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Kauzmann paradox: A possible crossover due to diminishing local excitations
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The configurational entropy of supercooled liquids extrapolates to zero at the Kauzmann temperature, causing
a crisis called the Kauzmann paradox. Here, using a class of multicomponent lattice glass models, we study a res-
olution of the paradox characterized by a sudden but smooth turn in the entropy as temperature goes sufficiently
low. A scalar variant of the models reproduces the Kauzmann paradox with thermodynamic properties at very low
temperatures dominated by correlations. An exactly solvable vector variant without correlation illustrates that a
sudden entropy turn occurs when discrete local excitations are largely suppressed. Despite being disordered and
infinitely degenerate, the ground states have zero entropy per particle.
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Despite decades of study, thermodynamic properties of
glass formers at deep supercooling remain surprisingly con-
troversial with challenges due to the long relaxation time
[1–3]. As temperature decreases, the entropy of a supercooled
liquid in general drops faster than that of the crystalline coun-
terpart. Simple extrapolations show that the excess entropy
of the liquid over the crystal appears to vanish abruptly at
a finite temperature called the Kauzmann temperature TK ,
leading to the so-called Kauzmann paradox [4]. An early
theory by Gibbs and DiMarzio [5] analyzing a lattice model of
polymer suggests a second-order phase transition at TK below
which the system becomes an ideal glass with zero entropy.
Later, studying excess entropy, Adam and Gibbs [6] dervied
the Vogel-Fulcher-Tamman(VFT) law [7], which is based on
a finite TK . This concept forms the cornerstone of major
mean-field thermodynamic theories of glass [3]. Notably, a
more modern view proposes that the ideal glass transition
is described by a random first-order transition between local
glassy clusters and liquid phase [8], from which the VFT law
or related possible forms can be obtained. An alternative view
is a relatively sudden but smooth crossover with the excess
entropy vanishing only at zero temperature [9–13]. Recently,
significant progress in experiments [14,15] and molecular dy-
namics (MD) simulations [16,17] was made. In particular, Tk

is proposed to be finite in three dimensions but it may be
vanishing in two dimensions [16,17]. However, since a di-
rect and sufficient supercooling for settling the dispute seems
unattainable, the paradox remains an actively debated problem
[18,19].

Lattice models in general are more efficient computation-
ally than MD simulations by orders of magnitude and relate
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to theories more readily [3,20]. However, most are either
energetically trivial or of mean-field type and cannot provide
detailed answers to the paradox. We have recently proposed a
distinguishable particle lattice model (DPLM) of glass [21],
the physical relevance of which has been supported by the
observation of many glassy behaviors [21–26]. Its thermody-
namics properties are exactly solvable. However, neither can
it be applied to the paradox because it assumes infinitely many
particle types, leading to a diverging specific entropy.

In this work, we illustrate a simple resolution of the Kauz-
mann paradox by proposing a class of multicomponent lattice
models (MCLM), which generalizes the DPLM to a finite
number of particle types. They inherit glassy properties from
the DPLM but have a finite specific entropy. In particular,
a vector variant of the model admits exact solvability at
arbitrary temperatures, allowing a thorough and intuitive un-
derstanding. Below, we explain our simulation and analytic
results while more details and verification of their glassy
nature are given in the Appendixes.

I. SCALAR MCLM

We first define a scalar version of the model in two dimen-
sions (2D) and it is similar in three dimensions (3D). A square
lattice of width L following periodic boundary conditions is
occupied by N � L2 particles. No two particles can sit at the
same site. Particles fall into M types, i.e., M components, and
there are N/M particles for each type. Nearest neighbors of
types k and l = 1, 2, . . . , M interact with energy Vαkl , where
α = x or y if particle l is to the east or north, respectively, of
particle k [see inset in Fig. 1(a)]. In general, Vαkl differs from
Vαlk . As a consequence, for a d-dimensional MCLM with M
types, Vαkl totally takes M2d-independent discrete values.

At the beginning of a simulation, the whole set of Vαkl are
randomly sampled from a distribution g(V ) which is taken as
the uniform distribution in [0,�V ]. We take dimensionless

2469-9950/2023/107(17)/174206(14) 174206-1 ©2023 American Physical Society

https://orcid.org/0000-0003-0608-9029
https://orcid.org/0000-0002-7799-0511
https://orcid.org/0000-0001-6065-483X
https://orcid.org/0000-0002-0476-1857
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.174206&domain=pdf&date_stamp=2023-05-12
https://doi.org/10.1103/PhysRevB.107.174206


GAO, ONG, LEE, YIP, DENG, AND LAM PHYSICAL REVIEW B 107, 174206 (2023)

FIG. 1. Specific entropy S/N against temperature T for scalar
MCLM with M particle types in 2D (a) and 3D (b). Simulation results
(symbols) agree well with annealed-averaging estimates (solid lines)
at large M and T . As T decreases, S/N first appears to drop to 0
at a finite T , exemplifying the Kauzmann paradox. For M � 50 in
3D, the drop slows down at low T signifying the onset of smooth
turns. For M = 100, a simple quadratic function (dashed-dotted
lines) extrapolates S/N to 0(>0) in 2D (3D). Possible values of Tg

for various M are indicated by a region shaded in dark gradient blue,
while the light blue region indicates T > Tg. Inset in (a): an example
configuration in a 2 × 2 region showing particle types (numbers in
circles) and associated pair interactions Vαi j sis j .

units by putting �V = 1 and the Boltzmann constant kB = 1.
Possible particle segregation and crystallization into domains
of a single type or of two types in checkerboard arrangements
are suppressed by the anisotropic form of the interaction Vαkl .
Physically, the anisotropy effectively accounts for different
frustration at different sites and directions due to further
neighbors in the disordered configurations. For large M or
after ensemble averaging, system isotropy is restored. Let si

be the particle type at site i. The total energy of the system is

E =
∑
〈i, j〉∗

Vαi j sis j , (1)

where the sum is over all occupied nearest-neighbor sites i
and j, with the asterisk denoting j at the east or north of
i corresponding to αi j = x or y, respectively. The MCLM
reduces to the DPLM when M is large.

