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Fig. 1. Our SketchFaceNeRF system supports both generation and editing of high-quality facial NeRFs from 2D sketches. As shown in the left half part,
given a hand-drawn sketch (top-left corner), photo-realistic rendering results with different appearances are synthesized from scratch. The detailed geometry
model and free-view rendering results are shown at the bottom. On the right half part, we show sketch-based editing of facial NeRFs and the corresponding
geometry, where original faces and geometry are shown in purple boxes, and the results of two consecutive editing steps are shown in green and orange boxes,
respectively. During editing, local regions are modified according to the edited sketches highlighted in red, while the geometry and appearance features in
unedited regions are well preserved.

Realistic 3D facial generation based on Neural Radiance Fields (NeRFs) from
2D sketches benefits various applications. Despite the high realism of free-
view rendering results of NeRFs, it is tedious and difficult fo r ar tists to
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achieve detailed 3D control and manipulation. Meanwhile, due to its concise-
ness and expressiveness, sketching has been widely used for 2D facial image
generation and editing. Applying sketching to NeRFs is challenging due to
the inherent uncertainty for 3D generation with 2D constraints, a significant
gap in content richness when generating faces from sparse sketches, and
potential inconsistencies for sequential multi-view editing given only 2D
sketch inputs. To address these challenges, we present SketchFaceNeRF,
a novel sketch-based 3D facial NeRF generation and editing method, to
produce free-view photo-realistic images. To solve the challenge of sketch
sparsity, we introduce a Sketch Tri-plane Prediction net to first inject the
appearance into sketches, thus generating features given reference images
to allow color and texture control. Such features are then lifted into compact
3D tri-planes to supplement the absent 3D information, which is important
for improving robustness and faithfulness. However, during editing, con-
sistency for unseen or unedited 3D regions is difficult to maintain due to
limited spatial hints in sketches. We thus adopt a Mask Fusion module to
transform free-view 2D masks (inferred from sketch editing operations) into
the tri-plane space as 3D masks, which guide the fusion of the original and
sketch-based generated faces to synthesize edited faces. We further design an
optimization approach with a novel space loss to improve identity retention
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for 3D face modeling [Han et al. 2017, 2018; Yang et al. 2021b].
However, these solutions are specifically designed for mesh-based
models, which lack high-quality texture to render realistic images.
NeRF naturally synthesizes realistic faces, but applying sketch to
NeRF is challenging. First, due to the domain gap between sparse,
monochromatic sketches and real 2D facial images, 2D sketch-based
facial modeling is already challenging, not to mention the inference
of 3D information from single-view sketch inputs. Furthermore,
users may perform local editing operations from different views.
Supporting multi-step local manipulations from different views
and preserving unedited 3D regions via 2D sketches is not easy to
achieve.
In order to generate and edit facial NeRFs from 2D sketches, a

possible approach is to first leverage 2D sketch-based image gen-
eration methods [Chen et al. 2020; Li et al. 2019, 2020; Yang et al.
2021a] or editing methods [Chen et al. 2021; Jo and Park 2019; Yang
et al. 2020; Zeng et al. 2022] to generate photo-realistic facial im-
ages, and then project the generated images into latent space of
3D GAN such as EG3D [Chan et al. 2022]. However, as shown in
Figs. 8 and 9, these approaches are not robust enough against hand-
drawn sketches, so the 2D intermediate faces may have artifacts,
which would be inherited by final projection results. Inspired by
pSp [Richardson et al. 2021], another possible solution is to directly
project 2D input sketches into 3D latent space by a CNN encoder.
However, this approach tends to overfit synthesized style sketches
because of the domain gap, as we will later show in Fig. 8. To solve
the above problems, we translate 2D sketches into 3D tri-plane
features [Chan et al. 2022], which supplement sketches with color
and stereoscopic information (i.e., volumetric distribution of 3D
faces) to reduce the domain gap. The tri-plane feature prediction
strategy not only improves the robustness for hand-drawn sketches
and adds appearance control but also supports multi-view detailed
manipulation because of the representation consistency with the
existing tri-plane-based EG3D generator.
We present SketchFaceNeRF, a novel sketch-based facial NeRF

generation and editing method. It synthesizes high-quality 3D facial
NeRFs from scratch with single-view hand-drawn sketches (see Fig.
1). As discussed before, instead of directly projecting 2D sketches
into 3D latent space, we propose a Sketch Tri-plane Prediction net to
translate 2D sketches into a compact 3D tri-plane representation.
Specifically, with an appearance reference image, we first transform
sketches into 2D feature maps, which are then lifted into 3D feature
volumes in the 3D Euclidean volume rendering space. Inspired by
[Yu et al. 2021], the feature of each 3D position is computed from
the 2D feature maps by perspective projection transformation and
bilinear interpolation. The tri-plane features are then generated by
volume reshaping and convolutions. It is noteworthy that such a
module is less sensitive to the style of input sketches due to the
involved transformation and projection processes (Fig. 8). The tri-
plane features are concatenated and encoded into the latent space
of EG3D to synthesize realistic facial NeRFs.

Given synthesized facial NeRFs (e.g., EG3D samples, sketch-based
generations, or real-image inversions), the 3D representation allows
users to edit facial details in different views. To solve the challenge of
preserving unedited 3D regions during local editing via 2D sketches,
we first estimate 2D masks, which indicate edited regions based on

and editing faithfulness. Our pipeline enables users to flexibly manipulate 
faces from different viewpoints in 3D space, easily designing desirable facial 
models. Extensive experiments validate that our approach is superior to the 
state-of-the-art 2D sketch-based image generation and editing approaches 
in realism and faithfulness.

CCS Concepts: • Human-centered computing → Graphical user inter-
faces; • Computer systems organization → Neural networks; • Com-
puting methodologies → Rendering; Volumetric models.

Additional Key Words and Phrases: Sketch-based Interaction, Neural Radi-
ance Fields, Face Modeling, Face Editing

1 INTRODUCTION
Highly realistic and stereoscopic face modeling is a popular topic in 
computer graphics and has a wide range of applications, including 
digital character design, avatar-based virtual meetings, etc. Neverthe-
less, creating high-quality facial models in terms of both geometry 
and appearance from scratch requires laborious authoring with 
professional software (e.g., MAYA [Autodesk, INC. 2019], ZBrush 
[Pixologic 2023] and NVIDIA Omniverse [NVIDIA 2023]). More 
importantly, it is very difficult for existing mesh-based approaches 
to render photo-realistic facial images without professional skills 
or high costs, and realism is probably the most critical aspect of 
practical applications. Thus, how to conduct facial modeling in an 
easy-to-use yet realistic way is a worth-studying research problem. 
Thanks to the development of deep learning approaches, Neural 
Radiance Fields (NeRFs) [Mildenhall et al. 2021], a powerful implicit 
3D representation, can easily reconstruct face models from multi-
view images and render photo-realistic free-view results. However, 
directly using a vanilla NeRF to perform face manipulation is very 
challenging since information describing only a specific object or 
scene is encoded by a NeRF network. Although various 3D GAN 
(Generative Adversarial Network) approaches [Chan et al. 2022; Gu 
et al. 2022; Niemeyer and Geiger 2021; Schwarz et al. 2020] have 
been proposed to generate facial NeRFs by random sampling in-
stead of reconstructing real scenes, such methods still lack detailed 
control and interpretable manipulations over synthesized faces.

Several methods [Bergman et al. 2022; Sun et al. 2022b; Tang et al. 
2022; Wu et al. 2022] have attempted to address these issues by 
using sliders to interactively edit predefined attributes based on 
3DMM (3D Morphable Models) such as FLAME [Li et al. 2017], but 
they provide limited manipulation freedoms. On the other hand, it 
is natural for humans to describe images with a long-lasting tool, 
namely pens, which can also be utilized for efficient and realistic 
manipulation in the context of 3D facial GAN. Previous methods 
[Jiang et al. 2022; Sun et al. 2022a,c] resort to semantic masks as 
an editing interface, which, however, does not offer fine control of 
facial details like hairstyles, beards, etc. Another promising pen-
based editing interface is sketching. 2D sketching has been widely 
used to condition facial image generation [Chen et al. 2020; Li et al. 
2019; Su et al. 2022] and editing [Chen et al. 2021; Jo and Park 2019; 
Zeng et al. 2022]. Sketch-based interfaces have also been explored
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the user-performed sketch creation and erasing operations. With
the rendered depth maps of NeRF models, a Mask Fusion module
further lifts the estimated 2D masks into 3D masks, which are used
to pick features from the original tri-plane features in the unedited
regions and predicted tri-plane features from the edited sketches in
the edited regions. The fused tri-plane features are encoded back
into the latent space of EG3D to predict an initial edited face. We
include an optimization process with a novel space loss term to
further ensure faithfulness and consistency for challenging cases
(see examples in Fig. 12). Note that our pipeline can be performed
repeatedly on a single face, supporting multi-step 3D-aware human
face editing from different views via hand-drawn sketches.
The main contributions of this work can be summarized as fol-

lows:

• We propose the first novel sketch-based 3D facial NeRF gen-
eration and editing method, which enables a user-friendly
interface for authoring 3D-aware faces and produces photo-
realistic results.

