape and 
explicitly represent it as a coarse mesh using Instant-NGP [Müller

et al. 2022] and Co-ACD [Wei et al. 2022]. We then propose to map
each point in the 3D Euclidean space to the Cartesian product of
the signed distance and its foot point when projected onto the base
mesh. Latent features are defined on the base shape and fetched by
the foot point. However, directly fetching latent codes from mesh
vertices, like in [Bao and Yang et al. 2022], requires high-resolution
meshes, which leads to a slowdown in latent code lookup and
requires distillation from a well-trained NeRF. Instead, we fetch the
latent representation for the texture with hash grids [Müller et al.
2022] to support real-time rendering and training from scratch.

Secondly, to apply captured NeRF-based textures to new shapes,
it is crucial to synthesize textures at sufficient resolutions. We
propose a novel NeRF-based texture synthesis method based on the
coarse-fine disentanglement representation. Initially, we extract
implicit patches from the base shape, on which latent features are
defined, to create a patch collection. Subsequently, we implement
an implicit patch matching algorithm to synthesize NeRF-based
textures with collected patches. During this process, patches of
latent features are sampled, matched and quilted to generate a
texture space with the desired spatial resolution. Furthermore, we
introduce an unsupervised metric learning approach to cluster the
features of similar textures, thereby enhancing the quality of the
synthesized results.

In summary, our main contributions are as follows:
• We propose a method to capture, model, synthesize and
render NeRF textures with meso-structure from real-world
multi-view images.

• We propose a coarse-fine disentanglement representation
that learns the meso-structure and reflection coefficients
as NeRF textures, which are separated from the underlying
coarse surface.

• We adopt a patch matching algorithm in the latent space to
synthesize NeRF textures. A clustering constraint is intro-
duced to regularize the latent distribution for better match-
ing. To the best of our knowledge, this is the first work for
NeRF texture synthesis.

2 RELATEDWORK
As our work is related to neural rendering and texture synthesis,
we review papers related to these topics.

2.1 Neural Rendering
Various neural rendering approaches have been proposed to syn-
thesize novel views of a scene with a given set of photographs.
NeRF [Mildenhall et al. 2021] models the scene as a radiance field
with particles emitting and blocking lights. Inspired byNeRF, follow-
up works extend it to achieve faster inference [Fridovich-Keil et al.
2022; Karnewar et al. 2022; Müller et al. 2022], handle large-scale
scenes [Barron et al. 2022; Gao et al. 2023; Tancik et al. 2022; Zhang
et al. 2020] and dynamic scenes [Liu et al. 2022; Qiao et al. 2022;
Song et al. 2023], and attain reflection decomposition [Boss et al.
2021; Kuang et al. 2022; Munkberg et al. 2022; Srinivasan et al.
2021] and stylization [Fan et al. 2022; Huang et al. 2022; Zhang et al.
2022]. Some other neural representations have been proposed to
model meso-scale textures. Kuznetsov et al. [2022] utilize neural
bidirectional texture functions (BTFs) to model known texture with
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Figure 2: Given a set of multi-view images, we first estimate its base shape. Based on it, we model the scene with a disentangled
representation of the base shape and NeRF texture with meso-structure. The query point 𝑥 is projected onto the base shape as
footpoint 𝑥𝑐 . Latent features 𝑓 (𝑥), 𝑓 (𝑥) representing textures are fetched by feeding 𝑥𝑐 to hash grids. Along with matrices of
local tangent space𝑇𝑐 (𝑥), latent features 𝑓 (𝑥), 𝑓 (𝑥), and SDF value 𝑠 (𝑥) are fed into the rendering module (RM). The density 𝜎 (𝑥),
coefficients of Phong shading model 𝑘𝑑 (𝑥), 𝑘𝑠 (𝑥), 𝑔(𝑥), elevation and azimuth angles of the fine normal 𝜃 (𝑥), 𝜙 (𝑥) are predicted
based on the input features and SDF. The color 𝑐 (𝑥) of the query point 𝑥 is calculated by Spherical Harmonic (SH) rendering
based on the coarse and fine normals 𝑛𝑐 (𝑥), 𝑛𝑓 (𝑥), viewing direction 𝑑 , shading coefficients 𝑘𝑑 (𝑥), 𝑘𝑠 (𝑥), 𝑔(𝑥) and lighting SHs.
Based on the implicit texture representation (ITR), we extract implicit patches from the base shape and synthesize texture by
an implicit patch matching algorithm. By querying 𝑓 (𝑥), 𝑓 (𝑥) and 𝑇𝑐 (𝑥) from the synthesized implicit textures, we are able to
render the appearance of the synthesized texture.