We conduct equilibrium simulations on fully occupied lat-
tices in 2D and 3D adopting highly efficient nonlocal swap
dynamics [27,28]. In each Monte Carlo step, two particles in
the system are randomly chosen. They are swapped based on
the Metropolis algorithm at temperature T by an acceptance
probability

p =
{

exp(−�E/kBT ), if �E � 0
1, otherwise (2)

where �E is the change of the system energy E due to the
swap and kB = 1 is the Boltzmann constant. We measure
E at various temperatures T up to T1 = 1, at which high-
temperature analytic solutions are accurate using the annealed
averaging approximation explained in Appendix C 1. The sys-
tem entropy S, which equals the configurational entropy in the
absence of vibration, is then computed as

S

N
= S1

N
−

∫ T1

T

cV

T
dT . (3)

Here, cV is the specific heat measured at T . Figure 1 plots the
obtained specific entropy S/N against temperature. The excel-
lent efficiency of the swap algorithm allows the study even
close to the glass transition temperature Tg, estimated by ex-
trapolating kinetic simulation data to experimental timescales
following [27]. The results on the entropy qualitatively resem-
ble those in experiments and in general extrapolate to zero
at a finite temperature, reproducing the Kauzmann paradox.
For M = 10, 20, and 50 in 3D, we observe smooth turns
of the entropy at T � 0.17, 0.15, and 0.12 and respectively
close to Tg, avoiding the entropy crisis. However, difficulty in
measurement at very low temperatures forbids us to determine
if such turns occur also for larger M and in 2D.

Concerning analytical treatments, a remarkable feature of
the DPLM is that its thermodynamic properties are exactly
solvable at all T and can be calculated based on simple
annealed averages [21], a result which has been extensively
verified in simulations [21–23]. The MCLM inherits this
property, but only approximately. Figure 1 shows S/N from
annealed averaging calculations, which agrees well with sim-
ulations for large M and T . In particular, the approximation
exhibits the Kauzmann paradox, reaching a zero entropy at
the Kauzmann temperature TK given by (see Appendix C 2)

TK = �V

ekBM1/d
, (4)

in d dimensions. Note that Eq. (4) is derived for a uniform
interaction distribution g(V ) modeling a strong glass [23]
and results differ quantitatively for other choices. From both
simulation results in Fig. 1 and Eq. (4), we observed that TK is
smaller in 2D than in 3D for any given M. Moreover, applying
a quadratic extrapolation [29] for M = 100 (dashed lines in
Fig. 1), we get TK � 0 in 2D but TK > 0 in 3D. This may
explain a suggested qualitative difference between dimensions
motivated by recent MD simulations [16,17,30].

The annealed averaging approximation effectively assumes
statistical independence of all pair interactions. To examine
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FIG. 2. Nearest-neighbor bond-bond correlation ρ against T for
scalar and vector MCLM with M particle types.

this, we measure a normalized interaction correlation defined
by ρ = cov(V1,V2)/var(V1). Here, “cov” and “var” denote
covariance and variance, respectively, and V1 and V2 are neigh-
boring pair interactions in perpendicular directions sharing
one common particle. From results shown in Fig. 2, ρ is no-
ticeably nonzero mainly for M � 20 at T � 0.3. This regime
coincides with that in which the measured entropy deviates
significantly from the annealed averaging approximation as
observed in Fig. 1(a). In particular, considerable correlations
are present at small S/N � 1. Therefore, the zero or negative
entropy predicted by Eq. (4) occurs when the approxima-
tion should break down. An improved approximation gives
instead a positive entropy at all finite temperatures (see Ap-
pendix C 3). Such correlations, bound to exist also in realistic
systems, present the main difficulty preventing a thorough
understanding of the paradox and in particular a possible turn
in the entropy.

II. VECTOR MCLM

We now introduce a vector MCLM which suppresses both
crystallization and correlation, allowing exact thermodynam-
ics. A motivation for this variant of the MCLM originates
from Eq. (4), where one sees that M and d affect TK via the
quantity M = M1/d . Since M can be interpreted as the num-
ber of types per dimension, we attempt to denote a particle
type in the d-dimensional model by a d-dimensional vector
k = (k(x), k(y), k(z), . . . ), where all type indices k take k =
1, 2, . . . ,M so that the number of particle types is M = Md .
In the following discussion, we focus on 2D simulation and
show that our exact predictions are highly accurate. Results in
higher dimensions are expected to behave similarly: It can be
shown that all thermodynamical quantities differ from the 2D
results by a factor d/2 (see Appendix D 2).