• We develop a novel network for translating 2D sketches to
3D facial NeRFs. Single-view sketches are augmented in color
and volumetric space to improve the robustness against hand-
drawn sketches and allow appearance control.

• We introduce a mask fusion module and a sketch-based opti-
mization approach to achieve detailed editing while preserv-
ing the original facial features in unedited regions.

2 RELATED WORK
Our work is related to existing works, including facial NeRF gener-
ation and editing, neural sketch-based face generation, and sketch
rendering of 3D shapes.

2.1 Facial NeRF Generation and Editing
Generative NeRFs. Existing 2D image generation methods [Karras

et al. 2019, 2020] randomly sample from a Gaussian distribution to
generate high-quality facial images. Utilizing only 2D image datasets,
many works further apply this idea to 3D generation with NeRFs
[Mildenhall et al. 2021]. For example, GRAF [Schwarz et al. 2020]
first conditions a coordinate-based MLP (Multi-layer Perception)
representation in NeRF on the additional shape and appearance
codes and utilizes a multi-scale patch-based discriminator instead of
a reconstruction loss to train the models. Pi-GAN [Chan et al. 2021]
further uses a SIREN-based network [Sitzmann et al. 2020] with
FiLM [Perez et al. 2018] conditioning to improve the image quality.
However, during GAN training, complete images are rendered in-
stead of individual rays, so the resolution of results is limited due to
memory restriction. To address this issue, GIRAFFE [Niemeyer and
Geiger 2021] generates low-resolution feature maps based on vol-
ume rendering, followed by a 2D CNN-based network to achieve fast
inference and super-resolution. This approach has been extensively
used in subsequent works, but the adopted 2D network seriously
affects the view consistency. To address this, StyleNeRF [Gu et al.
2022] proposes a specific upsampler combined with a NeRF path
regularization loss to reduce the 3D-inconsistency artifacts. Many
works propose novel representations of feature fields to improve
the quality and efficiency further. For example, StyleSDF [Or-El

et al. 2022] builds an architecture with an SDF (Signed Distance
Field)-based 3D volume renderer to achieve view-consistent facial
results with more detailed 3D shapes. GRAM [Deng et al. 2022] rep-
resents radiance fields as a set of implicit surfaces, replacing dense
Monte Carlo sampling with a few intersection points to render high-
resolution images directly. EG3D [Chan et al. 2022] concurrently
introduces a lightweight tri-plane 3D representation, combined with
a super-resolution network and dual discrimination, to ensure view
consistency and image quality. Instead of random sampling, we
translate a 2D sketch into a tri-plane representation to support de-
tailed control in facial NeRF generation. To maintain 3D consistency
during editing, local swapping and fusion operations are further
proposed in the tri-plane space.

Facial NeRF Editing. Besides multi-view image reconstruction or
random generation, many works generate radiance fields based on
single-view inputs, including RGB images [Yu et al. 2021], and even
semantic masks [Chen et al. 2022] or sketches [Jo et al. 2021]. Instead
of conditional generation, semantic masks have been further utilized
to achieve structure and appearance disentanglement, supporting
detailed radiance field editing. FENeRF [Sun et al. 2022c] uses two
decoupled latent codes to generate spatially-aligned semantics and
texture volumes, which share the same geometry but with different
discriminators for supervision. Based on the tri-plane representa-
tion, IDE-3D [Sun et al. 2022a] and NeRFFaceEditing [Jiang et al.
2022] generate geometry planes for semantic volume rendering and
geometry control as well as appearance planes for texture control.
Unlike contiguous 3D semantic masks, a sketch is view-dependent,
especially at the surface contour, making it unsuitable for 3D ge-
ometry and appearance decomposition. Besides, the above methods
edit facial radiance fields based on time-consuming optimization or
single-view encoders. In contrast, our approach can efficiently edit
facial NeRFs in free views with a carefully designed prediction and
refinement architecture.

2.2 Neural Sketch-based Face Generation
Sketch-based 2D Facial Image Generation. Sketching has been

widely used in facial image generation and editing. A pioneer work
[Hu et al. 2013] represents images into a hierarchical representation
and supports sketch-based editing by retrieval. Since there is a
domain gap between freehand sketches and synthetic edge maps,
existing approaches [Chen et al. 2020; Li et al. 2019, 2020; Su et al.
2022; Yang et al. 2021a] introduce various strategies to improve
the robustness against different styles of freehand sketches. Instead
of synthesizing new faces, sketch-based editing approaches [Chen
et al. 2021; Jo and Park 2019; Liu et al. 2022, 2021; Portenier et al.
2018; Yu et al. 2019; Zeng et al. 2022] aim to manipulate real facial
images while retaining the original identity features. Human-drawn
or predicted 2D masks are usually utilized to achieve local editing
results. The above approaches only synthesize 2D results, while our
method applies sketching to realistic 3D face generation and editing
in NeRF. Instead of generating RGB images, we first generate 3D
tri-plane features from single-view sketches and then project them
into the latent space of EG3D. Similar mask guidance is also adapted
into 3D space to support local manipulations.
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single-scene style transfer and cannot be used for generative NeRFs,
such as EG3D [Chan et al. 2022]. Besides, since the above methods
stylize a scene based on a single example image, it is unclear how
to apply these methods to paired image datasets for stylization.

3 METHOD

3.1 Overview and Preliminaries
Fig. 2 illustrates our sketch-based facial NeRF generation and editing
framework. In Sec. 3.2, we describe the sketch-based facial NeRF
generation approach. Taking as inputs a 2D sketch and an appear-
ance reference image, a Sketch Tri-plane Prediction net augments
the sketch with color and stereoscopic information to synthesize
tri-plane features, which are projected into EG3D’s latent space
to generate high-quality facial NeRFs. In Sec. 3.3, we describe our
sketch-based facial NeRF editing approach. To support free view edit-
ing and maintain the identity characteristics in unseen and unedited
3D regions, the tri-plane features synthesized by the edited sketches
and the original tri-plane features are fused by aMask Fusionmodule,
and encoded back into the latent space of EG3D. Then, we further
refine the rendered result by a latent code optimization with sketch
constraints. It should be noted that the sketch-based generation
and editing share the same 3D tri-plane prediction and projection
networks. The sketch-based generated faces can be further edited
to achieve detailed local manipulations from flexible viewpoints, as
shown in Fig. 6. This architecture helps users easily design 3D facial
NeRFs with detailed control.
We build our approach based on EG3D [Chan et al. 2022], a pre-

trained 3D face NeRF generator. Given the latent code 𝑤 , three
orthogonal plane features (referred to as tri-plane features) 𝑝𝑥𝑦 ,
𝑝𝑥𝑧 , and 𝑝𝑦𝑧 are generated from the StyleGAN2 [Karras et al. 2020]
backbone. Each 3D queried position 𝑥 ∈ R3 is projected onto the
three feature planes to get the corresponding features 𝐹𝑥𝑦 , 𝐹𝑥𝑧 , and
𝐹𝑦𝑧 via bilinear interpolation, and such features are then aggregated
into 3D features 𝐹 via summation. An image decoder interprets 𝐹 to
color features and densities, with the subsequent volume rendering
[Mildenhall et al. 2021] to synthesize low-resolution feature maps
whose first three channels are RGB images. A super-resolution mod-
ule further translates the feature maps into high-resolution images.
More details of the generator can be found in [Chan et al. 2022].
Our method generates 3D faces in EG3D’s W+ space, composed
of 14 different latent codes. The efficient tri-plane representation is
also utilized in our 3D feature representation.

3.2 Sketch-based Facial NeRF Generation
Faithfully translating hand-drawn 2D sketches into realistic 3D faces
is an attractive but challenging task. A naïve approach is to directly
encode the input 2D sketches into the latent space of EG3Dwith a 2D
encoder (e.g., [Richardson et al. 2021]) and utilize style-mixing [Chan
et al. 2022; Karras et al. 2020] to control the appearance. However,
since the encoder is originally designed for 2D GANs and the style-
mixing cannot exactly control the appearance in EG3D [Chan et al.
2022], such a solution is not robust to the input sketches at details
such as hairstyles and does not guarantee accurate appearance
styles, as shown in Fig. 8. In contrast, we are motivated to first lift
2D inputs into 3D inputs and then encode them into 3D outputs. The

Sketch-based 3D Facial Model Generation. Many efforts have been 
made to utilize sketching to design 3D face geometry. One category 
of methods [Han et al. 2017; Huang et al. 2022b] predicts the coeffi-
cients of a bilinear face representation based on sketches, combined 
with displace maps [Ling et al. 2022; Yang et al. 2021b] to manipulate 
surface details. Another category of approaches [Du et al. 2020; Han 
et al. 2018; Luo et al. 2021] utilizes sketches to guide the template de-
formation and generates diverse types of 3D models such as animal 
faces. These previous methods succeed in generating 3D models, but 
they could not produce photo-realistic face images directly since it 
is difficult to estimate high-quality texture maps and materials only 
from sketches. Moreover, most of the above approaches only focus 
on face regions separately without hair and facial details like pupils. 
In our method, the 3D-aware hair and pupils are generated together. 
Thanks to the NeRF representation, our method not only gener-
ates photo-realistic 3D faces from 2D sketches, but also constructs 
high-fidelity facial geometry, as shown in Fig. 4.