meso-structure. Wang et al. [2021a] propose to learn a complex
shape as a combination of a smooth low-frequency signed distance
function (SDF) and a continuous high-frequency signed distance
function.

NeuTex [Xiang et al. 2021] explicitly represents the texture in a
neural representation through UV parameterization to support tex-
ture editing and mapping. However, such 2D parameterization as-
sumes the target object can be smoothly mapped to a 2D parameter
space, which is not suitable for most textures with meso-structure.
NeuMesh [Bao and Yang et al. 2022] proposed a mesh-based neural
implicit representation to disentangle the shape and appearance.
With geometry and texture features defined on vertices, it achieves
the geometry and texture editing of the neural implicit field. Nev-
ertheless, NeuMesh utilizes predicted SDF rather than densities
in volume rendering, which cannot be defined on non-watertight
meso-structure. Besides, the mesh storing encodings closely fits the
target surface, and as a result the meso-structure is not learned as
texture properties. NeRF-Tex [Baatz et al. 2022] firstly investigated
the possibility to model the texture with meso-structures through
NeRF. The model is trained on synthetic datasets with rendering
results of patches in a bounding box on a plane under known light-
ing conditions. Textures are mapped to the shapes by repeatedly
placing the reconstructed bounding box on surfaces. In contrast,
our approach targets NeRF texture synthesis, which simultaneously
learns the Phong reflection coefficients, meso-structure and lighting
conditions from real-world objects with textures.

2.2 Texture Synthesis
The goal of texture synthesis is to synthesize a new texture that
appears to be generated by the same underlying process [Wei et al.
2009]. The pioneering work by [Efros and Leung 1999] gradually
grows the synthesized region by assigning pixels one by one. The as-
signment is determined by neighborhood similarity. Following this
idea, a fixed neighborhood is used in [Wei and Levoy 2000] to avoid
non-uniform pattern distribution. Patch-based method [Liang et al.
2001] proposes to blend the overlapped regions between patches.
The works [Efros and Freeman 2001; Kwatra et al. 2003] cut through
the overlapped regions via dynamic programming and graph cut,
respectively. PatchNet [Hu et al. 2013] searches an image library to
locate ideal regions adhering to the synthesis constraints. Kwatra et
al. [2005] proposed an alternative approach by texture optimization.

In addition to traditional matching and optimization methods,
neural networks are also introduced in texture synthesis. Gatys
et al. [2015] present a data-driven approach to generating texture
through optimizing the Gram matrix of latent features extracted by
VGG network [Simonyan and Zisserman 2015]. Follow-up works
[Johnson et al. 2016; Ulyanov et al. 2016] train feed-forward con-
volutional networks to replace the time-consuming optimization
process. Generative adversarial networks (GANs) are also widely
used for texture synthesis [Jetchev et al. 2016; Li and Wand 2016].
Zhou et al. [2018] train a GAN to double the spatial extent of texture
blocks, enabling the model to synthesize non-stationary texture.
Portenier et al. [2020] use the Gram matrix produced by the dis-
criminator in adversarial loss to improve the quality of synthesized
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texture. Hertz et al. [2020] propose a Mesh-CNN [Hanocka et al. 
2019] based GAN architecture to synthesize geometric textures. 
PSGAN [Bergmann et al. 2017] proves that periodic encoding can 
improve the quality of GAN results. Inspired by it, Chen et al. [2022] 
utilize periodic embedding as input and replace the convolution 
layer with a Multi-Layer Perceptron (MLP) to model implicit fields.

