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Abstract—As a popular concept proposed in the field of
psychology, affordance has been regarded as one of the important
abilities that enable humans to understand and interact with the
environment. Briefly, it captures the possibilities and effects of the
actions of an agent applied to a specific object or, more generally,
a part of the environment. This paper provides a short review
of the recent developments of deep robotic affordance learning
(DRAL), which aims to develop data-driven methods that use
the concept of affordance to aid in robotic tasks. We first classify
these papers from a reinforcement learning (RL) perspective and
draw connections between RL and affordances. The technical
details of each category are discussed and their limitations
are identified. We further summarise them and identify future
challenges from the aspects of observations, actions, affordance
representation, data-collection and real-world deployment. A
final remark is given at the end to propose a promising future
direction of the RL-based affordance definition to include the
predictions of arbitrary action consequences.

I. INTRODUCTION

Humans interact with various objects in the environment in
a purposeful and meaningful way, because we have the ability
to understand affordances – the functionalities of objects, the
possibilities and effects of our actions and the relationship
between the two. As originally defined by Gibson [1], the
affordances of an object or a place in an environment provide
knowledge about what actions are possible and what the
consequences of these actions are with respect to a certain
agent (a human, an animal or a robot). In short, it indicates
possibilities and effects of the agent’s actions given an object
or a part (an image observation) of the environment. In the
field of robotics, affordances could serve with great potential to
bridge robot perception and action [2]. This has been actively
integrated and explored with machine learning techniques
in recent years [3]–[6]. Jamone et al. proposed a thorough
review and drew connections among the studies of affordances
in psychology, neuroscience and robotics [3]. Yamanobe et
al. summarised the use of affordances specifically in robotic
manipulation tasks [4]. Ardón et al. summarised and provided
guidance on design choices and how affordance relations can
be used to boost policy learning [5].
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However, as pointed out in [6], there is still a lack of
consensus for a formal definition of affordances, and many
previous works are limited to affordances in the form of object
functionalities [6]–[8]. A number of existing mathematical
formulations focus on statistical relationships between the
agent, its actions and its environment, but are not general
enough to be integrated into ANY main-stream robot control
frameworks to support both action inference and affordance
learning [3], [4], [9]. The main reason is the lack of a
rigorous mathematical connection between the concept of
affordances and robot control theory without assuming any
prior knowledge of high-level observation construction [7], [8],
be it learning-based or model-based. Recently, Khetarpal et al.
[10] proposed to define, learn and compute affordances based
on the reinforcement learning (RL) paradigm with Markov
decision processes (MDPs) of any kind, which is a classic
and increasingly important robot control paradigm [11], [12].
We propose in this paper to summarise and classify recent
publications (since 2015) in deep robotic affordance learning
(DRAL) following the RL-based definition in [10] for the
following motivations:

• The RL-based definition helps to unify and classify
DRAL works from a behavioural learning perspective,
providing new insights to understand and clarify the
different usages of affordances in the literature;

• The definition in [10] is the most general in the literature
as all concepts are defined over a generic MDP without
any assumption of the environmental or agent aspect. It
suits any kind of environmental affordances and agents
as long as they can be described by MDPs, which is
commonly achievable.

• As the primary aim of DRAL is to enable robots to infer
afforded actions, the RL community provides a rich body
of methods ready to be integrated with affordances;

• Understanding and analysing the concept based on a
mathematical framework helps to provide computation-
ally and practically valuable insights.

In practice, knowing the affordances means knowing the
desired effects of some actions and whether these effects can
be realised in some situations. With this in mind, Khetarpal et
al. introduced the notion of intents that captures the desired
outcome of an action based on the reinforcement learning (RL)
framework [10], [11]. For example, the intent of a moving
right action in a gridworld task is the agent being moved to
the cell on the right. The intent is not always satisfied, e.g.,
when the cell on the right is a wall. Thus, the definition of
affordance is a subset of the state-action space in which the



intent is indeed satisfied [10]. In order words, the moving right
action is afforded at every state where the moving right intent
is satisfied.

Notice that there are two levels of the topic: 1) the learning
and discovery of affordances and 2) the use of affordances.
Researchers have only recently started to study the first level,
e.g., option/subgoal discovery [13]. Most research focuses
on the use of the knowledge of affordances, meaning how
to estimate the action possibilities and/or infer the afforded
actions. These works are classified into three categories as
follows.
• For the majority of the DRAL works, the focus is to esti-

mate the action possibilities given an observation and then
infer afforded actions from it (Section III). These works
can be further classified into methods that model the
action possibilities as binary variables (subsection III-A)
[14]–[21] and continuous variables (subsection III-B)
[22]–[27];

• The second line of works proposes to generate afforded
actions from a set of object keypoints (Section IV) [28]–
[33]. The keypoints are used to geometrically constrain
the search space of action inference methods within the
set of afforded actions.

• The last part of the reviewed papers suggests learning a
partial dynamic model for only afforded actions, resulting
in faster model learning and motion planning (Section V)
[10], [34], [35].

The rest of this review is organised as follows. Section II
briefly recalls the definition of affordances in reinforcement
learning proposed by [10], classifies the reviewed works and
draws connections between RL and affordances. Sections III,
V and IV provide the main technical ideas and discuss the
pros and cons of the reviewed papers. Section VI summarises
these works and poses future challenges from the perspectives
of observations, actions, affordance representations, data col-
lection, and real-world deployment. Section VII concludes this
review.