2.3 Sketch Rendering of 3D Shapes
Rendering high-quality sketches of 3D shapes benefits sketch-based 
modeling since paired training data can be synthesized and ana-
lyzed. A differentiable sketch rendering approach can further utilize 
sketches as constraints to optimize models. To render sketches, a 
straightforward approach is to first render the depth, normal or RGB 
maps, and then utilize image-space algorithms [Canny 1986; Vinker 
et al. 2022; Wang et al. 2018; Xie and Tu 2015; Yi et al. 2020, 2019] 
to generate line drawings. However, these image-based methods 
tend to generate inconsistent results across views because of the 
insufficient utilization of 3D information. Another branch of meth-
ods analyzes the mathematical features of surface geometry and 
defines different shape-depicted lines [Bénard et al. 2019; DeCarlo 
et al. 2003; Judd et al. 2007; Ohtake et al. 2004], which are combined 
together [Liu et al. 2020] to generate high-quality sketches. How-
ever, these methods require extremely high-quality explicit mesh 
models as inputs, which are not cheap to obtain from a 3D implicit 
representation like NeRF with commonly used techniques, such as 
marching cubes [Lorensen and Cline 1987] and DMTet [Shen et al. 
2021].

In order to synthesize high-quality sketches in NeRF, neural style 
transfer [Gatys et al. 2016] is a promising solution. However, there 
are two main challenges in NeRF style transfer: extensive mem-
ory usage caused by rendering whole images during transfer loss 
calculation and view inconsistency when adapting image transfer 
algorithms. Chiang et al. [2022] first propose a memory-efficient 
patch sub-sampling algorithm and train a color branch with a fixed 
geometry branch. StylizedNeRF [Huang et al. 2022a] further de-
signs a mutual learning framework and learnable conditional latent 
codes to improve the view consistency. Other methods maintain the 
original NeRF networks but design novel training strategies. For 
example, SNeRF [Nguyen-Phuoc et al. 2022] alternates the NeRF 
training and stylization optimization steps, consuming less memory 
in each stage while retaining the original consistency of NeRF. ARF 
[Zhang et al. 2022] introduces a new view-consistent style loss and a 
deferred back-propagation method to enable memory-intensive op-
timization. However, existing methods are specifically designed for
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Fig. 2. Overview of our unified sketch-based facial NeRF generation and editing framework. Given an input sketch 𝑆 , the Sketch Tri-plane Prediction Network
generates a tri-plane feature representation 𝑝𝑠 for 3D information. The color information is supplemented by an appearance encoder 𝐸𝑐 and a translation
network𝐺𝑐 to generate a colorized feature map 𝑓𝑐 , and the stereoscopic information is supplemented by𝐺𝑣 . To generate a facial NeRF from scratch (indicated
by the dotted line below 𝑝𝑠 ), the tri-plane feature 𝑝𝑠 is directly encoded by 𝐸𝑝𝑟𝑜 𝑗 to generate 3D faces. For facial NeRF editing (indicated by the solid line
below 𝑝𝑠 ), theMask Fusion module fuses 𝑝𝑠 and the original tri-plane feature 𝑝 to generate 𝑝𝑒 , which is also encoded by the shared 𝐸𝑝𝑟𝑜 𝑗 . Moreover, we
propose a sketch-based optimization approach to improve editing faithfulness and original feature retention further.

tri-plane representation is utilized because of its high expressive
capacity and adaptability for 2D convolution in encoders.

In particular, to lift 2D inputs into 3D, we draw inspiration from
PixelNeRF [Yu et al. 2021], which is devised to infer 3D information
from sparse 2D inputs. Given a single-view hand-drawn sketch 𝑆 ,
we design a Sketch Tri-plane Prediction net to lift 𝑆 into a 3D tri-plane
representation 𝑝𝑠 , including feature maps 𝑝𝑠𝑥𝑦 , 𝑝𝑠𝑥𝑧 , and 𝑝𝑠𝑦𝑧 , which
is expected to lie in the same distribution as the EG3D-generated
tri-plane representation. The input sketch only contains geometry
information, but the tri-plane features and rendered images have
diverse appearance details. So we first translate the input sketch 𝑆

to a colorized feature map 𝑓𝑐 to inject colors, lighting, and texture
information. We train an appearance encoder 𝐸𝑐 to extract the
appearance information from the reference image 𝐼 . To transfer
the appearance to 𝑆 , we leverage a translation network 𝐺𝑐 with
adaptive instance normalization [Huang and Belongie 2017] (AdaIN)
to generate the colorized feature map:

𝑓𝑐 = 𝐺𝑐 (𝑆, 𝐸𝑐 (𝐼 )) . (1)

To predict a 3D tri-plane representation from a 2D feature map, we
build a 3D feature volume in the Euclidean space where the volume
rendering is performed. Using the estimated camera intrinsics and
extrinsics, each point 𝑥 in the 3D volume is projected onto the input
image space to get 2D coordinates 𝜋 (𝑥). Then, the corresponding
feature vector 𝑓𝑐 (𝜋 (𝑥)) is retrieved for each point 𝑥 via bilinear in-
terpolation from colorized feature maps 𝑓𝑐 . To balance performance
and efficiency, we build the feature volume with a resolution of 128
in each axis, resulting in the final shape of 128×128×128×3, where
3 is the channel number of feature maps 𝑓𝑐 . The 3D feature volume
is further reshaped along each axis to generate three 128× 128× 384
feature maps, denoted as 𝑉𝑥𝑦 , 𝑉𝑥𝑧 , and 𝑉𝑦𝑧 . These feature maps

are concatenated in the feature channel, using a 2D convolution
network 𝐺𝑣 to upsample and translate them into a 256 × 256 × 96
sketch feature map, which is split channel-wise and reshaped to
form three 32-channel feature planes 𝑝𝑠𝑥𝑦 , 𝑝𝑠𝑥𝑧 , 𝑝𝑠𝑦𝑧 , abbreviated as
the tri-plane feature 𝑝𝑠 :

𝑝𝑠 = 𝐺𝑣 (𝑉𝑥𝑦,𝑉𝑥𝑧 ,𝑉𝑦𝑧). (2)

Although our Sketch Tri-plane Prediction net thoroughly analyzes 
the 3D information, only 2D convolution is utilized here to improve 
memory and time efficiency. After lifting the 2D inputs into 3D as the 
tri-plane representation, we utilize a 2D encoder 𝐸𝑝𝑟𝑜 𝑗 [Richardson 
et al. 2021] to project the tri-plane features into the W+ space of 
EG3D to improve the quality, which renders final photo-realistic 
free-view facial images.

Training Objective. The Sketch Tri-plane Prediction net is trained 
using a synthesized multi-view dataset. Given a set of latent codes, 
ground-truth tri-plane features 𝑝 are synthesized based on EG3D. 
For each example, we randomly sample multiple camera poses to 
synthesize paired sketches and images, using the sketch generation 
approach discussed in Sec. 3.3.1.

Given an input single-view sketch, the Sketch Tri-plane Prediction 
net synthesizes a tri-plane feature 𝑝𝑠 , which generates images 𝐼𝑠 
through volume rendering with the original decoder of EG3D [Chan 
et al. 2022]. These rendered images have different views 𝑡  from the 
input sketch. The above strategy enhances the 3D information by 
enforcing the network to imagine faces from other views, as in [Sun 
et al. 2022a]. The loss function L(𝐸𝑐 , 𝐺𝑐 , 𝐺𝑣) to train the Sketch 
Tri-plane Prediction net is defined as:

L(𝐸𝑐 , 𝐺𝑐 , 𝐺𝑣) = 𝛽1L1 (𝑝𝑠 , 𝑝) + 𝛽2L1 (𝐼𝑠 , 𝐼𝑡 ) + 𝛽3L𝑉𝐺𝐺 (𝐼𝑠 , 𝐼𝑡 ), (3)
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where L1 denotes the L1 distance, LVGG denotes the perception
distance [Zhang et al. 2018], and 𝐼𝑡 is the ground-truth image in
a target view. For high-quality results, we both constrain the syn-
thesized tri-plane representation 𝑝𝑠 to be in the same distribution
as the ground-truth tri-plane features 𝑝 , and measure the similar-
ity between the rendered images and ground-truth images. In our
experiments, we set 𝛽1 = 0.01, 𝛽2 = 1.0, and 𝛽3 = 0.1.
To train the encoder 𝐸𝑝𝑟𝑜 𝑗 , we use the same strategy of pSp

[Richardson et al. 2021], but instead of RGB images, it takes concate-
nated tri-plane features 𝑝𝑠 as input. Both of the tri-plane features
generated by the original EG3D backbone and the Sketch Tri-plane
Prediction net are fed into the network to improve the generalization
of 𝐸𝑝𝑟𝑜 𝑗 . Pixel-wise L2 loss, LPIPS loss [Zhang et al. 2018], iden-
tity loss [Deng et al. 2019a], and regularization loss are used for
training such an encoder. Please refer to [Richardson et al. 2021]
for more details. We first train the Sketch Tri-plane Prediction net to
convergence and then train the encoder.