Nearest neighbors of types k and l interact with energy
Vk(α)l (α), where α = x or y if particle l is to the east or north
of particle k [see inset in Fig. 3(a)]. The interaction at a
horizontal (vertical) bond thus depends only on the x (y) type

FIG. 3. (a) Comparison of 2D vector MCLM simulation results
(symbols) with exact analytic calculations (solid lines) for entropy
per particle S/N and (b) the proportion of excited pair interactions
plotted against temperature T . The drop of S/N slows down at T0.7

[black symbols in (a) and (b)] when the slope has reduced to 70%
of its maximum value. The blue shading in (a) is defined similarly
to that in Fig. 1. Inset in (a): an example configuration in a 2 × 2
region showing particle types si = (si(x), si(y)) and pair interactions
Vsi (αi j )s j (αi j ).

index. Let si = (si(x), si(y)) be the particle type at site i. The
system energy is

E =
∑
〈i, j〉∗

Vsi (αi j )s j (αi j ), (5)

where the sum and αi j are defined similarly to those in Eq. (1).
To enable exact thermodynamics, we define deterministically

Vk(α)l (α) = [k(α) − l (α) + 1] mod M
M − 1

�V (6)

with �V = 1. All particle types are then similar to each other
because they follow a cyclic symmetry in which the system is
invariant under relabeling the types via k → (k mod M) + 1.
This definition leads to discrete energies

Vk(α)l (α) = 0, δV, 2δV, . . . , �V, (7)
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with δV = �V/(M − 1). Indeed, Vk(α)l (α) follows a uniform
discrete distribution g(V ), which approaches the continuous
uniform distribution in [0,�V ] at large M.

Figure 3(a) shows the specific entropy S/N measured
from equilibrium simulations using the procedures explained
above. Results resemble those from scalar MCLM, exhibiting
the Kauzmann paradox. Exact analytic results (see Ap-
pendix D 2) are also displayed, showing excellent agreement
with simulations even at the lowest temperatures studied. Cor-
relation ρ between neighboring interactions is consistent with
zero at all temperatures as shown in Fig. 2.

The exact results in Fig. 3(a) show a smooth turn of the
entropy at low temperatures for all M. The cause of the turn
can be understood as follows. At high temperatures, the model
is a simple lattice gas in which particles can neighbor any
other, resulting in high entropy. As temperature decreases,
only pairings with interactions of order kBT or below are
energetically favorable and the entropy thus drops. Noting that
interactions take discrete values according to Eq. (7), the turn
occurs when almost all excited interactions are suppressed. To
show this, Fig. 3(b) plots the measured excited proportion �

of the pair interactions, i.e., those with energies � δV , which
again well agrees with the exact results. The proportion � is
below 1.5% at temperature T0.7 at which the slope of S/N has
decreased to 70% of its maximum value (black circles). The
system is very close to a ground state with few excitations. A
further rapid drop in the entropy is thus impossible and the
entropy turn follows.

The vector MCLM exhibits intriguing ground-state prop-
erties. From exact results shown in Fig. 3, only at T = 0 does
S/N vanish. The system is then in its ground state with energy
E = 0 since all pair interactions equal 0. We obtain a zero-
temperature entropy S0 = √

NkB ln M (see Appendix D 1),
which diverges at large N while S0/N vanishes. This im-
plies highly degenerate disordered ground states. Figure 4(a)
shows the particle arrangement of a typical ground state in
a small system, with each particle type colored randomly
(left panel). It appears remarkably disordered and resembles
the high-temperature configuration similarly colored (right
panel). There are, however, hidden regularities. For example,
particles of the same type at the same column or row must be
separated by a distance of a multiple of 5. In addition, only
five possible particle types can form nearest neighbors in a
certain direction of a given type. To elucidate these features,
Figs. 4(b)–4(d) recolor each type with red and/or green color
components in the red-green-blue (RGB) color space depend-
ing on the type indices si(x) and si(y). Strict cyclic order
of si(x) and si(y) in x and y directions, respectively, is now
clearly revealed. On the other hand, the lack of order of si(x)
and si(y), respectively, in y and x directions explains the large
S0 associated with the high ground-state degeneracy.

III. DISCUSSIONS

The Kauzmann paradox is a long-standing problem in the
study of glass. The MCLM is a non-mean-field microscopic
model of glass which illustrates a resolution of the paradox in
detail in finite dimensions. Moreover, they are generalizations
of the DPLM which have already demonstrated many glassy
properties [21–26]. This guarantees that the resolution is

FIG. 4. Particle configurations from small-scale 2D vector
MCLM simulations with N = 100 particles of M = 25 types at
T = 0 (left) and 0.5 (right). At T = 0, system energy E = 0 implies
a ground state. Particle type si = (si(x), si(y)) at site i is colored
(a) randomly for each value of si, (b) red with brightness si(x),
(c) green with brightness si(y), and (d) red and green superimposing
those in (b) and (c), i.e. a RGB color code of {si(x), si(y), 0}.

consistent with the diverse phenomena of glass, which cannot
be achieved if completely different models are invoked to
explain different properties.

For the vector MCLM, the sudden turn of the entropy
occurs when most pair interactions have reached the lowest
discrete level. Then, specific entropy cannot drop significantly
further and hence turns. A central premise of the paradox
is that there must either be a phase transition or a smooth
but surprisingly sudden entropy turn, definitive evidence for
neither is yet unavailable. We have shown here that a sudden
turn emerges naturally in the vector MCLM. In fact, this
may be commonplace for systems with discrete local levels,
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which play a pivotal role in theoretical studies of glass [6].
More generally, a quantum harmonic oscillator also exhibits a
similar entropy turn (see Appendix D 3).

The annealed averaging approximation for the scalar
MCLM predicts a zero entropy at a finite temperature TK

in Eq. (4), analogous to an early result of Gibbs and Di-
Marzio [5]. The approximation is based on the notion of
uncorrelated interactions, which however breaks down close
to TK , thus invalidating the prediction. In Appendix C 3, we
derive alternative uncorrelated particle approximations. With-
out excitation, a similar finite TK is obtained. After properly
including excitations, the entropy then remains positive for all
finite temperatures, which we believe to be a more reasonable
result. Note that Gibbs and DiMarzio’s calculation also has
been analogously amended [10,31,32].