II. AFFORDANCE DEFINITION IN MDPS

For the sake of clarity, we recall in this section the reinforce-
ment learning (RL) problem and the definition of affordance
based on the Markov Decision Processes (MDPs) [10].

An MDP is a tuple M = 〈S,A, r, P, γ〉, where S is the
set of states, A is the set of actions, r is the reward function,
P (s′|s, a) is the system transition dynamics and γ ∈ [0, 1]
is the discount factor [11]. The RL problem is in general to
find an optimal policy, π : S → A, which produces actions
that maximise the expected discounted future return Eπ[Gt] =
Eπ [

∑∞
t γtrt]. The typical process of learning such a policy

loops over the procedures of data collection, policy evaluation
and policy improvement [11].

Given an action a ∈ A, an intent Ia(s) maps a state s ∈ S
to a state distribution that the action is intended to achieve.
The intent model can thus be seen as a partial dynamic model:
PI(s

′|s, a), which only captures the dynamics for a subset of
states where the action has a desired effect. Given the full
system dynamic model P (s′|s, a), an intent is satisfied (i.e.,

an action is affordable) at a state, to a degree ε, if and only
if:

d(PI(s
′|s, a), P (s′|s, a)) ≤ ε (1)

where d is a function that measures the difference between two
distributions and ε ∈ [0, 1] is a precision parameter. Given a
set of intents I = ∪a∈AIa, the affordance is then defined as
a relation AFI ⊆ S × A, such that ∀(s, a) ∈ AFI , Eq. 1
is satisfied. Accordingly, an affordance prediction model, or
an action possibility model, gives the probability of whether
a pair of state and action belongs to the set of affordance:

pAF (s, a) = p((s, a) ∈ AFI) (2)

Remark 1: Practically speaking, knowing the affordance
set means knowing the desired effects of a subset of actions
(intents, action effects) and the subset of states where these
effects can be achieved (states where the intents are satisfied,
action possibilities). Before inferring the afforded actions
or computing the action possibilities, one must know what
actions, or what effects, are concerned or to be used. This
logic implies that a robot must have learnt or been given
some prior knowledge of the concerned actions beforehand.
At the current stage of DRAL research, this knowledge was
given by researchers, who then focused on the estimation of
action possibilities and the inference of afforded actions. We
categorise and discuss these methods in three classes:
• works that tried to infer the afforded actions from the

estimated action possibilities p̂AF (section III);
• works that tried to infer the afforded actions of objects

in terms of keypoints (section IV);
• works that tried to infer afforded actions by planning with
p̂AF and a learnt partial dynamic model associated with
intents, P̂I(s′|s, a) (section V).

In the following sections, especially Sections III and IV,
the readers shall see that most recent works using affordances
in robotics do not reside their methods in the RL framework,
although these methods can be explained from the RL per-
spective.

Remark 2: From the RL perspective, or a behavioural
learning perspective, the knowledge of affordances can help to
accelerate and improve almost every aspect of the RL process
by constraining the action space. These include 1) the learning
of a value function, a policy, or a world model, 2) the design
of an exploration strategy, and 3) the action inference process
(stochastic sampling, planning or value-based greedy actions).
For example, if an action possibility model is available,
one can integrate it into the exploration process of any RL
algorithm, such that it only collects experiences, where actions
do cause changes to the environment. Alternatively, one may
constrain the updates of a policy within the set of affordable
actions. Also, as demonstrated by [10], focusing on the set of
afforded actions simplifies the learning of a world model and
accelerates planning.

Either for data collection, policy learning, world-model
learning or action planning, the use of affordances in RL
may have its best potential in the hierarchical reinforcement



learning (HRL) framework, where an agent learns to use
a set of motion primitives (sub-policies, skills, temporally-
extended actions) to achieve different tasks [36]. Knowing the
possibilities and effects of the skills can accelerate learning
by 1) constraining and guiding the choices of exploring skills,
and 2) filtering out experiences with irrelevant or non-effective
actions. These will lead to shortened exploration time and
increased sample efficiency, as it is effectively shrinking the
size of the solution space (or the number of valid actions).

Remark 3: A further step to take in this regard is the
learning and discovery of affordances. Knowing the set of
affordances is promising and valuable in terms of accelerating
learning; however, enabling an agent to learn and discover
affordances makes the agent robust to potential changes in the
environment and the agent itself. This is closely related to the
popular topic of option/subgoal discovery in HRL [13]. Future
research topics in this regard include learning new skills,
adapting old skills, skill composition, action space design,
etc. One can envision a robot acquiring new skills in a new
environment or modifying old skills as its hardware wear and
tear.

III. MODELLING ACTION POSSIBILITIES

This section discusses recent papers on modelling and
learning action possibilities. This section examines two lines
of works that represents p̂AF in Eq.2 (the probabilities of an
action or a set of actions being affordable given an obser-
vation) as binary segmentation masks (III-A) and continuous
action success scores (III-B). We summarise these works and
discuss their limitations in Section III-C.

Based on the definition given in Section II, these methods
compute p̂AF for a set of actions given a state. The estimated
p̂AF can be used to infer desirable actions in various ways
based on its representations, such as taking the action with
the maximum possibility, i.e., computing argmaxa∈A p̂AF .
In practice, computing p̂AF is commonly based on sensory
observations, such as point clouds or images, instead of the
true system states. The observation representations, training
methods, deployment tasks and motion generation methods
adopted by these works are summarised in Table I.

