
Hierarchical Reinforcement Learning-based Mapless
Navigation with Predictive Exploration Worthiness

Yan Gao, Ze Ji
School of Engineering

Cardiff University
Cardiff, United Kingdom
gaoy84, jiz1@cardiff.ac.uk

Jing Wu
School of Computer Science

and Informatics
Cardiff University

Cardiff, United Kingdom
wuj11@cardiff.ac.uk

Changyun Wei
College of Mechanical and

Electrical Engineering
Hohai University

Changzhou, China
c.wei@hhu.edu.cn

Raphael Grech
Spirent Communications

Paignton, United Kingdom
raphael.grech@spirent.com

Abstract—Hierarchical reinforcement learning (HRL) is a
promising approach for complex mapless navigation tasks by
decomposing the task into a hierarchy of subtasks. However,
selecting appropriate subgoals is challenging. Existing meth-
ods predominantly rely on sensory inputs, which may contain
inadequate information or excessive redundancy. Inspired by
the cognitive processes underpinning human navigation, our
aim is to enable the robot to leverage both ‘intrinsic and
extrinsic factors’ to make informed decisions regarding subgoal
selection. In this work, we propose a novel HRL-based mapless
navigation framework. Specifically, we introduce a predictive
module, named Predictive Exploration Worthiness (PEW), into
the high-level (HL) decision-making policy. The hypothesis is that
the worthiness of an area for further exploration is related to
obstacle spatial distribution, such as the area of free space and
the distribution of obstacles. The PEW is introduced as a compact
representation for obstacle spatial distribution. Additionally, to
incorporate ‘intrinsic factors’ in the subgoal selection process,
a penalty element is introduced in the HL reward function,
allowing the robot to take into account the capabilities of the
low-level policy when selecting subgoals. Our method exhibits
significant improvements in success rate when tested in unseen
environments.

Index Terms—Mapless navigation, Deep Reinforcement Learn-
ing, Motion Planning, Hierarchical Reinforcement Learning

I. INTRODUCTION

Autonomous navigation in unknown environments is a nec-
essary capability for mobile robots. Conventional approaches
use mapping techniques, such as Simultaneous Localization
and Mapping (SLAM) [1], to pre-build maps and then apply
path planning algorithms to guide the robot through the task.
However, relying on pre-built maps is not always practical
or reliable. Mapless navigation is considered as a remedy
to relieve the navigation system from the prerequisite of
a map. These situations include unstructured and dynamic
environments where the layouts change constantly, such as
domestic environments, disaster zones, and construction sites.

Recently, Reinforcement Learning (RL)-based approaches
are receiving increasing attention in mapless navigation re-
search [2], [3], where control policies are learned directly from
raw sensory inputs without any prior information. RL-based
mapless navigation offers an adaptable and flexible solution,
enabling autonomous agents to navigate through a trial-and-
error process using a reward-based system.

However, such methods struggle to perform well in long-
distance navigation tasks in complex environments due to the
long-term decision horizon and sparse rewards [2], [4]. A
promising technique to overcome this limitation is Hierarchical
Reinforcement Learning (HRL) [5], [6]. HRL contains two
policies, high-level (HL) policy and low-level (LL) policy.
The HL policy typically identifies a suitable sequence of
subgoals that the LL policy can easily follow. This paradigm
can effectively decompose a complex task into easier subtasks.

Using a hierarchical navigation approach results in more
interpretable outcomes compared to non-hierarchical methods.
During long-distance navigation tasks, humans often rely on
intermediate landmarks, referred to as subgoals, to guide their
movements [7]. These subgoals serve as intermediate steps
that help individuals reach their final navigation objective.
When navigating, humans take into account both intrinsic and
extrinsic factors to determine their subgoals, where intrinsic
factors could be related to the objectives, preferences, and
expectations, and extrinsic factors pertain to the environment’s
layout, landmarks, available resources and so on [8], [9].

