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Abstract

The Ariel Space Telescope will provide a large and diverse sample of exoplanet spectra, performing spectroscopic
observations of about 1000 exoplanets in the wavelength range 0.5-7.8 ym. In this paper, we investigate the
information content of Ariel’s Reconnaissance Survey low-resolution transmission spectra. Among the goals of the
Ariel Reconnaissance Survey is also to identify planets without molecular features in their atmosphere. In this
work, (1) we present a strategy that will allow us to select candidate planets to be reobserved in Ariel’s higher-
resolution tier, (2) we propose a metric to preliminary classify exoplanets by their atmospheric composition
without performing an atmospheric retrieval, and (3) we introduce the possibility to find other methods to better

exploit the data scientific content.

Unified Astronomy Thesaurus concepts: Transmission spectroscopy (2133); Exoplanet atmospheric composition

(2021); Space telescopes (1547)

1. Introduction

In the past decade the number of known exoplanets has
increased 10-fold: at the end of 2009 around 400 exoplanets
were known, while at the end of 2019 the confirmed
discoveries reached more than 4000. This rapid increase in
the exoplanetary science yield is expected to continue, and it
will affect not only the number of discovered planets but also
our knowledge of planetary formation and evolution. While the
discoveries will increase thanks to space missions such as
TESS (Ricker et al. 2016), CHEOPS (Cessa et al. 2017),
PLATO (Rauer et al. 2014), and Gaia (Gaia Collaboration et al.
2016) and to ground instrumentation such as HARPS (Mayor
et al. 2003), HATnet (Bakos 2018), WASP (Pollacco et al.
2006), KELT (Pepper et al. 2018), OGLE (Udalski et al. 2015),
NGTS (Wheatley et al. 2013), and many others, our under-
standing of planets’ histories can only grow through planetary
composition analysis.

The most effective strategy used today to reveal the atmo-
spheric chemistry and thermodynamics of transiting exoplanets is
to use multiband photometry and spectroscopy (e.g., Seager &
Sasselov 2000; Charbonneau et al. 2005; Tinetti et al. 2007; Sing
et al. 2016; Huitson et al. 2012; Madhusudhan et al. 2012;
Kreidberg et al. 2014; Edwards et al. 2020; Pluriel et al. 2020a;
Guilluy et al. 2021; Mugnai et al. 2021). Current instrumentation
has enabled this kind of atmospheric characterization for a few
tens of exoplanets over a limited wavelength range (e.g., Sing
et al. 2016; Tsiaras et al. 2018). To interpret the observed spectra,
spectral retrieval techniques, often developed for the study of
Earth and solar system planets, have flourished and were adapted
to the new field of investigation (e.g., Irwin et al. 2008; Line et al.
2013; Waldmann et al. 2015b; Gandhi & Madhusudhan 2017; Al-
Refaie et al. 2021). Most recently, an intense effort has been
performed to compare and validate different models developed by
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different teams to assess potential discrepancies among them
(Barstow et al. 2020), demonstrating the robustness and
consistency of those models.

The Atmospheric Remote-Sensing Infrared Exoplanet Large-
survey, Ariel, will enable the spectroscopic observation of a
diverse sample of about 1000 exoplanets (Tinetti et al. 2018;
Ariel Definition Study Report’) in the 0.5-7.8 um wavelength
range. The Ariel payload has three photometers (VISPhot,
0.5-0.6 pm; FGS1, 0.6-0.80 um; FGS2, 0.80-1.1 pm) and
three spectrometers (NIRSpec, 1.1-1.95 um and R > 15; AIRS-
CHO, 1.95-3.9 yum and R > 100; AIRS-CH1, 3.9-7.8 um and
R > 30). After each observation, the resulting spectrum from
each spectrometer is binned during data analysis to optimize
the planetary spectrum signal-to-noise ratio (S/N). Therefore,
implementing different binning options, the mission will adopt
a four-tier strategy, expected to deliver spectra with different
S/N to optimize the science return (Tinetti et al. 2018).

Tier 1 was created to deliver a reconnaissance survey where all
planets are first observed at low spectral resolution, and only a
subset of Tier 1 planets will be further observed to reach S/N >7
at a higher spectral resolution (Tier 2, Tier 3). Tier 1 observations
have an S/N>7 when raw spectra are binned into a single
spectral point in NIRSpec, two in AIRS-CHO and one in AIRS-
CHL, for a total of four spectral and three photometric data points.
For ~50% of total observed planets, Ariel will provide spectra at
Tier 2 resolution. In this tier, raw spectra are binned at R = 10, 50,
and 15 in NIRSpec, AIRS-CHO, and AIRS-CHI1, respectively,
with an S/N of 7 or larger. Tier 3 is meant to provide spectra with
S/N ~ 7 for 5%—10% of the total observed targets. In this tier the
raw spectral data are binned at R =20, 100, and 30 in NIRSpec,
AIRS-CHO, and AIRS-CHI, respectively. Finally, Tier 4 is
conceived for bespoke or phase-curve observations. Among the
main goals of Tier 1 observations is to identify planetary spectra
that show no molecular absorption features and to select those to
be reobserved in the successive tiers.

The aim of this paper is threefold:

3 https://sci.esa.int/web/ariel /- /ariel-definition-study-report-red-book
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1. to show the capability of selecting the planets with
featureless spectra, which may not be observed again in
successive tiers, without involving retrieval techniques;

2. to introduce a metric and show its principal applications
as a tool to classify Tier 1 observed planets on their
molecular content, to aid in the selection of targets to be
reobserved in successive tiers; and

3. to show that other strategies to exploit Ariel Tier 1 data are
possible, such as those based on machine learning (ML).

In Section 2 we present our strategy to address these three
goals. Our new software, Alfnoor, able to build entire planetary
populations, is presented in Section 2.1. Then, we discuss the
targets chosen to build the populations and the atmospheric
properties used in Section 2.2. In the same section, we also
describe a method to identify the flat spectra in the sample
(Section 2.3), which is the first paper goal. This method’s results
are then described in Section 3.1. Then, we describe the metric
developed as mentioned in the second goal of this paper
(Section 2.4), and we introduce a classification algorithm to
compare the metric with (Section 2.4.1). We present in detail the
results obtained by our algorithm (Section 3.2), we show the
relation between the metric and the input molecular abundances in
the planets, and we discuss biases and limitations. Finally, we
provide a preliminary assessment of the application of ML and
deep-learning techniques to the problem of spectrum classification
in Section 2.5, discussing their performance in Section 3.3, but
leaving a more thorough investigation to future work. In Section 4
we discuss and compare the results in detail.

2. Methodology
2.1. The Alfnoor Software

Ariel will provide a sample of hundreds of planetary spectra.
To simulate this data set, we develop a new algorithm: Alfnoor,
the thousand lights simulator, which was also used for Tier 2 data
in Changeat et al. (2020). Alfnoor is a wrapper of TauREx 3 (Al-
Refaie et al. 2021) and ArielRad (Mugnai et al. 2020). TauREx 3
is a complete rewrite of the atmospheric retrieval code TauREx
(Waldmann et al. 2015a, 2015b). ArielRad is the Ariel radiometric
model: a software that, given the Ariel payload and mission
strategy descriptions, can simulate the signal propagating from a
candidate target through the instruments and return the expected
instrument noise. ArielRad, therefore, can compute the number of
observations needed to match each of the Ariel tier requirements
(to reach a minimum S/N =7 at the tier spectral resolution).

By combining the two software, Alfnoor produces the atmo-
spheric high-resolution forward model of a planet with TauREx 3,
bins down the spectrum to the Ariel tier wavelength grid, and adds
the expected noise estimated by ArielRad. Consequently, Alfnoor
returns a simulation of the planet spectrum as observed in each of
the Ariel mission tiers. Iterating this procedure for different planets
or compositions, Alfnoor automates the process of building entire
planetary populations and therefore a data set that is representative
of the one Ariel will provide.

