
1

Graph Embedding-based Automatic Domain Ontology Completion

Xiaofeng Zhu, Haijiang Li*, Xiaoyu Liu

Cardiff University, UK
Zhux29@cardiff.ac.uk

Abstract. As an essential form of knowledge representation in the AEC industry, ontologies play

an irreplaceable role in engineering applications. Due to complex logic within domain knowledge,

the manual inspection of constructed domain ontologies remains time-consuming and labour-

intensive. Therefore, an automated ontology completion method is pivotal. To fill this gap, a graph

embedding-based ontology completion model is proposed in this research, which can automatically

supplement plausible relations in domain ontologies. The proposed completion model is developed

with an encoder-decoder structure. A binary feature representation and reverse relation addition are

adopted to enhance graph embeddings. This completion model achieves promising results in the
testing of several domain ontologies. The proposed automatic ontology completion method can

significantly save time and labour on ontology inspection and potentially improve the reliability of

ontology-driven engineering applications.

1 Introduction

The graph is a structured representation to describe the existence of relationships between

objects. It is composed of vertices (nodes) and edges (directed or undirected), which are used

to represent objects and relationships respectively. The idea of representing knowledge through

a graph was first introduced by Frans in 1988 [1] and gained great attention after its usage in

Google’s search engine in 2012. So far, a large number of open knowledge graph datasets have

been established, such as DBPedia, FreeBase [2], YAGO [3], Wikidata, etc. The knowledge

graph stores objective information as structured RDF-style triples in the form of (head, relation,

tail) or (subject, predicate, object) [4]. Ontologies are another type of graph-based domain

knowledge representation. It encompasses domain concepts, entities, and relations that show

the properties of a set of concepts and how they are related [5]. Within the last decade, ontology

engineering has infiltrated many facets of research and is now clearly ubiquitous even within

the architecture, engineering, and construction (AEC) domain [6]. These domain ontologies

play significant roles in design optimisation, compliance checking, knowledge inference,

holistic decision-making, etc. Currently, the construction of ontologies is still largely dependent

on the manual work of domain experts, where subjectivity and uncertainty are inevitable.

Although some guidelines for ontology construction, such as Ontology Development 101 [7],

Best Practices of Ontology Development [8], etc., have been published to standardise the

procedure, these domain ontologies are usually incomplete and require manual inspections to

complete the missing relations among entities.

The process of completing incomplete triples (i.e., (Beam, ? , Building Element)) is called graph

completion (GC). Many approaches have been proposed in recent years to supplement plausible

missing facts in knowledge graphs. However, ontology-oriented knowledge completion in the

AEC domain is still a vacuum. To fill this gap, the authors propose a graph embedding-based

automatic domain ontology completion method in this paper. The proposed completion model

follows an encoder-decoder structure, and a pre-processor is built into the model to convert

graph data into computable tensor representation. The binary feature representation and reverse

relation addition mechanism are utilised in the model to enhance the precision of graph

2

embedding. The proposed method has been tested on several domain ontologies and achieved

promising results on ontology completion. The arises of automatic ontology completion can

considerably save the time and resources spent on ontology inspection and reduce the

proportion of manual work. Furthermore, the proposed ontology completion model can

minimise the uncertainty in ontology construction and greatly improve the reliability of

ontology-driven applications.

2 Related Work

2.1 Ontologies in AEC domain

In the last decade, plenty of ontologies and vocabularies have been created, investigated, and

proposed [9]. These ontologies cover diverse areas in the AEC domain. For instance, there is

the long-standing IFC ontology or vocabulary that is available in the Web Ontology Language

since 2009 [10]. In parallel with the IFC ontology, the concept of link building data (LBD) was

introduced. It gathers and shares building data via a set of available vocabularies and its

ontology is diverse combinations of Building Topology Ontology (BOT), Building Element

Ontology (BEO), Building Product Ontology (BPO), MEP ontology, the Ontology for Property

Management (OPM), the File Ontology for Geometry Formats (FOG), and the Ontology for

Managing Geometry (OMG). When considering asset management, diverse other ontologies

can be of additional use, such as SAREF4BLDG, the Damage Topology Ontology (DOT), Real