In simple terms, humans have the ability to distinguish the
worthiness levels of different subgoals for further exploration,
when selecting subgoals, and making appropriate decisions
based on the observations or states [8]. For instance, humans
can be aware that the space behind a couch is unoccupied,
offering more path options. Similarly, when humans encounter
a wall, they recognise that there is no viable path in that
direction, and therefore, they will not select a subgoal in
that direction. Conversely, when humans perceive a door, they
understand that it leads to additional rooms, expanding the
number of available path options. However, most HRL-based
navigation methods lack such a similar capability. Numerous
methods rely solely on current sensory input when selecting
subgoals [6], [10]–[12]. Widely used sensors, such as Lidar,
optical cameras, and RGBD sensors, provide high-dimensional
raw measurement data that are inefficient for training RL
agents for complex navigation tasks [2], [4]. Also, most meth-
ods cannot judge the worthiness for exploring each subgoal
as with humans. In addition, many HRL approaches do not
consider ‘intrinsic factors’, presupposing that the LL policy is
feasible, indicating that the agent can consistently reach the

subgoal chosen by the HL policy [13], [14].
In this work, we propose a novel HRL-based mapless

navigation framework with two layers, namely HL policy and
LL policy. Fig. 1 depicts the framework of our work, where
the HL policy determines the next subgoal and the LL policy
decides the locomotion motion. We incorporate a predictive
model called Predictive Exploration Worthiness (PEW) for
the HL policy. The PEW is introduced to allow the robot to
predict the worthiness level for exploration that is related to
attributes of the area, such as the free space area, distribution
of obstacles in the area, or the shape/orientation of the area.
Based on RGB image and Lidar observations, the predicted
PEW scores are used to evaluate the worthiness level of each
subgoal candidate for further navigation and the values will
be included as part of the HL input, such that the agent will
not solely rely on sensory inputs for decision making. The LL
policy will generate velocity commands based on the current
Lidar observations to control the robot to reach the subgoal
selected by the HL policy. After reaching the subgoal, the HL
policy will repeat the process to select the next subgoal, until
the robot reaches the final target location.

As mentioned, it is unrealistic to assume the optimality of
the LL policy. Therefore, we introduce a penalty element to
the HL reward function. This allows the HL policy to take into
account the LL policy’s capabilities when selecting subgoals
and avoid the subgoals that the agent cannot reach under the
LL policy’s control.

II. REINFORCEMENT LEARNING

A. Markov Decision Process
The objective of RL is to identify a policy for optimal

decision-making by maximising the expected value of the
cumulative sum of the received reward signal through con-
tinuous interactions with a given environment. The process
we are interacting with is usually formalised as a Markov
Decision Process (MDP). An MDP can be represented by a
tuple ⟨S,A,R, p, γ, ρ0⟩. S is a set of states, A is the action
space, R(s, a) is a reward given the state s and the action a at
each timestep, p(s′|s, a) denotes the system transition function
to state s′, γ is the discount factor for future rewards and ρ0
represents the initial state distribution. A policy π(a|s) is a
mapping of state s to action a. A state value function V π(s)
is the expected value of the sum of rewards following policy
π from state s, i.e., V π(s) = Ea∼π,s∼p[

∑T
t=0 γ

tR(st, at)]. A
state-action value function Qπ(s, a) defines the same quantity
of taking action a in state s. The aim is to discover the optimal
policy that can maximise the value function.

B. Deep Q-Network
In our method, we utilise DQN [15] to train the HL

policy. Given the policy π(a|s), the Q-value function can be
defined. Then the function can be computed using the Bellman
equation, formulated as:

Qπ(st, at) = E[rt+γE[Qπ(st+1, at+1)|st+1, at+1, π]|st, at, π]
(1)

Using a deterministic greedy policy that selects the action
with the highest Q-value at each state, the optimal Q-value
function can be defined as:

Qπ(st, at) = E[rt + γmaxQ(st+1, at+1)|st, at] (2)

which implies that the optimal Q-value at time t is the sum
of the current reward rt and the discounted optimal Q-value
available at time t + 1. This approach avoids the need to
compute the Q-value function across a large state space.
Subsequently, a deep neural network with parameter θQ is
used to estimate the Q-values, expressed as Q(st, at|θQ).