The Alfnoor and the ArielRad tools are not publicly available,
currently. However, both TauREx 3*° and a generic radiometric
simulator called ExoRad 2.0%7 are publicly available on

https://github.com/ucl-exoplanets /TauREx3_public

https:/ /pypi.org/project/taurex /
https://github.com/ExObsSim /ExoRad2-public

https://pypi.org/project/exorad/
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Table 1
List of Host Star and Planet Information Obtained from the Ariel Planet
Candidate List and Used to Build the Planetary Populations Used in This Work

Star Planet

Mass Mass

Radius Radius

Effective temperature Equilibrium temperature

Distance from the star
Orbital period
Transit duration

Distance

GitHub and PyPI. ArielRad is ExoRad 2.0 configured for the
Ariel payload.

2.2. Planetary Populations

To build a diverse sample of planets in terms of masses,
radii, and temperatures, we use the Ariel candidate list of
Edwards et al. (2019). This list contains 1000 planets, selected
from both NASA’s Exoplanet Archive and TESS-predicted
discoveries, and covers a wide range of planetary radii (from
~0.4 to ~27 Ry), masses (from ~0.01 to ~3000 M.,), and
equilibrium temperatures (from ~200 to ~3900 K). From that
list, we extract the parameters listed in Table 1. Our goal is not
to reproduce accurately the composition of the planets in that
list, but to test a diverse sample, and therefore we randomly
build an atmosphere for each of the listed targets. We produce
three planetary populations that will be of use for this work. We
call them POP-I, POP-II, and POP-III.

POP-I—For each planet we randomize the equilibrium
temperature, choosing a value between 0.7 x T, and 1.05 x T,
where T, is the planet equilibrium temperature in Edwards et al.
(2019). This randomization is biased toward lower temperature
values as we probe the terminator region, where the spectral
features are affected by both the dayside and nightside
temperatures (Caldas et al. 2019; Pluriel et al. 2020b; Skaf
et al. 2020). The temperature randomization range is consistent
with the work presented in Changeat et al. (2020).

Then, for each planet we consider an isothermal temperature
—pressure profile; we add a constant vertical chemical profile
(Moses et al. 2011) for every molecule from a list of selected
molecules (the abundances are randomized according to
defined boundaries). Finally, we add randomly generated gray
opaque clouds. We use the plane-parallel approximation,
building 100 plane-parallel layers to uniformly sample in log-
space the pressure range 10~*—10° Pa. Every atmosphere is
built with randomized relative abundances of CH,4, H,O, CO,,
and NH; on a uniform logarithmic scale between 10’ and
1072, Such a large range allows us to explore the sensitivity of
our developed method to very different abundances. We also
randomized the cloud surface pressure varying between
5 % 10% and 10° Pa, similarly to what is presented in Changeat
et al. (2020), to explore the whole range from overcast to
cloud-free atmospheres, respectively. Using these boundaries,
we obtain that ~40% of the atmospheres in the populations
contain clouds to at least 10* Pa (surface pressure), as expected
from Tsiaras et al. (2018) and Iyer et al. (2016). Every planet is
considered filled with an H, and He atmosphere with mixed
ratio He/H , = 0.17. A list of the opacities used in this work is
reported in Table 2.

As already mentioned, following the aims of this paper, we
do not focus on the consistency of the atmospheric models used
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Figure 1. Example of simulated spectra. The gray solid lines are the noiseless spectra simulated and binned at Ariel Tier 3 spectral resolution. The gray bands are the
1o confidence levels centered around the simulated spectra for a number of transit observations needed to match the Tier 1 required S/N. The blue dots are noised data
points representing Tier 1 observed spectra. Starting from the left, the first planet is HD 209458 b-like, the second one is GJ 1214 b-like, and the third one is WASP-79

b-like. Their atmospheres are built as described in Section 2.2.

Table 2
List of Opacities Used in This Work and Their References
Opacity Reference
H,-H, Abel et al. (2011), Fletcher et al. (2018)
H,-He Abel et al. (2012)
H,O Barton et al. (2017), Polyansky et al. (2018)
CH, Hill et al. (2013), Yurchenko & Tennyson (2014)
CO, Rothman et al. (2010)
NH; Yurchenko et al. (2011), Tennyson & Yurchenko (2012)

to build the population. The spectra generated will only be used
as “transmission spectral shapes” to test our methods against.
No information other than the planet transmission spectrum is
used in this work.

Each planetary spectrum generated by Alfnoor is binned at
Ariel’s Tier 3 spectral resolution. These spectra make up the
“noiseless spectra” data set. ArielRad then predicts the noise
for each spectral bin at the tier resolution. To reproduce a Tier 1
observation, we scatter the data around the true value according
to a normal distribution with the mean coinciding with the
simulated spectrum and a standard deviation equal to the noise
estimated with ArielRad at each spectral bin. This noise is a
rescaled version of the Tier 3 noise, obtained by combining the
number of transit observations needed to match the Tier 1
required S/N. Using these scattered spectra, we build the
“observed spectra” data set. Examples of the resulting spectra
are shown in Figure 1.

We generate POP-I using the full 1000-planet candidate list
and produce one realization for each planet. A similar approach
was used by Changeat et al. (2020) in their investigation of the
Ariel Tier 2 observations. We use the POP-I population to test
the strategies described later in the text.

POP-I1.—We produce another data set, keeping the same
1000 planets from the target list and the randomization rules of
POP-1. However, this time we modify the chemical composi-
tion to include only H,O and CH4. We use POP-II to perform
tests against a simpler population, as detailed later in the text.

POP-1I1.—To build the last population, we use the same list
of 1000 planets, where each planet is repeated four times, such
that there are four randomized atmospheres for each unique set
of stellar and planetary properties that defines a planet. While
the temperature and cloud conditions used are the same as
those discussed for POP-I, for each molecule we widen the

abundance boundaries to 10~°—10"2 on a uniform logarithmic
scale. We call this population POP-III, and we use it to train
our ML algorithms.

2.3. Flat Planet Detection

The first goal of this work, as listed in Section 1, is to
identify featureless spectra. This will help in the selection of
targets to be reobserved in Ariel’s higher tiers. Given the
property of the Ariel payload, we divide the spectral
wavelength range into four parts or bands:

1. from 0.5 to 1.1 um, sampled by three photometers;

2. from 1.1 to 1.95 um, corresponding to the NIRSpec
wavelength range;

3. from 1.95 to 3.9 yum, corresponding to the AIRS-CHO
wavelength range; and

4. from 3.9 to 7.8 um, corresponding to the AIRS-CHI
wavelength range.

For every planet and for every band we estimate a x> using
all measurements in the band to assess the compatibility with a
flat, zero-gradient line: for each planet there are four x>
estimates, one for each band above. We reject the hypothesis of
spectral flatness in a given band with a 30 confidence if

X2>1+ 3\/2 , where v are the degrees of freedom. There-

fore, if any of the four bands has a y? smaller than this number,
we mark the band as flat. If a planetary spectrum has all four
bands marked as flat, it is classified as a flat spectrum. This
strategy is similar to that presented in Zellem et al. (2019);
however, while in that work the authors were only focused on
the Ariel FGS channels, here we are considering the full Ariel
spectral coverage.

