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ABSTRACT
This paper studies a fundamental mechanism by which conflicts between arguments
are drawn from sentiments regarding acceptability of the arguments. Given sets of
arguments, an inverse abstract argumentation problem seeks attack relations be-
tween arguments such that acceptability semantics interprets each argument in the
sets of arguments as being acceptable in each of the attack relations. It is an inverse
problem of the traditional problem we refer to as the forward abstract argumenta-
tion problem. Given an attack relation, the forward abstract argumentation problem
seeks sets of arguments such that acceptability semantics interprets each argument in
the sets of arguments as being acceptable in the attack relation. We give a probabilis-
tic model of argumentation-theoretic inference. It is a generative model formalising
the process by which acceptability semantics interprets acceptability of arguments
in a given attack relation. We show that it gives a broad view of solutions to the
forward and inverse abstract argumentation problems. Specifically, solutions to the
inverse and forward abstract argumentation problems are shown to be equivalent
to a maximum likelihood estimate and maximum likelihood prediction, respectively,
which are both available with the generative model. In addition, they are shown to
be special cases of the posterior distribution and the evidence, respectively, which
are both obtained by probabilistic inference on the generative model. We report an
experiment result and application example of the generative model in the inverse
problems.

KEYWORDS
Abstract argumentation frameworks; Acceptability semantics; Inverse problems;
Generative models; Bayesian statistics; Machine learning

1. Introduction

The world is full of difficult problems. Argumentation is a human cognitive process for
the purpose of understanding a lot of these problems. The driving force of argumen-
tation is a conflict of opinions. The ability to detect conflicts is essential for humans
to engage in argumentation. The way humans recognise conflicts between arguments
can be explained in terms of a simple principle of incompatibility of arguments. Let
us take a look at an example to illustrate the principle.

Example 1.1. A professor and a government official argue about a government’s
policy on the allocation of a research budget.
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Professor: The government should widely and fairly allocate research funds for di-
versity of research activities.

Official: We should select and concentrate on promising research in terms of cost
effectiveness.

At this point, no logical contradiction, i.e., P and not-P, is explicit from these argu-
ments. The recognition of a logical contradiction thus depends on the context of the
arguments and the speakers’ or listeners’ knowledge.

Suppose that an agent judges these two arguments are incompatible no matter how
it interprets them. For example, the agent may think that the wide and fair alloca-
tion of research funds and the cost effectiveness cannot be achieved simultaneously. If
the agent values the opinion that the diversity of research activities is an essential for
persistent progress in science then it may accept only the professor’s argument. In con-
trast, if the agent appreciates short-term profits then it may accept only the official’s
argument. These kinds of interpretations would contribute to the agent’s recognition
that these two arguments cause a logical contradiction.

The important observation obtained from this example is that the incompatibility
of arguments can be a cause of the recognition of the logical contradiction between
the arguments. Conversely, one might think that the recognition of the logical con-
tradiction is an actual cause of the incompatibility of the acceptability. Those who
agree with the latter opinion would think that the agent could have made the logical
contradiction explicit by revealing unexpressed knowledge for clarification. For exam-
ple, in Example 1.1, the agent could have made the logical contradiction explicit by
saying ‘If we select and concentrate on promising research then we cannot widely and
fairly allocate research funds.’ We think that these two views are two sides of the same
coin in human cognition. On the one hand, the incompatibility would help us discover
new knowledge that clearly explains the incompatibility. On the other hand, the pre-
existing but unexpressed knowledge would help us recognise the incompatibility. The
prime goal of this paper is to give a formal account of the former process.