Estate Core (REC), and so forth. For ecosystems, the Brick ontology is the most predominant,

which consists of Location, Equipment, and System classes. These classes hold a considerable

inheritance tree and group the definition of Building, Space, Floor, Site, and Zone. As such, the

Brick ontology is very well capable of defining the ecosystem of a building. The Flow System

Ontology (FSO) is aimed entirely at the flows, ports, and interfaces in an HVAC system. It

allows to define systems, components, and connections, including energy storage devices,

supply units, and fluid and heat flows. The FSO can be used to compute flows through a system

and optimise HVAC systems. Furthermore, some other existing ontologies, such as QUDT,

SSN/SOSA, O&M, Time, etc. can easily be combined with the above-mentioned ontologies to

form a comprehensive knowledge base.

2.2 Graph completion

To realize automatic graph completion, many approaches have been proposed in the computer

science domain to find plausible missing relations in graphs. A common strategy is to rely on

graph embedding, which aims to identify plausible triples by representing entities as vectors in

a low-dimensional vector space and learning a parametrized scoring function for each relation.

The graph embedding models can be broadly classified into the translational model, tensor

decompositional model, and deep learning-based models.

The translation model construes the relation as a simple translation over a hidden entity

representation [11]. It constructs a low-dimensional vector representation by drawing on

information about the translation of entities. TransE [12] is one of the representative

translational models proposed by Bordes et al. in 2013, where both entities and relations are

considered vectors in the same space. However, it performs not well in one-to-many, many-to-

one, and many-to-many relations [13,14]. To overcome this issue, extensions of TransE

including TransH, TransR, TransD, TransM, and TransW have been recently proposed, which

3

have different relation embeddings and scoring functions. RotatE [15] is another translational-

based representation learning approach introduced by Sun et al. in 2019, which can infer

different relation patterns of symmetry and antisymmetry. Similar to RotatE, Zhang et al.

proposed a translational distance model named HAKE [16], which explicitly models modulus

information and considers the depth of the tree as moduli.

Tensor decompositional models use tensor products to capture rich interactions. RESCAL [17]

is one of the representative tensor decomposition models, whose extension models are more

trending. RESCAL tackles uncertainty and complex relational structures based on a statistical

relational learning approach. It captures the underlying semantics of each entity using a vector

representation and represents the pairwise interactions between potential factors as a matrix

[18]. To simplify RESCAL, Yang et al. developed the DistMult [19], which uses bilinear

diagonal matrices and reduces the number of parameters. ComplEx [20] proposed complex-

valued embeddings to improve asymmetric relations modelling between entities, where entity

and relation embeddings are in a complex space rather than one real space.

Deep learning models generally use an artificial neural network to learn how the head, relation,

and tail embeddings interact. Convolutional neural networks normally yield the same

performance as previous models with much fewer parameters. ConvE is the most representative

convolutional model for graph completion and many extensions of ConvE are developed to

enhance the ability in feature captures, such as InteractE, ConvKB and ConEx. In addition to

the convolutional model, graph neural networks (GNN) also have been proven to be a powerful

model that can learn the representation of an entity by aggregation of the features of the entities

and neighbours. Hence, plenty of GNN-based approaches have been proposed for graph

completion. For example, Graph Convolutional Network (GCN) [21] based approaches are a

new trend for knowledge base completion. Li et al. [22] proposed a GCN-based model to

complete ontologies selected from different domains, including wine, economy, transport and

so on. Since then, many variants of GCN have been proposed to further improve the

performance, such as RGCN, RAGCN, COMPGCN, etc. Furthermore, some researchers

introduced hybrid models that combine the translational model with GCN. RotatE-GCN and

TranE-GCN are representative of this type of model. Attention mechanisms are also introduced

to help the above models get more contextualize embeddings.

According to the above review, ontologies is the most widely used knowledge representation

in the AEC domain [9]. When constructing new ontologies or combining multiple existing

ontologies, considerable labour is spent on completing missing relations. Hence, there is a

demand for automatic ontology completion in the AEC domain. Although some existing

solutions in the computer science domain have shown great potential to address this problem,

no study in the AEC field has applied these approaches to automate the complementation of

plausible relations in domain ontologies. Therefore, there is still a vacuum in automatic domain

ontology completion.