2.4. An Optimized Molecular Metric

The second goal listed in Section 1 is to develop a metric,
M 01, to assess the presence of a molecule, mol, in the planet’s
atmosphere. We want this metric to work in such a way that by
comparing two molecules the metric produces a diagram
similar to that in Figure 2. In the diagram we can distinguish
four regions: two regions where the atmospheres are rich in a
single molecule and therefore only show its characteristic
features, a third region where the atmospheres show features
from both molecules, and a fourth region where features are
absent, either because the planets have flat spectra or because
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Figure 2. Illustration of the diagram we expect to build with our metric. Here,
the metric is used to compare two molecules, moll and mol2. By drawing
Mnor1 versus Mo, we aim to separate four different regions: one rich in the
first molecule at the top left (green), where My, grows and M, is low; a
similar region at the bottom right (blue), where the planet atmosphere is rich in
the second molecule, because Mo, is high and Mo is low; a region where
molecular-poor planets are located (gray), or those that have no features in the
considered bands, where both M,,,o;; and M,,,o1» are low; and a region for mixed
atmosphere (yellow) in the central portion of the diagram.

the features from both molecules do not emerge from a thick
layer of clouds.

To compare different planets and constrain their atmospheric
molecular content, the metric should be (i) sensitive to the
spectral signature of molecules, (ii) independent of the planet
size, and (iii) independent of the scale height. Here we present a
metric that fulfills these three conditions and show its current
limitations.

For each molecule, we select N bands within the Ariel
wavelength range, where the molecular features in the
transmission spectrum are strong. Then, for each planet, we
compute the average in each band, Syung,, and its dispersion,
Oband, -

| M
Sband; = MZ S; 1)

J

1
Oband; = _Z(Sj - Sband,)2 > 2)
M=

where M is the number of spectral bins in the band and S; is the
atmospheric transmission spectrum estimated in the jth
wavelength bin.

We do the same with a control band where we know that
there are no major molecular features from the molecule
considered, called the “normalization band,” obtaining S;omm
and o,om. We select a different normalization band for each
molecule (Table 3).

Thus, for each molecule, mol, we define

N S an Snorm
Z bd—. 3)

\/ Gband + gnorm

mol -

_1
N

Mugnai et al.

Table 3
Wavelength Ranges Used to Select the Molecular Features in the Spectra (Top)
and the Normalization Bands (Bottom) for H,O, CHy, and CO,

H,0 CH, CO,
1.2-1.6 pum 1.5-1.8 yum 1.9-2.3 ym
1.7-2.1 pm 2.1 -2.6 um 2.6 -3.2 um
2.6 -3.0 yum 3.1-3.7 yum 42-48 uym
54-6.1 yum

6.5—-7 pum

Molecule Normalization
H,O 3.6-4.2 pum
CH,4 4.0-5.0 um
CO, 5.0-6.0 um

Defined in this way, My, is similar to an S/N, where the
signals are the molecular features arising above the “normal-
ization band” and the noise is the dispersion in the band.
Therefore,

1
O Moy = W 4

The metric thus designed, by averaging the contribution of N
different bands, corresponding to N different features of the
same molecule, reduces the chance to be misled by overlapping
features in one of the bands considered. As Ariel’s Tier 1 is
optimized for low-resolution spectroscopy, spectral binning
increases the S/N. Also, this metric is (i) sensitive to the
presence of molecules, (ii) independent of the planet size, and
(iii) independent of the scale height (see the Appendix for
details), at the cost of the introduction of a bias: Equation (2)
provides an estimate of the spectral dispersion when applied to
noiseless spectra, and it is larger for observed spectra because
of the presence of measurement noise. Therefore, the absolute
value of M, of Equation (3) is always smaller on observed
spectra compared to noiseless spectra of the same planet. While
the bias effects are further discussed in Section 4.1, we note
here that a detailed characterization of the instrumental noise
would allow us to debias the metric, but we leave this
investigation to future work, and we focus the attention on the
performance of the metric in extracting information from Tier 1
observations.

To maximize the metric efficiency, the challenge is to
identify the best-performing wavelength range to use: large
enough to reduce the uncertainty introduced by the observa-
tional noise, but small enough to distinguish the molecular
features of interest.

In this work, we consider only H,O, CHy, and CO,, and the
bands used are listed in Table 3. Even though NHj is present in
our sample, it is used only to introduce a nuisance and
challenge our metric, because NH; has features overlapping
with those of water. We use three feature bands for CH4 and
CO, and five for H,O. Examples of the bands used for CH, and
H,0 are shown in Figure 3, where, for the same planetary
template, HD 209458 b, we simulate different atmospheres
(overcast, CH4 rich, and H,O rich) to show how the metric
captures the relevant spectroscopic features.

In the next section, we show how we intend to use this
metric to build a diagram similar to that of Figure 2.
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Figure 3. Here are shown three examples of randomized spectra. For the same planet, HD 209458 b, we present three different realizations: a flat atmosphere (first
column), a methane-rich atmosphere (second column), and a water-rich atmosphere (third column). Each column shows the same planetary spectra. Gray solid lines
are the original binned spectral data (Tier 3 spectral resolution), the filled gray areas are the 1o uncertainties (Tier 1), and blue dots are the simulated observation data
used in this work. The top row highlights the Mcy, feature bands from Table 3, while the bottom row shows the My, bands. In green are reported the molecular
feature bands’ values, with their dispersion, while in red are reported the normalization bands’ values. Comparing the rows, we see how the bands selected match the

relevant molecular spectral features.

2.4.1. Planets Classification

The metric is required to be calibrated to assess its capability
to estimate the presence of a molecule. The final product is a
diagram similar to Figure 2, which can be used as a look-up
table, such that, given an observed spectrum, its corresponding
M, can be located on the diagram and its possible
composition inferred.

To assess the ability of the metric to separate the atmospheres
in the sample, we use the k-nearest neighbors (KNN) algorithm, a
nonparametric pattern recognition algorithm (Hastie et al. 2009).
This algorithm, after a training process, assigns a class to an
element given the properties of its neighbors. The goal is to
classify observed spectra by their molecular content, according to
their M,,,;. Considering two molecules at a time, we first define
four classes of planets: molecular poor, moll rich, mol2 rich, and
mixture, as defined in Table 4.

The KNN algorithm used classifies each planet according
to the 20 (k= 20) nearest planets, in the M, ; versus M,q1»
space, in the same data set. We choose to use 20 neighbors
(2% of the full data set) to minimize the number of
misclassified planets. The closest neighbors are uniformly
weighted, and we verified that weighting the neighbors with
their Euclidean distance in the metric space does not affect
the results significantly.

Table 4
Diagram Classes and Conditions

Class Condition

Abpmont < 1072 and Abpop < 107°

Molecular poor

Moll rich Abporr > 1074 and Abpop > 10 X Abpor
Mol2 rich Abmor > 1074 and Abop > 10 X Abpon
Mixture everything else

The analysis involves three separated steps, summarized in
Figure 4, applied to POP-I.

Step 1.—We estimate the (M1, Mmorz) on the POP-I
observed spectra. We assign a class to each POP-I planet using
its input molecular abundance values, Ab,,,, which are stored
during the population production. This process is described in
the top branch of Figure 4.

Step 2.—To calibrate the metric, we map the metric space
grid by training the KNN algorithm on the (Mo11, Mmor2)
estimated from the noiseless POP-I planetary spectra. We
assign again a class to each planet using its input molecular
abundance, Ab,, and the training is performed on a randomly
chosen selection accounting for 70% of the data set, while we
use the remaining 30% to test the success of the training.
Finally, we classify each point (M,o11, Mmop) of the My,
space grid M,,,; sampled at a step width of 0.2 M,,,;, obtaining
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Figure 4. Planet classification summary. The figure reports the steps implemented to build the diagram in Figure 2. Starting from POP-I, for each planet we compute
(Mno11, Miorn) for the considered molecules and for both observed and noiseless data. Following the top branch, classes are assigned to the observed spectra (step 1 in
the text). Following the middle branch, a KNN classification is performed on noiseless spectra to calibrate the metric space (step 2 in the text). Following the bottom
branch, the distribution of noiseless metric data points is convolved with a 2D Gaussian with varying widths to generate a unit-normalized volume. The intersection
between this volume and the calibration of step 2 selects the best-sampled (i.e., calibrated) region in the metric space (step 3 in the text). The combination of these

three steps is shown in the rightmost diagram to be compared with Figure 2.

a map comparable to Figure 2. This part of the procedure
corresponds to the central branch of Figure 4.