Pair interactions between neighboring particles in inherent
structures of glass [33] can take many possible values not
only because of different particle types but also of momentar-
ily quenched random particle separations due to frustration.
Lattice models of a single- or few-particle types in contrast
provide intrinsically only a few possible interactions. To rem-
edy this, the DPLM and the MCLM consider many particle
types leading to a distribution of interactions, which has been
crucial to account for Kovacs paradox [22], the heat capacity
of two-level systems [26], etc. The presence of multiple parti-
cle types is directly justifiable for polydisperse and polymer
systems. When applied to binary fluids or small molecular
glasses, the extra particle types provide a simple approach to
effectively model the diverse magnitudes of interactions in the
presence of sublattice particle displacements or orientations.
Therefore, the parameter M in the MCLM does not only
account for the different particle types but also molecular
freedoms truncated in lattice models. This may explain why
results reported here are more compatible with real glass
formers for M � 10, while glasses may only be of one or two
components. When applying the MCLM to model crystalline
multicomponent systems such as high-entropy alloys [34], we
expect that M can then be identified directly with the actual
number of particle types.

The highly degenerate disordered ground states of the vec-
tor MCLM with a nonextensive entropy may be a concrete
finite-dimensional example of the elusive ideal glass [5], al-
though strictly speaking they only occur without excitation
at zero temperature. They are perfectly degenerate due to the
simple form of pair interactions in Eq. (5). Introducing a small
spread among the interactions should fine split the ground
states but should not alter our conclusions qualitatively. El-
ementary excitations at low temperatures are localized to
individual interactions and follow exactly solvable statistics.
There is no underlying finite-temperature phase transition.
Although it may be impossible to rule out a phase transition at
some TK in some or most realistic glasses, our results should
provide a direct example in finite dimensions showing how
such a transition is not essential in resolving the paradox.

In both scalar and vector MCLM discussed in this work,
discrete energy levels of bonds are assumed. These discrete
levels reflect that for any particle configuration representing
an inherent structure with vibrations disregarded, local relax-
ations only take a countable number of possible routes. This is
analogous to commonly assumed properties of cooperatively

rearranging regions in, for example, Adam-Gibbs theory [6].
Nevertheless, whether the discrete level assumption applies to
realistic glass formers or not is still under intensive debate.

In summary, we have studied scalar and vector variants of
the MCLM of glass in order to illustrate in a concrete man-
ner a possible resolution of the Kauzmann paradox in lattice
models. Whether this resolution can be applied to realistic
glasses is a long-standing open question deserving further
investigation. For the scalar MCLM, an entropy turn, which
avoids the entropy crisis, is directly observed under certain
conditions. It is found that with the same number of particle
types M, values TK in 2D systems are naturally much lower
than those in 3D. For the vector MCLM with correlations
suppressed, an exact calculation, well verified by simulations,
shows that the entropy turn occurs in all cases when almost all
pair interactions have reached a discrete lowest-energy state.
The ground states of the vector MCLM are amorphous and
infinitely degenerate but possess a vanishing specific entropy.
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APPENDIX A: MODEL DETAILS AND SIMULATION
METHODS

For the scalar MCLM, there are M particle types and si

denotes the type at site i. The system energy is

E =
∑
〈i, j〉∗

Vαi j sis j , (A1)

where the sum is over all occupied nearest-neighboring sites
i and j assuming, for example, in 2D that site j is at the east
(for αi j = x) or the north (for αi j = y) of site i. We select
before the start of each simulation all pair interactions Vαkl

from the a priori distribution g(V ), which is taken as the
uniform distribution in [0,�V ] with �V = 1. Generalization
to 3D is straightforward.

In d dimensions, there are M2d possible interactions in the
system. To avoid large sample-to-sample fluctuations at small
M, the random sampling is performed by shuffling the set of
equally spaced discrete values Vμ where

Vμ = μ − 1

M2d − 1
�V (A2)

with μ = 1, 2, . . . , M2d , before randomly assigned to Vαkl .
The vector MCLM in 2D considers M = M2 particle

types. The type at site i is denoted by a 2D vector si =
(si(x), si(y)), where the type indices si(x) and si(y) equal
1, 2, . . . ,M. The system energy is

E =
∑
〈i, j〉∗

Vsi (αi j )s j (αi j ), (A3)

where the sum and αi j are defined similarly as above. To
enable exact solvability, the interaction Vk(α)l (α) is given de-
terministically by

Vk(α)l (α) = [k(α) − l (α) + 1] mod M
M − 1

�V (A4)
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with �V = 1. The possible values of the interactions are

Vμ = μ − 1

M − 1
�V (A5)

with μ = 1, 2, . . . ,M.
For both MCLM variants, simulation algorithms are sim-

ilar. As discussed in the main text, a Monte Carlo nonlocal
swap algorithm is used both to measure equilibrium properties
and to obtain initial equilibrium configurations for kinetic
simulations.

To study dynamical properties, after the system has been
equilibrated using the swap algorithm, particle motions are
further simulated using a void-induced dynamics [21–23]. We
consider a small void density φv = 0.01. Each particle can
hop to a nearest-neighboring void under a rate

w =
{
w0 exp(−�E/kBT ), if �E � 0
w0, otherwise (A6)

where w0 = 10−6.
In all our main simulations, we consider lattices of side

length L = 100 in 2D and L = 20 in 3D. Results have been
verified to be for systems in equilibrium without noticeable
finite-size effects.

APPENDIX B: GLASSY DYNAMICS AND LOCAL
CORRELATIONS

The DPLM exhibits many characteristic features of glass
including stretched relaxations [21], a wide range of fragilities
[23], Kovacs paradox [22], Kovacs effects [24], heat-capacity
overshoot [25], low-temperature heat capacity of two-level
systems [26], and diffusion coefficient power laws under par-
tial swap [28]. Since the MCLM reduces to the DPLM when
the number of particle types M is large, these properties are
expected to be applicable to the MCLM at sufficiently large
M. As a verification, we measure here fundamental dynamical
quantities following [21] for all systems studied in the main
text. Correlations are also quantitatively measured.

