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Abstract. As an essential form of knowledge representation in the AEC industry, ontologies play 

an irreplaceable role in engineering applications. Due to complex logic within domain knowledge, 

the manual inspection of constructed domain ontologies remains time-consuming and labour-

intensive. Therefore, an automated ontology completion method is pivotal. To fill this gap, a graph 

embedding-based ontology completion model is proposed in this research, which can automatically 

supplement plausible relations in domain ontologies. The proposed completion model is developed 

with an encoder-decoder structure. A binary feature representation and reverse relation addition are 

adopted to enhance graph embeddings. This completion model achieves promising results in the 
testing of several domain ontologies. The proposed automatic ontology completion method can 

significantly save time and labour on ontology inspection and potentially improve the reliability of 

ontology-driven engineering applications.  

1 Introduction 

The graph is a structured representation to describe the existence of relationships between 

objects. It is composed of vertices (nodes) and edges (directed or undirected), which are used 

to represent objects and relationships respectively. The idea of representing knowledge through 

a graph was first introduced by Frans in 1988 [1] and gained great attention after its usage in 

Google’s search engine in 2012. So far, a large number of open knowledge graph datasets have 

been established, such as DBPedia, FreeBase [2], YAGO [3], Wikidata, etc. The knowledge 

graph stores objective information as structured RDF-style triples in the form of (head, relation, 

tail) or (subject, predicate, object) [4]. Ontologies are another type of graph-based domain 

knowledge representation. It encompasses domain concepts, entities, and relations that show 

the properties of a set of concepts and how they are related [5]. Within the last decade, ontology 

engineering has infiltrated many facets of research and is now clearly ubiquitous even within 

the architecture, engineering, and construction (AEC) domain [6]. These domain ontologies 

play significant roles in design optimisation, compliance checking, knowledge inference, 

holistic decision-making, etc. Currently, the construction of ontologies is still largely dependent 

on the manual work of domain experts, where subjectivity and uncertainty are inevitable. 

Although some guidelines for ontology construction, such as Ontology Development 101 [7], 

Best Practices of Ontology Development [8], etc., have been published to standardise the 

procedure, these domain ontologies are usually incomplete and require manual inspections to 

complete the missing relations among entities.  

The process of completing incomplete triples (i.e., (Beam, ? , Building Element)) is called graph 

completion (GC). Many approaches have been proposed in recent years to supplement plausible 

missing facts in knowledge graphs. However, ontology-oriented knowledge completion in the 

AEC domain is still a vacuum. To fill this gap, the authors propose a graph embedding-based 

automatic domain ontology completion method in this paper. The proposed completion model 

follows an encoder-decoder structure, and a pre-processor is built into the model to convert 

graph data into computable tensor representation. The binary feature representation and reverse 

relation addition mechanism are utilised in the model to enhance the precision of graph 
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embedding. The proposed method has been tested on several domain ontologies and achieved 

promising results on ontology completion. The arises of automatic ontology completion can 

considerably save the time and resources spent on ontology inspection and reduce the 

proportion of manual work. Furthermore, the proposed ontology completion model can 

minimise the uncertainty in ontology construction and greatly improve the reliability of 

ontology-driven applications. 

2 Related Work 

2.1 Ontologies in AEC domain 

In the last decade, plenty of ontologies and vocabularies have been created, investigated, and 

proposed [9]. These ontologies cover diverse areas in the AEC domain. For instance, there is 

the long-standing IFC ontology or vocabulary that is available in the Web Ontology Language 

since 2009 [10]. In parallel with the IFC ontology, the concept of link building data (LBD) was 

introduced. It gathers and shares building data via a set of available vocabularies and its 

ontology is diverse combinations of Building Topology Ontology (BOT), Building Element 

Ontology (BEO), Building Product Ontology (BPO), MEP ontology, the Ontology for Property 

Management (OPM), the File Ontology for Geometry Formats (FOG), and the Ontology for 