3 Methodology

To fill the abovementioned research gap, the authors developed a decompositional ontology

completion model that can automatically complement missing relations and nodes in the AEC-

related ontologies. The proposed ontology completion model is comprised of a tuple converter,

a graph embedding encoder and a triplet prediction decoder. Figure 1 presents the overall

architecture of the proposed ontology completion model.

4

Although both are graph-based knowledge models, ontologies and knowledge graphs differ in

the size of the model and the types of relationships. As a model focusing on domain knowledge

representation, the number of nodes and relations in an ontology is much smaller than in a

knowledge graph. In addition, the types of relationships between nodes in the ontology are also

more limited. Therefore, the performance of knowledge graph complementation approaches is

not ideal for ontology complementation due to limited input data. Considering these

characteristics, the authors borrowed the idea from SimplE and use binary representation to

describe the entity feature in an ontology. In the proposed ontology completion model, the

embedding for each entity 𝑒 𝑖𝑠 composed of two vectors ℎ𝑒, 𝑡𝑒 ∈ ℝ𝑑, while the relations 𝑟 are

still expressed as a single vector 𝑣𝑟 ∈ ℝ𝑑. The vector ℎ𝑒 captures the entity’s behaviour as the

head of a relation and 𝑡𝑒 captures the entity’s behaviour as the tail of a relation. The

representation of a triplet (𝑒1, 𝑟, 𝑒2) is < ℎ𝑒1 , 𝑣𝑟 , 𝑡𝑒2 >. These two embedding vectors (ℎ𝑒 and

𝑡𝑒) for entities are learned independently of each other during the training: observing (𝑒1, 𝑟, 𝑒2)
∈ ζ only updates ℎ𝑒1 and 𝑡𝑒2 , not 𝑡𝑒1 and ℎ𝑒2.

Since ontology is a directed graph structure, entities that appear at the head and tail of a tuple

are different in feature representation. This binary entity representation method separates the

entity feature into a head feature and a tail feature. The increment of the feature dimensions

enables a more accurate feature representation of the entities in the ontology, which

compensates for the lack of feature information due to the small size of the ontology graph.

Figure 1: The architecture of the proposed ontology completion model.

4 Development

4.1 Tuple convertor

Graphs are data structures that cannot be directly processed by computers. Furthermore, all the

instances and properties in the ontology are defined as unique Internationalized Resource

Identifiers (IRIs). In some ontologies, entities and properties are expressed with the CamelCase

naming convention. These characteristics make it more difficult to obtain semantic information.
To address the above problems, the authors developed a tuple converter to transfer graph

information into processible triplets. Figure 2 shows the pre-processing of a tuple example.

 ead entity

 ail entity

 elation

 riplet

 riplet

 riplet

 ntity e bedding

 or ard

 reverse

 head

 tail

 head

 tail

 elation e bedding

 or ard

 reverse

 head

 tail

 rediction

5

Figure 2: The pre-processing of a tuple example in the FSO.

The tuple converter first parses the ontology into a series of triples composed of IRIs with the

help of a python toolkit (RDFLib). Then, regular expressions are used to remove redundant

information from the IRI, only retaining the names of the instances or properties. The convert

finally checks if the elements in the tuple are expressed in the Camel case and convert all Camel

case expression into lowercase.

4.2 Graph embedding encoder

After pre-processing, the ontology has been converted to a set of textual triplets (𝑒𝑖, 𝑟𝑗, 𝑒𝑘),

which are still not calculable. To vectorize the triplets, a word-level tokenizer is adopted to split

the name of entities and relations into tokens and the GloVe [23] word vectors are utilised to

set the word embedding for each token. The initial embedding of the entities and relations is

determined by the mean value of their token embeddings. The two vectors (ℎ𝑒 and 𝑡𝑒) are set

as the same initial embedding at the beginning of training and then updated separately during

the training. To improve the inferential capability, reverse relation addition [24] is introduced

in the proposed model. That is, for each triplet (𝑒𝑖, 𝑟, 𝑒𝑗) , another vectorized tuple <

𝑡𝑒𝑗 , 𝑣𝑟−1, ℎ𝑒𝑖 > is built to refine the representation. If this inverse relation (𝑟−1) has already

been defined in the ontology, its embedding will be directly used as the initial embedding of

𝑟−1. For inverse relations that are not predefined, their initial embeddings are set the same as

the embedding of 𝑟.