Step 3.—Since the noiseless planetary spectra are not
expected to sample the parameter space uniformly, we build
a mask to select a region of the (M1, Mmor2) space that is
sufficiently well sampled to achieve a reliable classification. To
do so, we replace each (M,011, Mmop) point representing a
noiseless planetary spectrum with a two-dimensional Gaussian
distribution using the metric dispersion in the two directions as
0. We sum the Gaussian volumes on the parameter space,
ending up, after volume normalization, with a statistical
distribution of our data points on the parameter space grid.
Then, we select a region in the metric space that results in a
total volume of 95%, therefore removing all undersampled
areas from the grid. This last step is represented in the bottom
branch of Figure 4.

The combination of the three steps is shown in the rightmost
panel of Figure 4, and it is the equivalent of Figure 2 calibrated
for the metric on the investigated population.

2.5. Deep and Machine Learning

The metric presented in Section 2.4 is based on binning the
spectra and therefore is equivalent to using Ariel as a multiband
photometer. This strategy is in line with the Tier 1 definition of
Tinetti et al. (2018). However, we are also investigating
different strategies to classify spectra by their molecular
content (third goal listed in Section 1). Deep-learning and
ML techniques are promising because these algorithms can
learn to classify planets from their spectral shape over the
whole wavelength range sampled by Ariel. Another advantage
over the metric is that ML techniques are not supposed to be
biased by the instrumental noise, or at least they can be made to
learn how to deal with the bias provided that a sufficiently large
and representative set of examples is provided in training. To

train the algorithms, we use the POP-III observed spectra and
their known abundances as a training sample. Each example
spectrum is normalized to zero mean and unit dispersion. The
normalization facilitates the training process but might
introduce a bias that may be very similar to that affecting the
metric. A detailed investigation of these aspects concerning ML
is left to future work. Knowing the input abundance of each
planet, Ab,,.;, we can define a threshold and flag a planet as
bearing a certain molecule if Ab,, is larger than the threshold.
This means that, for each molecule, the algorithm learns to flag
the planets as bearing that molecule by looking at characteristic
spectral shapes. Then, we measure the algorithm’s ability to
“learn” by how much they can generalize their predictions to
unknown shapes, testing it on POP-I observed spectra, used as
a test data set. The comparison of the ML classification with the
known input abundance of each POP-I planet provides an
estimate of the success rate.

A detailed investigation of the use of these algorithms and their
limitations will be discussed in future work: here we report only
an example of how these tools might be used, and we compare
some preliminary results with the outcomes of the metric of
Section 2.4. We implemented all algorithms in Python using the
scikit-learn® package presented in Pedregosa et al. (2011).

The first ML algorithm we use is the KNN algorithm
described above. This time we want to simply classify the
planets and not to produce a map as in Section 2.4.1. For this
exercise, we use the scikit-learn default KNN setting: k =5 and
uniform weight for the neighbors. Other ML algorithms can be
used to classify planets. Here we also present our preliminary
results using a Multi-layer Perceptron (MLP) classifier, a
Random Forest Classifier (RFC), and a Support Vector Classifier
(SVC; e.g., Goodfellow et al. 2016; Sturrock et al. 2019). The

8 https://scikit-learn.org /0.22/
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Figure 5. The histograms show the frequency of planets in the population vs. the number of flat bands. We consider four bands: one for the photometers (VisPhot,
FGS1, FGS2) and one for each spectrometer (NIRSpec, AIRS-CHO, and AIRS-CH1). Each band is compared with a constant value using a y? test to determine its
compatibility with flatness. The light-blue histogram shows the frequency of planets in the POP-I population with flat bands. The red dashed histogram shows the
same statistic but for a selection of the 100 planets of POP-I that are more overcast. The green dotted histogram shows the opposite situation, for a selection of the 100
planets in POP-I for which the cloud pressure surface is the lowest (see text for details). We notice that the overcast planets show more flat bands than planets with

fewer clouds.

MLP is a feed-forward neural network composed of multiple
layers of perceptrons largely used in classification problems. To
produce the results shown later in the text, we use an MLP
network keeping the scikit-learn default settings (a single hidden
layer made of 100 units), and we classify the spectra with the
same procedure used for the KNN. The RFC is an ensemble of
decision trees used for classification, where each decision tree is
a directed graph and each vertex is a binary test. In this work, we
use an RFC setup commonly used in binary decision problems,
which has a number of features equal to the square root of the
number of input data points because, for scikit-learn, this is the
default configuration. The SVC is a Support Vector Machine
method, a family of nonprobabilistic linear classifiers that
construct hyperplanes to separate the data points. For the aim of
this paper, we implemented a simple SVC shaping the decision
function in “one-versus-one” mode, as it is the default
configuration in scikit-learn at the moment of writing.

3. Results
3.1. Identifying Flat Spectra

Shown in Figure 5 is the frequency of observed planets in the
POP-I population that have a certain number of flat bands. In this
population, 16% of planets are to be considered “flat,” as all of the
four spectral bands considered are flat. From the figure, we notice
that around 46% of the planets in the population have three or
more flat bands, which is consistent with POP-I known properties
and with the ground truth (Iyer et al. 2016; Tsiaras et al. 2018), as
mentioned in Section 2.2. In the same figure the same statistic is
shown for the 100 planets of POP-I most covered in clouds
(corresponding to a cloud surface pressure of roughly <10’ Pa)

and for the 100 planets of POP-I with fewer clouds (corresp-
onding to a cloud surface pressure of roughly >10°~ Pa). This
comparison shows how overcast planets averagely present more
flat bands than clean planets, demonstrating how this approach is
sensitive to the presence of clouds.

This result clearly shows that Tier 1 observations are
effective in the identification of atmospheres with no detectable
molecular absorption features.

3.2. Spectra Classification

The M, (Section 2.4) estimated for the observed POP-I
planets are shown in Figure 6 for different pairs of molecules:
CH,—CO, and CH,—H,0. Comparing the top left and right panels
in Figure 6, we notice from the color scale that our metric can
separate between planets bearing more or less methane (dark- and
light-green dots, respectively) or carbon dioxide (dark- and light-
orange dots, respectively). The bottom panels, and the bottom
right panel in particular, show that it is harder to separate planets
bearing more or less water (dark- and light-blue dots, respec-
tively). Water data appear more clustered around the axes’ origin
than the top row, and the water colored data points are not as
clearly separated according to their color gradient as the methane
or the carbon dioxide data points are. A possible explanation is
that CH, and CO, have strong spectral features, with isolated
transmission features in the range 3-4pum and 4-5 um,
respectively, while H,O features are less obvious and frequently
overlap with the ones of NH3, which is present in the population
(Tinetti et al. 2013). An alternative explanation is that involving a
bias in the metric affects more strongly the water bands.
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Figure 6. Diagrams for comparison between Mco,~Mcn, and My,o—Mcy,. In these figures each point represents an observed POP-I planet, and the color scale reflects
the input abundances. Gray horizontal and vertical lines are the metric estimated dispersion. By comparing the diagrams on the left with those on the right, we can see
that planets bearing more CH, are located on the top left, while the ones bearing more CO, and H,O are on the bottom right.