3 METHOD
We present a method to capture, model, synthesize and apply NeRF 
textures with meso-structure from real-world multi-view images. 
The overview of our pipeline is shown in Fig. 2. Given segmented 
multi-view images of the scene, our model learns to disentangle 
meso-structure textures and the underlying base shape. By sam-
pling the implicit patches of latent features on the base shape and 
utilizing them to synthesize a larger texture map, we are able to 
decorate an arbitrary given mesh with the synthesized result. In 
the following, we will introduce texture representation in Sec. 3.1, 
texture synthesis in Sec. 3.2, and model optimization in Sec. 3.3.

3.1 Texture Representation
3.1.1 Base Shape Extraction. To model the base shape explicitly as 
a coarse mesh, we firstly adopt Instant-NGP [Müller et al. 2022] to re-
construct the coarse mesh by executing Marching Cubes [Lorensen 
and Cline 1987] on the estimated density field with camera pa-
rameters estimated by COLMAP [Schönberger and Frahm 2016; 
Schönberger et al. 2016]. To remove the meso-structure and make 
the coarse mesh smoother, the coarse mesh is transferred into the 
union of approximately decomposed convex hulls by Co-ACD [Wei 
et al. 2022]. The shape is then re-meshed [Huang et al. 2018; Vollmer 
et al. 1999] to a mesh with vertices uniformly distributed on the 
surface. Fig. 3 illustrates the process of base shape extraction.

Figure 3: Base Shape Extraction. We show the intermedi-
ate outputs during the base shape extraction, including
NGP [Müller et al. 2022], Co-ACD [Wei et al. 2022], and re-
meshing [Huang et al. 2018; Vollmer et al. 1999].

3.1.2 Base Shape Projection. We treat all attributes other than the
base shape as texture attributes to learn, including meso-structure,
normal and appearance. To disentangle these attributes and the
base shape, we utilize the coarse mesh mentioned above to re-
parameterize 3D Euclidean space and learn the attributes into the
latent features defined on the coarse mesh. In our approach, the
coordinates of query point 𝑥 are mapped to the coarse mesh to
get the projected coordinates 𝑥𝑐 and the signed distance 𝑠 (𝑥), as
depicted in Fig. 4. For each query point 𝑥 , we look up its 𝐾 (= 8)
nearest neighbor points {𝑣𝑘 } among the coarse mesh vertices. We
interpolate the vertex normal 𝑛𝑣 of neighbors together with the
normalized vector from nearest neighbor 𝑣1 to 𝑥 using weighted

KNN [Shepard 1968] to get the coarse mesh normal 𝑛𝑐 of 𝑥 :

�̃�𝑐 (𝑥) =
𝐾∑︁
𝑘=1

1
𝑊

(
𝑛𝑣 (𝑣𝑘 )

| |𝑥 − 𝑣𝑘 | |2
+ 𝑥 − 𝑣1
𝑤 | |𝑥 − 𝑣1 | |2

)
,

𝑛𝑐 =
�̃�𝑐

| |�̃�𝑐 | |2
, 𝑊 =

𝐾∑︁
𝑘=1

1
| |𝑥 − 𝑣𝑘 | |2

+ 1
𝑤
,

(1)

where𝑤 is a constant set to 0.01. Next, we cast the ray from 𝑥 along
the opposite coarse normal direction −𝑛𝑐 (𝑥) to hit the coarse mesh
on a projected point 𝑥𝑐 . The first term in Eq. 1 is the weighted aver-
age of normals from the 𝐾 nearest neighbors to improve robustness.
When 𝑥 is far from the coarse mesh, normals of 𝐾 neighbors may
be less reliable so the second term becomes dominant to ensure the
ray-mesh collision. At this step, the signed distance of 𝑥 projected
onto the coarse mesh is also obtained and denoted as 𝑠 (𝑥).

x

xc

Meso-structure

Base Shape

Coarse Normal 𝑛𝑐 𝑥

Signed Distance 𝑠 𝑥

Figure 4: Illustration of Base Shape Projection in 2D. Point 𝑥
in Euclidean space is parameterized as the signed distance
𝑠 (𝑥) and the projected footpoint 𝑥𝑐 .