4.3 Triplet prediction decoder

The decoder in the proposed model is essentially a probability-based predictor. It takes the

embeddings of the triplet element (head entity, relation, tail entity) as input and outputs a

predicted existence probability of this triplet. To estimate the plausibility of an arbitrary triplet,

a scoring function [25] is predefined in the proposed decoder, which combines both forward

and reverse triplet representations. The plausibility score of a specific triplet (𝑒𝑖, 𝑟, 𝑒𝑗) is set to

the average of the Canonical Polyadic scores for (𝑒𝑖, 𝑟, 𝑒𝑗) and (𝑒𝑗, 𝑟
−1, 𝑒𝑖) and calculated

according to the following equations:

𝜙(𝑒𝑖, 𝑟, 𝑒𝑗) =

(ℎ𝑒𝑖 × 𝑣𝑟 × 𝑡𝑒𝑗 + 𝑡𝑒𝑗 × 𝑣𝑟−1 × ℎ𝑒𝑖)

where 𝜙(𝑒𝑖, 𝑟, 𝑒𝑗) represents for the plausibility score of the triplet (𝑒𝑖, 𝑟, 𝑒𝑗), and ℎ𝑒𝑖, 𝑣𝑟 , 𝑡𝑒𝑗 ,

 𝑣𝑟−1 represents for the head embedding of entity 𝑒𝑖, embedding of forward relation 𝑟, the head

embedding of entity 𝑒𝑗 and embedding of reverse relation 𝑟 respectively.

 treat ent device sub class o co ponent

6

4.4 Model training

During the training process, a batch of positive triplets is iteratively taken from the domain

ontology. To create the same number of negative triplets, the authors use the corruption method

proposed by Bordes et al. [26]. For each positive triplet in the batch, a single negative triplet is

generated by corrupting the positive triple. The specific corrupting procedure is as follows:

1. For a positive triplet (𝑒𝑖, 𝑟, 𝑒𝑗), the head entity 𝑒𝑖 or the tail entity 𝑒𝑗 is randomly

corrupted.

2. If the head entity is selected, another entity 𝑒𝑘 will be randomly selected from ℇ − {𝑒𝑖}
(ℇ stands for the set of all entities) to replace 𝑒𝑖 and form the corrupted triple

(𝑒𝑘, 𝑟, 𝑒𝑗).

3. If the tail entity is selected, another entity 𝑒𝑙 will be randomly selected from ℇ − {𝑒𝑗}

to replace 𝑒𝑗 and form the corrupted triple (𝑒𝑖, 𝑟, 𝑒𝑙).

4. A labelled batch (LB) will be generated, where positive triples are labelled as +1 and

negative triples as − .

In terms of the loss function, the margin-based loss functions have been proven to be useful for

graph completion and widely used in the previous models (e.g., TransE, TransR, STransE, etc.).

However, this type of loss function is more prone to overfitting compared to log-likelihood [27].

Therefore, the authors use the L2 regularized negative log-likelihood as the loss function in the

proposed model, which can be calculated on each labelled batch (LB) through the following

equation:

ℒLogistic(𝜃) =∑ 𝑙𝑜𝑔 (+ exp (−𝑙 ∙ 𝜙(ℎ, 𝑟, 𝑡))) + 𝜆‖𝜃‖2
2

((ℎ,𝑟,𝑡),𝑙)∈𝐋𝐁

where 𝜃 represents the parameters of the model (the parameters in the entity and relation

embeddings), 𝑙 represents the label of a triple, 𝜙(ℎ, 𝑟, 𝑡) represents the plausibility score for

triplet (ℎ, 𝑟, 𝑡), 𝜆 is the regularization hyperparameter.

To avoid being stuck in a local optimum when updating the embedding parameters, the authors

adopted stochastic gradient descent with mini-batches as the optimizer. The initial value of the

learning rate and regularization hyperparameter is set as 0.01 and 0.02 respectively.

Considering the proposed model will be tested by different domain ontologies, other

hyperparameters associated with the dataset, such as training epoch and batch size, are not

preset.

5 Experiment

In order to validate the practical performance of the proposed model in domain ontology

completion. the authors selected 7 widely recognized ontologies as test examples. These

selected ontologies cover various aspects of the AEC domain, including building products,

building elements, flow systems, damage topology, property management, etc. More details

about the selected ontologies can be found in Table 1.