A. Image/point cloud segmentation

Many works propose to model what actions are afforded
on which part of an object as an image or point cloud
segmentation problem [14]–[21]. In these works, a segmented
part of an object image or point cloud is labelled with one
or more affordable actions, i.e., a binary mask that indicates
whether an action can be applied to that part of the object.
The action possibilities are simplified into binary variables and
represented as pixel-level masks. For example, as shown in
Fig. 1, the pixels or points of the handle of a cup are labelled
as being graspable, while those of the hollow part of the cup
are labelled as containable. It is common for different parts of
an object to have different affordances. It is also common for
the same part of an object to have multiple affordances [18].

As a natural extension, these pixel-level or point-level
affordance predictions were used to provide the downstream

Fig. 1: Segmented images from [18]. Red parts afford grasp-
ing, orange afford supporting, deep blue afford containing,
blue afford wrap-grasping, and purple afford pounding.

manipulation policy with extra task information. The most
straightforward way in grasping tasks is to designate the centre
of the detected affordance masks as a grasping location [18]. A
more recent method treated the predicted segmentation masks
as an extra channel of the image observations. A manipulation
policy then processed this extended image to determine what
actions to take [19]. A self-supervised learning method was
proposed to learn to predict the pixel masks for gripper-object
interaction centres from human teleoperation demonstrations
of a table tidy-up task [21]. These pixel masks were then
used in the real world for a model-based policy to move
the gripper closer to the interaction point of an object and
a reinforcement learning policy to pick up the object. There
was also an attempt to learn a latent representation of object
affordances with Variational Auto-Encoders [20], [37]. It was
successfully trained using simulation data and transferred to a
real-world robotic system, aided by a domain randomisation
technique. They used the latent representation to generate
robot trajectories that move the gripper to a point above a
cup [20].

B. Action scores

Several works proposed to represent the action possibility
as a continuous variable that indicates how confident it is that
an action can be successfully executed (is affordable) [22]–
[27]. In contrast, the segmentation masks discussed in the last
subsection are binary variables.

Zeng et al. proposed to model the success probabilities of
four kinds of primitive grasping and suction actions given the
RGB-D observation of a cluttered scene [22]. The probability
distributions are defined as matrices whose entries represent
the success rates of executing actions at the pixel locations (see
Fig. 2). Similarly, Cai et al. proposed to predict graspability,
ungraspability and background affordances over image pixels,
achieving a grasping success rate of 93% on a set of household
items, 91% on a set of adversarial items and 87% in clutter
scenarios [23]. The network was trained with synthetic data
generated by an antipodal grasp heuristic in simulation in
a self-supervised fashion. Wu et al. extended such a 2D
affordance map defined in the pixel space into a 3D space,



TABLE I: Summary of papers focused on learning action possibilities. Cat.: category; IPS: image/point cloud segmentation;
AS: action scores; PCD: point cloud data; SL: supervised learning; SSL: self-supervised learning; Sim: simulation Real:
real-world; DoF: degree of freedom; PJG: parallel-jaw grasp; BOSM: binary object segmentation mask; RL: reinforcement
learning; Sim-to-Real: simulation to real-world transfer.

Paper Cat. Affordance (afforded actions) Input Method Deployment Task Motion
[14] IPS Created UMD dataset RGB-D SL None -
[15] IPS Grasp; Cut; Poke; Pound; Pour; Support PCD SL 3-Finger Dexterous grasp (Sim) Planning
[16] IPS Created IIT-AFF dataset RGB SL Dexterous grasp (Real) Planning
[17] IPS from IIT-AFF[16]; UMD[14] datasets RGB SL Dexterous grasp (Real) Planning
[18] IPS from UMD[14] dataset RGB-D SL 4DoF PJG; bean-scoop (Real) Planning
[19] IPS Dexterous grasp RGB-D SL Dexterous grasp (Sim) RL
[20] IPS from UMD[14] dataset RGB/RGB-D SL Cup-locate (Sim & Real) Planning
[21] IPS Grasp RGB-D SSL 4DoF PJG (Sim & Real) Primitive & RL
[22] AS Grasp; Suction RGB-D SL 3DoF PJG & suction (Real) Primitive
[23] AS Grasp RGB SSL 4DoF PJG (Sim & Real) Primitive
[24] AS Grasp; Push RGB SSL 4DoF PJG & push (Sim & Real) Primitive
[25] AS Grasp BOSM SSL 4DoF PJG (Sim-to-Real) Primitive & RL
[26] AS Push; Pull RGB-D & PCD SSL Push & pull (Sim) Primitive
[27] AS Pick; Move; Place; Go-to; Open/close drawer RGB SL/RL Kitchen tasks (Sim & Real) Primitive & SL/RL

(a) Action score prediction for four kinds of primitives [22].

(b) Grasping success score prediction [24].

Fig. 2: Examples of action score prediction.

estimating the graspability not only in different x-y positions,
but also in different grasping angles [24]. Another work
proposed to first train a neural network to predict object classes
and segmentation masks of a cluttered scene, and then train
a Deep Q-Network (DQN) to predict the grasping success
scores based only on the segmentation masks [25]. This work
successfully transferred the learnt grasping score prediction
system to the real world with domain randomisation. Recently,
Mo et al. proposed to predict action scores for a set of six
motion primitives based on RGB-D images or point clouds.
They designed a three-branch network architecture to 1) pre-
dict the actionability of a pixel or a point, 2) propose gripper
orientations and 3) estimate the success score of the primitive
action given the action pixel and orientation [26]. In another
interesting recent work [27], the authors proposed to represent
the action possibilities of a large number of pretrained motion
skills by the action value function in the RL framework based
on RGB observations. These papers are closely related to the
works in vision-based robotic grasping (VBRG), where many
works were not linked to the concept of affordance. For a
thorough review of VBRG, please refer to [38], [39].