3.1.3 Differentiable Projection Layer. The step of ray casting makes
the projected coordinates 𝑥𝑐 non-differentiable with respect to the
input coordinates 𝑥 . However, the gradient is essential to approxi-
mate the normal [Boss et al. 2021; Srinivasan et al. 2021] or supervise
the normal estimation [Kuang et al. 2022; Zhang et al. 2021] for
physically based rendering. In addition, back-propagating gradients
to the camera parameters via coordinates 𝑥 is crucial for camera
pose modification [Kuang et al. 2022; Lin et al. 2021; Wang et al.
2021b] to improve the reconstruction quality. For these reasons,
we construct a differentiable projection layer by specifying the
following derivation rule:

d𝑥𝑐
d𝑥

= (𝐼 − 𝑛𝑐 (𝑥)𝑇𝑛𝑐 (𝑥)),
d𝑠 (𝑥)
d𝑥

= 𝑛𝑐 (𝑥) (2)

where 𝐼 is the identity matrix. The rule transfers the component
of the gradient of 𝑥𝑐 on the plane, which is perpendicular to 𝑛𝑐 (𝑥),
to 𝑥 . It also passes the gradient of 𝑠 (𝑥) to 𝑥 after projection onto
𝑛𝑐 (𝑥). The rule is consistent with parameterizing 3D coordinates
as the footpoint and projected signed distance on a base shape.

3.1.4 Attributes Prediction. Directly querying latent codes from
mesh vertices, like in [Bao and Yang et al. 2022], is difficult to
train from scratch and demands high-resolution meshes, which
results in high query overhead and difficulty in real-time rendering.
Hence, we fetch the latent texture representation 𝑓 (𝑥) in𝑂 (1) time
complexity by feeding the projected coordinates 𝑥𝑐 to hash grids
storing latent features [Müller et al. 2022]. Through the tiny-cuda-
nn framework [Müller 2021], we map the concatenated texture
feature 𝑓 (𝑥) and Fourier embedded [Tancik et al. 2020] SDF value
𝑠 (𝑥) to the density 𝜎 (𝑥) and reflection coefficients. The estimation
of the fine normal 𝑛𝑓 (𝑥) on 𝑥 is done in two parts: estimating
elevation angle 𝜃 (𝑥) and azimuth angle 𝜙 (𝑥), respectively. Both
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angles are represented in the local tangent frame of 𝑥𝑐 , denoted as
𝑇𝑐 (𝑥𝑐 ) = (𝑡 (𝑥𝑐 ), 𝑏 (𝑥𝑐 ), 𝑛(𝑥𝑐 )), meaning tangent, bitangent, and nor-
mal at 𝑥𝑐 . Notice that𝑇𝑐 (𝑥𝑐 ) is determined by the tangent, bitangent,
and normal of 𝑥𝑐 ’s locating triangle face, which is pre-computed
and fixed. Since 𝜃 (𝑥) is the angle between the coarse mesh normal
𝑛𝑐 (𝑥) and the fine (meso-structure) normal 𝑛𝑓 (𝑥), it is an attribute
independent of the definition of the local tangent frame. Instead,
𝜙 (𝑥) depends on the direction of 𝑡 (𝑥𝑐 ), which can be flexibly pre-
chosen. Hence we predict 𝜃 with 𝑠 (𝑥) and 𝑓 (𝑥), which is further
used for patch matching, to encourage similar texture contents to
have latent features 𝑓 close to each other regardless of different
local tangent definitions. We then learn a different feature 𝑓 (𝑥)
stored in another hash grid table for predicting 𝜙 (𝑥).