C. Deep Deterministic Policy Gradients

The deep deterministic policy gradient (DDPG) algo-
rithm [16] is used to train our LL policy. DDPG is an off-
policy RL algorithm for continuous action spaces. It is an
actor-critic method which contains two networks, an actor
network π(xt|θπ) and a critic network Q(st, at|θQ). The actor
network predicts the action at given the state st, with the goal
to maximise the expected future rewards. The critic network
estimates the Q-values. Instead of searching for the optimal Q-
value over possible actions, the critic network’s responsibility
is to evaluate the current policy of the actor network. DDPG
updates both networks at regular intervals.

III. HRL-BASED MAPLESS NAVIGATION

In this work, we propose a novel HRL-based mapless
navigation framework, as shown in Fig. 1. It contains three
key modules, including the PEW model, HL policy and LL
policy. Firstly, the PEW model predicts the PEW values for
the positions of the subgoals. Then, the HL policy selects a
subgoal based on current Lidar observations and the predicted
PEW values. The LL policy is responsible for producing
locomotion control of the agent to reach the subgoals selected
by the HL policy.

A. Predictive Exploration Worthiness

To estimate the exploration worthiness of each subgoal,
we propose a new metric, Predictive Exploration Worthiness
(PEW). We consider the worthiness is related to the neigh-
bouring space at each corresponding position. Specifically, the
PEW model is designed to predict the free space area, as
well as other attributes, such as the distribution, orientations
and shape of the space. Fig. 2 illustrates one example of
an occupancy view. It is obvious that the area can ensure
navigation safety, and a larger area may provide more path
choices. However, in more complex situations, we need to
consider other attributes. For illustration purpose, Fig. 3 shows
the occupancy views of three complex cases. In Fig. 3a and
Fig. 3b, the areas of the free spaces around the two subgoals
are similar, but the shape and distribution are different, and
obviously, subgoal 2 is consider more preferable than subgoal
1 due to the complexity of the obstacles. On the other hand,
we consider orientation would also be an important feature for
navigation decision making. Fig. 3b and Fig. 3c have similar

Fig. 1. The overall framework. The HL policy selects a subgoal based on the PEW values of each subgoal (P1, P2, ..., P9), the Lidar observation and the
relative goal position. The LL policy controls the robot to reach the subgoal. The process repeats until the robot reaches the target location.

Fig. 2. An example of what the PEW model predicts. In the left figure,
the grey areas represent occupied regions, and the white areas represent free
space. The green circle denotes one of the subgoals the robot can select. The
right figure is the occupancy view measurable with Lidar at the position of
the subgoal. The PEW model is used to predict the area of the occupancy
view and key features of the area, in terms of the distribution of obstacles and
shape/orientation of the free space. To describe the features of the free space,
we use the eigenvectors and eigenvalues of the pixels in the free space, where
V1 and V2 represent the two eigenvectors with V1 having a larger eigenvalue.

(a) Subgoal 1 (b) Subgoal 2 (c) Subgoal 3
Fig. 3. Occupancy views of some examples of complex subgoals. The white
area is free space and the grey regions represent occupied or unknown space.
All three figures contain free space of the same area, except their geometric
distribution and orientations.

shapes and areas. However, if the target location is located
on the right-hand side, subgoal 2 would be more preferred as
this is more likely to lead to the goal location. Therefore, we
believe the area, distribution, orientation and shape are the key
features for the PEW metric, which is formulated as,

P (x, y) = [S,E] (3)

where x and y are the coordinates of the subgoal with respect
to the robot coordinate frame, S represents the area of the free
space and E denotes the distribution and shape.

S = Nf/Nt (4)

Nt represents the total area of the local region of interest
(represented by 128×128 cells), and Nf represents the area of
the free space (i.e. number of non-occupied cells) measurable
by Lidar at [x, y], S ∈ [0, 1].