C. Summary and limitations

To summarise, though some recent works tried to estimate
action possibilities for a variety of actions, most of them
focused on grasping tasks when deploying the learning system.
These works leveraged motions that are generated by a motion
planner or hand-crafted by humans. In terms of affordance
learning, they sought to estimate whether a planned motion
or primitive can be successfully performed at an image pixel
location or a point in the point cloud. The learnt affordance
model was used to infer a desired action by extracting a pixel
location or a point that is centred at the affordable region or
with the highest action possibility. There are several limitations
regarding the papers discussed in this section.

1) At the current research stage, the community lacks an
image segmentation dataset for object affordances at large
scale [5], when compared to datasets like COCO [40] or
ImageNet [41]. It is promising to build larger datasets, as
demonstrated by the ImageNet dataset for image classification,
though a vast amount of human labour is required. To reduce
such human labour, self-supervised learning techniques could
be employed, such as automatic labelling [21], [42] and
interactive labelling [43].

2) Though multi-affordance detection has drawn re-
searchers’ attention [17], [18], real-world manipulation ex-
periments using affordances are restricted to only one or
two categories (mostly grasping) [15]–[23], [25]. Not much
attention was given to other actions such as push and pull
[24], [26]. In addition, they are subject to fully or partially
hand-crafted motion primitives (e.g., top-down parallel-jaw
grasping), thus are limited to a very small set of object-action
relationships. For example, they cannot represent affordances
for 6DoF (Degree of Freedom) grasping actions or non-
primitive interactions. A recent work in coupling language
instructions and mobile robot motion skills made a pioneering
example on more complex action affordance learning and real-
world grounding [27].

3) These methods only predict action possibilities, ignoring
the knowledge about the effects of these actions. From a
human perspective, we tend to use affordance knowledge for



planning, which requires us to be aware of not only what
the possible actions are, but also what the results of these
actions are. The next section elaborates on recent attempts to
incorporate both action possibilities and effects.

4) These works exclude the dependencies between the
executions of multiple actions and the influences of different
manipulation objectives. For example, the possibilities of
grasping a cup at its handle would differ when the robot is
tasked to hang it up, place it on a table or hand it out to
another agent. This involves a planning process for different
final task objectives. We discuss more on this point in the next
section.

IV. KEYPOINT AFFORDANCE

In the last section, we discuss papers that sought to first
compute the action possibilities, p̂AF , and then infer the af-
forded actions from the action possibilities, for example, com-
puting a binary or continuous matrix that indicates whether a
gripper can pick up an object at each pixel location of an
RGB-D image. In these cases, a pixel in an image or a point
in a point cloud is associated with an action as a parameter of
a motion planner or a primitive.

In this section, we review works that proposed to generate
the afforded actions by predicting object keypoints, skipping
the computation process of the action possibility [28]–[33].
The keypoints were defined as the functional points of an
object. They were associated with affordance because they
could be used by some action inference methods (e.g., a
motion planner) to generate afforded actions. Keypoints pro-
vide the action inference method with a smaller search space
and easier-to-define task-relevant geometric constraints. From
the RL perspective, the keypoints can be seen as an abstract
observation that indicates the action space for a policy or value
function, or as a constrained action space that corresponds to
a set of affordable motion primitives. The latter one is adopted
by many previous works. Previously, keypoint methods with
non-deep learning techniques were limited to specific objects
of a particular shape and size [3]. In this review, we focus
on deep learning-based methods that are able to generalise

Fig. 3: Category-level keypoint detection from [28]. (a) De-
tected keypoints for different cups in planning; (b) keypoint
detection; (c) grasping; (d) hanging.

to unseen and novel objects [28]–[33]. A summary of the
observations, object types, training methods, deployment tasks
and motion generation methods of these works are given in
Table II.

Manuelli et al. proposed kPAM, which defined keypoints
for objects that belong to the same category (Fig. 3) and
supported grasping, placing and hanging actions to be inferred
from the keypoints, for example, three keypoints at the handle,
top and bottom for mugs. These keypoints were predicted
given a segmented RGB-D image and then used by a motion
planner to generate motions for picking and placing tasks. The
authors later formulated a feedback control framework with
the keypoint-based object and action representations, which
accomplished a peg-in-hole insertion task with a variety of
objects [29]. They also extended the method to include a shape
completion technique, named kPAM-SC, so that the gener-
ated motions can handle object collision [30]. Another work,
KETO, used a three-keypoint pattern, including a grasp point,
a function point and an effect point, to represent hammer-like
tools and infer hammering motions [31]. A generative network
was trained to produce keypoint candidates given an object
point cloud. An evaluation network was trained to predict the
manipulation success scores for these keypoints. The training
process was conducted in a self-supervised manner using
task completion signals. These keypoints, along with a set of
task keypoints within a simulation environment, were used
to generate motions by solving a Quadratic Programming
problem [31]. Turpin et al., proposed GIFT [32], which
predicted a set of representational keypoints for an object and
then selected from them a grasping point and an interaction
point. This procedure allowed the functional keypoint pattern
to be discovered instead of being specified by users. They
represented the functional keypoint proposal model as a Graph
Neural Network (GNN) over the representational keypoints.
They then computed a robot motion using model predictive
control and evaluated the task-specific return for the motion.
The functional keypoint proposal model was trained by opti-
mising a REINFORCE loss with the task-specific return.