The diagrams of Figure 6 are reproduced in Figure 7, where the
data points are now color-coded following the assigned classes
(step 1, Section 2.4.1), and the background colors, constructed by
training the KNN on noiseless spectra (steps 2 and 3,
Section 2.4.1), serve as reference and calibrated regions in the
metric space. It can be noticed that the metric has the desired
response from the similarities between the reference regions in
Figure 7 and those of Figure 2, with a clear separation in the
metric space. The data points tend to cluster toward the origin of
the grid more strongly than the reference regions. This is the effect
of the bias, further discussed in Section 4.1.

Figure 8 shows the relation between the metric, M., estimated
on POP-I observed spectra, and the input abundances, Ab,,.;. The
coefficients of the linear trends of M,y versus the logarithm of
Aby, are listed in Table 5. An appreciable trend is detected with
log abundances of CO, and CHy, while the HO metric shows only

a weak trend with input log abundance. Anticorrelations between,
e.g., Mcy,-0g(Abco,) or My,0-1og(Abcy,) are present as we are
considering juxtaposed bands to size these molecules, as listed in
Table 3. The logarithmic abundances of H,O and NH; show
similar correlations to My,o. While this is expected, as the two
molecules manifest similar spectral shapes, the water sensitivity of
the metric to the abundance may also be limited by the noise, by a
bias squeezing the metric to small values, or both, and further
investigation is required in future work. However, the metric is an
estimator for the classification of atmospheres on the basis of their
molecular content, and it would be misleading to expect the metric
to provide robust estimates of abundances, for which spectral
retrieval techniques are more appropriate. These aspects are further
discussed in Section 4.2, as well as in Section 4.4, where we show
with an example how a retrieval exercise is effective in constraining
the input abundances of the molecules considered, water included.
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Figure 7. KNN analysis results with k = 20 for CO,—CH,4 (left) and H,O—CHj, (right) cases. The superimposed dots are from the POP-I observed spectra, and the error
bars represent the metric dispersion. Colors correspond to classes described in Table 4. Gray dots: planets that contain less than 10> in mixing ratio for the considered
molecules; green points: planets that contain 10 times more CH, than the other molecule and Abcy, > 10~#; red points: planets that hold 10 times more CO, than CH,
and Abco, > 107%; blue points: planets with 10 times more H,O than CH, and Abg,o > 107%; yellow dots: all the other possible configurations. The same color
scheme applies to the painted region of the diagram, built from the noiseless spectral data. Gray area: planets with low quantities of water and methane; green area:
where we expect to have methane-rich planets; blue: for water-rich planets; yellow: for mixed atmospheres. The regions best sampled by the noiseless data, as

described in Section 2.4.1, are fully colored, while other regions are transparent.
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Figure 8. Comparison between the M, estimates for each planet and the true molecular abundance value, Ab,,, in the atmospheres. CH,, H,O, and CO, cases are
shown in the left, middle, and right panels, respectively. Data points with error bars represent POP-I planets. The color scale gives a visual representation of the
molecular abundance in the atmosphere. A linear fit is shown by the solid black lines in each panel, with coefficients listed in Table 5. The fitted lines superimposed on
the data highlight a positive correlation between the true molecular abundance values and the values estimated by the metric, M.

We can use Figure 8 to obtain an estimate of the probabilit
that a molecule mol has abundance in excess of 107,
conditioned to the metric being larger than some value
Miporser i-€., P(Abyo > 1074 M1 > Moy 5). For this, we can
use the well-known chain rule for the conditional probability
that states that P(A|B) = P(A N B)/P(B), where A and B are two
separate events. We estimate the number of data points found
in a region of the diagrams of Figure 8 where both conditions
are satisfied (favorable outcomes) divided by the number of
data points for which only the condition Mo > Mo 1S
satisfied (total outcomes). From POP-I observed spectra, we
can obtain a single realization of P. Therefore, we simulate
1000 realizations of POP-I observed spectra, using the same
input noiseless POP-I population spectra and randomizing the

noise realizations. In this way we simulate 1000 realizations of
P from which medians and 1o confidence levels are computed.

Figure 9 suggests that the metric can be used to classify
planetary primary atmospheres for the presence of CH, and
CO,, and to a less extent H,O, and atmospheres that are likely
missing these molecular contributions. With reference to
Figure 9, it can be seen that when Mcy, > 0.5, the number
of planets wrongly classified to have Abcy, > 107 is only
20%, or 1 out of 5Sare false positives. However, and as
expected, the case of water is different, and our metric is not as
effective in detecting the presence of water as it is for the other
molecules. Even for large values of Mpy,o, the rate of false
positives is close to 40%.
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Figure 9. Probability that a molecule mol has abundance in excess of 10~%, conditioned to the metric being larger than some value Mo, i.€., P(Abyo > 10’4\
M1 > Minorx)- CHy, HyO, and CO, cases are shown by the green, blue, and orange lines, respectively. The lines are computed as the median of the probability
estimates from 1000 different realizations of the POP-I observed population. The shaded regions are the 1o confidence levels associated with the median probability.
Vertical dotted lines mark metric values, M, x, corresponding to a probability of 68%.

Table 5
Fitted C and C; Coefficients for My, = Co - 10g(Abyo1) + G for All the
Possible Combinations of Considered Molecules

log(Abn,0) log(Abcu,) log(Abco,) log(Abnw;)
Cy Coefficients
Mo 0.108 —0.193 —0.033 0.104
(£0.022) (£0.022) (£0.022) (£0.022)
Mcu, 0.003 0.215 —0.258 0.104
(£0.022) (£0.022) (£0.022) (£0.022)
Mco, —0.094 —0.057 0.228 —0.104
(£0.022) (£0.022) (£0.022) (£0.022)
C, Coefficients
Mu,o 0.599 —0.756 —0.028 0.590
(£0.102) (£0.106) (£0.105) (£0.105)
Mcu, —0.241 0.725 —1.419 0.215
(£0.102) (£0.106) (£0.105) (£0.105)
Mco, —0.357 -0.202 1.088 —0.411
(£0.102) (£0.106) (£0.105) (£0.105)

Note. The bands used for M, are reported in Table 3.

3.3. Deep and Machine Learning

The percentages of correct classifications for all considered
molecules and for different minimum input abundances are
reported in Table 6(a) for KNN, in Table 6(b) for MLP, in
Table 6(c) for RFC, and in Table 6(d) for SVC.

10

Table 6 shows that for all deep-learning and ML algorithms, the
percentages of success in identifying the presence of molecules
inside the atmosphere grow with the minimum molecular
abundances that we set as a threshold for the classification. While
this is expected, it may come as a surprise that in general these
algorithms appear to be effective in detecting the presence of all
individual molecules with a relatively small fraction of false
positives (about 30% or smaller) even at low abundances. This is
perhaps because ML algorithms learn to classify atmospheres by
recognizing spectral shapes. These algorithm performances can be
to a certain level independent of the molecules considered, as long
as the training set contains sufficiently diverse spectra to allow a
secure identification, including water in the presence of ammonia
or biases, which is where our metric shows its more severe
weaknesses. We also notice from Table 6 that KNN, MLP, RFC,
and SVC show comparable overall performance, and that CHy
and CO, are the most straightforward molecules to identify in Tier
1 planetary spectra.

A comparison between these results and our metric is
presented in Section 4.5.

4. Discussion

In this section, we discuss the metric results shown in
Section 3.2. We first discuss the bias (Section 4.1), and then we
focus on the metric characteristics, such as the relation between the
metric estimates and the input molecular abundances (Section 4.2),
and the detection limits (Section 4.3). Then, we compare the metric
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Figure 10. This figure is the equivalent of Figure 7, but the superimposed dots are now from the POP-I noiseless spectra, and the error bars represent the metric
dispersion on the spectra before the application of Ariel’s observing noise. The parameter space area best sampled by the noiseless data is now well filled with the dots.

performance with a spectral retrieval (Section 4.4) and with deep-
learning and ML algorithms (Section 4.5).