3.1.5 Shading Model. Unlike vanilla NeRF, which mixes the repre-
sentation of materials and lighting, we decompose these elements
to enable the rendering of textures mapped to novel locations. To
ensure real-time rendering speed and stable convergence, we utilize
Spherical Harmonics (SHs) [Ramamoorthi and Hanrahan 2001] to
represent illumination and materials in our rendering pipeline. We
adopt Phong shading [Phong 1975] to model the material reflection
with three parameters: diffuse coefficient 𝑘𝑑 , specular coefficient 𝑘𝑠 ,
and glossiness 𝑔. Following the approach outlined in [Ramamoorthi
and Hanrahan 2001], we employ the convolution of SHs to compute
the texture color 𝑐 (𝑥). The decomposition is illustrated in Fig. 5.

Figure 5: Shading Decomposition. Our model predicts the
fine normal 𝑛𝑓 and decomposes the radiance into diffuse and
specular components.

3.2 Texture Synthesis
3.2.1 Texture Patch Extraction. Since we have leveraged latent fea-
tures on the base shape for representing texture attributes, the next
step is to extract the implicit patches from the base shape for subse-
quent texture synthesis, as depicted in Fig. 6. In our approach, we
place square scan arrays of 128 × 128 resolution on each tangent
plane of the coarse mesh to obtain the intersections of the scan-
ning rays with the mesh. We then query the hash grids with these
intersections to fetch latent features and obtain implicit patches.
We denote the rotation of the sampling local frame to the world
coordinate system as 𝑇𝑠 ∈ R3×3. We similarly define the rotation
of the coarse mesh local frame to the world system as 𝑇𝑐 ∈ R3×3.
For subsequent texture mapping, we also record 𝑇𝑐 and 𝑇𝑠 of each
patch.

3.2.2 Patch-based Synthesis. We synthesize textures of arbitrary
sizes based on the sampled exemplars using patch matching and
quilting [Efros and Freeman 2001]. The output is initialized by copy-
ing a seed patch, and the synthesized region is gradually grown
from the initial state by iteratively copying the picked patch onto

Figure 6: Texture Patch Extraction. We extract implicit tex-
ture patches by sampling them on the base shape, where
latent features are defined.

it. In each iteration, the choice of the patch is determined by the
conditional distribution that measures the similarity of the over-
lapping region of the synthesized output and the candidate patch.
With a picked patch, the minimum cost path along the overlapping
region gives the boundary, and the patch is pasted onto the output
texture. The sampled patches are augmented by horizontal and ver-
tical flipping for better synthesis. The transformation matrices of
the sampling tangent space of augmenting patches are also flipped
accordingly.

3.2.3 Latent Feature Clustering. Ideally, the metric of latent space
should be consistent with that of the reconstructed content space to
ensure the plausibility of patch matching. Thanks to the continuity
of neural networks, latent features close to each other reconstruct
similar textures. However, it does not guarantee that similar tex-
ture contents are represented by similar latent features. To this end,
we ensure the consistency of metrics in two aspects. First, latent
features corresponding to similar texture contents have similar op-
timization targets (e.g. 𝑘𝑑 , 𝑘𝑠 , 𝑔 and 𝜃 ) during the training, which
means that they have close optima when the training converges.
Second, to avoid the latent features corresponding to similar tex-
tures falling into different optima during training, we introduce
a clustering loss [Xie et al. 2016] for latent features into the opti-
mization objective. Student’s 𝜏-distribution is used as the kernel to
measure the similarity [Van der Maaten and Hinton 2008] between
latent features 𝑓𝑖 and trainable cluster centers 𝜇 𝑗 . The distribution
𝑄 and its hardened auxiliary distribution 𝑃 are defined as:

𝑞𝑖 𝑗 =
(1 + ||𝑓𝑖 − 𝜇 𝑗 | |22/𝜅)

− 𝜅+1
2∑

𝑗 ′
(1 + ||𝑓𝑖 − 𝜇 𝑗 ′ | |22/𝜅)

− 𝜅+1
2
, 𝑝𝑖 𝑗 =

𝑞2
𝑖 𝑗
/∑
𝑖
𝑞𝑖 𝑗∑

𝑗 ′
(𝑞2
𝑖 𝑗 ′/

∑
𝑖
𝑞𝑖 𝑗 ′ )

(3)

where 𝜅 is the degree of freedom of the Student’s 𝜏-distribution. 𝑃
is stricter than 𝑄 and closer to 0 or 1. The clustering loss is given
by the KL divergence [Kullback and Leibler 1951] between them:
𝐿𝑐𝑙𝑢 = 𝐾𝐿(𝑃 | |𝑄). For hash grids at each resolution level, we cluster
the embedding features with the clustering loss.