Instead of predicting keypoints for a category of objects
as done in [28]–[32], Xu et al. proposed to define keypoints
for afforded actions on images [33]. They modified the af-
fordance image segmentation dataset UMD [14] by assigning
a set of five 2D keypoints to each affordance region. These
keypoints defined the position and direction information about
the afforded actions. They proposed a two-branch deep neural
network, AffKp, to learn affordance image segmentation and
keypoint detection in parallel via supervised learning. The
predicted keypoints were projected from the image plane to the
real-world frame and used to infer the corresponding afforded
actions.

Summary: To sum up, these works proposed to infer
afforded actions that manipulate an object from a set of
keypoints defined on the object. According to the affordance
definition introduced in Section II, they are classified as meth-
ods that compute the afforded actions, rather than compute
the action possibilities, for example, inferring various grasping
configurations from a predicted grasping point on a tool handle
[31] instead of a set of action possibilities [22]. Most of



TABLE II: Summary of papers focused on affordance keypoint prediction. PCD: point cloud data; SL: supervised learning;
SSL: self-supervised learning; Sim: simulation Real: real-world; DoF: degree of freedom; PJG: parallel-jaw grasp; MPC:
model predictive control.

Paper Object classes Affordance (afforded actions) Input Method Deployment Task Motion
[28] Shoes; Mugs 6DoF PJG, place & hang RGB-D SL Shoe-placing, mug-placing & mug-hanging (Real) Planning
[29] Erasers; Pegs; Holes 6DoF PJG, wipe, insert RGB-D SL Whiteborad wiping, peg-in-hole insertion (Real) Planning
[30] Shoes; Mugs 6DoF PJG, place & hang RGB-D SL Same as [28] with shape completion (Real) Planning
[31] Hammers 6DoF PJG, hammer, push, reach PCD SSL Object hammering, pushing & reaching (Sim) Planning
[32] Hammers 4DoF PJG, hammer, push, hook RGB-D SSL Object hooking, reaching, hammering (Sim) MPC
[33] UMD+GT dataset UMD+GT dataset RG-D SL PJG, pouring, arranging, cutting (Sim & Real) Planning

the works leveraged human knowledge to create a pattern of
keypoints and trained deep neural networks to predict them
for a category of objects [28]–[31], [33], while only one work,
GIFT, proposed to discover functional keypoints using task-
completion signals [32]. The main benefits of using keypoints
to infer afforded actions include but are not limited to:

• keypoints can capture the common properties of a cate-
gory of objects;

• keypoints can support the inference of various afforded
actions;

• keypoints can be used to reduce the search space of
afforded actions for the action inference processes.

Limitations: The primary limitation of keypoint-based
methods is that pre-defining a fixed pattern of keypoints
requires a relatively large amount of human prior. This eases
the keypoint prediction model from the difficulty of learning
from scratch but limits the generalisability of the learnt key-
point patterns. In reality, one specific pattern of keypoints is
unlikely to be sufficient and flexible enough for the diverse
manipulation tasks that may need to be performed on the
objects. The aforementioned papers have evaluated their meth-
ods on tasks with relatively simplified geometric constraints
and manipulation skills [28]–[31], [33]. For example, when a
robot could only reach a hammer’s head, it could not grasp the
head and use the handle as a hammering point if it can only
recognise the head as a hammering point. Learning to predict
keypoint patterns with free interactions and task-completion
signals is promising for reducing such human biases [32].

Secondly, sparse keypoint representation is not very com-
patible with tasks that are sensitive to object shapes and
sizes, when compared to a full point cloud representation.
For example, when manipulating a deformable object like
a soft plastic cup, keypoints are not enough for the robot
to determine the grasping force and track the deformation
of the cup [44]. In this regard, multi-modal representations
may be required, such as using keypoints along with a shape-
completion procedure [30]. In the future, other observation
modalities, such as tactile sensors, force sensors, etc., may be
incorporated with keypoints to better infer afforded actions in
real-world manipulation tasks.

Last but not least, the primary method to infer afforded
actions using keypoints, namely motion planning, is difficult
and expensive in environments with complex dynamics and
large action and state spaces. It poses two problems to classic
methods: 1) user-specified dynamic models have difficulties
representing highly stochastic and non-linear real-world sys-

tems and generalising to high-dimension inputs like images
and 2) planning over large action and state spaces is very
expensive and difficult. Researchers have proposed to address
them by learning a system dynamic model from data [12],
[45]–[48], though they did not explicitly consider the concept
of affordances. We elaborate in the next subsection on recent
works that propose to plan robot motions using a learnt
affordance-aware dynamic model.

V. MODELLING ACTION POSSIBILITIES AND EFFECTS

As defined in Section II, the effects of afforded actions can
be modelled by a partial dynamic model P̂I(s′|s, a), which
predicts the next system states given a pair of state and
afforded action. The motivation for building a dynamic model
is to equip a robot with a safer and more efficient method to
generate motion plans or learn from imagined data. A dynamic
model releases the robot from expensive and potentially unsafe
interactions with the real world [12], [48]. Previous works on
action effect modelling have relied extensively on manually-
abstracted state representations and dynamics [49], [50], which
has a deep connection to the field of symbolic planning [51].
It is difficult, however, to handcraft dynamic models for real-
world systems with complex observations. Therefore, in recent
years researchers have proposed deep learning methods to rep-
resent and learn the dynamic model from data, demonstrating
the value of having access to a dynamic model over the space
of complex sensory observations [12], [48], [52], [53].