4.1. Metric Bias

The KNN analysis discussed earlier and shown in Figure 7 is
trained on POP-I noiseless spectra, and the data points shown in
that figure are obtained estimating the metric on POP-I observed
spectra, as described in Section 2.4.1. To verify whether the metric
is biased, the KNN analysis is repeated with data points obtained
estimating the metric on POP-I noiseless spectra. This is shown in
Figure 10, which should be compared with Figure 7. The
background colors are very similar in both cases, with small
variations due to the training process that selects randomly 70%
POP-I noiseless examples. In absence of biases, we expect the
distribution of observed data points to be that of noiseless data
points, convolved with the distribution of the noise. However, it can
be noticed from the comparison of the two figures that the
distribution of the observations is more clustered toward the origin
of the coordinate axes, compared to noiseless data points. This is a
consequence of the bias introduced by the metric normalization
discussed in Section 2.4: normalization is required such that the
metric response is insensitive to the atmospheric scale height, and
sensitive only to the presence of molecular signatures, at the cost of
biasing the estimator. We should additionally point out that
Figure 9 results are also affected by the bias. The observing noise
reduces the M,,, average estimates, and therefore for smaller
observing noise, the three colored lines in the figure are shifted to
the right, and the 68% of success corresponds to higher M,
values.

The work presented here demonstrates that the metric we have
designed is a powerful tool capable of revealing the presence of a
molecule in an atmosphere and that the prediction is independent of
the type of the planet and its basic parameters (such as temperature,
radius, and pressure) within the limits explored here. However, this
comes at the cost of biasing the estimator by a quantity that depends
on the instrumental noise as discussed in Section 2.4. Provided that
the metric can be debiased, it can be used in a predictive way where
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Table 6
Percentages of Correct Identifications for the Considered Molecules and with
Different Thresholds

Molecule Abye > 1077[%) Abpe > 1074[%) Abp > 1073[%]

(a) KNN Percentages of Success to Identify Spectra Bearing Different Minimum Amounts
of Molecules

CH, 79 83 85
Co, 77 79 82
H,0 64 71 82
NH; 75 82 84

(b) MLP Percentages of Success to Identify Spectra Bearing Different Minimum Amounts
of Molecules

CH, 78 85 87
Co, 77 81 83
H,0 70 76 84
NH; 80 86 87

(c) REC Percentages of Success to Identify Spectra Bearing Different Minimum Amounts
of Molecules

CHy4 71 82 87
CO, 76 79 83
H,O 69 74 82
NH; 78 85 87

(d) SVC Percentages of Success to Identify Spectra Bearing Different Minimum Amounts
of Molecules

CH, 79 86 89
CO, 79 83 84
H,0 69 78 84
NH; 81 87 87

Note. In each column we report a different minimum Ab,,;, and in each row we report a
different molecule. The percentages represent how many of the atmospheres have been
correctly identified by the algorithm to have at least the specified minimum amount of that
molecule, and therefore they represent the algorithm accuracy. Each ML algorithm has
been trained on POP-III and tested on POP-I.

an observation (along with its dispersion estimate) can be compared
to the calibrated (trained) metric space to infer the possible
molecular content of the target. Because instrumental noise can be
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Figure 11. The figure shows the strategy adopted to identify the molecular detection limit for the developed metric. Starting from POP-I, we classify the planets as
described in Section 2.4.1. Without removing the flat spectra from the population, we would end up with the same results described in Figure 4; by contrast, if we
remove flat spectra, we end up with similar results but with fewer molecular-poor planets, because even without flat-spectrum atmospheres there will be planets
bearing molecules different from the couple investigated by the plot. Different is the case of POP-II: here we have only two molecules in the population, and therefore
if we remove the flat-spectrum planets, we will end with no molecular-poor atmospheres.

well characterized, it would be possible to debias the metric
estimator. This requires a detailed noise analysis, taking into
account the uncertainties on the noise estimates, which is beyond
the scope of this paper. In the rest of this section we focus on what
we can learn from this kind of analysis provided that the metric can
be debiased, and we leave to future work a detailed study on how
this debiasing can be secured.

4.2. Relation with the Input Abundances

We see in Figure 8 that the correlation between M,,, and
log(Aby,) is in general not strong enough to quantify the input
molecular abundances. This is because atmospheric spectra are
made of complex nonlinear contributions from all the
molecules. Therefore, a method based only on spectral shapes
(i.e., this metric) is inadequate to quantify molecular abun-
dances. However, the goal of this metric, provided that the bias
can be removed, is not to assess the abundance of a certain
species in the planet atmosphere, but only its possible presence,
avoiding the use of spectral retrieval techniques, which may not
be indicated for Tier 1 data.

Focusing on Table 5 and looking at the coefficients fitted for
Mpy,0 over log(Abp,o) and over log(Abnp,), we may infer that the
metric may not be effective to distinguish between water and
ammonia. However, the degeneracy can be broken by performing a
spectral retrieval if the target was observed at Ariel Tier 2 S/N, as

12

shown in an example in Section 4.4. This population analysis is
based on the study of spectral shapes only, and it does not make use
of parameters such as planetary mass, radius, and temperature.
Although it has proven difficult to distinguish between water and
ammonia with this metric, using some knowledge of planetary
properties may help us to disentangle the two molecules in a future
work; for example, while a Neptune can hold ammonia, a hot
Jupiter planet is not expected to. One of the goals of Tier 1 is to
identify targets with interesting spectra to be reobserved in higher-
S/N tiers. From this point of view, even if the metric cannot clearly
separate between water and ammonia, it can suggest the presence of
interesting molecules in the spectrum. This can in turn be used to
make informed decisions about targets to be selected for further
studies.

4.3. Metric Detection Limit

To explore the detection limit of molecules by the metric, we
examine the molecular-poor/spectral flat region of Figure 2. A
planet spectrum would be found in that region because of (i)
clouds, (ii) a low temperature (i.e., small scale height), (iii) low
molecular abundances, or a combination of the three. In all
cases, the spectrum is expected to be featureless, i.e., flat. Point
(iii) is defined from input abundances smaller than 107°
(Table 4). The metric detection limit can then be investigated
by removing flat spectra before training the KNN, by
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Figure 12. KNN analysis for the POP-II population, considering the full data set (left) and excluding flat spectra (middle and right). The diagrams are obtained
following the bottom branches of Figure 4: we used the noiseless planetary spectra to classify the metric space and to select the best-sampled regions.

increasing before training the molecular-poor spectra threshold
to above 107>, and by monitoring the KNN classification
results. As the threshold increases, we expect the KNN to begin
failing the molecular-poor/flat classification when spectra can
no longer be considered flat.

We perform the KNN training on the noiseless spectra of both
POP-I and POP-II, the latter containing only CH4 and H,O, the
former containing all molecules considered in this work. Each
noiseless spectrum has its associated observed spectrum. Flat
spectra are identified on observed spectra, and the corresponding
noiseless spectra are ignored in the KNN training.

The motivation behind using POP-II is as follows. If we have a
population containing only CH, and H,O and we properly remove
all planets with a flat spectrum, there should be no targets left with
nondetectable molecular features. In the case of POP-I, however,
we do not expect all the planets with Abcy, and Aby,o < 1073 to
be flat, because other molecules (CO, and NHj3) can show features.
Therefore, the flat-spectrum removal procedure will not empty the
molecular-poor planet class in this population. Using POP-II
instead, we expect that, after removing all flat planets, there will not
be molecular-poor atmospheres anymore. The procedure is
summarized in Figure 11.