3.2.4 Texture Mapping. Given a new 3D shape with known UV
coordinates, query point 𝑥 is projected onto the surface, with the
foot point denoted as 𝑥𝑐 , as described in Sec. 3.1. The latent features
𝑓 (𝑥) of the𝑥 is obtained by bilinear interpolation on the synthesized
texture with UV coordinates of 𝑥𝑐 . The residual transformation from
the original coarse mesh local frame to the sampling local frame
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Scenes Synthesis Applications
Figure 7: Texture synthesis and applications. We show the synthesized textures of durian, tree bark, woven basket, leaves, and
flowers. The textures are also applied to different shapes. The last example is constrained synthesis guided by the text image.

𝑇 −1
𝑠 (𝑥)𝑇𝑐 (𝑥) is also obtained by nearest-neighbor interpolation on
synthesized 𝑇𝑠 and 𝑇𝑐 maps. Based on the feature and SDF value,
the network predicts the appearance and geometry of the query
point. With the transformation of the new tangent space on the
target surface, denoted as 𝑇𝑐 (𝑥), the predicted normal on the new
shape is calculated as:

�̃�𝑓 (𝑥) = 𝑇𝑐 (𝑥)𝑇 −1
𝑠 (𝑥)𝑇𝑐 (𝑥)𝑅(𝜃 (𝑥), 𝜙 (𝑥)),

𝑅(𝜃, 𝜙) = (sin𝜃 cos𝜙, sin𝜃 sin𝜙, cos𝜃 )𝑇
(4)

The density and reflection coefficients are also calculated by 𝑓 (𝑥)
and SDF value 𝑠 (𝑥) relative to the new shape.

3.3 Optimization
Our model is trained with the Adam optimizer [Kingma and Ba
2015]. The optimization target of our method consists of four terms:

𝐿 = 𝐿𝑟𝑒𝑐 + 𝜆1𝐿𝑐𝑙𝑢 + 𝜆2𝐿𝑑𝑖𝑠 + 𝜆3𝐿𝑛𝑜𝑟 . 𝐿𝑟𝑒𝑐 is the L1 RGB reconstruc-
tion loss. 𝐿𝑑𝑖𝑠 is the distortion loss [Barron et al. 2022] removing
floating artifacts. 𝐿𝑛𝑜𝑟 supervises the prediction of (𝜃, 𝜙) based on
the negative gradients of density 𝜎 (𝑥) relative to 𝑥 . Owing to the
noise of density gradients, we employ the relaxed cosine distance
to supervise the estimated normal:

𝐿𝑛𝑜𝑟 = − cos{min(⟨< −d𝜎 (𝑥)
d𝑥

, 𝑛𝑓 (𝑥)⟩ >,
𝜋

8
)} (5)

In our experiments, 𝜆1, 𝜆2, and 𝜆3 are set to 10−5, 10−2, and 1.

4 RESULTS
In this section, we perform several experiments to demonstrate the
utility of our method. We will firstly show the results on texture
synthesis and applications in Sec. 4.1. Then we quantitatively and
qualitatively compare the novel view synthesis quality to show the
rendering quality of our method in Sec. 4.2. We also compare the
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Table 1: Quantitative comparison of view synthesis. We show the average PSNR/SSIM/LPIPS for novel view synthesis on DTU.