3.3 Sketch-based Facial NeRF Editing
Although the generation of 3D faces from 2D sketches is qualified for
applications like character design, users may desire to further adjust
3D faces by interactively editing the corresponding 2D sketches
from different views, as in [Chowdhury et al. 2022]. This motivates
us to design a sketch-based interface for facial NeRF editing, which
allows 2D local editing from different views and achieves consistent
3D editing effects while preserving the unedited regions.

3.3.1 Free-view Sketch Generation. First of all, we synthesize free-
view rendering sketches which users can modify to edit the corre-
sponding 3D faces. This process is differentiable and further used
for latent code optimization as discussed in Sec. 3.3.3. An additional
sketch generation path, which has a similar architecture to the image
generation path of EG3D [Chan et al. 2022], is therefore designed
to generate the corresponding sketch at any view of a latent code.
The sketch and image rendering branches share the same StyleGAN
backbone and projection features but have separate decoders and
super-resolution modules. Specifically, a new sketch decoder in-
terprets the sample features to sketch features, combined with the
density of the image branch to generate low-resolution sketch fea-
ture maps based on volume rendering. The 1st channel of the sketch
feature maps corresponds to low-resolution sketches (128 × 128),
denoted as 𝑆

′
𝑟𝑎𝑤 . A sketch super-resolution module similar to the

original super-resolution module in EG3D is also used to synthesize
final sketches 𝑆

′
.

To train such sketch generation path, a pretrained pix2pixHD
[Wang et al. 2018] is used to convert rendered facial images into
ground-truth high-resolution sketch 𝑆𝐺𝑇 , which is, however not
3D-consistent. We carefully design training losses to ensure consis-
tency from different views and synthesize high-quality sketches. A
reconstruction loss is used to match the original sketch distribution:

L𝑟𝑒𝑐𝑜𝑛 = 𝛼1L1 (𝑆
′
, 𝑆𝐺𝑇 ) + 𝛼2L1 (𝑆

′
𝑟𝑎𝑤 , 𝑆𝑟𝑎𝑤)

+𝛼3L𝑉𝐺𝐺 (𝑆
′
, 𝑆𝐺𝑇 ) + 𝛼4L𝑉𝐺𝐺 (𝑆

′
𝑟𝑎𝑤 , 𝑆𝑟𝑎𝑤), (4)

Inspired by [Gu et al. 2022], we utilize a regularization term to
enforce the 3D consistency of sketches. Although the predicted
ground-truth sketch 𝑆𝐺𝑇 is not view-consistent, the inherent multi-
view consistency of volume rendering constrains the final results
of the super-resolution module. This loss term compares the sub-
sampled pixels on the final sketch results and those generated by
NeRF:

L𝑣𝑖𝑒𝑤 = 𝛼5
1
|𝐶 |

∑
(𝑖, 𝑗 ) ∈𝐶




𝑆 ′
[𝑖, 𝑗] − 𝑅𝑒𝑛𝑑𝑒𝑟 (𝑟𝑖, 𝑗 )





1
, (5)

where 𝐶 is the set of randomly sampled pixels in final sketches
and 𝑖, 𝑗 are the coordinates in the high-resolution 2D sketch space,
𝑅𝑒𝑛𝑑𝑒𝑟 (𝑟𝑖, 𝑗 ) is the pixel result of direct volume rendering with the
corresponding ray 𝑟𝑖, 𝑗 . In our experiments, 𝛼5 = 3.0 and |𝐶 | = 8, 192.

The final training objective is:

L𝑠𝑘𝑒𝑡𝑐ℎ = L𝑟𝑒𝑐𝑜𝑛 + L𝑣𝑖𝑒𝑤 . (6)

During the training of the free-view sketch generation, the weights
of the StyleGAN backbone and the image generation path are fixed.
We only update the weights of the sketch decoder and sketch super-
resolution module.

Finally, users are able to directly edit the rendered sketches (adding
or removing strokes) to obtain edited sketches 𝑆 instead of drawing
sketches for every view from scratch.

3.3.2 Mask Fusion Module. Given the modified sketch 𝑆 , the intro-
duced Sketch Tri-plane Prediction net together with 𝐸proj in Sec. 3.2
is already able to generate high-quality 3D faces. However, unedited
regions might suffer from undesirable changes despite local editing
operations on the 2D sketch since the 2D sketch at a certain view
cannot describe the entire 3D object, as demonstrated in Fig. 13.
Targeting this issue, we propose a Mask Fusion module to spatially
fuse the original 3D face generated from the input latent code 𝑤 ,
and the newly generated 3D face based on the edited sketch with a
3D mask, preserving the unedited regions and retaining the edited
regions. Notice that since both faces are represented as tri-plane
features, the fusion can be conducted on tri-plane features directly.
Subsequently, the spatially fused 3D face is encoded back into the
latent space of EG3D as 𝑤𝑒𝑑𝑖𝑡 . It should be noticed that the input
latent code 𝑤 can be an EG3D sample, real image projection, or
the previously edited result to apply multi-step manipulations from
different views.
To obtain the guiding 3D fusion mask, after users perform the

editing operations via our interface, we first estimate a 2D binary
mask 𝑀 indicating the edited regions (introduced in Sec. 4). For
the input latent code𝑤 , the original tri-plane representation (𝑝𝑥𝑦 ,
𝑝𝑥𝑧 , 𝑝𝑦𝑧 ) is synthesized based on the EG3D backbone along with a
generated depth map 𝐷 . Based on the depth map 𝐷 , each pixel in
𝑀 is converted to its 3D location in the Euclidean space, forming a
set of 3D points. Since the fusion is essentially conducted on the tri-
plane features, such a set of 3D points are projected into the tri-plane
space to synthesize three sets of 2D points. For the modified sketch
𝑆𝑒𝑑𝑖𝑡 , a new tri-plane representation (𝑝𝑠𝑥𝑦 , 𝑝𝑠𝑥𝑧 , 𝑝𝑠𝑦𝑧 ) is synthesized
by the Sketch Tri-plane Prediction net along with its generated depth
map, and another three sets of 2D points are obtained similarly.
By uniting two sets of 2D points on each plane, dilating them for
a smoother border, and connecting sufficiently close regions, we

where 𝑆𝑟𝑎𝑤 represents the downsampled sketch of a high-resolution 
sketch 𝑆𝐺𝑇 . In our experiments, we empirically set 𝛼1 = 𝛼2 = 3.0 
and 𝛼3 = 𝛼4 = 2.0.
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obtain the guiding 3D fusion mask, which is composed of three 2D
fusion masks on each plane, denoted as𝑀𝑥𝑦, 𝑀𝑥𝑧 , 𝑀𝑦𝑧 .

Then, the original and predicted tri-plane features are fused as:

𝑃𝑒𝑥𝑦 = 𝑀𝑥𝑦 · 𝑝𝑠𝑥𝑦 + (1 −𝑀𝑥𝑦) · 𝑝𝑥𝑦 . (7)

Here we only take 𝑥𝑦 as an example, and operations on the other
two planes are the same. We denote the generated new fused tri-
plane features as 𝑝𝑒𝑥𝑦, 𝑝𝑒𝑥𝑧 , 𝑝𝑒𝑦𝑧 . It should be noticed that swapping
a region in the tri-plane features affects the whole orthogonal 3D
columnar space, so the fused tri-plane features cannot be directly
used for volume rendering. To solve this problem, we utilize the
same encoder 𝐸𝑝𝑟𝑜 𝑗 in Sec. 3.2 to further project the fused tri-plane
feature into the W+ space, as𝑤𝑒𝑑𝑖𝑡 = 𝐸𝑝𝑟𝑜 𝑗 (𝑝𝑒𝑥𝑦, 𝑝𝑒𝑥𝑧 , 𝑝𝑒𝑦𝑧).

3.3.3 Latent Code Optimization from Sketch. We further refine
𝑤𝑒𝑑𝑖𝑡 to ensure better sketch faithfulness and original feature reten-
tion in challenging cases. For example, the predicted hair structure
or eyeglass shapes may have small biases with drawn sketches, as
shown in Fig. 12. The background of the original faces is some-
times too sophisticated to reconstruct. Our optimization strategy is
designed to solve these problems in challenging editing situations.