Managing Geometry (OMG). When considering asset management, diverse other ontologies 

can be of additional use, such as SAREF4BLDG, the Damage Topology Ontology (DOT), Real 

Estate Core (REC), and so forth. For ecosystems, the Brick ontology is the most predominant, 

which consists of Location, Equipment, and System classes. These classes hold a considerable 

inheritance tree and group the definition of Building, Space, Floor, Site, and Zone. As such, the 

Brick ontology is very well capable of defining the ecosystem of a building. The Flow System 

Ontology (FSO) is aimed entirely at the flows, ports, and interfaces in an HVAC system. It 

allows to define systems, components, and connections, including energy storage devices, 

supply units, and fluid and heat flows. The FSO can be used to compute flows through a system 

and optimise HVAC systems. Furthermore, some other existing ontologies, such as QUDT, 

SSN/SOSA, O&M, Time, etc. can easily be combined with the above-mentioned ontologies to 

form a comprehensive knowledge base.  

2.2 Graph completion 

To realize automatic graph completion, many approaches have been proposed in the computer 

science domain to find plausible missing relations in graphs. A common strategy is to rely on 

graph embedding, which aims to identify plausible triples by representing entities as vectors in 

a low-dimensional vector space and learning a parametrized scoring function for each relation. 

The graph embedding models can be broadly classified into the translational model, tensor 

decompositional model, and deep learning-based models.  

The translation model construes the relation as a simple translation over a hidden entity 

representation [11]. It constructs a low-dimensional vector representation by drawing on 

information about the translation of entities. TransE [12] is one of the representative 

translational models proposed by Bordes et al. in 2013, where both entities and relations are 

considered vectors in the same space. However, it performs not well in one-to-many, many-to-

one, and many-to-many relations [13,14]. To overcome this issue, extensions of TransE 

including TransH, TransR, TransD, TransM, and TransW have been recently proposed, which 
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have different relation embeddings and scoring functions. RotatE [15] is another translational-

based representation learning approach introduced by Sun et al. in 2019, which can infer 

different relation patterns of symmetry and antisymmetry. Similar to RotatE, Zhang et al. 

proposed a translational distance model named HAKE [16], which explicitly models modulus 

information and considers the depth of the tree as moduli. 

Tensor decompositional models use tensor products to capture rich interactions. RESCAL [17] 

is one of the representative tensor decomposition models, whose extension models are more 

trending. RESCAL tackles uncertainty and complex relational structures based on a statistical 

relational learning approach. It captures the underlying semantics of each entity using a vector 

representation and represents the pairwise interactions between potential factors as a matrix 

[18]. To simplify RESCAL, Yang et al. developed the DistMult [19], which uses bilinear 

diagonal matrices and reduces the number of parameters. ComplEx [20] proposed complex-

valued embeddings to improve asymmetric relations modelling between entities, where entity 

and relation embeddings are in a complex space rather than one real space. 

Deep learning models generally use an artificial neural network to learn how the head, relation, 

and tail embeddings interact. Convolutional neural networks normally yield the same 

performance as previous models with much fewer parameters. ConvE is the most representative 

convolutional model for graph completion and many extensions of ConvE are developed to 

enhance the ability in feature captures, such as InteractE, ConvKB and ConEx. In addition to 

the convolutional model, graph neural networks (GNN) also have been proven to be a powerful 

model that can learn the representation of an entity by aggregation of the features of the entities 

and neighbours. Hence, plenty of GNN-based approaches have been proposed for graph 

completion. For example, Graph Convolutional Network (GCN) [21] based approaches are a 

new trend for knowledge base completion. Li et al. [22] proposed a GCN-based model to 

complete ontologies selected from different domains, including wine, economy, transport and 

so on. Since then, many variants of GCN have been proposed to further improve the 

performance, such as RGCN, RAGCN, COMPGCN, etc. Furthermore, some researchers 

introduced hybrid models that combine the translational model with GCN. RotatE-GCN and 

TranE-GCN are representative of this type of model. Attention mechanisms are also introduced 

to help the above models get more contextualize embeddings. 