Among many recent advances of learnt world models,
Khetarpal et al. proposed to integrate the concept of af-
fordances in the model-based reinforcement learning (MRL)
paradigm (as rephrased in section II) [10]. They first learnt a
binary classification model to predict whether some actions
were afforded given an observation, which was essentially
estimating the action possibilities p̂AF as binary variables. Dif-
ferent from methods discussed in Section III, they did not infer
the afforded actions from the estimated action possibilities.
Rather, they proceeded to learn a dynamic model of the world
for only actions that were classified as possible or effective.
Data on non-effective actions are regarded as redundant and
ignored. The resultant model was a partial dynamic model
(PDM) of the system. During planning, the PDM is only
queried for effective actions according to p̂AF . In short, the
benefits of such a framework are twofold: 1) it accelerates
planning by only considering the afforded actions and 2) it
accelerates dynamic model learning by focusing on learning
part of the system dynamics concerning the afforded actions



of interests. They were demonstrated first in a continuous 2D
navigation task in [10] and later in unseen long horizon ma-
nipulation tasks in simulation with image inputs (Fig. 4) [34].
This affordance-aware model-based reinforcement learning
framework was later extended to develop temporally abstract
partial dynamic models, considering options (sub-policies) that
are only afforded in certain situations. The authors empirically
demonstrated the success of learning option affordances and
partial option models online, resulting in more efficient learn-
ing and planning in a 2D Taxi task [35].

Fig. 4: The multi-step tool-use task designed to evaluate the
Deep Affordance Foresight method proposed in [34]. The
robot needs to decide which end of the L-shape stick to grasp
for reaching the red block or push the blue block out of the
tube.

Limitations: As a relatively new direction, the first limita-
tion is the lack of evaluation in more realistic examples. Most
previous works are performed in simulation using synthetic
data. Tasks with image or point cloud observations from
real robots with longer time horizons would increase the
complexity considerably. More efforts are required to design
more realistic tasks.

Secondly, the predicted action effects in the proposed ex-
amples are more short-term or instant effects of single-step
action commands. In practice, planning is often more valuable
with macro actions that consist of a series of single-step
control commands, exhibiting a particular kind of skill, such
as pushing for a certain distance, approaching and grasping
an object, lifting up for a certain height, etc. This requires the
algorithm to reason about long-term action possibilities and
consequences. Though an attempt was made to incorporate
affordances with temporally abstract partial models for more
efficient planning at a more abstract level, it was only evaluated
in a 2D Taxi task [35]. More effort is needed to evaluate and
improve its performance on robotic tasks in the future.

Thirdly, the proposed method focuses on the affordances
of a given state, which is likely to be computationally ineffi-
cient for tasks with complex observations containing diverse
information irrelevant to the manipulation goal. From a human
perspective, we typically only attend to some parts of the
observation that are most relevant to the task of interest, saving
energy and improving planning efficiency and accuracy.

VI. DISCUSSIONS AND CHALLENGES

According to the reviewed papers, this section summarises
the limitations of deep robotic affordance learning (DRAL)
and identifies its bottlenecks at the current stage. We conduct
the discussion and pose future research challenges from the
following angles: observations, actions, affordance represen-
tations, data collection and real-world deployment.

A. Observation

For most tasks, especially real-world tasks, a robot relies
on sensors to perceive the environment without access to
the true system dynamics, such as the velocities of objects.
This is one of the most common assumptions adopted by
robotic researchers. Previous works have made efforts to
develop symbolic representations for the observations of the
system to simplify the mapping from sensory observations to
affordances [4], [54]. In recent DRAL literature, the types
of observations have become more complex, including ob-
ject states (normally in simulation), object point clouds, and
RGB/RGB-D images.

Another important assumption made by these works is that
the observation contains enough information to reason about
affordance. However, this does not always hold true. For exam-
ple, a heated plate may be detected as graspable from RGB-D
or point cloud observations though it may be actually too hot to
hold by a human. Some affordances may require information
about temperature, softness, transparency, reflection, etc., that
is difficult for (depth) cameras to capture. It is also worth
noting that languages are becoming more popular to provide
instructions or extra information about the desired tasks and
skills for affordance learning [27], [55], due to the rise of large
language models (LLMs). Information about the robot itself,
such as sensorimotor states, could also help to reason about
affordances like reachability. On the other hand, affordances
of occluded objects are difficult to detect from a fixed camera
viewpoint. Combining all these, a promising direction for
future research is to apply multi-modal and multi-viewpoint
observations for affordance detection [54], [56].

The third assumption about observations, especially for deep
learning-based methods, is that the mapping from inputs to
actions or action possibilities can be found through gradient
descent. However, given the large space of observations in the
real world, it is very challenging to find such a mapping even
if it does exist. Some works applied pre-processing methods
to help the robot focus on the most relevant information
for affordance learning or action inference, such as applying
object masks [25] or extracting object keypoints [28]. Such
ideas make computation more efficient by shrinking the size
of observation space, whereas more or less lose some degree of
generality due to human priors. In this regard, future research
could focus on representation design or learning, giving special
attention to the trade-off between generalisability and learning
efficiency (or computational cost) for affordance detection or
afforded action inference.