Editing Optimization. Inspired by [Liu et al. 2022], we propose
an optimization approach to refine the predicted latent code𝑤𝑒𝑑𝑖𝑡 .
With the image rendering branch R𝑥 and the sketch rendering
branch R𝑠 , the following loss terms are optimized:

L𝑒𝑑𝑖𝑡 = L𝑉𝐺𝐺 (R𝑠 (𝑤𝑒𝑑𝑖𝑡 ) ⊙ 𝑀, 𝑆 ⊙ 𝑀), (8)

L𝑖𝑚𝑔 = L𝑉𝐺𝐺 (R𝑥 (𝑤𝑒𝑑𝑖𝑡 ) ⊙ 𝑀,R𝑥 (𝑤) ⊙ 𝑀), (9)

where𝑀 refers to the unedited regions, and ⊙ denotes pixel-wise
multiplication. These loss terms encourage the edited regions to
have consistent sketches as 𝑆 and remaining regions to be unaltered
as much as possible.
Utilizing the above loss terms is adequate to solve the 2D image

editing problem but not enough for 3D face editing in NeRF, since the
stereoscopic features should be maintained to ensure that unedited
regions are retained in arbitrary views. One possible approach is to
add multi-view losses, but viewpoint selection and view-specific 2D
mask transformation are difficult. So, we propose a novel space loss
term to measure the similarity of sample points’ features utilized in
volume rendering:

L𝑠𝑝𝑎𝑐𝑒 =
1

𝑁 |̃𝑀 |
∑𝑀
𝑟

∑𝑁
𝑖 ∥Φ(𝑤𝑒𝑑𝑖𝑡 , 𝑟 (𝑖)) − Φ(𝑤, 𝑟 (𝑖))∥1 , (10)

where 𝑟 (𝑖) is the 𝑖th sample point along the rendering ray 𝑟 in
unedited regions, 𝑁 is the number of sample points, and Φ de-
notes the point-wise feature calculation process, including tri-plane
projection, and feature decoding. Hierarchical volume sampling
[Mildenhall et al. 2021] is used in NeRF rendering, while we only
calculate the space loss on coarse samples which have the same
position for different identities. The overall loss function for opti-
mization is:

L(𝑤𝑒𝑑𝑖𝑡 ) = 𝛾1L𝑒𝑑𝑖𝑡 + 𝛾2L𝑖𝑚𝑔 + 𝛾3L𝑠𝑝𝑎𝑐𝑒 , (11)

where 𝛾1, 𝛾2, and 𝛾3 are hyper-parameters tuned by users. In our
experiments, they are set as 𝛾1 = 40, 𝛾2 = 20, and 𝛾3 = 0.2 by default,

Fig. 3. The user interface of SketchFaceNeRF. The interface has two modes.
In the generation mode, the left window is used for creating freehand
sketches. In the editing mode, the left window is used for editing line
drawings from a 3D face. In both modes, the right window shows the
generated face. A control panel at the top of the interface supports many
essential operations, including the selection of pencil or eraser, brush size
control, and rotation of viewpoints.

and the iteration steps are set as 10 with the balance of efficiency
and quality.

4 USER INTERFACE
As shown in Fig. 3, we design a user interface on top of the proposed
pipeline to support sketch-based facial generation and multi-step
editing in different views. To generate facial NeRFs from scratch,
users draw sketches on the left drawing canvas, and our system
then synthesizes and displays photo-realistic 3D faces in the right
window. Our interface further supports detailed facial editing via
editing sketches synthesized from previously generated 3D faces
(Fig. 6), EG3D random samples, and real face images (Fig. 5). Users
can change the views with the sliders on the control panel, during
which process the generated 3D faces and corresponding sketches
are rotated simultaneously. Thanks to our free-view sketch gen-
eration approach, the synthesized sketches are consistent during
view changes, thus improving the user interaction experience. Dur-
ing editing, users may erase undesired lines and draw new lines
depicting desired structures. These operations provide adequate
information to infer the mask 𝑀 representing the edited regions.
Specifically, we dilate the newly drawn lines and unite them with
the erasing regions to generate an initial mask. Then, the small
holes within the edited regions are filled by connection detection,
and the border is smoothed by polygonal curves. With the input
face, modified sketch, and inferred mask, our algorithm generates
new edited NeRF faces, which are rendered and shown in our UI
system. After editing in a single viewpoint, users can rotate the face
and continuously edit it in other views, supporting detailed and
expressive facial manipulation.
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Fig. 4. Facial NeRF generation results given hand-drawn sketches. The input sketches and generated geometry are shown in the first two columns. Photo-
realistic rendering results with free viewpoints are shown in the following columns, with different appearance images in the top-left corner of each example.
Our method generates detailed geometry by sketches and controls the appearance with reference images. Since we focus on facial region generation, the
background of reference images is masked. The generated images have semi-random backgrounds entangled with faces in the EG3D space.

Original Edit Result Real Image Projection Edit Result

Fig. 5. Interactive Facial NeRF editing results. Users can interactively select an arbitrary view and then edit 3D faces by modifying the rendered sketches.
Hand-drawn sketches are labeled in red, and the gray regions are the inferred masks of the user interface. Some editing examples are shown in this figure, e.g.,
hairstyle, glasses, beard, eyes, and expression. Our method edits the local regions while maintaining the global features of the original faces. Real images can
be projected and edited to synthesize free-view results.

of 5𝑒 − 3 and one iteration costs 0.18s on our device. More details
of the dataset and training settings can be found in supplementary
materials.

5.1 Results
Our method supports high-quality facial NeRF generation based on
single-view sketches and appearance reference images. We treat the
facial NeRF generation from scratch as a special editing situation
where the predicted tri-plane features are directly projected into
the latent space without mask fusion and optimization. The view-
ing angles of hand-drawn sketches are estimated by [Chen et al.
2020; Deng et al. 2019b]. As shown in Fig. 4, given the hand-drawn
sketches that represent the facial geometry details, including the
facial component shapes, hair structures, and beard, our approach
generates high-quality 3D geometry models with good faithfulness
for sketches. Although the hand-drawn sketches have various draw-
ing styles that are different from those in the training dataset, our
method is robust and can still generate high-quality facial models.

5 EVALUATION
In this section, a series of qualitative and quantitative experiments 
are conducted to demonstrate the superiority of our framework. In 
Sec. 5.1, we show the sketch-based facial NeRF editing and genera-
tion results of our method. In Sec. 5.2, the qualitative and quanti-
tative comparisons with state-of-the-art methods are conducted to 
demonstrate the better performance of our approach. In Sec. 5.3, we 
conduct an ablation study to validate the effectiveness of each mod-
ule and network design in this framework. A user study is presented 
in Sec. 5.4 to further prove the superiority of our approach.

Implementation Details. To train the facial NeRF manipulation 
framework, we synthesize a multi-view dataset based on EG3D 
with 110k training samples. For each example, 25 rendered images 
from different views are generated while the tri-plane features are 
synthesized on the fly during training. Our networks are trained 
and tested on an NVIDIA RTX 3090 GPU. During optimization, we 
use the ADAM [Kingma and Ba 2014] optimizer with a learning rate
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(a) Image (b) Sketch (c) Results

Fig. 6. Sketch-based generation (1st row) and editing (2nd row) for facial
NeRF design. The 1st row shows a sketch-based generation example based
on an appearance image (a) and a hand-drawn sketch (b). Users can further
apply detailed editing via a synthesized sketch (b) while maintaining the
original identity characteristics.

Sketches only provide geometry information but lack color informa-
tion, so our face regression network controls the appearance with
example images. Facial NeRF models with different colors, materi-
als, and lighting are synthesized, and the viewpoints can be freely
controlled by users, as shown in Fig. 4. More generation results can
be found in the supplementary materials.

With our carefully designed framework and user interface, users
can interactively edit facial details via sketches from free viewpoints.
After the sketch modification using brush and eraser tools, the user
interface automatically infers the edited masks (colored as gray
in Fig. 5). As illustrated, the masks accurately label locally edited
regions. High-quality results are generated by our method with
various types of editing operations, including adding/removing
eyeglasses, changing hair structures, and modifying facial shapes or
expressions. The edited regions show good editing effects, while the
global features are well maintained. As shown in Fig. 7, our system
generates good multi-step editing results for a single example from
multiple views. The editing operations performed from different
views are all effective. The results show no deterioration with the
accumulation of editing operations thanks to our tri-plane projection
and optimization approaches. More editing results with different
drawing styles can be found in our supplementary materials.