According to the above review, ontologies is the most widely used knowledge representation 

in the AEC domain [9]. When constructing new ontologies or combining multiple existing 

ontologies, considerable labour is spent on completing missing relations. Hence, there is a 

demand for automatic ontology completion in the AEC domain. Although some existing 

solutions in the computer science domain have shown great potential to address this problem, 

no study in the AEC field has applied these approaches to automate the complementation of 

plausible relations in domain ontologies. Therefore, there is still a vacuum in automatic domain 

ontology completion. 

3 Methodology 

To fill the abovementioned research gap, the authors developed a decompositional ontology 

completion model that can automatically complement missing relations and nodes in the AEC-

related ontologies. The proposed ontology completion model is comprised of a tuple converter, 

a graph embedding encoder and a triplet prediction decoder. Figure 1 presents the overall 

architecture of the proposed ontology completion model. 
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Although both are graph-based knowledge models, ontologies and knowledge graphs differ in 

the size of the model and the types of relationships. As a model focusing on domain knowledge 

representation, the number of nodes and relations in an ontology is much smaller than in a 

knowledge graph. In addition, the types of relationships between nodes in the ontology are also 

more limited. Therefore, the performance of knowledge graph complementation approaches is 

not ideal for ontology complementation due to limited input data. Considering these 

characteristics, the authors borrowed the idea from SimplE and use binary representation to 

describe the entity feature in an ontology. In the proposed ontology completion model, the 

embedding for each entity 𝑒 𝑖𝑠 composed of two vectors ℎ𝑒, 𝑡𝑒 ∈ ℝ𝑑, while the relations 𝑟 are 

still expressed as a single vector 𝑣𝑟 ∈ ℝ𝑑. The vector ℎ𝑒 captures the entity’s behaviour as the 

head of a relation and 𝑡𝑒  captures the entity’s behaviour as the tail of a relation. The 

representation of a triplet (𝑒1, 𝑟, 𝑒2) is < ℎ𝑒1 , 𝑣𝑟 , 𝑡𝑒2 >. These two embedding vectors (ℎ𝑒 and 

𝑡𝑒) for entities are learned independently of each other during the training: observing (𝑒1, 𝑟, 𝑒2) 
∈ ζ only updates ℎ𝑒1 and 𝑡𝑒2 , not 𝑡𝑒1 and ℎ𝑒2.  

Since ontology is a directed graph structure, entities that appear at the head and tail of a tuple 

are different in feature representation. This binary entity representation method separates the 

entity feature into a head feature and a tail feature.  The increment of the feature dimensions 

enables a more accurate feature representation of the entities in the ontology, which 

compensates for the lack of feature information due to the small size of the ontology graph. 

 

Figure 1: The architecture of the proposed ontology completion model. 

4 Development 

4.1 Tuple convertor 

Graphs are data structures that cannot be directly processed by computers. Furthermore, all the 

instances and properties in the ontology are defined as unique Internationalized Resource 

Identifiers (IRIs). In some ontologies, entities and properties are expressed with the CamelCase 

naming convention. These characteristics make it more difficult to obtain semantic information.  
To address the above problems, the authors developed a tuple converter to transfer graph 

information into processible triplets. Figure 2 shows the pre-processing of a tuple example. 
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Figure 2: The pre-processing of a tuple example in the FSO. 

The tuple converter first parses the ontology into a series of triples composed of IRIs with the 

help of a python toolkit (RDFLib). Then, regular expressions are used to remove redundant 

information from the IRI, only retaining the names of the instances or properties. The convert 

finally checks if the elements in the tuple are expressed in the Camel case and convert all Camel 

case expression into lowercase. 