B. Action

Noticeably, researchers preferred motion primitives in recent
DRAL works, for example, grasping primitives that move a
gripper towards an identified grasping location and close the
fingers [24], [25], and placing primitives that move a gripper
with an object to a location and release the fingers [28], [30].
Note that these primitives can be motion planned by a planner
[24], [28], [30], [31] or parameterised motor skills [34]. These
primitives exhibit relatively simple motions, such as pick-
and-lift [18], [19], [23]–[25], pick-and-place [22], [28], [30],



pushing [34] and hammering [31]–[33]. The use of motion
primitives as actions exhibits a trend that the community is
more interested in the affordances of high-level skills, rather
than low-level control commands. To follow this trend, we
pose some challenges and future directions to consider.

The adaptability of the primitive motions considered by
recent works could be improved, as they were mostly designed
for open-loop control. For example, given a grasping point,
a grasping motion moves the gripper to the grasping point
and closes the fingers, without any adaptation in between.
However, the detected grasping affordance may be inaccurate
or changed during the execution of the motion due to occlu-
sion, human factors, collision with the robot arm or finger
slippery, etc. To cope with such challenges, one may consider
a feedback control style method for action inference [29],
[32]. Another interesting direction to consider is an algorithm
that is permitted to stop and re-select motion primitives. For
example, when an insertion motion changes from affordable to
unaffordable, the robot may select a re-position motion without
waiting for the insertion motion to reach its execution time
limit. The notion of interrupted options based on the option
framework [36] may serve as a good theoretic foundation.

Predefined primitive motions are very useful when the
manipulation task is in a rather structured environment without
unexpected factors. However, the real world is highly unstruc-
tured and uncertain. A robot needs to generalise its skills
to novel situations quickly or sometimes finds new skills to
manipulate an object. This means the robot may be required
to discover new afforded actions. To achieve this, the action
space needs to be general enough. One promising direction
is the study of option or subgoal discovery in hierarchical
reinforcement learning [13], in which skills (in the form of
sub-policies) are discovered instead of predefined.

C. Affordance Representations

According to Gibson [1], perceiving affordance does not
need information processing or any internal representations,
but only requires the extraction of fundamental physical
properties of the target object or environment. For example,
perceiving that a needle has a pointed end leads to the
perception that the needle affords to pierce. This reasoning
is theoretically sound [57], but is however practically limited
as, in practice, some forms of mathematical representations
of affordances are required to facilitate action inferences
[6]. Also, it is important to note that there are so far no
known widely-adopted benchmarking metrics for qualitative
or quantitative comparative studies of different representations
proposed in the field. What intermediate representations are
needed in the spectrum between end-to-end learning and
manually constructing everything is mostly specific to the
problem of interest.

As this review is inclined to the recent practical applications
of affordances in DL-powered RL and robotics, it is more
graspable and plausible from the practical standpoint to discuss
the representations of affordances in recent literature according
to how the action inference method works. Afforded actions are
inferred in mainly three manners: 1) from the action possibility

estimates, 2) by a direct mapping from the observations, and
3) by planning with a partial dynamic model. The first and
third classes require an explicit representation of the action
possibilities and effects, while the second one may need an
intermediate representation that constrains the action space,
such as object keypoints.

Action possibilities for primitive motions were often rep-
resented by an affordance map, which is typically a matrix
that has the same size as the observation image. Its entries
indicate the success rates or possibilities of executing cer-
tain primitive motions at the corresponding pixel locations
[22]–[25]. Segmentation masks can be regarded as a special
case with binary variables [14], [17]–[20]. It can also be
applied to point clouds in the 3D space [15], [26]. This
representation is efficient as it estimates the possibilities for
a set of actions simultaneously, but is limited to primitive
motions that operate over the discrete image pixels or object
points. It may not easily generalise to continuous observations
such as sensorimotor states, force feedback, etc. For actions
that are not parameterised on images or point clouds, one
may need to represent the action possibilities as a classifier
[10]. In order to scale to real-world tasks, it is promising
to develop methods to accelerate the learning of the action
possibility estimator with large and continuous action space,
such as learning from demonstrations [58].

Representing and predicting the effects of actions is another
difficult topic. Though an action possibility estimator helps to
reduce the learning data requirement and increase the planning
efficiency for dynamic models [10], [34], the difficulty of
reconstructing high dimensional observations (e.g., images or
point clouds) remains. Experiences and methods from other
fields could be considered, such as video prediction [59]. There
is also a large body of work devoted to the learning of dynamic
models [48]. Abstract representation for system observations
is another closely related topic [60]. Future research may
focus on applying general dynamic model learning methods
to partial dynamic models with an action possibility estimator.
Another challenge in the long term may be how the learning
of affordances affects the learnt representation of the world,
which is related to the topic of understanding the world
through interaction.

Another way to compute afforded actions in the literature
is through a direct mapping from observations to a set of
afforded actions. The crucial question is how to represent the
scene/object in a way that relates to their afforded actions. One
popular solution is to use object keypoints that geometrically
capture some functions of a category of objects, such as
grasping points of mugs [28]–[33], as discussed in Section IV.
From the keypoint methods, we can identify some criteria to
be satisfied when considering other types of representations.
These include: 1) intuitive or convenient for generating robot
motions; 2) able to generalise across robot hardware (grippers,
arms, etc.); 3) able to capture the common properties of
many objects. Notice that such a representation should be
designed as an abstraction of the observations of a scene or
an object that relates to the afforded actions. The keypoint-
based methods rely on motion planning or model predictive
control to generate the desired motions (see Table II), while



one may come out with representations that suit other motion
generation techniques (e.g., reinforcement learning, imitation
learning, etc.).

D. Data collection

Deep learning methods require a considerable amount of
data to achieve good generalisation performances [61]. Pre-
vious papers in DRAL have used supervised learning, self-
supervised learning and reinforcement learning as their core
training methods, each of which has a unique data collection
process.