Table 1: Basic statistics of the selected domain ontologies.

Ontology name Classes
Object

property

Data

property
Individual

Annotation

property

7

Building Element Ontology (BEO) 186 0 1 1 18

Building Topology Ontology (BOT) 10 16 1 5 21

Building Product Ontology (BPO) 25 22 6 0 15

Brick 1452 86 21 2566 58

Damage Topology Ontology (DOT) 16 13 3 1 15

Flow System Ontology (FSO) 14 23 0 1 13

Ontology for Property Management (OPM) 17 8 4 1 18

The above ontologies were processed by the tuple convertor, where all the IRIs are simplified

as lower-case element names. These elements are then reorganized as RDF triplets in the format

of (subject, predicate, object). Table 2 presents the number of entities, relations and triplets

converted from each domain ontology.

Table 2: Number of the entities, relations, and triplets in each dataset.

Dataset Entity Relation Triplets

Building Element Ontology (BEO) 1102 16 1530

Building Topology Ontology (BOT) 785 32 957

Building Product Ontology (BPO) 214 31 382

Brick 14283 77 52113

Damage Topology Ontology (DOT) 184 27 274

Flow System Ontology (FSO) 189 22 301

Ontology for Property Management (OPM) 156 23 177

The converted triplets were considered as positive triplets and divided into training, validation

and test set according to the ratio of 80%, 10% and 10%. The negative triplets were

automatically generated and loaded into the model together with the positive triplets. To obtain

the optimum model, the model parameters were saved separately after a fixed epoch of training.

The model parameters that perform best on the validation set were treated as optimum

parameters and validated on the test set to show the practical performance.

Commonly used evaluation indicators for graph completion are Hits@k, Mean Rank (MR), and

Mean Reciprocal Rank (MRR) [28]. Hits@k indicates the probability of correct prediction in

the top k candidate triples calculated by the algorithm. The value of Hits@k is between 0 and

1. A larger value represents a better performance of the model. Mean Rank is the average value

of the ranking of predictions/recommendations among all candidates. The smaller the value of

MR, the better the prediction effect of the model. Mean Reciprocal Rank scores the predicted

triples based on whether they are true or not. If the first predicted triple is true, its score is 1,

and the second true score is 0.5, and so on. When the 𝑛-th triplet is established, it is scored
1

𝑛
 ,

and the final MRR value is the sum of all the scores. The larger the MRR value, the better the

model effect [29]. The calculation formula of Hits@k, Mean Rank (MR), and Mean Reciprocal

Rank (MRR) are shown as below.

𝐻@𝑘 =
|{𝑞 ∈ 𝑄 ∶ 𝑞 < 𝑘}|

|𝑄|

𝑀𝑅 =

|𝑄|
∑𝑞

𝑞∈𝑄

𝑀𝑅𝑅 =

|𝑄|
∑

𝑞
𝑞∈𝑄

8

in which, 𝑞 represents the prediction item, and 𝑄 represents all the prediction items given by

the model.

Table 3: The completion results of each selected ontologies.

Dataset Hits@1 Hits@3 MR MRR

Building Element Ontology (BEO) 0.533 0.539 163.997 0.54

Building Topology Ontology (BOT) 0.599 0.609 108.078 0.608

Building Product Ontology (BPO) 0.553 0.566 29.3 0.568

Brick 0.558 0.598 1301.37 0.573

Damage Topology Ontology (DOT) 0.704 0.704 16.481 0.712

Flow System Ontology (FSO) 0.767 0.833 12.316 0.789

Ontology for Property Management (OPM) 0.556 0.556 25.083 0.568

Table 3 shows the completion results of all selected ontologies against the above evaluation

indicators. It can be observed that the performance of the proposed completion model on

Hits@1 generally remains between 55% and 60%. For some specific ontologies (e.g., DOT and

FSO), the accuracy of completion can even exceed 70%. According to the above test results,

the proposed model has been proven to be promising for automatic domain ontology completion.