The outcome of this analysis is shown for POP-I and POP-II in
Figures 12 and 13, respectively. Only the calibrated regions are
shown, and data points have been omitted for clarity. Figure 12(a)
shows the POP-II KNN analysis with all planets and planetary
classes of Table 4, in Figure 12(b) the KNN is trained removing flat
spectra from the training set, and in Figure 12(c) the training is done
removing flat spectra first, and increasing the threshold of
molecular-poor spectra from Aby,, < 107° to Abpo < 107* We
notice that Figure 12(b) shows no molecular-poor atmosphere after
excluding spectrally flat cases. This confirms that our metric is able
to separate the more complex atmospheres from the flat ones in the
simple case of only two molecules. By contrast, Figure 12(c) still
shows a gray area, signifying that atmospheres with 107> <
Abyye1 < 107 cannot be considered flat. This can be interpreted as a
molecular detection limit. We also notice from the figure that these
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spectra populate the lower left corner of the best-sampled area of
the diagram, meaning that they are classified as having the smallest
spectral features of the samples. This confirms the relation between
the metric and the molecule abundance. The detection limit is
expected to improve in Tier 2 observations, and Changeat et al.
(2020) find that the detection limit using spectral retrieval
techniques on Tier 2 is about two orders of magnitude smaller
compared to that of the metric.

In Figure 13 we remove all flat spectra from the planetary
population POP-I and report the results of KNN analysis. Here we
see that, as expected, while removing all flat spectra from POP-II
does also remove all molecular-poor instances, the same does not
occur in POP-I. In this case, molecular-poor spectra in any two
molecules, such as CH4;—CO, or CH;—H,0, may appear nonflat
because of the presence of the other two molecules, i.e., NH;—H,O
or NH;—CO,, respectively.

4.4. Input Abundance Retrieval

We compare here two atmospheric retrievals of the same planet
observed both in Tier 1 and in Tier 2. This exercise has two goals:

1. to confirm that a spectral retrieval is capable of
disentangling water and ammonia, and to constrain the
atmospheric composition of POP-I targets observed in
Tier 2 with Ariel; and

2. to show that even though it is possible to perform a
spectral retrieval on Tier 1 data for some selected planets,
its performance is comparable to that of the metric.

From the POP-I planets, we select one that has water and
ammonia in high abundances, low cloud presence, high
temperature, and a diameter larger than Jupiter’s. Such
selection will help us to investigate the capability of Tier 2
observed data (simulated as described in Section 2.2) to break
the water—ammonia degeneracy, as well as to estimate the
uncertainties from a retrieval using Tier 1 observed data only.
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Figure 13. The figure shows the population POP-I where the flat spectra have been masked. On the left is reported the case of CH4 and CO,, and on the right the case
of CH,4 and H,0O. The diagrams are obtained following the bottom branches of Figure 4: we used the noiseless planetary spectra to classify the parameter space and to
select the best-sampled areas. Comparing this figure with Figure 7, we notice that the “molecular-poor” area is still present because even if there are no CO, and CHy
in the planet atmosphere, there could be NH3 and H,O having features (left case), or if there are no H,O and CO,, there could be NH; and CO, (right case).

Table 7
Retrieval Parameter Table Showing Fit Boundaries, True Inputs, and Retrieved
Parameters with Uncertainties for Tier 1 and Tier 2 Observations

True Tier 1 Tier 2
Name Boundaries Value Retrieved Retrieved
R, [Ryup] 05— 2] 1.24 1.2414900% 1.24127350%)
T, [K] [800 —2400] 1617 17204133 1693*42
log(CHy) [-8 — —2] -3.13 —4.11H4 —3.0850%
log(CO,)  [-8 — —2] —3.44 —3.7479% —3.597032
log(H,0) [-8 — —2] —293 —2.63+0# —2.9679%
log(NHy)  [-8 — —2] —291 —2.737543 —3.0379%2
log(Paouds) [-3 — 6] 5.90 476708 4897073

Note. As in Figure 14, the notation log(X), where X is one of CH4, CO,, H,O,
or NH3, represents the retrieved logarithm of the molecular abundance of the
given species and should be compared to the input log(Aby).

To perform the retrieval, we use TauREx 3 (Al-Refaie et al.
2021). The parameters fitted with fit boundaries, true values,
and retrieved values are listed in Table 7, while the retrieved
solutions and posteriors are shown in Figure 14.

For the selected planet, we notice that in Tier 2 the
abundances of the molecules considered are well constrained,
and, as expected, low-level (high-pressure) clouds are unde-
tected in both cases.

The Tier 1 results can be linked to our previous analysis on
molecular input abundance detection (Section 4.2). We
compute the probability to have molecular abundances greater
than 10™* from the retrieval posteriors and compare these with
the probability obtained with our metric (Figure 9). In this case,
the measured M, are Mcy, = —0.47, Mco, = 0.54, and
My,0 = 0.29. The results are listed in Table 8. Tier 2
observations provide a confident detection of methane, carbon
dioxide, and water, while Tier 1 retrievals are broadly
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comparable to our metric approach in detecting the presence
of these molecules.

These results appear to confirm that spectral retrievals may
not be best suited or at the very least necessary to analyze Tier
1 data. Retrievals are model dependent, and one needs to define
planet parameters, as well as cross sections, pressure—temper-
ature profiles, etc. Priors might need to be imposed to ensure
convergence. Retrievals are also computationally expensive,
making it not trivial to conduct the analysis on hundreds of
targets. A photometric metric, instead, is model independent,
which may be an advantage when assessing a planet
observation for the first time. The full analysis takes only
minutes on a desktop computer to reduce 1000 observations.

4.5. Comparison with Deep and Machine Learning

ML techniques are difficult to interpret, and so a comparison
between their performance and that of our metric can help us in
gaining confidence in the outcomes from ML classifiers. For
this purpose, we consider a planet as bearing a molecule if
Abppol > 10~*. Then, with our metric we select all planets that
have Mcy, > 0.22, which, according to Figure 9, corresponds
to a probability of ~68.3% to have an Ab > 10~ for
CH,4.We repeat the same procedure, letting Mco, > 0.26 for
CO, and My, > 0.80 for H,O. In each sample, we check how
many of the selected planets have molecular abundances in
excess of 10”*, obtaining a percentage of success for our metric
(or metric prec1sion). In the same way, we check how many of
the planets flagged by each of the deep-learning and ML
algorithms in the full sample actually bear the molecules, such
that we can compare their precision performance in Table 9.

We notice a marginally better success rate for deep-learning
and ML algorithms in the cases of KNN and MLP, while RFC
and SVC algorithms suggest a better performance when
compared to that of the metric. Better performances are
expected because, while our metric considers only specific bins
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Figure 14. Retrieved spectra and posteriors. The corner plot shows the posteriors for each retrieved parameter using Tier 1 (blue) and Tier 2 (orange) observed data.
Input values are shown by the black lines. The top right panel shows the retrieved spectra from Tier 1 (blue) and Tier 2 data using colored shaded bands for 1o and 2¢
uncertainties and the input (black solid line). The notation log(X), where X is one of CH,4, CO,, H,O, or NH3, represents the logarithm of the molecular abundance of

the given species and should be compared to log(Aby).

Table 8
Probability to Have Ab o > 10~* for Each Molecule Computed from M,,,,; and
from Tier 1 and Tier 2 Retrieval Posteriors

Molecule Mo [%] Tier 1 [%] Tier 2 [%)]
CHy4 49 48 100
CO, 78 58 94
H,O 56 89 100

Note. The numbers refer to the planet case discussed in Section 4.4.
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in the spectrum, the classification algorithms gather informa-
tion from all the spectral data points. The comparable
performance of the metric with the KNN and MLP suggests
that the molecular bands chosen for the metric are not far from
ideal, but the comparatively better performances of RFC and
SVC provide an indication that margins for improvement may
exist.