There are at least two computational approaches to detect a conflict relation be-
tween arguments. The first approach is based on natural language processing or com-
putational linguistics. Given textual discourse, the goal involves identifying individual
arguments, their internal structures and their interactions (Lawrence and Reed, 2016;
Palau and Moens, 2009). Argumentation mining (Bar-Haim et al., 2017a,b; Boltužić
and Šnajder, 2014; Cabrio and Villata, 2013; Lippi and Torroni, 2015, 2016; Mayer
et al., 2018; Saint-Dizier, 2018; Toledo-Ronen et al., 2016; Zhao et al., 2017), recogniz-
ing textual entailment (Levesque et al., 2012; Silva et al., 2018; Zhao et al., 2017) and
natural language inference (Bowman et al., 2015; MacCartney and Manning, 2007)
all belong to the first approach. The first approach is successful if a conflict relation
obtained with the approach conforms to a human judgement. The second approach
is based on the acceptability semantics (Dung, 1995) that emerged from the study
of nonmonotonic reasoning (Bench-Capon and Dunne, 2007; Prakken and Vreeswijk,
2001). Given acceptability of arguments, the goal involves identifying an attack relation
justifying the acceptability in terms of the acceptability semantics. It is interesting to
investigate whether a conflict relation obtained with the second approach is successful
in the sense of the goal of the first approach. However, it is not a fundamental require-
ment of the second approach. The argumentation framework (AF for short) synthesis
problem (Niskanen et al., 2016, 2019) based on realizability (Dunne et al., 2015), the
abstract structure learning (Riveret and Governatori, 2016), the enforcement in argu-
mentation (Niskanen et al., 2018), the generative model of the abstract argumentation
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(Kido, 2018; Kido and Okamoto, 2017), the probabilistic framework for generating in-
stantiated argument graphs (Hunter, 2020) and the explanatory argumentation graph
(Riveret, 2020) are all related to the second approach.

The second approach is much less studied compared with the first one, in spite of its
importance. Acceptability semantics is a normative theory of human cognition. Thus,
a solution to the second approach following the acceptability semantics is normative,
meaning that a rational agent ought to accept the solution. Given acceptability of
arguments, it tells us which attack relation the agent ought to believe. However, it
is more difficult than it seems to find an attack relation in accordance with the ac-
ceptability semantics. The acceptability of arguments observed in practice is based
on one’s sentiments regarding agreement or disagreement on the arguments. It often
involves uncertainty, for a variety of reasons such as lack of data and the presence of
noise in observation. Thus, what is missing is the way to quantify the uncertainty of
solutions so that it follows the acceptability semantics.

Probability theory quantifies uncertainty in a rigorous way. In this paper, we in-
troduce a generative model of abstract argumentation (Dung, 1995). The generative
model uses the acceptability semantics and formalises the process by which the ac-
ceptability of arguments is generated from the probability distribution over attack
relations. Let Att denote an attack relation between arguments and Ext denote a set
of sets of arguments that can be accepted simultaneously. The key idea underlying the
generative model is to model the right two terms of the following expression so that
the value of the left term is exactly or approximately computed.1

p(Att|Ext) ∝ p(Ext|Att)p(Att)

We show that the generative model extends solutions to the following two types of
basic problems.

Forward problem Given an attack relation between arguments, the forward problem
seeks sets of arguments such that the acceptability semantics interprets the sets
of arguments as being acceptable in the attack relation.

Inverse problem Given sets of arguments, the inverse problem seeks an attack rela-
tion between arguments such that the acceptability semantics interprets the sets
of arguments as being acceptable in the attack relation.

We show that solutions to the inverse and forward problems are respectively equiva-
lent to a maximal likelihood (abbreviated to ML) estimate and ML prediction in the
generative model. They are respectively special cases of the posterior distribution and
evidence, which are both probabilistic extensions of the solutions to the inverse and
forward problems. The posterior distribution is an extension of the solution to the
inverse problem in the sense that it deals with noises in observations of sets of argu-
ments. The evidence is an extension of the solution to the forward problem in the sense
that it deals with uncertainty of attack relations. We also discuss a compound problem
of the inverse and forward problems. Given sets of arguments, the compound problem
seeks the acceptability of other sets of arguments by solving the forward problem us-
ing the solution to the inverse problem. Finally, we empirically discuss the correctness
of the generative model by solving the inverse problems with different noise levels,
acceptability semantics, numbers of arguments and restrictions on attack relations.