5.2 Comparison
Sketch-based Facial NeRF Generation. Since our method can gen-

erate high-quality facial NeRFs based on single-view sketches, we
compare it with possible existing sketch-based facial NeRF genera-
tion approaches, with some adaptations. PixelNeRF [Yu et al. 2021]
synthesizes NeRFs with the input of single-view images, which are
replaced with single-view sketches in our experiments to support
our task. As shown in Fig. 8, this approach cannot control the face
appearance and is not robust for hand-drawn sketches with fuzzy
details. DeepFaceEditing [Chen et al. 2021] synthesizes face images
for hand-drawn sketches and controls the appearance accurately,
but there are still artifacts around the neck and hair regions. Since

(a) Original (b) Sketch (c) Result (d) Result Front

Fig. 7. Results of multi-step editing (from top to bottom) in different views.
In (a), the topmost image is the original face, and the rest are previously
edited results for further editing. Modified sketches and generated results
are shown in (b) and (c), respectively. The editing manipulations are added in
different views. Our method well maintains the original features in unedited
regions (d) and avoids deterioration even though the results are recursively
used.

the data-driven manifold projection is utilized, some less common
appearances, like the big curly hair (3rd row) and bangs (4th row),
cannot be synthesized well. We further project the results of Deep-
FaceEditing into EG3D’s latent space to generate NeRF results, as
shown in the 5th column in Fig. 8. Based on the pretrained gen-
erator, the projection results are more realistic but still have low
faithfulness with input sketches, e.g., the mistaken hair structures.
pSp [Richardson et al. 2021] is a new image translation approach
based on 2D StyleGAN [Karras et al. 2020]. For fair comparison,
we replace the StyleGAN with the EG3D generator and utilize the
style-mixing to swap the last 7 layers of latent codes to support ap-
pearance control. Although this approach generates good results on
synthesized sketches (see supplementary material), it is not robust
for hand-drawn sketches and has poor geometry faithfulness. The
style-mixing also cannot control the appearance accurately in 3D
GAN because of the complicated rendering process. Our method is
the first approach to synthesizing facial NeRFs from sketches and
has better results than possible baselines.
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(a) Sketch (b) PixelNeRF (c) Appearance (d) DFE (e) DFE-Projection (f) pSp-Ref (g) Ours

Fig. 8. Comparisons with state-of-the-art methods for hand-drawn sketches to facial NeRF translation. In each row, (a) is a user-drawn sketch, and (c) is an
appearance reference image. PixelNeRF (b) cannot control the appearance and generates blurry results. Other existing methods (d)∼(f) generate results with
the input of reference appearance but have poor faithfulness with sketches (d,e) or appearance (f), while our method (g) generates the best results. DFE and
DFE-proj are the abbreviations of DeepFaceEditing [Chen et al. 2021] and its NeRF projection version.

PixelNeRF DFE DFE-proj pSp pSp-Ref Ours
FID↓ 189.30 77.63 97.94 94.15 80.69 72.63
KID↓ 16.25 ± 0.2 1.98± 0.2 2.99 ± 0.2 4.52± 0.2 2.56± 0.2 2.06± 0.2

Table 1. Quantitative results compared with sketch-based facial generation
approaches. We report the FID and KID mean×100 ± std.×100. Our results
have lower (i.e., better) values compared with other approaches, except
comparable values with DeepFaceEditing (DFE), which, however, is designed
only for 2D images instead of NeRF.

for faithfulness, fuse them with the original tri-plane features for
consistency, and encode the fused tri-plane features back to the 3D-
aware generative prior to improve the quality. We also include the
optimization process to ensure faithfulness and consistency better.
Notice that our method also does not require laborious manual mask
drawing, similar to SketchEdit.

Quantitative Comparison. To measure the facial NeRF generation
and editing quality of the compared approaches, we report the
Fréchet Inception Distance (FID) [Heusel et al. 2017] and Kernel
Inception Distance (KID) [Binkowski et al. 2018] in Tables 1 and 2.
For sketch-based facial generation, we collected 100 hand-drawn
sketches, which were shared by the authors of DeepFaceDrawing
[Chen et al. 2020] and collected with their online demo system. As

Sketch-based Facial NeRF Editing. Our method supports detailed 
sketch-based editing of 3D human faces and generates high-quality 
editing results in given views. Thus, we compare it with existing 
sketch-based face editing methods. However, due to the 2D nature 
of the existing methods, they are not 3D-aware as our method since 
we are the first to edit 3D human faces by sketch. As shown in Fig. 9, 
given original facial images (a) and edited sketches (b), DeepPS [Yang 
et al. 2020] dilates the sketches to achieve higher-quality results 
than those without dilation but compromises the faithfulness, e.g., 
failing to turn the straight hair into curly hair in the second row. 
Besides, it has obvious artifacts near the boundary of the masks 
due to its inpainting fusion. DeepFaceEditing [Chen et al. 2021] 
produces reasonably edited results, but the image quality degrades 
with complex editing manipulations. Its results also exhibit artifacts 
such as darkened areas on the eyes (1st row) and forehead (2nd row) 
because of the local appearance disturbance of the original images. 
SketchEdit [Zeng et al. 2022] generates unrealistic edited results 
for glasses removal and curly hair, despite its efforts to estimate 
the masks for the edited regions. In contrast, our method produces 
high-quality and 3D-aware facial images rendered from different 
views. Additionally, our method is faithful to the edited sketches and 
preserves the untouched regions well. The reason is that we carefully 
predict the edited tri-plane features directly from the edited sketches
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(a) Image (b) Sketch (c) DeepPS (d) DeepFaceEditing (e) SketchEdit (f) Ours

Fig. 9. Comparisons with state-of-the-art methods for sketch-based facial editing. Given original images (a) and modified sketches (b), DeepPS generates
plausible results (c) in edited regions but has obvious artifacts on the editing region boundaries. DeepFaceEditing generates results (d) with the appearance of
input images (a), thus causing color bias in local regions when removing the hair and glasses. SketchEdit is not robust against hand-drawn sketches and
synthesizes blurry results (e). Our method not only generates better results (f) in the original views than the other approaches but can also render realistic
free-view results.

DeepPS DFE SketchEdit Ours
FID↓ 108.8 98.65 112.51 87.68
KID ↓ 5.94 ± 0.5 4.23 ± 0.5 6.44 ± 0.5 4.22 ± 0.4

Table 2. Quantitative results compared with sketch-based face editing ap-
proaches. We report the FID and KID mean×100 ± std.×100. Our results
have the lowest values among all the compared approaches, indicating the
best image quality.

shown in Table 1, our method outperforms the other approaches
except for the comparable KID compared with DeepFaceEditing
[Chen et al. 2021], whose results are only 2D images and have low
sketch faithfulness, as shown in Fig. 8. After projection, the artifacts
are accumulated and have worse value results. For sketch-based
facial editing, we collect 50 editing examples based on the user
interface (Fig. 3). As shown in Table 2, even though our method is
designed explicitly for NeRF editing, it outperforms all the state-
of-the-art image editing methods at the manipulation viewpoints.
During the quantitative calculation, the background is masked out
because we only focus on the quality of facial regions.

5.3 Ablation Study
We conduct ablation studies to prove the effectiveness of each com-
ponent in our framework. The key components of the Sketch Tri-
plane Prediction net and Mask Fusion module are disabled to show
their impacts. Then, the loss terms in sketch-based optimization are
evaluated respectively to prove their effectiveness. We also replace
the sketch generation approach with other approaches to evaluate
the view consistency of our 3D sketches.

In the Sketch Tri-plane Prediction net, the sketches are translated
into feature maps to supplement color information. As shown in Fig.
10, the appearance is unable to control without such an appearance
transfer process, inconsistent with the appearance reference images.

(a) Sketch (b) Appear. (c) w/o Color (d) w/o Volume (e) Ours

Fig. 10. Ablation study of the Sketch Tri-plane Prediction net given hand-
drawn sketches (a) and reference appearance images (b). Without coloriza-
tion, the appearance cannot be controlled (c). Without the feature volume
and directly predicting tri-planes features based on input sketches, the
results have low faithfulness (d) with the input sketches. Our method gen-
erates the best results (e) based on the sketches and appearance images.

Additionally, the stereoscopic information is added by lifting the
2D feature maps into 3D feature volumes through space projection.
Without such a lifting process to enhance the 3D information, the
encoded results suffer from loss of faithfulness, especially for hair
and small details such as eyebrows, since it is hard to directly encode
latent codes for 3Dmodels from 2D inputs. In contrast, our full model
generates the best results regarding both geometry faithfulness with
the input sketches and appearance faithfulness with the appearance
reference images.
As to the Mask Fusion module, without negatively affecting the

editing effects, the fusion operation solves identity distortion in the
original view and preserves unedited regions in other views. As
shown in the first row in Fig. 11, the baseline without the fusion
strategy predicts images that exhibit subtle distortions on the back-
ground and facial shape in the original view (b). When we rotate
it into the front view, the hair is also totally changed (d). Although
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Fig. 11. Ablation study of the Mask Fusion module. The original image and drawn sketch are shown in (a). The mouth is closed in this example. As shown in
the 1st row, without the Mask Fusion module, the predicted (b) and optimized images (c) have different backgrounds from the original images. When we
rotate into the front view, the predicted (d) and optimized faces (e)∼(g) have different haircuts compared with the original faces. As shown in the 2nd row, our
method generates the same background (c) in the original view. The front-view faces well retain the original features with fewer optimization steps compared
with baseline approaches.