Rather than predicting the occupancy map directly, we intro-
duce a compact representation of the free space, based on the
Principal Component Analysis (PCA) [17]. PCA is a widely
used method for dimension reduction, where the principal
components refer to the eigenvectors of the covariance matrix.
The specific method is as follows:

• Matrix of points. The local region is represented by
128 × 128 cells. Therefore, the region can be seen as
a 128× 128 matrix. The coordinates of the free cells are

extracted to form a 2×n matrix,
[
x1, x2, ..., xn

y1, y2, ..., yn

]
, where

n is the number of free cells. The first row represents the
x-coordinates, and the second is the y-coordinates.

• Subtract the mean for each point. The mean of the x
coordinates is computed, and then, for each x-point, the
mean value is subtracted from the x coordinates. This
procedure is repeated for the y-coordinates.

• Covariance matrix calculation. Calculate the 2 × 2
covariance matrix.

C =

[
variance(x, x) variance(x, y)
variance(x, y) variance(y, y)

]
(5)

• Eigenvectors, eigenvalues of covariance matrix. Cal-
culate the two eigenvalues and two eigenvectors of the
covariance matrix.

• Rearrange the eigen-pairs. Sort by decreasing eigenval-
ues d1, d2. The dominant direction can be determined by
the eigenvector having the largest eigenvalue, as shown
in Fig. 2 where v1 shows a larger eigenvalue.

• Calculate the orientations of eigenvectors. Calculate
the angles between the two eigenvectors and the x-axis,
denoted by θ1 and θ2 respectively, as illustrated in Fig. 2.

Therefore, E in Eq. 3 can be defined as [d1, d2, θ1, θ2].
Therefore, P (x, y) in Eq. 3 includes 5 values in total.

The PEW model is trained in a supervised manner. We use
the iGibson simulation environment [18] to obtain the ground-

truth scores as the training labels. For data collection, the
robot is randomly placed at any arbitrary position of concern.
Since the robot is equipped with a Lidar with an FoV of 360
degrees, the occupancy view can be obtained directly from the
Lidar data. We then count the number of free cells Nf in the
occupancy view and calculate the eigenvalues and orientations.
If the neighbouring areas are fully occupied, Nf in Eq. 4, d1,
d2, θ1 and θ2 are all set as 0.

We propose the network structure of the PEW model
inspired by the occupancy anticipation model [19]. The net-
work structure is shown in Fig. 4. Firstly, the RGB image
is processed by ResNet18 to extract features, while Lidar
observations are converted into the occupancy view provided
by iGibson [18]. Then, both are encoded separately using
Unet [20]. The RGB features are processed through a stack
of three convolutional blocks, while the occupancy view is
processed through a stack of five convolutional blocks. To
create a combined feature, we merge these features using
the Merge module, which comprises layer-specific convolution
blocks to merge each layer of both encoded features. Finally,
the combined feature is decoded using the Unet decoder that
outputs the PEW values.

B. High-Level Policy

1) Subgoal Space: As mentioned, the HL policy is respon-
sible for selecting a subgoal from the subgoal space. Humans
can intuitively decide the next subgoal based on the forward
view of observations. We mimic the behaviours by placing the
robot’s subgoal space in front of the robot, arranged in a 3×3
pattern, as shown in Fig. 5. The distance between each two
neighbour subgoals is 0.5m. The PEW model then predicts the
PEW value for each of the nine subgoals. Therefore, the final
output PPEW in Fig. 4 is a 3 × 15 matrix. In addition, the
subgoal space also includes some rotational movements (14
angles in our work) for the agent to select when none of the
nine subgoals in front of it is suitable. Therefore, there are in
total 23 subgoals available for HL policy’s selection.

2) State Representation: A state SH
t at time t is defined

as SH
t = [OL||GH ||SPEW], where || denotes vector concate-

nation, OL is the current Lidar observation, and GH is the
relative goal position. SPEW = Flatten(PPEW) is a 1× 45
vector by flattening the PPEW matrix.