The main contributions of this paper are as follows. To the best of our knowledge,

1X ∝ Y denotes ‘X is proportional to Y ’ and thus there is a constant K such that X = KY .
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the first paper introducing a generative model to the semantics of the abstract argu-
mentation is (Kido and Okamoto, 2017). In a nutshell, it gives problem-independent
uncertain argumentation-theoretic inference. It is different from the study of problem-
dependent uncertain domain knowledge, e.g., (Bex and Renooij, 2016; Grabmair et al.,
2010; Nielsen and Parsons, 2007; Saha and Sen, 2004; Timmer et al., 2015; Vreeswijk,
2005), which is another interesting research direction across argumentation and prob-
ability theory. The weakness of the discussions in the papers (Kido, 2018; Kido and
Okamoto, 2017), however, is that the generative models introduced by the authors are
too specific to discuss what kinds of general problems should be solved and what kinds
of problems can be solved based on the idea of generative models. This paper answers
the open questions. We for the first time offers a general discussion about a generative
model of acceptability of arguments in the context of computational argumentation.

In Section 2, we define the forward and inverse problems of the abstract argumen-
tation as the problems to be solved and discussed in the presence of noise. In Section
3, we give a simple but general generative model for the solutions to the problems.
In Sections 4.1 and 4.2, we statistically characterise the properties of the solutions
provided by probabilistic inference on the generative model. We then demonstrate its
applicability in argumentation mining in Sections 4.3 and 4.4. Section 5 concludes with
discussion.

2. Abstract Argumentation Problems

2.1. Forward Problems

An abstract argumentation framework (AF) (Dung, 1995) is a pair 〈arg, att〉, where
arg denotes a set of arguments and att denotes a binary relation on arg. att represents
an attack relation between arguments, i.e., (a, b) ∈ att means ‘a attacks b.’ Suppose
a ∈ arg and S ⊆ arg. S attacks a if, and only if (iff), some member of S attacks a.
S is conflict-free iff S attacks none of its members. a is acceptable with respect to S
iff S attacks all arguments that attack a. A characteristic function F : Pow(arg) →
Pow(arg) is defined as F (S) = {a|a is acceptable with respect to S} where Pow(arg)
is the power set of arg. S is admissible iff S is conflict-free and every member of S is
acceptable with respect to S. The acceptability semantics (Dung, 1995) defines four
types of extensions of AF that intuitively represent sets of acceptable arguments.

• A preferred extension is a maximal (with respect to set inclusion) admissible set.
• A conflict-free set S of arguments is a stable extension iff S attacks each argument

which does not belong to S.
• The grounded extension is the least fixed point of F .
• An admissible set S of arguments is a complete extension iff each argument,

which is acceptable with respect to S, belongs to S.

We call the acceptability semantics for each type of extensions preferred, stable,
grounded and complete semantics, and they are denoted by p, s, g and c, respectively.
Let ε denote an acceptability semantics, arg a set of arguments, and att an attack
relation on arg. When we see ε as a function whose input is an abstract argumentation
framework 〈arg, att〉 and output is the set, denoted by ext, of extensions of 〈arg, att〉
with respect to ε, we can write the relation as follows.

ε(arg, att) = ext
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We assume that arg and ε are arbitrary but fixed. We define a forward problem of the
abstract argumentation, as follows.

Definition 2.1 (Forward problem). Let arg be a set of arguments and ε be an ac-
ceptability semantics. Given att ⊆ Pow(arg × arg), the forward problem of abstract
argumentation is to find a set S ⊆ Pow(arg) such that S = ε(arg, att).

2.2. Inverse Problems

We consider an inverse of the forward problem of the abstract argumentation. In
essence, it aims to find an attack relation between arguments from a noisy set of
extensions of an abstract argumentation framework. We assume that part of an attack
relation, denoted by ãtt ⊆ Pow(arg × arg), is known. We now have the following
equation.

ext = ε(arg, ãtt ∪ att)

We assume that ε, arg and ãtt are arbitrary but fixed. We define an inverse problem
of the abstract argumentation as follows.