Methods Scan 55 Scan 83 Scan 105 Scan 122

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)
NeRF 28.244 0.940 0.212 37.816 0.990 0.092 34.152 0.947 0.208 36.464 0.979 0.135
NGP 34.108 0.991 0.086 42.602 0.996 0.049 38.247 0.991 0.085 41.976 0.996 0.057
Ours 32.378 0.988 0.104 43.842 0.998 0.027 36.809 0.990 0.067 42.704 0.998 0.031

2D texture and our representation in Sec. 4.3, which indicates the
advantage of our method in texture modeling. Finally, we compare
with NeRF-Tex in Sec. 4.4 and perform an ablation study on the
impact of latent feature constraint in Sec. 4.5.

4.1 Texture Synthesis and Applications
We demonstrate the utility of our method by acquiring and syn-
thesizing textures from the real world captured by a mobile phone
as shown in Fig. 7. The target texture includes durian, tree bark,
fabric, leaves, and flowers. The synthesized results and depth visu-
alization are shown in the 2nd and 3rd columns. We also applied
captured textures to grow on the desired shape or pattern shown
in the 4th-6th columns. We synthesize the durian’s texture with
thorns and transfer it to a banana. The tree bark is usually covered
with stripes of ravines. We synthesize and apply such texture to a
barrel shape and obtain a wooden barrel. We capture fabric texture
on a woven basket and construct a woven horse. Leaves and grass
are also typical textures in nature; we synthesize an ocean of leaves
and grass and apply it to a vase. We also synthesize colorful flow-
ers guided by the shown text image, by considering the rendered
color of patches during texture synthesis (see supplementary for
details). The zoomed-in view in the 6th column shows the effect
of the material on oblique views and object edges, where 2D tex-
tures appear unrealistic due to the lack of meso-structure modeling,
demonstrating the advantages of our method over 2D textures.

4.2 View synthesis quality
We evaluate the view synthesis quality of our method on the pub-
lished dataset DTU [Aanæs et al. 2016], in which the scenes are
of objects suitable for our method to represent as they contain
texture-like structure. We test on 4 scenes with masks provided
by [Yariv et al. 2020]. In each scene, 5 images are randomly picked
as the test set. Qualitative comparison with NeRF [Mildenhall et al.
2021], Instant-NGP (NGP) [Müller et al. 2022] and ours is shown
in Fig. 10. We report the PSNR, SSIM, and LPIPS in Tab. 1. Due to
the specific design for disentangling meso-structure and materi-
als, our approach is slightly worse than NGP in some quantitative
comparisons. Despite this, our rendered results are still realistic in
high-frequency details and perceptually close to NGP’s results.

4.3 Comparison with 2D texture
To verify the advantages of our texture representation over 2D im-
age textures, we conduct quantitative and qualitative experiments
to demonstrate it. To obtain 2D texture patches, we simultaneously
render the RGB patches when sampling patches as described in
Sec. 3.2. Based on the RGB patches, we use the patch matching algo-
rithm to synthesize a texture image the same size as our generated

neural texture. We render both 2D and neural textures in different
angles of elevation from 0◦ to 80◦ as samples for comparison.

Single Image Fréchet Inception Distance (SIFID). SIFID introduced
in [Shaham et al. 2019] is a commonly used metric to assess the
realism of generated images. We crop the regions, where the corre-
sponding 3D shape approximate planes, from the captured images
as ground truths. We then calculate the SIFIDs between rendered
textures with ground truths of the closest viewing directions rela-
tive to planes. Average SIFIDs reported in Tab. 2 indicate that our
texture representation is more realistic than 2D textures.

Table 2: Quantitative comparison with 2D texture. Our NeRF
texture has lower SIFIDs in all elevation angles.

Degree 0◦ 20◦ 40◦ 60◦ 80◦ Average

2D 0.73 0.75 0.82 1.21 1.75 1.05
Ours 0.52 0.51 0.56 0.58 0.82 0.60

Qualitative comparison. We also show the qualitative comparison
of 2D image texture with our representation in Fig. 8 in different
viewing directions. The synthesized 2D texture of meso-structure
will be unrealistic at high elevation angles while our representation
can well represent the geometry occlusion of meso-structure.

Figure 8: Qualitative comparison with 2D textures. We show
the rendering results of our synthesized textures and 2D
textures. Our representation of texture with meso-structure
maintains realism even at high-elevation viewing angles.