3) Reward Function: The reward function of the HL policy
is defined as

RH =

rHarrive if dt ≤ δH

rHcollision if collision
rHovertime if tL ≥ T

rHapproach if approaching the subgoal
rHrotate if rotate

(6)

where
• rHarrive rewards the agent arriving at the target location,

i.e., when the distance to the target location, dt, is within
a radius δH ;

• rHcollision is a negative reward for penalising collisions;

• rHovertime is a penalty for the case when the agent under
LL policy’s control is not able to reach the subgoal within
a certain period of time T ;

• rHapproach = dHt−1−dHt is the change of distance from the
robot to the target location between two consecutive HL
steps. rHapproach is the incentive for the robot to approach
the target position; and

• rHrotate = −cr(| 7θpi |) is the penalty for the HL policy
selecting a rotation subgoal. It increases with the rotation
angle θ, and is scaled by the weighting factor cr. The
term rHrotate is incorporated to promote smoother robot
motions.

4) Network Architecture: The Q-value of each subgoal is
generated by a network comprising two MLP layers with sizes
of 512 and 256, respectively. Only the output of the first layer
is subjected to ReLU activation.

C. Low-Level Policy
The LL policy is responsible for controlling the robot to

reach the subgoal, by directly interacting with the environment
and generating the wheel rotational speeds for the agent.

1) State Representation: The LL state space is defined as
SL
t = [OL||Gsub||Vt], where || represents vector concatena-

tion. OL is the current Lidar observation, and Gsub is the
subgoal location represented in the polar coordinates of the
robot frame. In addition, the LL policy should consider the
current robot’s velocity Vt when generating the command.

2) Reward Function: The LL policy reward function is

RL =

rLarrive if dt ≤ δL

rLcollision if collision
rLapproach otherwise

(7)

where
• rLarrive is a positive value assigned to the agent when it

successfully reaches the target location, indicated by its
distance to the target, dt, being within a certain radius
δL;

• rLcollision penalises collisions;
• rLapproach = cd(d

L
t−1 − dLt) is the difference of the

distances to the subgoal at timesteps of t and t − 1,
multiplied by a weighting factor cd.

3) Network Architecture: The DDPG actor network con-
sists of three MLP layers, all with a size of 512. The critic
network also has three MLP layers, where the first and last
layers have a dimension of 512 and the size of the second
layer is 514, with two additional dimensions allocated for the
action produced by the actor network. Both the actor and critic
networks utilize ReLU activation for all layers, except for the
output layers. The actor network employs hyperbolic tangent
activation for the last layer, whereas the critic network has no
activation for the output layer.

IV. EXPERIMENTS

A. Implementation Details
We train the three key modules of our framework, namely

PEW model, LL policy and HL policy, sequentially in the

Fig. 4. Network structure of the PEW model.

Fig. 5. Subgoal space for HL policy

iGibson environment [18], which contains numerous indoor
virtual environments. A total of 40, 000 sets of training data
are collected in 8 environments to train our PEW model. 10 ad-
ditional environments are then selected to train the LL policy.
We train the LL policy for 20, 000 steps in one environment
and then change to other environments in sequence until the
total steps reach 1 million. In each episode, the target location
is chosen randomly, with a minimum distance of 0.5 meters
from the robot, and within a 4-meter square centred around the
robot. In Eq. 7, we set rLarrive = 20, rLcollision = −3, cd = 10.
After finishing training the LL policy, we train our HL policy
using the same 10 environments. The policy is trained with
150 episodes in each of the environments until the total
number of episodes reaches 60, 000. In each episode, the initial
location and the target location are randomly generated, with
the travel distance ranges from 2 to 10m. We set rHarrive = 20,
rHcollision = rHovertime = −3, cr = 0.05 in Eq. 6. These
parameters are empirically set.