Definition 2.2 (Inverse problem). Let arg be a set of arguments, ε be an acceptability
semantics and ãtt ⊆ Pow(arg×arg) be a known attack relation. Given S ⊆ Pow(arg),
the inverse problem of abstract argumentation is to find an attack relation att ⊆
Pow(arg × arg) such that S = ε(arg, ãtt ∪ att).

We refer to att as a target attack relation in the inverse problem. A set S ⊆
Pow(arg) is data observed in the inverse problem. It is empirically true that an ob-
servation of data often includes some amount of noise. It can be an effect irrelevant
to semantics ε or can be a false or inaccurate observation. It may add or remove some
arguments from some of the extensions observed, or it may add some new sets of
arguments or remove some of the extensions observed. Without loss of generality, we
represent a noise η as a subset of Pow(arg), i.e. η ⊆ Pow(arg). Let + be a set operator
for subtraction and/or addition of elements of the set. The observed data then can be
written as follows.

S = ε(arg, ãtt ∪ att) + η

In other words, what we observe in the inverse problem is a noisy set of extensions
where the true set of extensions, i.e., ε(arg, ãtt∪ att), and the noise, i.e., η, are insep-
arably connected. The noisy set of extensions can be the set of extensions of another
attack relation. It is thus generally impossible to find a solution to the inverse prob-
lem with noise. In reality, we are interested in attack relation att such that the set of
extensions, i.e., ε(arg, ãtt∪ att), approximates the observation, i.e., S. For the sake of
generality, we refrain ourselves from discussing the quality of approximation here. The
quality depends on criteria one uses to define the quality. Various criteria are possible,
and therefore, they should be discussed in the solution side of the inverse problem.

In Section 4.4, we will demonstrate how the inverse problem can be used to tackle an
important task of argumentation mining. From a data science point of view, the inverse
problem can be more practical than the forward problem. The input to the inverse
problem is in practice a set of sentiments regarding the acceptability of arguments,
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whereas the input to the forward problem is an attack relation between arguments.
In contrast to the attack relation that is structured data essentially represented as
a graph, the sentiments regarding the acceptability of arguments are unstructured
data. The sentiments thus can be collected from the web more easily, e.g., via votes
in various social networking services.

2.3. Use of Probability Theory

In this section, we explain why the inverse problem is difficult and why probabilistic
approaches are appropriate. The problem, either inverse or direct, is said to be well-
posed if a solution exists, the solution is unique if it exists, and the solution depends
continuously on the input, i.e., solution existence, solution uniqueness and solution
stability, respectively (Aster et al., 2004). We refer to the problem as ill-posed oth-
erwise. Given Definitions 2.1 and 2.2, both the inverse and the forward problems of
the abstract argumentation are ill-posed. The solution stability does not hold in the
forward or inverse problem as they are not continuous problems but discrete ones. The
solution existence and solution uniqueness hold only in the forward problem.

Example 2.3. Let arg = {a, b}. Given S = {∅, {a, b}}, no solution to the inverse
problem exists as there is no attack relation att such that S is the set of extensions of
〈arg, att〉 with respect to either grounded, preferred, stable or complete semantics.

Example 2.4. Let arg = {a, b, c} and ãtt = ∅. Given ext = {{a, c}}, the attack rela-
tions represented with the directed graphs below are solutions to the inverse problem
with respect to grounded, preferred, stable and complete semantics.

The solution uniqueness holds in the inverse problem under certain conditions on
an attack relation and semantics.

Proposition 2.5 (Solution uniqueness). An inverse problem satisfies solution unique-
ness if both known and target attack relations are symmetric and irreflexive, and se-
mantics is complete, preferred or stable.