4.4 Comparison with NeRF-Tex
We present a visual comparison between NeRF-Tex [Baatz et al.
2022] and our proposed method, as demonstrated in Fig. 9. In con-
trast to our approach, NeRF-Tex does not perform texture synthesis;
instead, it repeatedly places planar texture patches on anchor points
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of the mesh in an unstructured manner, leading to a loss of regu-
larity for typical structural textures. Besides, it is crucial to note 
that NeRF-Tex trains a NeRF using synthetic data with known 
tightly-bounded planar geometry, which cannot be directly applied 
to real-world data. Thus, we utilize our coarse-fine disentangle-
ment representation to generate multi-view images of real-world 
meso-structure textures within a bounding box, serving as training 
data for NeRF-Tex.

Figure 9: Compared with NeRF-Tex [Baatz et al. 2022], our
method demonstrates superior preservation of texture conti-
nuity and structure.

4.5 Ablation on Clustering Constraint
The complexity and randomness of textures can easily lead to the
disordered distribution of features, even if these features share the
same reconstruction target. The clustering constraint regularizes
the latent distribution by encouraging similar textures to be repre-
sented by close features. We visualize the synthesized feature maps
with and without the constraint by Principal Component Analysis
dimensionality reduction to 3D, which is further visualized as RGB
channels in Fig. 11 (left). We found that the constraint makes the
latent distribution more compact and reduces the variance. Results
without the constraint tend to have more artifacts (Fig. 11 (right)).

5 LIMITATION
We analyze the performance of our method on different examples
and summarize two aspects of limitations. 1) Limitation on texture
capture. Due to the requirement of base shape for texture repre-
sentation, our approach is limited by the base shape extraction and
fails to capture meso-structure textures from objects with complex
geometry like the Lego shown in Fig. 12, where the detailed surface
is difficult to approximate with a coarse mesh. It is also challenging
to extract complete implicit patches on regions with limited spatial
extents of the base surface, like the perforated structure on the Lego
loader, for subsequent synthesis. On the contrary, our method can
easily extract and synthesize the bump texture on the Lego base.
2) Limitation on texture synthesis. Our patch-matching approach
follows a greedy strategy to select patches for quilting, which may
cause the break of structures for textures requiring strict matching
with only limited patches, as shown in the 1st row of Fig. 13. Besides,
our synthesis algorithm is semantically agnostic. Semantic contents
like keycap shapes may be distorted, and synthesized characters
may be incorrect, as shown in the 2nd row of Fig. 13. Our approach

could potentially incorporate recent generative techniques, such as
Diffusion Models [Ho et al. 2020], to address the limitation.

6 CONCLUSION
We present NeRF-Texture, a novel approach that captures, models,
synthesizes and renders real-world textures with rich geometric
and appearance details. A coarse-fine decomposition representa-
tion is introduced to disentangle the meso-structure texture and
base shape. Based on the representation, we adopt a latent patch
matching algorithm to synthesize acquired textures. A clustering
constraint regularizes the distribution of latent features for better
synthesis.
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Scenes GT NeRF NGP OursGT OursNeRF NGPScenes

Figure 10: Qualitative comparison of view synthesis. Note that our method supports texture capture, synthesis and application
while visually close to the state of the arts.

Figure 11: Impact of clustering constraint. With the clustering loss (w/ CL), latent features are constrained to cluster, which
reduces the distance of latent features corresponding to similar textures and further reduces artifacts in synthesized results.

Reconstruction

Base Shape
GTZoom in Synthesis

Figure 12: Limitation on texture capture. Our approach fails to reconstruct and capture textures on shapes with complex coarse
geometry due to the difficulty in base shape estimation and patch sampling on regions with limited spatial extents of the base
surface. On the contrary, the bump texture on the Lego base can be easily acquired and synthesized.

Figure 13: Limitation on texture synthesis. Our synthesis approach based on patch matching struggles to synthesize highly
structured textures requiring strict matching with a few captured exemplars while maintaining the semantic contents of
textures.
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