1. Diffusion coefficient

The particle diffusion coefficient is defined as

D = 1

2d
lim

t→∞
〈|rl (t ) − rl (0)|2〉

t
, (B1)

where rl (t ) denotes the position of particle l at time t . Figure 5
plots D against 1/T obtained from kinetic simulations. We
observe the super-Arrhenius temperature dependence charac-
teristic of glass in all cases.

2. Relaxation time and stretching exponent

From kinetic simulations, we measure the self-intermediate
scattering function (SISF) FS defined as

FS (λ; t ) = 〈exp{iq · [rl (t ) − rl (0)]}〉, (B2)

where the wave vector q = |q| = 2π/λ with λ = 2. Figure 6
shows the results. For typical glassy systems, a two-step
decay of the SISF is expected. In lattice models, the first
decaying step is hardly discernible in the linear scale because
of the lack of vibration [21]. From the main decay observable

(a)

(b)

(c)

FIG. 5. Diffusion coefficients D against 1/T for 2D scalar (a),
3D scalar (b), and 2D vector (c) MCLM with M particle types.

in Fig. 6, the relaxation time τ is defined to be the time
when FS drops to 1/e. Figure 7 plots values of τ obtained.
Again, a super-Arrhenius temperature dependence is evident.
In addition, the long-time functional form of the SISF is
well approximated by the Kohlrausch-Williams-Watts form

174206-6



KAUZMANN PARADOX: A POSSIBLE CROSSOVER DUE TO … PHYSICAL REVIEW B 107, 174206 (2023)

(a)

(b)

(c)

FIG. 6. Self-intermediate scattering function Fs(λ; t ) against
time t at wavelength λ = 2 and various temperatures T for 2D
scalar MCLM with M = 10 particle types (a), 3D scalar MCLM
with M = 100 particle types (b), and 2D vector MCLM with M = 25
particle types (c).

A exp[−(t/τ )βKWW ], where βKWW is the stretching exponent
while A � 1 is a decay magnitude. Values of βKWW hence
obtained are shown in Fig. 8 and are found to decrease as T
decreases, similar to typical glasses.

(a)

(b)

(c)

FIG. 7. Relaxation time τ against 1/T for 2D scalar (a), 3D
scalar (b), and 2D vector (c) MCLM with M particle types.

3. Bond correlations

Local static correlations, in general, exist in particle
systems. To study correlations between the pair-interaction
energies of neighboring bonds, we measure a normalized
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(a)

(b)

(c)

FIG. 8. Stretching exponent βKWW against T for 2D scalar (a),
3D scalar (b), and 2D vector (c) MCLM with M particle types.

interaction correlation defined by

ρ = cov(V1,V2)

var(V1)
, (B3)

FIG. 9. (a) Schematic of a small 2 × 2 scalar MCLM system
with three particles (left panel). Assume that a fourth particle can
be selected from a particle reservoir. This also determines the two re-
maining interactions (right panel). The selection of both interactions
is thus a one-step process. At low T , a particle is an energetically
favorable candidate if both interactions are of relatively low energies.
For small M, there will be few such candidates. The choice of the
interaction in the x direction implies the particle being selected and
hence also on the interaction in the y direction. This explains the
correlation between the two neighboring interactions. (b) For the
vector MCLM, particle selection can effectively be broken down in a
two-step process. To select the fourth particle (left panel), the y-type
index can first be chosen (mid panel). For any chosen y-type index,
the x-type index can still take any value via an appropriate choice
of the particle (right panel). Correlation between the interactions is
therefore absent.

where “cov” and “var” denote covariance and variance and V1

and V2 are nearest-neighboring interactions in perpendicular
directions sharing one common particle. As shown in Fig. 2
in the main text, ρ is nonzero and is negative in the 2D
scalar MCLM for small M at low T so that annealed aver-
aging approximation breaks down. For the vector MCLM, the
correlation vanishes under all conditions, supporting its exact
thermodynamics for all M.

The correlation ρ is quite moderate even when nonzero
for the scalar MCLM. This is typical for systems without
long-range correlations, as crystallization and segregation are
suppressed by the direction dependence of the interaction Vαkl .
From Fig. 2 in the main text, we observe that the magnitude
of ρ seems to have saturated as M is decreased from 20 to
10 at low T for the scalar MCLM. We find that for M = 20,
a simulation with a randomly selected set of interactions Vαkl

can lead to either a positive or negative contribution to ρ. This
may have resulted in a small ρ after the ensemble averaging.
For M = 20, most individual simulations contribute negative
correlations.

The vector MCLM is introduced with correlations between
bonds eliminated to achieve exact solvability even at low
temperatures. Figure 9 shows schematic diagrams explaining
why bond correlations are present in the scalar MCLM but not
in the vector MCLM. For the scalar MCLM at small M, few
particle types can provide low-energy interactions at a site in
all directions and the energy signatures, i.e., a characteristic
set of pairs of coupled horizontal and vertical interactions, of
such a small number of particles results in the correlations.
At large M, all signatures average out. This explains why the
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DPLM with infinitely many particle types does not admit any
interaction correlation.

APPENDIX C: APPROXIMATIONS ON SCALAR MCLM

We study the thermodynamic properties of the scalar
MCLM using three approximate methods: the annealed
averaging approximation and the uncorrelated particle ap-
proximation with or without excitations. All methods become
exact at large M. The accuracy of the methods deteriorates as
T decreases due to stronger correlations. At low T , the uncor-
related particle approximation with excitation, which requires
weaker assumptions and is most realistic, is expected to be
more reliable. It predicts a positive specific entropy S/N at all
T > 0 and a smooth turn before converging to 0 at T = 0.
This shows the best agreement with our simulations.