The restrictions on the attack relations and semantics in Proposition 2.5 can be
reasonable in practice. The observation in the inverse problem is a set of sentiments
on the acceptability of arguments. The sentiments are generally obtained from vari-
ous individuals including credulous and skeptical ones. Complete semantics generates
various kinds of extensions such as grounded extensions, stable extensions, preferred
extensions and complete extensions. The semantics thus suits for capturing the sen-
timents of both the credulous and skeptical individuals. A reflexive attack relation
means the possibility of the presence of a self-attacking argument, which is rare in
real argument. A symmetric attack relation means that each attack happens bidirec-
tionally. This is not always true in practice, but even without the direction of attack,
information on the presence or absence of attack is useful in many application settings,
e.g., argumentation mining.

The fact that a problem is ill-posed does not mean that the problem is defined
badly. It implies that the problem is inherently and computationally hard if one seeks
alternative solutions from the existence of multiple solutions or approximations from
the absence of solutions. Probability theory is useful to handle these situations. There
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are at least two other reasons why a probabilistic approach is appropriate. First,
almost all of the real arguments are enthymemes. An enthymeme is an argument whose
premise or conclusion is unexpressed. The existence of an attack relation between
enthymemes depends on the contexts of argumentation and the knowledge possessed
by the arguers or listeners. Let us take a look at a simple example of the uncertainty
of the existence of an attack relation.

Example 2.6. Suppose one hundred individuals are asked to express their opinions
about whether there is an attack between the following arguments a and b.

• a: Tweety can fly because it is a bird.
• b: Tweety is a penguin.

Many individuals would find an attack between the arguments, because they know
that penguins cannot fly. However, not all individuals would find the attack. Some in-
dividuals might not know that penguins cannot fly; some other individuals might know
that Tweety is a genetically-altered flying penguin. Now, let us assume that ninety
individuals think that there is an attack between the arguments and the remaining
ten individuals think that there is no attack. The best we can conclude is that the
probability of an attack is 0.9.

Second, the uncertainty of the existence of an attack relation causes the idea of
the uncertainty of extensions. A set of extensions would be more probable only when
there is a probable attack relation whose set of extensions approximates the set of
extensions. Therefore, different attack relations have different influences on the set of
extensions observed in the inverse problem. A probabilistic approach allows us to give
a formal account of the influence between attack relations and extensions.

3. Abstract Argumentation Model

In this section, a generative model of the abstract argumentation is introduced for
solutions to the forward and inverse problems of the abstract argumentation. Using
the acceptability semantics, it formalises the probabilistic process of argument-based
reasoning by which the acceptability of arguments is generated from the probability
distribution over attack relations.

3.1. Probability Distributions

Let arg be a set of arguments. We assume two kinds of random variables. For all
m ∈ arg × arg, Attm is a random variable representing the truth of whether there
is an attack from its left to right elements of m. attm represents a value of Attm,
either 0 or 1 meaning false or true, respectively.2 For all d ⊆ arg, Extd is a random
variable representing the truth of whether d is an extension. extd represents a value
of Extd, either 0 or 1. Att denotes a sequence of Attm, and att a sequence of attm.
Similarly, Ext denotes a sequence of Extd, and ext a sequence of extd. att and
ext thus correspond respectively to an attack relation and extensions in the abstract
argumentation (Dung, 1995). We do not distinguish them unless otherwise noted.

Assuming that arg and acceptability semantics are arbitrary but fixed, we study

2For the sake of simplicity, m also represents a set of two arguments. Attm in this case represents the existence

of a symmetric attack relation between the arguments in m.
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the relation between Att and Ext. It is natural to assume that if the probability that
a attacks b is λ(a,b) then the probability that a does not attack b is 1− λ(a,b). We thus
define the probability distribution over an attack-relation variable as follows.

Definition 3.1 (Attack distribution). Let Attm be a random variable of an attack
relation and λm be a constant such that 0 ≤ λm ≤ 1. The probability distribution
over Attm, denoted by p(Attm), is given by

p(Attm) = λAttmm (1− λm)1−Attm .