(a) Input Image (b) Sketch (c) w/o Opt (d) w/o Prediction (e) w/o 𝐿𝑖𝑚𝑔 (f) w/o 𝐿𝑒𝑑𝑖𝑡 (g) Pix2PixHD (h) Ours

Fig. 12. Ablation study of optimization approaches proposed in Sec. 3.3.3. Input images (a) and modified sketches (b) are shown in the first two columns, with
the gray regions indicating the inferred masks by our method. Direct prediction results (c) without optimization are acceptable but have a little bias with
drawn sketches. Optimization started from the original latent (d), and without 𝐿𝑒𝑑𝑖𝑡 (f) has limited effects, and removing 𝐿𝑖𝑚𝑔 (e) changes unedited regions.
Utilizing Pix2PixHD [Wang et al. 2018] to calculate sketch loss has similar results as the initial predicted results, while our approach further improves the
faithfulness to sketches as seen in the hair patterns in the first row and the shape of glasses in the second row.

in the second row. We introduce several loss terms to ensure faithful
and consistent editing effects. Without Limg, the details, such as the
beard in the first row, fail to be preserved. Without Ledit to guide
the desired shape, the optimized results do not follow the edited
sketches.

As illustrated in Fig. 13, without the novel space sample loss term,
acceptable editing results are still achieved at the original views,
and the unedited regions are also well preserved. However, from
the perspective of 3D human faces instead of 2D facial images, such
3D models are subject to substantial geometry changes, which can
be detected from the frontal views. We also test the sketch genera-
tion approach by replacing it with Pix2PixHD [Wang et al. 2018] to
directly predict sketches from the rendered images. However, since
Pix2PixHD is quite heavy and not robust, the predicted sketches
have a relatively indirect connection with the underlying 3D hu-
man faces, making the optimized results have similar effects to the
initial predicted ones, as shown in Fig. 12. In comparison, our full

part of the original features can be restored with the optimization 
approach, the final results (c)&(g) still have subtle differences from 
the original facial NeRF in unedited regions, such as hair details and 
background patterns. Our approach can well preserve the original 
features with fewer steps compared with the baseline approaches, 
proving the effectiveness of the Mask Fusion module.

An optimization process is included to address challenging editing 
cases and enhance the correspondence between the edited sketches 
and results in terms of details. In Fig. 12, it is obvious that without 
such an optimization process, the encoded results are acceptable but 
differ from the desired sketches in small details, such as the area of 
hair in the first row, and the shape of eyeglasses in the second row. 
However, if we remove the encoding module, i.e., by directly opti-
mizing the latent codes based on the initial latent codes and edited 
sketches, the optimized results have very low consistency with the 
desired sketches despite long optimization steps. For example, the 
hair barely changes in the first row, and the glasses cannot be added
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(a) Image (b) Sketch (c) w/o 𝐿𝑠𝑝𝑎𝑐𝑒 (d) Ours (e) Front Image (f) Front w/o 𝐿𝑠𝑝𝑎𝑐𝑒 (g) Front Ours

Fig. 13. Ablation study of the space sample loss during optimization. In the 1st row, the double chins of a girl are removed. In the 2nd row, the nose bridge is
raised, and the hair bangs are added. The methods with and without 𝐿𝑠𝑝𝑎𝑐𝑒 both generate good results observed from the editing views. However, when
observed from other views, the results without 𝐿𝑠𝑝𝑎𝑐𝑒 have undesirable changes in unedited regions, such as the hair patterns in the first row and the left hair
in the second row.

Pix2PixHD UPD w/o 𝐿𝑣 Ours
Inconsistency↓ 0.108 0.084 0.064 0.056

Table 3. Consistency evaluation of 3D sketches. Our results have a lower
inconsistency score than the baseline approaches Pix2PixHD [Wang et al.
2018] and UPD [Yi et al. 2020], meaning that our sketches have the best
consistency across views.

optimization setting makes up for the challenging details, such as
the height of hair and the shape of eyeglasses, while preserving the
unedited regions in 3D space.
We add a new sketch generation approach to synthesize 3D

sketches based on EG3D’s latent codes. As shown in Fig. 3, the
synthesized sketches are displayed in the UI system and rotated
with the synthesized facial images simultaneously. So, sketch consis-
tency during view changes affects users’ interaction experience. We
replace our sketch generation approach with two image-to-sketch
translation methods, including Pix2PixHD and Unpaired Portrait
Drawing (UPD for short) [Yi et al. 2020]. The regularization term
we used in the training stage cannot be applied to these methods
since they are not 3D-aware. A short-range consistency score is
measured as in [Huang et al. 2021] to measure the inconsistency
during view changes. We do not use a long-range consistency score
since sketches are view-dependent and naturally vary with large
view changes. We randomly generate 30 faces to calculate the metric
and show the results in Table 3. It can be seen that our sketches have
the best view consistency compared with the alternative approaches.
UPD generates sketches with three different styles, so we report the
lowest value among them in Table 3.

5.4 User Study
Given the above extensive qualitative and quantitative comparisons,
we find it beneficial to conduct a perception study to fully testify our
method from the perspective of human viewers. Specifically, we eval-
uate our method on two tasks: facial generation from hand-drawn

2D sketches, and facial editing by modifying the corresponding 2D
sketches.
For the facial generation, we compare our method against the

same set of state-of-the-art methods in the qualitative comparison
of sketch-based facial NeRF generation, i.e., PixelNeRF, DeepFaceEd-
iting (denoted as “DFE”), DeepFaceEditing followed by NeRF projec-
tion (denoted as “DFE-Projection”), and pSp (denoted as “pSp-Ref”).
We prepare 15 cases to cover as much diversity (such as the draw-
ing style and personal attributes, including age, gender, hairstyle,
etc.) as possible, each of which consists of an input 2D hand-drawn
sketch, a reference appearance facial image and the facial images
generated by the compared methods. Since these methods are not all
3D-aware, we only display the results rendered from the viewpoint
of the input sketches, in random order. However, it is noteworthy
that our method further supports face rotation due to the 3D-aware
NeRF representation. Users are invited to rank the generated facial
images in order (the lower, the better) from: the perspective of real-
ism, geometry consistency with the input sketches, and appearance
consistency with the reference appearance images. The scores are
obtained by averaging the received rankings for each method of
each case on each criterion. For each invited user, we randomly
select 5 cases from all the available cases to save his/her time. Thus,
we collect 5 × 3 = 15 answers from each user. In total, 39 people (28
males and 11 females in the age of 18 − 40 participated in this study.
Therefore, 39 × 15 = 585 answers were collected.

Fig. 14 (a) plots the statistics of the evaluation results. We found
the significant effects for all three criteria through one-way ANOVA
tests: realism (𝐹 (2,42) = 80.33, 𝑝 < 0.001), geometry consistency
(𝐹 (2,42) = 14.88, 𝑝 < 0.001), and appearance consistency (𝐹 (2,42) =
61.57, 𝑝 < 0.001). We also conduct paired t-tests to confirm the supe-
riority in terms of geometry consistency of our method (mean: 2.00)
to PixelNeRF (mean: 3.23; [𝑡 = −6.42, 𝑝 < 0.001]), DFE (mean: 3.18;
[𝑡 = −6.53, 𝑝 < 0.001]), DFE-Projection (mean: 3.09; [𝑡 = −6.13, 𝑝 <

0.001]), and pSp-Ref (mean: 3.48; [𝑡 = −7.36, 𝑝 < 0.001]). Besides its
superior performance in geometry consistency, our method is also
rated as one of the best in terms of realism, and it (mean: 1.87) is
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(a) (b)

Realism

Geometry Consistency

Appearance Consistency

Realism

Retention

Faithfulness

PixelNeRF DFE DFE-
Projection

pSp-Ref Ours

PixelNeRF DFE DFE-
Projection

pSp-Ref Ours

PixelNeRF DFE DFE-
Projection

pSp-Ref Ours

DeepPS DFE SketchEdit Ours

DeepPS DFE SketchEdit Ours

DeepPS DFE SketchEdit Ours

Fig. 14. Box plots of averaged perception rankings (the lower, the bet-
ter). (a) The comparison of facial generation with five methods: PixelNeRF
[Yu et al. 2021], DeepFaceEditing [Chen et al. 2021] (denoted as “DFE”),
DeepFaceEditing-Projection (denoted as “DFE-Projection”), pSp [Richard-
son et al. 2021] (denoted as “pSp-Ref”), and ours in terms of the realism,
geometry consistency, and appearance consistency. (b) The comparison of
facial editing with four methods: DeepPS [Yang et al. 2020], DeepFaceEd-
iting [Chen et al. 2021], SketchEdit [Zeng et al. 2022], and ours in terms
of realism, retention, and faithfulness. The boxes are drawn from the first
quartile to the third quartile, with a middle horizontal line denoting the
median. The whiskers are the minimum and maximum values excluding
any outliers.

more preferred than PixelNeRF (mean: 4.79; [𝑡 = −17.46, 𝑝 < 0.001]),
DFE (mean: 3.17; [𝑡 = −6.21, 𝑝 < 0.001]), and pSp-Ref (mean:
3.07; [𝑡 = −11.77, 𝑝 < 0.001]). In terms of appearance consis-
tency, it (mean: 2.30) also outperforms PixelNeRF (mean: 4.42; [𝑡 =
−13.44, 𝑝 < 0.001]) and pSp-Ref (mean: 3.74; [𝑡 = −7.05, 𝑝 < 0.001]).
However, since DFE-Projection projects the results back into the
latent space of our backbone, the realism of DFE-Projection (mean:
2.08; [𝑡 = −1.00, 𝑝 = 0.32]) is comparable to ours, as expected. Due to
the well-disentangled property of geometry and appearance of DFE,
the appearance consistency of DFE (mean: 2.28; [𝑡 = 0.11, 𝑝 = 0.90])
and DFE-Projection (mean: 2.24; [𝑡 = 0.31, 𝑝 = 0.75]) are again
comparable to ours.