4.2 Graph embedding encoder 

After pre-processing, the ontology has been converted to a set of textual triplets (𝑒𝑖, 𝑟𝑗, 𝑒𝑘), 

which are still not calculable. To vectorize the triplets, a word-level tokenizer is adopted to split 

the name of entities and relations into tokens and the GloVe [23] word vectors are utilised to 

set the word embedding for each token. The initial embedding of the entities and relations is 

determined by the mean value of their token embeddings. The two vectors (ℎ𝑒 and 𝑡𝑒) are set 

as the same initial embedding at the beginning of training and then updated separately during 

the training. To improve the inferential capability, reverse relation addition [24] is introduced 

in the proposed model. That is, for each triplet (𝑒𝑖, 𝑟, 𝑒𝑗) , another vectorized tuple <

𝑡𝑒𝑗 , 𝑣𝑟−1, ℎ𝑒𝑖 > is built to refine the representation. If this inverse relation (𝑟−1) has already 

been defined in the ontology, its embedding will be directly used as the initial embedding of 

𝑟−1. For inverse relations that are not predefined, their initial embeddings are set the same as 

the embedding of 𝑟.  

4.3 Triplet prediction decoder 

The decoder in the proposed model is essentially a probability-based predictor. It takes the 

embeddings of the triplet element (head entity, relation, tail entity) as input and outputs a 

predicted existence probability of this triplet. To estimate the plausibility of an arbitrary triplet, 

a scoring function [25] is predefined in the proposed decoder, which combines both forward 

and reverse triplet representations. The plausibility score of a specific triplet (𝑒𝑖, 𝑟, 𝑒𝑗) is set to 

the average of the Canonical Polyadic scores for (𝑒𝑖, 𝑟, 𝑒𝑗)  and (𝑒𝑗, 𝑟
−1, 𝑒𝑖)  and calculated 

according to the following equations: 

𝜙(𝑒𝑖, 𝑟, 𝑒𝑗) =  
 

 
( ℎ𝑒𝑖 × 𝑣𝑟 × 𝑡𝑒𝑗 + 𝑡𝑒𝑗 × 𝑣𝑟−1 × ℎ𝑒𝑖 ) 

where 𝜙(𝑒𝑖, 𝑟, 𝑒𝑗) represents for the plausibility score of the triplet (𝑒𝑖, 𝑟, 𝑒𝑗), and ℎ𝑒𝑖,  𝑣𝑟  , 𝑡𝑒𝑗  , 

 𝑣𝑟−1 represents for the head embedding of entity 𝑒𝑖, embedding of forward relation 𝑟, the head 

embedding of entity 𝑒𝑗 and embedding of reverse relation 𝑟 respectively. 
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4.4 Model training 

During the training process, a batch of positive triplets is iteratively taken from the domain 

ontology. To create the same number of negative triplets, the authors use the corruption method 

proposed by Bordes et al. [26]. For each positive triplet in the batch, a single negative triplet is 

generated by corrupting the positive triple. The specific corrupting procedure is as follows: 

1. For a positive triplet (𝑒𝑖, 𝑟, 𝑒𝑗), the head entity 𝑒𝑖 or the tail entity 𝑒𝑗 is randomly 

corrupted. 

2. If the head entity is selected, another entity 𝑒𝑘 will be randomly selected from ℇ − {𝑒𝑖} 
(ℇ stands for the set of all entities) to replace 𝑒𝑖 and form the corrupted triple 

(𝑒𝑘, 𝑟, 𝑒𝑗). 

3. If the tail entity is selected, another entity 𝑒𝑙 will be randomly selected from ℇ − {𝑒𝑗}  

to replace 𝑒𝑗 and form the corrupted triple (𝑒𝑖, 𝑟, 𝑒𝑙). 

4. A labelled batch (LB) will be generated, where positive triples are labelled as +1 and 

negative triples as − . 

In terms of the loss function, the margin-based loss functions have been proven to be useful for 

graph completion and widely used in the previous models (e.g., TransE, TransR, STransE, etc.). 