It is obvious that p(Attm) = λm if Attm = 1 and p(Attm) = 1 − λm if Attm = 0.
The distribution is called a Bernoulli distribution (Uspensky, 1937), often used to
represent a discrete probability distribution with binary values. One can assume the
uniform distribution, i.e., λm = 0.5, when no knowledge on the presence of the attack
relation in m is available or assumed. One can alternatively apply the result of textual
analysis with natural language processing to give a value to each λm. We leave the
values of λm unspecified to make our idea open to various application scenarios. Note
that, as will be illustrated in Example 3.11, λm is updated in accordance with data.
Collecting data is thus more important than trying to accurately specify the values of
λm in our Bayesian approach.

We next consider how to handle noisy sets of extensions given an attack relation.
The acceptability semantics (Dung, 1995) defines extd given att. Let us assume a
constant θd|att (0 ≤ θd|att ≤ 1) representing the probability that d is an extension of
the abstract argumentation framework given by attack relation att. The probability
distribution over Extd given att can be defined using a Bernoulli distribution with
parameter θd|att.

Definition 3.2 (Extension distribution). Let Extd be an extension variable, att be a
sequence of values of attack-relation variables and θd|att be a constant such that 0 ≤
θd|att ≤ 1. The probability distribution over Extd given att, denoted by p(Extd|att),
is given by

p(Extd|att) = θExtdd|att(1− θd|att)
1−Extd .

The constant θd|att is the parameter of the extension distribution. In the next section,
we will present three different instantiations for the constant θd|att.

3.2. Likelihoods

This section defines a deterministic parameter, linear parameter and exponential pa-
rameter for the constant θd|att. We introduce the first two parameters as straightfor-
ward applications of the acceptability semantics, and the third parameter as a gen-
eralisation of the first two parameters. In Section 4, we will conduct experiments to
discuss the correctness of the third parameter.

From the perspective of the acceptability semantics, the constant θd|att should have
a high value when there is an extension e of the abstract argumentation framework
〈arg,att〉 such that e is close to d. The closeness can be measured by the similarity,
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denoted by sim(e, d), defined as follows3.

sim(e, d) = |{a ∈ arg|a ∈ e, a ∈ d} ∪ {a ∈ arg|a /∈ e, a /∈ d}|

We define a deterministic parameter as follows.

Definition 3.3 (Deterministic parameter). Let d ⊆ arg and att be an attack relation
on arg. θd|att ∈ [0, 1] is a deterministic parameter if it is given by

θd|att =

{
1 d ∈ ε(arg,att)
0 otherwise.

Therefore, θd|att = 1 holds iff d is an extension of the argumentation framework of
att.

The second parameter is a linear parameter. We define θd|att using the linear func-
tion f(x) = x/|arg| with respect to x, where x is the maximum similarity between d
and an extension of the argumentation framework of att.

Definition 3.4 (Linear parameter). Let d ⊆ arg and att be an attack relation on
arg. θd|att ∈ [0, 1] is a linear parameter if it is given by

θd|att =
1

|arg|
max

{
sim(d, e)

∣∣∣ e ∈ ε(arg,att)} .
θd|att thus increases with 1/|arg| when another argument is in common between e

and d.
The third parameter is an exponential parameter. We define θd|att using the expo-

nential function f(x) = wx/w|arg| with respect to x, where w is a constant and x is
the maximum similarity between d and an extension of the argumentation framework
of att. The following definition uses the normalisation of f(x) where its domain and
range are [0, |arg|] and [0, 1], respectively.

Definition 3.5 (Exponential parameter). Let d ⊆ arg, att be an attack relation on
arg and w > 1. θd|att ∈ [0, 1] is an exponential parameter if it is given by

θd|att =
1

w|arg| − 1
max

{
wsim(e,d) − 1

∣∣∣ e ∈ ε(arg,att)} .
Given a large value w, θd|att approximates wsim(e,d)/w|arg|. In this case, θd|att in-

creases w times when another argument is in common between e and d.
The linear and exponential parameters are exactly the results of the normalisations

of a linear function and an exponential function, respectively. The exponential param-
eter has good properties. First, the deterministic parameter is a special case of the
exponential parameter.