While more work is required along this path, which is
beyond the scope of this work, deep learning and ML appear to
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Table 9
Percentages of Positive Detection for Our Metric, Compared to Deep-learning
Algorithm Precision.

Molecule M, [%] KNN[%] MLP[%] RFC[%] SVC[%]
CH, 69" 75.4 84.2 925 90.1
o, 68.3 71.4 75.8 83.1 83.5
H,0 68.3 745 79.0 96.7 99.4

Notes. To assess the presence of a molecule, we flag a planet if Aby,, > 1074,
We investigate CH, in the first row, CO, in the second, and H,O in the third,
selecting the planets with Mcy, > 0.22 (first row), Mco, = 0.26 (second row),
and My,o > 0.80 (third row).

 These percentages arise from a discrete distribution of data, and therefore we
cannot exactly identify the 68.3% quantity. In this case 69% is the closest
possible value.

be very promising for this classification problem, and we shall
leave to dedicated works, such as the one presented in Hou Yip
et al. (2021), a more exhaustive investigation of these
techniques, their comparison with more physically motivated
strategies similar to the metric, and a thorough investigation of
biases that may affect all these techniques.

5. Conclusion

This work presents data analysis methods to extract atmo-
spheric information from Ariel Tier 1 observations of a large
and diverse sample of exoplanets. Ariel’s Tier 1 has been
optimized as a reconnaissance survey of exoplanets, with S/N
larger than 7 after averaging the observed spectra in about
seven photometric data points over the 0.5-7.8 um wavelength
range. Therefore, having only seven effective data points per
spectrum, Tier 1 data may not be ideally suited for detailed
spectral retrieval and to constrain chemical abundances, for
which Tier 2 or Tier 3 observations are needed. However, Tier
1 data contain a wealth of information, such as the spectral
signatures of important molecules, whose presence can in
principle be detected, therefore enabling targets to be classified,
and can be used to assess planets with featureless spectra.

In this work we simulate the entire population of exoplanets
using Alfnoor, assigning a randomized atmosphere to each
planet in the Ariel Mission Reference Sample, which comprises
a diverse population of 1000 exoplanetary targets. We consider
primary atmospheres with contributions from clouds, methane,
water, carbon dioxide, and ammonia. This simulated data set is
expected to be representative of the Ariel Tier 1 reconnaissance
survey.

The aim of this paper is threefold: (1) to show the capability
of Tier 1 to detect featureless spectra, (2) to define a metric to
classify and select planets to be reobserved in higher-resolution
tiers, and (3) to introduce other strategies that can be used to
maximize the science exploitation of Ariel’s Tier 1 data, for
consideration in future studies.

(1) We presented a reliable method to identify flat spectra. By
dividing the Ariel wavelength range into four bands, we
classify as flat those planets where the four spectral bands’
response is compatible with a flat line, following a X test.

(2) We developed a model-independent metric that bins the
observed spectra over selected bands bearing the signatures
of the molecules under investigation. From the observed
spectrum alone, this method proves capable of indicating
the presence of an atmosphere and its possible composition,
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independently of planet parameters such as mass, size, and
temperature. Applying the metric to a Tier 1 observed
spectrum, we find a 1o confidence level in identifying CHy,
CO,, or H,O when their abundance in the atmosphere is in
excess of 107* in mixing ratio, and their estimates
Mcn, 2 0.22, Mco, = 0.26, or My,o = 0.80, respec-
tively, demonstrating how the metric may be used in a
statistically quantitative way. However, we find that the
metric is biased, and the bias depends on the magnitude of
the instrumental noise. Debiasing the metric is required for
its predictions to be quantitative. Debiasing is expected to be
possible, following a detailed characterization of the
instrumental uncertainties, and we reserve an investigation
of these aspects for a future study. The metric struggles to
separate H,O and NH;. This may be partially due to the
effect of a bias, or, more likely, because of the two
molecules partially overlapping features. However, the
metric is successful in classifying these targets as having
an atmosphere. Should these targets be selected for Tier 2
observations, a spectrum retrieval analysis can constrain all
abundances to high significance.

(3) We have performed a preliminary comparison of four
different deep-learning and ML algorithms for the
chemical classification of Tier 1 atmospheres. We find
that their performance in identifying the presence of a
certain molecule in the spectrum is marginally better than
that of the metric in the case of KNN and MLP, but RFC
and SVC outperform the metric, justifying a detailed
follow-up study in future work.
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Appendix
Analytical Derivation of the Metric

As mentioned in Section 2.4, the metric here presented is (i)
sensitive to the molecules, (ii) independent of the planet size,
and (iii) independent of the scale height. To show it, we start by
using the following notation: in transmission spectroscopy we
are measuring

Af

Ay — R3 + 2Ry - z(N)
f

R ; (AD)
where fis the measured flux from the star, Afis the difference
between the flux measured during the transit and the one
measured out of transit, R, and R, are the planet and the star
radii, respectively, and z()\) is the measured wavelength-
dependent transit depth. Now, applying the definition of z(\)
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from Lecavelier Des Etangs et al. (2008),

27R,H
ksT,

z(\) =HlIn €abs Tabs (A) Po

. (A2)

Teq

where €., and o, are the abundance and cross section of the
main absorbent at the A wavelength. H is the scale height to
which the pressure Py corresponds, and 7.4 is the equivalent
optical depth. Therefore, we have

: EanstnsVPy [ 27R,H
Rp1+2Rp1H1n( \/7 )

A

2 = .

f R

R2 + 2Ry H - Z(\
_ pl pl2 ( )’ (A3)

R*
where, for simplicity, we define
27R, H
Z(\) = In €abs Tabs (A) Po 71-2 172 (A4)
Teq kg Tp

Therefore, measuring Spang, in Equation (1) corresponds to
computing the mean in the band:

A
Sbandi = (_f)
f band;

Ry  2RyH Y'Z;

R? R? M
R% 2R, H
= R_p2 + 152 ° Zband;; (AS)
* *

where Z; is the equivalent of Equation (A4) in the jth spectral

bin and Zyyg, = DIy
Equation (2) is computed as

Therefore, the

dispersion of

ZRPIH\/ZIIW(ZJ - Zba.nd,-)2

Oband; =
an RE M
2R H
= 2 ' O-Zband," (A6)
R
7'~ Zowa)?
where 07, = %
By combining the previous equations as done in
Equation (3), we finally obtain
2Ry H
1 N Rplz (Zbandi - Znorm)
Mmolzﬁzi 2RyuH 2 n 3
R2 Zband; 9 Znom
_ %Z,N Zt;and,- - Zn;)rm ) (A7)
Uzbandi + Uznorm

Therefore, we remove the planet and star radius dependence in
the measurement. Similarly to what has been done in Désert
et al. (2009), the subtraction between Zy,ng, and Z, o, finally
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removes the scale height dependency as

(A8)

€abs,band; Oabs,band;
Zband, - Znorm =In (— 5

€abs,normTabs,norm

Where €abs band, Oabs,band; 1S the equivalent of €,,s0.s(A) in the
band. This factor identifies the contribution of the main
absorber in the band. Therefore, if we compare a band where a
certain molecule has a strong feature with one where it is not
supposed to give contributions to the spectrum, we can identify
the molecular presence, compared to what is present in the
second band.
So, finally M, becomes

€abs,band; Oabs,band;
N In|—————=
] Z €abs,normPabs, norm

2

Mot = N >
i Uzband; + GZ

(A9)

norm

So, as promised, the metric is also sensitive to the molecular
content.

To summarize, we removed the star, planet, and atmosphere
size dependencies by subtracting the interesting feature bands
for a normalization band and dividing the results by the
combined dispersion. This results in a metric that is sensitive to
the molecules contained in the atmosphere but introduces a
bias. In fact, the spectral dispersion oz,,,, depends on both the
atmospheric feature dispersion and the observational noise.
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