B. Experiment Settings

We select three previously unseen iGibson environments
for testing, as shown in Fig. 6. To verify that our approach
is capable of complex navigation tasks, we divide the tests
in each environment into three levels. The difficulty level is
determined by the distance from the robot’s initial location
to the target location. Specifically, we choose [2 − 5]m,

[5− 8]m and [8− 10]m in our work for testing. To ensure fair
comparisons, the same start and target locations are utilised for
different methods with each test, consisting of 500 episodes
for computing the average success rate.

C. Baselines

We select two RL-based mapless navigation methods as the
baselines for benchmarking:

• Continuous space-based method [2]: The input includes
the current Lidar observations, the polar coordinates of
the target, and the velocity commands at the previous
timestep. The output is the rotational speed of the wheels.
The same network architecture is used for this baseline
and also deployed by our LL policy. We use DDPG
to train their navigation model, with the same reward
function proposed in [2].

• Discrete space-based method [3]: The state representation
includes the Lidar observations and the relative target
position. The action space in their work includes 5
rotation velocities with a constant linear velocity. The
actions are not directly provided by iGibson. Therefore,
we modified the discrete action space to contain 5 similar
actions, including moving forward and rotating by certain
angles in place. The model is trained by Double DQN
[21] utilising the reward function proposed in [3].

D. Results and Discussions

All methods were tested in the same three environments
(Fig. 6) of varying difficulty levels. The success rates are
presented in Table I.

It is obvious that our method performs better than both
approaches in all three environments, except for the test
conducted in Environment 3 with the range of 2 − 5m,
which shows a small difference of only 1.6%. Our method
exhibits significantly higher success rates than the other two
methods in other tests, particularly as the tasks become more
challenging. In the tests with the target range of 8− 10m, the
continuous space-based baseline [2] and the discrete space-
based baseline [3] achieve average success rates of 43.9%
and 16.8%, respectively, while our method demonstrates a
much higher success rate of 52.5%. Especially, the success

TABLE I
PERFORMANCE COMPARISON WITH TWO RL-BASED METHODS IN THE CONTINUOUS AND DISCRETE SPACE RESPECTIVELY [2], [3]

Env Target range Continuous space [2] Discrete space [3] Ours
1 2-5m 55.0% 38.4% 57.4%

5-8m 50.4% 23.4% 54.6%
8-10m 28.6% 10.2% 40.6%

2 2-5m 68.0% 45.0% 70.2%
5-8m 57.6% 21.6% 59.4%
8-10m 42.0% 14.0% 50.2%

3 2-5m 74.8% 65.0% 73.6%
5-8m 65.0% 29.8% 67.8%
8-10m 61.0% 26.2% 66.6%

(a) Env 1 (Allensville)

(b) Env 2 (Bolton)

(c) Env 3 (Chireno)
Fig. 6. Experiment environments for testing.

rate of our method is almost 40% higher than that of the
discrete space-based method [3], suggesting that our approach

outperforms in handling complex scenarios.
Fig. 7 illustrates the performance of the three methods in

a long-range navigation task. The discrete action space-based
method fails to move towards the target and collides with the
obstacle. While the continuous action space-based method is
able to approach the target location without any collision, it is
trapped by a long table, which is referred as the local minimum
problem. In contrast, our approach effectively addresses this
issue. We speculate that the PEW assists the robot in selecting
a more appropriate subgoal, enabling the robot to explore
additional locations and successfully escape the situation,
thereby highlighting our method’s superior performance.

E. Ablation Studies

We conduct ablation studies to show the effect of our pro-
posed PEW model. Specifically, two HL state configurations
are compared:

• Lidar + Target: We remove the PEW module from our
framework. The HL policy selects a subgoal solely based
on the Lidar observations and the polar coordinates of
the target location with respect to the robot frame.

• Lidar + Target + RGB features: With consideration of
the RGB data within our framework, we incorporate the
image information into the HL state representation to
ensure a fair comparison. Specifically, the RGB features
are extracted via ResNet18 and are not subject to ad-
ditional processing to derive PEW values. Rather, the
RGB features are directly integrated into the HL input
representation.

These two methods differ from our method only in the HL
state representation. The training method, the reward function,
and the LL policy are identical.