To figure out the interconnection between ontology and the accuracy of completion, the authors

compared statistics of the tested ontology dataset. However, the results do not show an obvious

correlation with the number of entities, relations, or triplets. After visualising all the tested

ontologies, the authors found the potential reason that might account for this difference. Figure

3 presents a visualization of the two tested ontologies (i.e., BEO and FSO).

Figure 3: A visualization of the BEO and FSO.

It can be found that the entities in the FSO are well-connected, especially in the marked area.

The BEO is largely treelike and with a lot of leaves. During the learning process, the embedding

of entities is calculated based on their neighbour entities. The relation embeddings follow the

same mechanism. Therefore, the embedding of entities and relations in the FSO can get more

information during the training process. This makes the feature representation of elements in

the FSO more precise than the BEO and enables a higher accuracy in ontology completion.

Given the above analysis, the proposed ontology completion model can achieve promising

performance on well-connected ontologies and pretty good results on dendritic ontologies with

a baseline of 55% accuracy.

 lo yste ntology uilding le ent ntology

9

6 Conclusion

In this research, the authors proposed a novel ontology completion model, which can

automatically supplement plausible relations between defined entities. This completion model

is comprised of a tuple convertor, a graph embedding encoder, and a triplet prediction decoder.

The binary feature representation and reverse relation addition are applied to improve the

precision of the graph embedding of each entity and relation. The proposed model is tested on

several domain ontologies and achieves promising performance on well-connected ontologies.

Due to the structural sensitivity, the result of dendritic ontologies completion is not fair well. A

weight system for connectivity might be introduced in future work. In addition, more AEC

domain ontologies will be used to test the proposed model to obtain a comprehensive result of

practical performance. The advent of automatic ontology completion may have a profound

impact on the AEC industry. It can significantly reduce the time and labour spent on ontological

inspections. More importantly, this ontology completion model can greatly enhance the

reliability of all types of engineering applications driven by ontologies.

References

[1] F.N. Stokman, P.H. de Vries, Structuring Knowledge in a Graph, Hum Comput

Interact. (1988) 186–206. https://doi.org/10.1007/978-3-642-73402-1_12.

[2] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: A collaboratively

created graph database for structuring human knowledge, Proceedings of the ACM

SIGMOD International Conference on Management of Data. (2008) 1247–1249.

https://doi.org/10.1145/1376616.1376746.

[3] M. Nickel V. resp . . Kriegel actorizing YAG  : calable achine learning or

linked data WWW’ - Proceedings of the 21st Annual Conference on World Wide

Web. (2012) 271–280. https://doi.org/10.1145/2187836.2187874.

[4] Frank Manola, Eric Miller, Brian McBride, RDF Primer, W3C Recommendation.

(2004). https://www.w3.org/TR/rdf-primer/ (accessed May 6, 2023).

[5] N. Guarino, D. Oberle, S. Staab, What Is an Ontology? Nicola, Handbook on

Ontologies. (2009). http://www.gbv.de/du/services/toc/bs/368354474 (accessed March

14, 2023).

[6] L.J. McGibbney, B. Kumar, A Framework for Regulatory Ontology Construction

within AEC Domain, Ontology in the AEC Industry: A Decade of Research and

Development in Architecture, Engineering, and Construction. (2015) 193–215.

https://doi.org/10.1061/9780784413906.CH09.

[7] N. Noy, Ontology Development 101: A Guide to Creating Your First Ontology, (2001).

[8] R. Rudnicki, Best Practices of Ontology Development, (2016).

http://www.w3.org/2001/sw/wiki/Tools (accessed March 22, 2023).

[9] P. Pauwels, A. Costin, M.H. Rasmussen, Knowledge Graphs and Linked Data for the

Built Environment, Structural Integrity. 20 (2022) 157–183.

https://doi.org/10.1007/978-3-030-82430-3_7.

10

[10] J. Beetz, J. Van Leeuwen, B. De Vries, IfcOWL: A case of transforming EXPRESS

schemas into ontologies, AI EDAM. 23 (2009) 89–101.

https://doi.org/10.1017/S0890060409000122.

[11] M. Zamini, H. Reza, M. Rabiei, A Review of Knowledge Graph Completion,

Information (Switzerland). 13 (2022) 396. https://doi.org/10.3390/info13080396.

[12] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Translating

Embeddings for Modeling Multi-relational Data, Adv Neural Inf Process Syst. 26

(2013).