1. Annealed averaging approximation

The DPLM admits exact equilibrium statistics at all T as
have been derived [21] and verified by accurate numerical
measurements of system energy [21,23] and pair-interaction
distribution [21,22]. The solvability follows from the result
that averaging over particle permutations is equivalent to an-
nealed averaging and gives exact statistics at all temperatures
[21].

The MCLM reduces to the DPLM when the number of par-
ticle types M is large. Annealed averaging, though no longer
exact, can thus serve as an approximation, especially at large
M. Our calculations are closely related to those in [21,23] for
the DPLM.

We consider a fully occupied lattice for simplicity. The
canonical partition function is

Z =
∑
{si}

e−βE , (C1)

where the sum is over all possible system states {si} and β =
1/kBT . Using Eq. (A1), we have

Z =
∑
{si}

∏
〈i j〉∗

e−βVαi j si s j , (C2)

where the product is over all neighboring sites i and j with j
at the east or north of i. Applying an annealed averaging over
independent variables Vαkl , we get

Z = N!

(N/M )!M
(Zbond ) Nb, (C3)

where Zbond is the partition function of a bond defined as

Zbond =
∫

exp(−βV )g(V )dV (C4)

and Nb = Nd is the total number of interactions in the system
in d dimensions. The prefactor N!/(N/M )!M comes from
the number of arrangements of M particle types each with
N/M particles on a lattice of N sites. Taking the logarithm
of Eq. (C3) gives

ln Z = Nb ln Zbond + N ln M, (C5)

where Stirling’s formula has been used. Using the thermo-
dynamic relation F = E − T S with the free energy F =

−(1/β ) ln Z , the entropy S follows:

S

N
= d

〈V 〉 − U

T
+ kB ln M, (C6)

where 〈V 〉 = −∂ ln Zbond/∂β is the average pair interaction
and U = −(1/β ) ln Zbond is the free energy of an interaction.
Taking the interaction distribution g(V ) as a uniform distribu-
tion in [0,�V ] and after some algebra, Eq. (C6) gives

S

N
= kB

{
d

[
1 + β�V

1 − eβ�V
+ ln

(
1 − e−β�V

β�V

)]
+ ln M

}
,

(C7)

which has been applied to estimate S/N as reported in Fig. 1.
To estimate the Kauzmann temperature, Eq. (C7) is simpli-

fied at kBT 	 1 to

S

N
= kB

{
d

[
1 + ln

(
kBT

�V

)]
+ ln M

}
. (C8)

It is clear from Eq. (C8) that S becomes negative at small T .
The temperature at which S = 0 is the Kauzmann temperature
TK and is given in the annealed averaging approximation by

TK = �V

ekBM1/d
. (C9)

2. Uncorrelated-particle approximation without excitation

The annealed averaging approximation effectively assumes
uncorrelated interactions, which also implies uncorrelated
particle pairings. A weaker assumption of only uncorrelated
particles will be adopted now. Consider constructing a con-
figuration by inserting particles at the kink sites sequentially
from the left to the right, repeated layer by layer from the
bottom to the top of the lattice. We assume that the two
particles around the kink site are uncorrelated and can be
of any type independently. As schematically illustrated in
the upper panel in Fig. 10, inserting a kink particle results
in two new interactions, denoted by V x and V y, which are
thus independent of each other. For any given configuration
around the kink site, the pair (V x,V y) takes one of M possible
choices corresponding to the M particle types. They can be
represented as M random points uniformly distributed in a V x

versus V y plot as illustrated in Fig. 10.
A simple approximate derivation of Eq. (C9) can now be

explained. Energetically favorable particle types are mainly
those with both interactions V x and V y within 2kBT (yellow
area in Fig. 10), accounting for a mean and fluctuation both
equal to kBT . The average number of favorable types is then

Mkink = 4M

(
kBT

�V

)2

. (C10)

The specific entropy can be estimated by S/N = kB ln Mkink.
Then, TK is defined as the temperature at which Mkink = 1
so that S/N = 0. After a generalization to d dimensions, this
leads to

TK = �V

2kBM1/d
(C11)

which differs slightly from Eq. (C9) only in the coeffi-
cient. For T � TK , any of the Mkink � 1 particle types are
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FIG. 10. Upper panel: A schematic showing that adding a par-
ticle to a kink site (dashed circle) adds two interactions V x and V y

to the system. Lower panel: Consider a scalar MCLM with M = 25
particle types. Possible interactions V x and V y are represented by
M red dots on the V y against the V x plot. At TK , typically one dot
(arrow) resides within a box of width 2kBT (yellow region). For
T < Tk , the box shrinks (gray region). It then contains fewer than one
dot on average but the number of the energetically favorable particle
(arrow) remains one.

energetically favorable and can be added to the kink site,
resulting in a positive S/N which decreases rapidly as T
decreases.

For T < Tk in contrast, Eq. (C10) gives Mkink < 1, which
can lead to an apparent negative entropy. However, Mkink <

1 simply reflects the breakdown of the assumption that both
interactions must be below 2kBT . In fact, at very low T , the
type providing the smallest interactions will be favored (arrow
in Fig. 10), no matter the actual values. Therefore, Eq. (C10)
should be amended to

Mkink = max

{
4M

(
kBT

�V

)2

, 1

}
(C12)

to avoid any unphysical negative entropy. Note that the sharp
turn of Eq. (C12) at TK will be smoothed in a more careful

calculation considering also excitations to higher-energy in-
teractions, as explained in the next section.