Proposition 3.6. Let θd|att be an exponential parameter and φd|att be a deterministic
parameter. limw→∞ θd|att = φd|att holds.

Second, the linear parameter is also a special case of the exponential parameter.

3|X| denotes the cardinality of set X.
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Figure 1. The horizontal axis shows the similarity between an observation and the best extension given 100

arguments. The vertical axis shows parameter values.

Proposition 3.7. Let θd|att be an exponential parameter and φd|att be a linear pa-
rameter. limw→1 θd|att = φd|att holds.

Figure 1 shows that both of the deterministic and linear parameters are extreme
cases of the exponential parameter.

Example 3.8. Table 1 shows all possible linear and exponential parameters given
arg = {a, b, c} and att = (att{a,b}, att{a,c}, att{b,c}).

Example 3.8 shows that the exponential parameters give a relatively sharp distri-
bution compared with the linear parameters. As more arguments are given, the linear
parameters give a relatively flat distribution, which in practice makes it difficult to
find exact or approximate solutions to the inverse abstract argumentation problem.
For the sake of generality and practicality, we assume the exponential parameter unless
otherwise stated.

3.3. Graphical Model

Figure 2 shows a graphical model of the dependency of the random variables and
parameters we introduced in Section 3.1. Each open white-circle represents a random
variable, each filled black-circle represents a parameter given in prior to the use of
the model, and each rectangle, often referred to as a plate, represents that all the
circles on the plate are duplicated the number of times specified in the right bottom
corner of the plate. M , L and D denote the numbers of attack-relation variables,
attack relations and extensions, respectively. There are thus M random variables of
Attm and M parameters of λm, for each pair m of arguments, D random variables of
Extd, for each set d of arguments, and L×D parameters of θd|att, for each pair of d
and attack relation att. Each arrow represents the inference causality of the abstract
argumentation. The parameter λm causes the (prior) probability distribution over
Attm. The sequence, i.e., Att, of Attm and the parameter θd|att cause the probability
distribution over Extd.
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Table 1. Linear parameters (upper) and exponential parameters (lower) defined with complete semantics.

θX is an abbreviation for θX|att where att = (att{a,b}, att{a,c}, att{b,c}).

att θ∅ θ{a} θ{b} θ{c} θ{a,b} θ{a,c} θ{b,c} θ{a,b,c}
(0, 0, 0) 0 1/3 1/3 1/3 2/3 2/3 2/3 1
(1, 0, 0) 2/3 2/3 2/3 1 1/3 1 1 2/3
(0, 1, 0) 2/3 2/3 1 2/3 1 1/3 1 2/3
(1, 1, 0) 1 1 2/3 2/3 2/3 2/3 1 2/3
(0, 0, 1) 2/3 1 2/3 2/3 1 1 1/3 2/3
(1, 0, 1) 1 2/3 1 2/3 2/3 1 2/3 2/3
(0, 1, 1) 1 2/3 2/3 1 1 2/3 2/3 2/3
(1, 1, 1) 1 1 1 1 2/3 2/3 2/3 1/3

(0, 0, 0) 0 w−1
w3−1

w−1
w3−1

w−1
w3−1

w2−1
w3−1

w2−1
w3−1

w2−1
w3−1 1

(1, 0, 0) w2−1
w3−1

w2−1
w3−1

w2−1
w3−1 1 w−1

w3−1 1 1 w2−1
w3−1

(0, 1, 0) w2−1
w3−1

w2−1
w3−1 1 w2−1

w3−1 1 w−1
w3−1 1 w2−1

w3−1

(1, 1, 0) 1 1 w2−1
w3−1

w2−1
w3−1

w2−1
w3−1

w2−1
w3−1 1 w2−1

w3−1

(0, 0, 1) w2−1
w3−1 1 w2−1

w3−1
w2−1
w3−1 1 1 w−1

w3−1
w2−1
w3−1

(1, 0, 1) 1 w2−1
w3−1 1 w2−1

w3−1
w2−1
w3−1 1 w2−1

w3−1
w2−1
w3−1

(0, 1, 1) 1 w2−1
w3−1

w2−1
w3−1 1 1 w2−1

w3−1
w2−1
w3−1

w2−1
w3−1

(1, 1, 1) 1 1 1 1 w2−1
w3−1

w2−1
w3−1

w2−1
w3−1

w−1
w3−1

Figure 2. Dependency of the elements of the abstract argumentation model.