[13] Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge Graph Embedding by Translating on

Hyperplanes, Proceedings of the National Conference on Artificial Intelligence. 2

(2014) 1112–1119. https://doi.org/10.1609/AAAI.V28I1.8870.

[14] Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning Entity and Relation Embeddings for

Knowledge Graph Completion, (n.d.). www.aaai.org (accessed March 22, 2023).

[15] Z. Sun, Z.H. Deng, J.Y. Nie, J. Tang, RotatE: Knowledge Graph Embedding by

Relational Rotation in Complex Space, 7th International Conference on Learning

Representations, ICLR 2019. (2019). https://arxiv.org/abs/1902.10197v1 (accessed

March 22, 2023).

[16] Z. Zhang, J. Cai, Y. Zhang, J. Wang, Learning Hierarchy-Aware Knowledge Graph

Embeddings for Link Prediction, AAAI 2020 - 34th AAAI Conference on Artificial

Intelligence. (2019) 3065–3072. https://doi.org/10.1609/aaai.v34i03.5701.

[17] M. Nickel, V. Tresp, H.-P. Kriegel, A Three-Way Model for Collective Learning on

Multi-Relational Data, (2011).

[18] Q. Wang, Z. Mao, B. Wang, L. Guo, Knowledge graph embedding: A survey of

approaches and applications, IEEE Trans Knowl Data Eng. 29 (2017) 2724–2743.

https://doi.org/10.1109/TKDE.2017.2754499.

[19] B. Yang, W. tau Yih, X. He, J. Gao, L. Deng, Embedding Entities and Relations for

Learning and Inference in Knowledge Bases, 3rd International Conference on Learning

Representations, ICLR 2015 - Conference Track Proceedings. (2014).

https://arxiv.org/abs/1412.6575v4 (accessed March 22, 2023).

[20] T. Trouillon, J. Welbl, S. Riedel, E. Ciaussier, G. Bouchard, Complex Embeddings for

Simple Link Prediction, 33rd International Conference on Machine Learning, ICML

2016. 5 (2016) 3021–3032. https://arxiv.org/abs/1606.06357v1 (accessed March 22,

2023).

[21] T.N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional

Networks, 5th International Conference on Learning Representations, ICLR 2017 -

Conference Track Proceedings. (2016). https://arxiv.org/abs/1609.02907v4 (accessed

March 25, 2023).

[22] N. Li, Z. Bouraoui, S. Schockaert, Ontology Completion Using Graph Convolutional

Networks, (n.d.).

11

[23] J. Pennington, R. Socher, C.D. Manning, GloVe: Global Vectors for Word

Representation, in: Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), 2014: pp. 1532–1543. http://nlp. (accessed

February 16, 2022).

[24] Y. Lin, Z. Liu, H. Luan, M. Sun, S. Rao, S. Liu, Modeling Relation Paths for

Representation Learning of Knowledge Bases, Conference Proceedings - EMNLP

2015: Conference on Empirical Methods in Natural Language Processing. (2015) 705–

714. https://doi.org/10.18653/v1/d15-1082.

[25] A. Rossi, D. Barbosa, P. Merialdo, D. Firmani, A. Matinata, Knowledge Graph

Embedding for Link Prediction: A Comparative Analysis, ACM Trans. Knowl. Discov.

Data. 1, 1, Article. 1 (2020) 47. https://github.com/merialdo/research.lpca. (accessed

March 30, 2023).

[26] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, O. Yakhnenko, Translating

Embeddings for Modeling Multi-relational Data, (n.d.).

[27] U.G. Alpes, M. Nickel, Complex and Holographic Embeddings of Knowledge Graphs:

A Comparison, (2017). https://arxiv.org/abs/1707.01475v2 (accessed March 30, 2023).

[28] F. Akrami, M.S. Saeef, Q. Zhang, W. Hu, C. Li, Realistic Re-evaluation of Knowledge

Graph Completion Methods: An Experimental Study, Proceedings of the ACM

SIGMOD International Conference on Management of Data. (2020) 1995–2010.

https://doi.org/10.1145/3318464.3380599.

[29] X. Zeng-lin, S. Yong-pan, H. Li-rong, W. Ya-fang, Review on Knowledge Graph

Techniques, (2016).