From the derivation of Eq. (C11), the dimensional de-
pendence of TK can be intuitively understood as follows. At
TK , there must be one energetically favorable particle type
that provides d energetically favorable interactions, i.e., those
within 2kBT , in each of the d directions with the d neigh-
bors. At higher dimension d , the constraints become more
numerous and harder to satisfy. The box size (2kBTK )d in
the (V x,V y, . . . ) space must increase to include at least one
particle type. Hence, TK increases.

3. Uncorrelated-particle approximation with excitations

In Appendix C 2, the interactions V x and V y of a kink
particle are assumed either within 2kBT or of the lowest
possible energies of the M particle types. We now perform
a more detailed calculation including excitations to higher-
energy interactions using standard thermodynamic methods.
The calculation is closely analogous to that in Appendix C 1.

Noting that V x and V y follow the distribution g(V ), the total
energy Vptcle = V x + V y of the kink particle then follows the
distribution

G(Vptcle) = g(V x ) ◦ g(V x ), (C13)

where “◦” denotes convolution and g(V ) is uniform in [0,�V ]
with �V = 1.

The continuum distribution G(Vptcle) accounts for all possi-
ble values of Vptcle for arbitrary neighbors at the kink site. For
a given pair of neighbors, there are only M possible values
of Vptcle corresponding to the M possible types of the kink
particle. Then, Vptcle follow a discrete distribution

Gdis(Vptcle) = 1

M

M∑
μ=1

δ(Vptcle − εμ), (C14)

where εμ denotes the M possible values of Vptcle. Averaging
Gdis(Vptcle) over all possible neighbors at the kink site should
restore G(Vptcle). Rather than performing such an average, a
simpler approach is to consider a single typical sample set of
εμ. Analogous to standard techniques for generating nonuni-
form random numbers using cumulative probability, we solve
the typical εμ from

Gc(εμ) = 1

M
(μ − 1/2), (C15)

where Gc(Vptcle) is the cumulative distribution function of
G(Vptcle) defined as

Gc(Vptcle) =
∫ Vptcle

−∞
G(V )dV. (C16)

Using this approach, Gdis(Vptcle) converges to G(Vptcle) at
large M.

Invoking again the uncorrelated-particle assumption, the
system partition function can be expressed in the factorized
form, analogous to Eq. (C3),

Z = MN (Zpctle )N , (C17)
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FIG. 11. (a) Entropy per particle S/N against temperature T for
scalar MCLM with M particle types in 2D (a) and 3D (b) using
the same data from Fig. 1 in the main text. Results are compared
with uncorrelated particle approximation (solid lines) and annealed
averaging approximation (dashed lines).

where the partition function of a particle is

Zpctle = 1

M

M∑
μ=1

exp(−βεμ). (C18)

A factor 1/M is introduced in the definition of Zpctle so
that notations here can be more consistent with those in Ap-
pendix C 1. The entropy S can be obtained from

S

N
= 〈Vptcle〉 − Uptcle

T
+ kB ln M (C19)

where 〈Vptcle〉 = −∂ ln Zptcle/∂β is the average particle energy
and Uptcle = −(1/β )Zpctle denotes the free energy of a particle.

Figure 11 shows S/N hence calculated. Good agreement
with simulation results is observed at large M and high T .
More importantly, a positive S/N is now ensured and it de-
creases to 0 smoothly at T = 0.

FIG. 12. A schematic of the construction of a ground state of the
vector MCLM with M = 9 so that M = 3. (a) Once the particle
type at the bottom left corner (red) is selected, the x-type indices
in the bottom row and the y-type indices in the leftmost column are
determined. (b) We then select the y-type indices in the bottom row
and the x-type indices in the leftmost column (blue). Particle types
of the whole lattice are now completely fixed.

APPENDIX D: EXACT THERMODYNAMICS
OF VECTOR MCLM

1. Ground states

An example of the ground states of a small system is
already shown in Fig. 4 in the main text. The system energy E
is zero with all interactions zero. Such ground states are highly
degenerate. In the thermodynamic limit, we can calculate the
degeneracy as will now be explained. Figure 12(a) shows
schematically part of a large L × L system with M = M2 = 9
particle types. To construct a system configuration, we first
select any of the M particle types at the bottom left corner
site, leading to a multiplicity of M. In a ground state, all inter-
actions, as given by Eq. (A4), must be 0. The type indices si(x)
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at all sites i at the bottom row are then uniquely determined.
However, the other indices si(y) [question marks in Fig. 12(a)]
are free to take any of the M possible values, contributing to
a multiplicity of ML−1. A similar argument can be applied
to every site on the leftmost column. Once particle types on
these boundary sites are chosen, particle types on the whole
lattice are uniquely determined [Fig. 12(b)]. These result in
a total degeneracy � = M2L = ML = M

√
N . The residue en-

tropy S0 = kB ln � at T = 0 is thus given by

S0 =
√

NkB ln M. (D1)

Therefore, S0 diverges at large N . However, it is nonextensive.
The residue entropy per particle is S0/N = kB ln M/

√
N which

vanishes at large N .
Note that the above argument holds exactly under open

boundary conditions or periodic boundary conditions if L is
a multiple of M. Otherwise, a vanishing density of defects
may occur, which does not alter our results qualitatively. In
addition, as we assume an equal number of particles N/M of
each type in the system, the ground states constructed using
the method above fulfill these constraints only on average.
Strict fulfillment of the constraints decreases S0 slightly but
has a negligible impact on the statistics of individual particles
in the thermodynamic limit. At small N , a direct construction
of the configurations under the constraints is nontrivial. We
have thus obtained the example of the ground state in Fig. 4
from a simulation instead.