Supervised learning methods rely fully on human prior to
collect and generate data, which is expensive for large datasets
(e.g., ImageNet [41]). Most papers use the UMD dataset
[14] for evaluation. However, it only provides segmentation
labels. To alleviate the difficulty of collecting manipulation-
specific data (e.g., grasping points, motion trajectories, etc.),
some papers adopt self-supervised learning to collect data
automatically through simulations [23]–[25], [31], [32]. Rein-
forcement learning (RL)-based methods generate training data
by interacting with the environment using a learnt policy with
some degree of randomness [11]. In addition, the performance
of the RL policy is evaluated directly on task return or
success rate, without intermediate metrics (e.g., the accuracy
of predicting segmentation masks or keypoints). However, off-
policy RL methods can benefit from data generated from other
sources, such as human demonstrations [58].

A limitation, at the current stage, is the lack of a consensus
on which benchmark should be used to generate the data and
evaluate the algorithms for DRAL. Ideally, such a benchmark
should provide handy Application Programming Interfaces
(APIs) and functions to support the data collection processes
for supervised, self-supervised and reinforcement learning.
Common functionalities, such as capturing RGB/RGB-D im-
ages and point clouds, classic planning algorithms, popular RL
baselines, etc. are also considered helpful. It could be more
valuable if tasks that feature multiple manipulation objectives
and multi-step manipulation are designed and built-in. There
are several open-source datasets, simulation environments and
benchmarks that may be extended for such purposes [26],
[62]–[64]. The community has not yet seen a large-scale
dataset for DRAL that covers the mentioned aspects.

E. Real-world deployment

For methods that use real-world data, the main difficulty
is primarily the expensive data-collection process, which was
covered in the last subsection. The main concern that arises
during the final deployment or evaluation is then the insuf-
ficient generalisation ability, which is largely caused by the
limited amount of training data.

1) Supervised learning methods are easier to be deployed in
the real world after being trained, though their performances
rely extensively on the quality of the dataset. In the past
few years, many datasets that support the learning of stable
grasping have been constructed [14], [22], [38], [39], [65],
[66]. However, very few are built for multiple manipulation
objectives or multi-step tasks [67], [68]. Consequently, more

efforts are needed to collect data that cover diverse background
textures, viewpoints, objects (in terms of types, shapes, dimen-
sions, etc), and manipulation skills (trajectories) in order for
supervised learning-based DRAL to work in the real world.

2) Reinforcement learning in the real world is even more
difficult due to the high risk of hardware damages during
exploration and a considerable amount of human labour for
resetting the environment [69].

3) Sim2real transfer is another stepping stone for success-
ful real-world deployment, as researchers have resolved the
simulation training to avoid the painful and impractical data-
collection process in the real world. Inevitably, deploying
models trained in simulation onto real-world systems will
have to face the simulation-to-reality gap. To cope with
such differences, researchers have proposed to use domain
randomisation to extend the distribution of training data [70]. It
can be applied to image textures [20], [25], [70], [71], camera
parameters [72] and physical properties [69]. Recent DRAL
works limit their real-world applications within a relatively
unchanged and structured environment. Long-horizon tasks
that require the reasoning of the long-term effects of diverse
skills or objects have mainly been studied in simulation. More
efforts are needed to evaluate and adapt existing methods to
real-world data.

VII. CONCLUSION

This review paper looks into the recent advances in the topic
of deep robotic affordance learning (DRAL). DRAL aims to
develop data-driven (deep learning) approaches to apply the
concept of affordance to robotic tasks. We suggest in this re-
view to summarise and analyse these works based on the rein-
forcement learning (RL)-based definition of affordances [10].
We briefly recall this definition in Section II, where we classify
recent DRAL papers and discuss the connections between RL
and affordances. Accordingly, they are categorised into three
classes of works:
• 1) infer afforded actions from the estimated action pos-

sibilities;
• 2) learn an abstract object/scene representation that re-

lates to the set of afforded actions;
• 3) generate afforded actions through planning with a

learnt partial dynamic model and an action possibility
classifier.

Advances and limitations of the three lines of works are
discussed in Sections III, IV and V, respectively. A more
general discussion of the field and its challenges are given
in Section VI.

Final remark: We further propose here a promising direc-
tion to extend the RL-based affordance definition. In [10], the
intent captures the desired resultant state of an action taken at
a system state. Subsequently, the corresponding affordance is
defined as a subset of state and action pairs, in which the intent
is satisfied. In [35], the definitions of intent and affordance are
extended to include multiple timestep predictions in the MDPs.
Here, we propose to extend the theory by generalising the def-
inition of intent to capture an arbitrary kind of consequence of
an action taken at a state, generalising beyond state prediction.



Such intents could be called general intent. For example, the
intent of a grasping action may include the desired success
rate, object dropping rate, the weight of the object that can
be held, etc. Subsequently, affordance is defined to include a
subset of state and action pairs, in which the intent is satisfied.
Such affordances may be called general affordances.

More importantly, this direction is promising, if a thor-
ough mathematical definition is developed based on the RL
framework. A set of new algorithms can be developed to
infer actions according to the predictions of arbitrary action
consequences, instead of simple system states. Similar to the
dynamics-based affordances, general affordances can help with
exploration, value function or policy learning, model learning
and planning by constraining the action space, but for arbitrary
action consequences, beyond state prediction. However, this
is outside of the scope of this review, and considerably more
future efforts are required to derive and experiment with the
theory.
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