However, this type of loss function is more prone to overfitting compared to log-likelihood [27]. 

Therefore, the authors use the L2 regularized negative log-likelihood as the loss function in the 

proposed model, which can be calculated on each labelled batch (LB) through the following 

equation: 

ℒLogistic(𝜃) =∑ 𝑙𝑜𝑔 ( + exp (−𝑙 ∙ 𝜙(ℎ, 𝑟, 𝑡))) +  𝜆‖𝜃‖2
2

((ℎ,𝑟,𝑡),𝑙)∈𝐋𝐁
 

where 𝜃  represents the parameters of the model (the parameters in the entity and relation 

embeddings), 𝑙 represents the label of a triple, 𝜙(ℎ, 𝑟, 𝑡) represents the plausibility score for 

triplet (ℎ, 𝑟, 𝑡), 𝜆 is the regularization hyperparameter. 

To avoid being stuck in a local optimum when updating the embedding parameters, the authors 

adopted stochastic gradient descent with mini-batches as the optimizer. The initial value of the 

learning rate and regularization hyperparameter is set as 0.01 and 0.02 respectively. 

Considering the proposed model will be tested by different domain ontologies, other 

hyperparameters associated with the dataset, such as training epoch and batch size, are not 

preset.  

5 Experiment 

In order to validate the practical performance of the proposed model in domain ontology 

completion. the authors selected 7 widely recognized ontologies as test examples. These 

selected ontologies cover various aspects of the AEC domain, including building products, 

building elements, flow systems, damage topology, property management, etc. More details 

about the selected ontologies can be found in Table 1. 

Table 1: Basic statistics of the selected domain ontologies. 

Ontology name Classes 
Object 

property 

Data 

property 
Individual 

Annotation 

property 
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Building Element Ontology (BEO) 186 0 1 1 18 

Building Topology Ontology (BOT) 10 16 1 5 21 

Building Product Ontology (BPO) 25 22 6 0 15 

Brick 1452 86 21 2566 58 

Damage Topology Ontology (DOT) 16 13 3 1 15 

Flow System Ontology (FSO) 14 23 0 1 13 

Ontology for Property Management (OPM) 17 8 4 1 18 

The above ontologies were processed by the tuple convertor, where all the IRIs are simplified 

as lower-case element names. These elements are then reorganized as RDF triplets in the format 

of (subject, predicate, object). Table 2 presents the number of entities, relations and triplets 

converted from each domain ontology. 

Table 2: Number of the entities, relations, and triplets in each dataset. 

Dataset Entity Relation  Triplets 

Building Element Ontology (BEO) 1102 16 1530 

Building Topology Ontology (BOT) 785 32 957 

Building Product Ontology (BPO) 214 31 382 

Brick 14283 77 52113 

Damage Topology Ontology (DOT) 184 27 274 

Flow System Ontology (FSO) 189 22 301 

Ontology for Property Management (OPM) 156 23 177 

The converted triplets were considered as positive triplets and divided into training, validation 

and test set according to the ratio of 80%, 10% and 10%. The negative triplets were 

automatically generated and loaded into the model together with the positive triplets. To obtain 

the optimum model, the model parameters were saved separately after a fixed epoch of training. 

The model parameters that perform best on the validation set were treated as optimum 

parameters and validated on the test set to show the practical performance.  

Commonly used evaluation indicators for graph completion are Hits@k, Mean Rank (MR), and 

Mean Reciprocal Rank (MRR) [28]. Hits@k indicates the probability of correct prediction in 

the top k candidate triples calculated by the algorithm. The value of Hits@k is between 0 and 

1. A larger value represents a better performance of the model. Mean Rank is the average value 

of the ranking of predictions/recommendations among all candidates. The smaller the value of 

MR, the better the prediction effect of the model. Mean Reciprocal Rank scores the predicted 

triples based on whether they are true or not. If the first predicted triple is true, its score is 1, 

and the second true score is 0.5, and so on. When the 𝑛-th triplet is established, it is scored 
1

𝑛
 , 

and the final MRR value is the sum of all the scores. The larger the MRR value, the better the 

model effect [29]. The calculation formula of Hits@k, Mean Rank (MR), and Mean Reciprocal 

Rank (MRR) are shown as below. 