We record the average reward per 1000 episodes during
training for the two methods and ours, as shown in Fig. 8.
Our proposed HL state representation achieves notably higher
rewards during the latter stages of training in comparison to
the other two input modalities. This suggests that our method
is able to learn a better policy, given an equivalent number of
training episodes.

Table II shows the test success rates. The results evidence
that our proposed method, which incorporates the PEW value
for each subgoal, outperforms the other two HL input modal-
ities in all cases. The fusion of RGB features and Lidar

(a) Continuous space-based method

(b) Discrete space-based method

(c) Ours
Fig. 7. Examples of long-range navigation tasks. Orange and blue circles
represent the start position and the target position respectively. (a), (b): Green
lines represent the robot’s trajectory. (c): Green circles are the subgoals
selected by our HL policy.

data yields the poorest performance overall, whereas ’Lidar
+ Target’ performs moderately in comparison. It suggests

Fig. 8. Average rewards achieved by the agent with different state represen-
tations

that our state representation incorporates more environmental
information than only utilising Lidar observations. While our
method also avoids the inclusion of redundant data that may
arise from the direct incorporation of RGB features. The PEW
model results in a more compact HL input representation,
ultimately increasing task success rates.

TABLE II
TEST SUCCESS RATES WITH DIFFERENT STATE REPRESENTATIONS

Env Target range Lidar + Target Lidar + Target + RGB Ours
1 2-5m 55.8% 50.4% 57.4%

5-8m 49.8% 48.2% 54.0%
8-10m 29.6% 35.8% 40.6%

2 2-5m 59.6% 61.2% 70.2%
5-8m 39.6% 50.8% 59.4%

8-10m 25.4% 37.6% 50.2%
3 2-5m 70.4% 72.0% 73.6%

5-8m 61.6% 63.0% 67.8%
8-10m 57.2% 62.0% 66.6%

V. CONCLUSIONS

In this paper, we present a novel mapless navigation ap-
proach using hierarchical reinforcement learning. Our pro-
posed method addresses the challenge of effective subgoal
selection for the HL policy. We introduce a predictive model,
namely Predictive Exploration Worthiness (PEW), to enable
the HL policy to rely on more effective sensory representations
when selecting subgoals. PEW enriches the robot’s perception
of the environment by providing additional information which
the raw sensors cannot provide directly. Also, it maintains the
non-redundant nature of state representation. PEW achieves a
balance between input information richness and redundancy.
In addition, we have introduced a reward metric, incorporat-
ing ’intrinsic factors’ in the subgoal selection process. Our
experimental results demonstrate significant improvements in
success rates across various complex environments. Especially,

the benefits of our proposed approach are particularly apparent
in long-range tasks. Furthermore, ablation studies show that
using Lidar and PEW values improves the performance con-
sistently compared with using Lidar or combined with encoded
RGB features.

Our limitation is that we train the two policies separately,
resulting in a long training time. For future research, we
will explore the mechanism that facilitates efficient parallel
training of both policies to address the issues of instability
and long training time. Subgoal space layouts hold significant
importance in the HRL problem, and will continue to be a
subject of our future exploration. Ultimately, our objective is
to implement our approach on actual robots, which entails
various challenges such as ensuring safety and bridging the
gap between simulation and real-world experiments.

ACKNOWLEDGMENT

Yan Gao thanks the Chinese Scholarship Council (CSC)
for providing the living stipend for his Ph.D. programme
(No. 202008230171). This work was partially supported by
the Royal Academy of Engineering under the Industrial Fel-
lowships programme for Ze Ji (No. IF2223-199), hosted by
Spirent Communications.

REFERENCES

[1] H. Durrant-Whyte and T. Bailey, “Simultaneous local-
ization and mapping: Part i,” IEEE robotics & automa-
tion magazine, vol. 13, no. 2, pp. 99–110, 2006.

[2] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep
reinforcement learning: Continuous control of mobile
robots for mapless navigation,” in 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), IEEE, 2017, pp. 31–36.