As to the facial NeRF editing, we also compare our method against
the same set of state-of-the-art methods in the qualitative compar-
ison of sketch-based facial editing, i.e., DeepPS, DeepFaceEditing
(denoted as “DFE”), and SketchEdit. We prepare 15 cases to cover
varying personal attributes of the original identities, different edit-
ing regions (such as nose, hair, mouth, etc.), and different editing
angles (frontal or tilted). Each case consists of an original facial
image, a modified sketch where edited regions are emphasized, and
the edited facial images generated by each method. Again, we only
display the results from the viewpoints of the original facial images
since not all the compared methods are 3D-aware. For each invited
user, we also randomly select 5 cases from all the available cases and
ask the user to rank the edited facial images (presented in a random
order) from the perspective of realism, retention of the unchanged
regions, and faithfulness to the edited sketches. Thus, we collect
5 × 3 = 15 answers from each user. In total, 39 people (28 males and
11 females in the age of 18 − 40 with normal vision) without any
special experience successfully participated in this study. Therefore
we collected 39 × 15 = 585 answers in total.

Fig. 14 (b) plots the statistics of the evaluation results. We found
the significant effects for all three criteria through one-way ANOVA
tests: realism (𝐹 (2,42) = 70.49, 𝑝 < 0.001), retention (𝐹 (2,42) =

32.50, 𝑝 < 0.001), and faithfulness (𝐹 (2,42) = 37.71, 𝑝 < 0.001). We
also conduct paired t-tests to confirm the superiority in all three
criteria, i.e., realism, retention, and faithfulness in order, of our
method (mean: 1.22, 1.71, 1.55) over DeepPS (mean: 2.41, 2.35, 2.96;
[𝑡 = −8.32,−4.33,−11.82, 𝑝 < 0.001]), DFE (mean: 3.49, 3.24, 2.64;
[𝑡 = −17.51,−12.69,−7.32, 𝑝 < 0.001]), and SketchEdit (mean: 2.86,
2.68, 2.83; [𝑡 = −10.02,−5.76,−8.92, 𝑝 < 0.001]).

6 APPLICATIONS
In this section, we propose two novel applications of our system,
namely, Semantic Facial NeRF Editing and Local Appearance Con-
trol.

Editing Propagation. As to the facial editing by sketches, since
we carefully preserve our generative prior and achieve the editing
by modifying the latent codes, our system can be further utilized to
find editing directions for semantic controls. For example, as shown
in Fig. 15, we close the mouth in the first row and shorten the hair
in the second row by editing the sketches. We subtract the latent
codes for the original facial images from the derived latent codes
for the edited facial images. Following this idea of latent vector
arithmetic to GANs [Radford et al. 2016], the differences in the
latent space are viewed as editing directions for closing the mouth
and shortening the hair, and thus such editing directions can be
applied to other smiling or long-hair cases. It is clear that the editing
directions inferred by our system can generalize to other cases well,
as seen from (d)∼(g). Another interesting phenomenon is that by
modifying the latent codes using our estimated semantic editing
directions, not only are unedited regions well-preserved with small
disturbances, such as those on the backgrounds but also the lighting
effects are changed correspondingly. Such effects are more evident
in the second case of shortening the hair: the right cheek becomes
lit since the occlusion is removed by shortening the hair.
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(a) Image (b) Sketch (c) Result (d) Face1 (e) Propagation1 (f) Face2 (g) Propagation2

Fig. 15. Results of Editing Propagation. In the first three columns (from left to right), we show the input images, edited sketches, and edited results. Mouth
closing and hair cutting are applied by users. It can be seen that similar editing effects can be propagated to other persons.

(a) Image (b) Mask (c) Result1 (d) Result2

Fig. 16. Results of local appearance control. Given faces rendered in certain
views (a), users draw masks to indicate local editing regions (b). As shown
in (c) and (d), with the reference images on the top-left corner, the local
appearance in hair and skin regions is changedwhile the features in unedited
regions are maintained.

Local Appearance Control. Thanks to the 3D mask estimation and
fusion strategy, our system can extend the appearance control by
reference images from global space to local regions. Given the origi-
nal 3D face, a sketch representing its facial geometry is rendered by
the sketch generation approach. A new tri-plane representation that
has the same geometry as the original face but has a new appearance
is generated by the Sketch Tri-plane Prediction net in Sec. 3.2. The
original and new tri-plane features are fused by 3D masks estimated
from the 2D masks𝑀 (drawn by users), similar to the function of
the Mask Fusion module. The fused tri-plane feature is expected to
preserve the original geometry of the entire face and appearance on
untouched regions but change the appearance of the drawn regions,
as shown in Fig. 16. During the optimization, we further utilize a
histogram loss to maintain the appearance faithfulness:

L = Lℎ𝑖𝑠𝑡 (H(𝐼 ′ ⊙ 𝑀),H(𝐼𝑟𝑒 𝑓 ⊙ 𝑀))+

Lℎ𝑖𝑠𝑡 (H(𝐼 ′ ⊙ 𝑀),H(𝐼𝑔𝑒𝑜 ⊙ 𝑀)), (12)

where H denotes the histogram features and Lℎ𝑖𝑠𝑡 denotes the
feature distance as in [Afifi et al. 2021]. 𝐼𝑔𝑒𝑜 , 𝐼𝑟𝑒 𝑓 , and 𝐼 ′ represent the
original image, appearance reference image, and generated image,
respectively, and𝑀 refers to unedited regions. As shown in Fig. 16,
local region appearance like hair and skin is modified effectively,

(a) Sketch (b) Result (c) Image (d) Sketch (e) Result

Fig. 17. Failure cases. When the hand-drawn sketches (a) are too abstract
and cartoonish, the generated faces (b) are still of good quality but cannot
capture overly exaggerated characteristics. Our approach also cannot handle
uncommon personal accessories such as the hat in (e).

while the features in other regions are retained. Since the fusion
is conducted in the 3D space, our results can further be rotated to
other viewpoints with 3D consistency.

7 CONCLUSIONS AND DISCUSSIONS
In this paper, we have presented the first novel sketch-based facial
NeRF generation and editing method. The Sketch Tri-plane Predic-
tion net is designed to supplement the appearance and stereoscopic
information into 2D sketches, combined with a pretrained generator
to synthesize high-quality faces NeRFs. Our system is robust against
diverse drawing styles and allows appearance control. To preserve
unedited 3D regions during local editing, we further propose the
Mask Fusion module and a latent code optimization from sketch
strategy, which can be performed repeatedly to support 3D-aware
multi-step manipulations from different viewpoints. Our approach
outperforms existing sketch-based facial generation and editing ap-
proaches not only on faithfulness, and visual quality but also on 3D
view consistency. We also adapted our system for two applications:
semantic facial NeRF editing and local appearance control.
Thanks to the Sketch Tri-plane Prediction net and the pretrained

generator, our system is robust for hand-drawn sketches. However,
as shown in Fig. 17, when users draw too abstract or cartoonish
sketches, generated 3D faces might fail to capture overly exagger-
ated characteristics, though they are still of good quality. Besides,
our system is designed to generate 3D faces from scratch with the
input of front-view sketches because it is hard for novice users
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to draw free-view facial sketches, and the camera parameter pre-
diction is very challenging. Designing a specific method to detect
camera poses from hand-drawn sketches can partly solve this prob-
lem. Moreover, as shown in Fig. 17, our system cannot deal with
uncommon personal accessories such as hats since these examples
are rare in our training dataset. Designing a specific approach to
solving the data imbalance or augmenting the training data could
alleviate this problem. In future, we would implement the Sketch-
FaceNeRF in Jittor [Hu et al. 2020], which is a fully just-in-time (JIT)
complied deep framework.

Ethical Discussion. Our work originates from and benefits posi-
tive real-world applications, such as digital character design, virtual
meetings, and entertainment. However, the facial image genera-
tion and editing works have long suffered from potential harmful
abuses. To prevent misuse, manyworks [Rossler et al. 2019; Tolosana
et al. 2020; Zhao et al. 2021] in the fake detection community could
discriminate between the synthesized and real faces. Besides, the
generated free-view facial images of our method can also be utilized
as a training dataset to benefit the fake detection research.
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