𝐻@𝑘 =
|{𝑞 ∈ 𝑄 ∶ 𝑞 < 𝑘}|

|𝑄|
 

𝑀𝑅 =
 

|𝑄|
∑𝑞

𝑞∈𝑄

 

𝑀𝑅𝑅 =
 

|𝑄|
∑

 

𝑞
𝑞∈𝑄

 



8 

 

in which, 𝑞 represents the prediction item, and 𝑄 represents all the prediction items given by 

the model.  

Table 3: The completion results of each selected ontologies. 

Dataset Hits@1 Hits@3 MR MRR 

Building Element Ontology (BEO) 0.533 0.539 163.997 0.54 

Building Topology Ontology (BOT) 0.599 0.609 108.078 0.608 

Building Product Ontology (BPO) 0.553 0.566 29.3 0.568 

Brick 0.558 0.598 1301.37 0.573 

Damage Topology Ontology (DOT) 0.704 0.704 16.481 0.712 

Flow System Ontology (FSO) 0.767 0.833 12.316 0.789 

Ontology for Property Management (OPM) 0.556 0.556 25.083 0.568 

Table 3 shows the completion results of all selected ontologies against the above evaluation 

indicators. It can be observed that the performance of the proposed completion model on 

Hits@1 generally remains between 55% and 60%. For some specific ontologies (e.g., DOT and 

FSO), the accuracy of completion can even exceed 70%. According to the above test results, 

the proposed model has been proven to be promising for automatic domain ontology completion. 

To figure out the interconnection between ontology and the accuracy of completion, the authors 

compared statistics of the tested ontology dataset. However, the results do not show an obvious 

correlation with the number of entities, relations, or triplets. After visualising all the tested 

ontologies, the authors found the potential reason that might account for this difference. Figure 

3 presents a visualization of the two tested ontologies (i.e., BEO and FSO). 

 

Figure 3: A visualization of the BEO and FSO. 

It can be found that the entities in the FSO are well-connected, especially in the marked area.  

The BEO is largely treelike and with a lot of leaves. During the learning process, the embedding 

of entities is calculated based on their neighbour entities. The relation embeddings follow the 

same mechanism. Therefore, the embedding of entities and relations in the FSO can get more 

information during the training process. This makes the feature representation of elements in 

the FSO more precise than the BEO and enables a higher accuracy in ontology completion. 

Given the above analysis, the proposed ontology completion model can achieve promising 

performance on well-connected ontologies and pretty good results on dendritic ontologies with 

a baseline of 55% accuracy. 

 lo   yste   ntology       uilding  le ent  ntology      
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6 Conclusion 

In this research, the authors proposed a novel ontology completion model, which can 

automatically supplement plausible relations between defined entities. This completion model 

is comprised of a tuple convertor, a graph embedding encoder, and a triplet prediction decoder. 

The binary feature representation and reverse relation addition are applied to improve the 

precision of the graph embedding of each entity and relation. The proposed model is tested on 

several domain ontologies and achieves promising performance on well-connected ontologies. 

Due to the structural sensitivity, the result of dendritic ontologies completion is not fair well. A 

weight system for connectivity might be introduced in future work. In addition, more AEC 

domain ontologies will be used to test the proposed model to obtain a comprehensive result of 

practical performance. The advent of automatic ontology completion may have a profound 

impact on the AEC industry. It can significantly reduce the time and labour spent on ontological 

inspections. More importantly, this ontology completion model can greatly enhance the 

reliability of all types of engineering applications driven by ontologies. 
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