[3] E. Marchesini and A. Farinelli, “Discrete deep rein-
forcement learning for mapless navigation,” in 2020
IEEE International Conference on Robotics and Au-
tomation (ICRA), IEEE, 2020, pp. 10 688–10 694.

[4] Y. Zhu, R. Mottaghi, E. Kolve, et al., “Target-driven
visual navigation in indoor scenes using deep rein-
forcement learning,” in 2017 IEEE international confer-
ence on robotics and automation (ICRA), IEEE, 2017,
pp. 3357–3364.

[5] A. C. Li, C. Florensa, I. Clavera, and P. Abbeel,
“Sub-policy adaptation for hierarchical reinforcement
learning,” arXiv preprint arXiv:1906.05862, 2019.

[6] O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-
efficient hierarchical reinforcement learning,” Advances
in neural information processing systems, vol. 31, 2018.

[7] R. A. Epstein, E. Z. Patai, J. B. Julian, and H. J.
Spiers, “The cognitive map in humans: Spatial naviga-
tion and beyond,” Nature neuroscience, vol. 20, no. 11,
pp. 1504–1513, 2017.

[8] T. Wolbers and J. M. Wiener, “Challenges for identify-
ing the neural mechanisms that support spatial naviga-
tion: The impact of spatial scale,” Frontiers in human
neuroscience, vol. 8, p. 571, 2014.

[9] A. D. Ekstrom, A. E. Arnold, and G. Iaria, “A critical
review of the allocentric spatial representation and its
neural underpinnings: Toward a network-based perspec-
tive,” Frontiers in human neuroscience, vol. 8, p. 803,
2014.

[10] J. Wöhlke, F. Schmitt, and H. van Hoof, “Hierar-
chies of planning and reinforcement learning for robot
navigation,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2021,
pp. 10 682–10 688.

[11] B. Bischoff, D. Nguyen-Tuong, I Lee, F. Streichert, A.
Knoll, et al., “Hierarchical reinforcement learning for
robot navigation,” in Proceedings of The European Sym-
posium on Artificial Neural Networks, Computational
Intelligence And Machine Learning (ESANN 2013),
2013.

[12] A. Levy, G. Konidaris, R. Platt, and K. Saenko,
“Learning multi-level hierarchies with hindsight,” arXiv
preprint arXiv:1712.00948, 2017.

[13] M. Eppe, P. D. Nguyen, and S. Wermter, “From seman-
tics to execution: Integrating action planning with rein-
forcement learning for robotic causal problem-solving,”
Frontiers in Robotics and AI, vol. 6, p. 123, 2019.

[14] K. Yamamoto, T. Onishi, and Y. Tsuruoka, “Hierar-
chical reinforcement learning with abductive planning,”
arXiv preprint arXiv:1806.10792, 2018.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-
level control through deep reinforcement learning,” na-
ture, vol. 518, no. 7540, pp. 529–533, 2015.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Contin-
uous control with deep reinforcement learning,” arXiv
preprint arXiv:1509.02971, 2015.

[17] S. Karamizadeh, S. M. Abdullah, A. A. Manaf, M.
Zamani, and A. Hooman, “An overview of principal
component analysis,” Journal of Signal and Information
Processing, vol. 4, no. 3B, p. 173, 2013.

[18] B. Shen, F. Xia, C. Li, et al., “Igibson 1.0: A simula-
tion environment for interactive tasks in large realistic
scenes,” in 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2021,
pp. 7520–7527.

[19] S. K. Ramakrishnan, Z. Al-Halah, and K. Grauman,
“Occupancy anticipation for efficient exploration and
navigation,” in Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part V 16, Springer, 2020, pp. 400–418.

[20] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convo-
lutional networks for biomedical image segmentation,”
in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Confer-
ence, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18, Springer, 2015, pp. 234–241.

[21] H. Van Hasselt, A. Guez, and D. Silver, “Deep rein-
forcement learning with double q-learning,” in Proceed-
ings of the AAAI conference on artificial intelligence,
vol. 30, 2016.