2. Exact thermodynamics for d-dimensional vector MCLM

Here, we explain the exact analysis of a fully occupied
vector MCLM. The generalization to a finite void den-
sity is straightforward. On a d-dimensional square lattice
with side length L, denote site i by its lattice coordi-
nates i ≡ (m1, m2, . . . , md ), where mn = 1, 2, . . . , L and n =
1, 2, . . . , d . Then, the particle type si at site i can equivalently
be denoted as si = (si(1), si(2), . . . , si(d )). To simplify the
notation, interactions to the positive direction of each dimen-
sion of the site i are denoted by V 1

i ,V 2
i , . . . ,V d

i , i.e.,

V 1
i = Vs(m1 ,m2 ,...,mn ) (1)s(m1+1,m2 ,...,md ) (1),

V 2
i = Vs(m1 ,m2 ,...,mn ) (2)s(m1 ,m2+1,...,md ) (2),

. . .

V d
i = Vs(m1 ,m2 ,...,mn ) (d )s(m1 ,m2 ,...,md +1) (d ).

(D2)

Then, the system energy E in Eq. (A3) can be recast into

E =
d∑

n=1

En, (D3)

where En is the total interaction energy in the nth direction
and is given by

En =
∑

i

V n
i . (D4)

The partition function Z of the system is

Z =
∑
{si}

exp(−βE ), (D5)

where the sum is over the set of all configurations {si} =
{(si(1), si(2), . . . , si(d ))}. By noting that each En depends
only on si(n), Z can be factorized to

Z =
∏

n

Zn, (D6)

where

Zn =
∑
{si (n)}

exp(−βEn). (D7)

We first evaluate Z1. Consider a particle of a given type and
its neighbor in the positive x-direction. According to Eq. (A4),
there is a one-to-one correspondence between the x-type index
of its neighbor and the value of the interaction. Generalizing
to all sites, there is a one-to-one correspondence between the
sets {si(1)}m1 �=1 and {V 1

i }m1 �=L for any given {s(1,m2,m3,...,md )(1)}
at the boundary hyperplane with m1 = 1. Using also Eq. (D4),
Eq. (D7) thus becomes

Z1 = MN/L
∑
{

V 1
i

} exp

(
−β

∑
i

V 1
i

)
, (D8)

where the sum is now over all possible values of the interac-
tions consistent with the periodic boundary conditions and the
factor MN/L accounts for all possible {s(1,m2,m3,...,md )(1)}. At
the thermodynamic limit, the factor MN/L and the constraints
on V 1

i imposed by the periodic boundary conditions have a
vanishing impact on the statistics of individual particles and
are both neglected. We hence obtain the factorized form

Z1 = MN
∏

i

Zbond, (D9)

where Zbond is the partition function of an interaction defined
by

Zbond = 1

M

M∑
μ=1

exp(−βVμ) (D10)

with the set of possible interactions Vμ given in Eq. (A5).
A factor 1/M is introduced in the definition of Zbond so
that notations here can be more consistent with those in
Appendix C 1.

By symmetry, Z1 = Z2 = · · · = Zn. Similar to calculations
in Appendix C 1 and noting that M = Md in d dimensions,
we get

ln Z = Nb ln Zbond + N ln M (D11)

and

S

N
= d

〈V 〉 − U

T
+ kB ln M, (D12)

where 〈V 〉 = −∂ ln Zbond/∂β and U = −(1/β ) ln Zbond.
Equation (D12) has been applied to calculate the exact result
in Fig. 3(a) in the main text.

3. Kauzmann paradox for the harmonic oscillator?

We consider a quantum harmonic oscillator in one dimen-
sion using dimensionless units with angular frequency ω = 1,
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FIG. 13. Equilibrium properties of a quantum harmonic oscilla-
tor in one dimension, showing entropy S (a) and excited proportion
(b) against temperature T .

mass m = 1, Planck’s constant h̄ = 1, and Boltzmann con-
stant kB = 1. It is straightforward to show that the entropy is
exactly given by

S = − ln(1 − e−β ) + β
e−β

1 − e−β
, (D13)

where β = 1/kBT . Figure 13(a) shows S plotted against T .
We observe that as T decreases, S first decreases steadily. A
naive extrapolation (dashed line) of the high-temperature data
can give a finite temperature TK at which the entropy seems
to vanish. This is analogous to the Kauzmann paradox. From
the exact result, before reaching S = 0, a smooth turn in fact
occurs so that S vanishes only at T = 0.

Figure 13(b) plots the excited proportion � in an ensemble
of independent oscillators which equals the probability of
excitation beyond the ground state. It is straightforward to
show that

� = 1 − 2e−β/2 sinh (β/2). (D14)

Defining the turn of the entropy at T = T0.7 [black circles in
Figs. 13(a) and 13(b)] at which the slope of S has decreased to
70% of its maximum value. The excited proportion at T0.7 is
� = 1.2%. This small value of �, which is of the same order
of magnitude obtained for the vector MCLM as explained in
the main text, shows again that the turn in the entropy occurs
when the system is very close to the ground state.

For the harmonic oscillator, the entropy turns rather sud-
denly and very close to the ground state. This would not lead
to a paradox as it is exactly solvable and the turn is easily
understood. However, it illustrates thoroughly how the naive
extrapolation fails. The phenomenon is fully analogous to that
in the vector MCLM. The similarity is not only qualitative.
For the uniform discrete interaction distribution in Eq. (A4)
adopted for the vector MCLM, the energy levels are essen-
tially similar to those in the harmonic oscillator except that
they are bounded above by �V = 1. Results for the MCLM
are thus quantitatively equivalent to that in the harmonic os-
cillator for T 	 �V . We believe that such a failure in simple
extrapolation and a turn in the entropy may also apply to glass.
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