Example 3.9. Figure 3 shows an example of Figure 2. Given two arguments a and
b, it expresses the dependency without the plate notation.

So far, we defined the prior distribution p(Attm) as a Bernoulli distribution with the
parameter λm, and the likelihood distribution p(Extd|att) as a Bernoulli distribution
with the parameter θd|att. Given all of the parameters, they give the full joint distribu-
tion over all of the random variables. We thus call {p(Att), p(Ext|Att)} an abstract
argumentation model, denoted by M. When the parameters need to be specified, we
write it as {p(Att|λ), p(Ext|Att,θ)} where λ and θ are sequences of λm and θd|att,
respectively.

Example 3.10. Suppose that Att, Ext, λ and θ are given as follows.

• Att = (Att(a,b), Att(b,a))
• Ext = (Ext∅, Ext{a}, Ext{b}, Ext{a,b})
• λ = (λ(a,b), λ(b,a))
• θ = (θd|(att(a,b),att(b,a))|d ∈ {∅, {a}, {b}, {a, b}}, att(a,b), att(b,a) ∈ {0, 1})

{p(Att|λ), p(Ext|Att,θ)} is the abstract argumentation model shown in Figure 3.

11



Figure 3. Example of Figure 2 without a plate notation.

3.4. Probabilistic Inference of Attack Relations

The abstract argumentation model M is a generative model as it captures the
argumentation-theoretic inference. It tells us how an extension is generated from an
attack relation in accordance with the acceptability semantics. In an inverse problem,
we use the model to trace the dependency back to the argumentation framework from
given extensions. Technically speaking, this is executed by calculating the posterior
distribution over attack relations given extensions. Using Bayes’ theorem, we have

p(Att|ext) =
p(ext|Att)p(Att)

p(ext)
∝ p(ext|Att)p(Att)

=
∏
d

p(extd|Att)
∏
m

p(Attm)

=
∏
d

θextdd|Att(1− θd|Att)
1−extd

∏
m

λAttmm (1− λm)1−Attm

where x ∝ y means ‘x is proportional to y’ and thus there is a constant K such that
x = Ky. The derivation follows the two assumptions of the abstract argumentation
model. Firstly, as shown in Figure 2, attacks between arguments are assumed to be in-
dependent, i.e., p(attm1

, attm2
) = p(attm1

)p(attm2
), for pairs m1 and m2 of arguments.

We use this assumption to implement approximate inference following our discussion
in Section 4. Note that this assumption comes from the fact that in abstract argumen-
tation frameworks we should have no prior information about the presence or absence
of attacks between two arguments. This is, however, not often the case in other argu-
mentation frameworks with internal structures of arguments. Secondly, each extension
is assumed to be independently distributed from the same distribution over attack re-
lations. In other words, two extensions extd1 and extd2 are conditionally independent
given an attack relation att, i.e., p(extd1 , extd2 |att) = p(extd1 |att)p(extd2 |att). It is
not an assumption introduced in this paper, but is a property of the abstract argu-
mentation. Indeed, the conditional independence can also be equivalently written as
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p(extd1 |extd2 ,att) = p(extd1 |att). It is the case in the abstract argumentation because
only an attack relation affects extensions. It results in the desirable property that the
posterior distribution over attack relations can be updated successively whenever an
extension is observed. In fact, it is obvious from the above equation that we have the
following equation.

p(Att|ext) ∝ p(Att)
∏
d

p(extd|Att)

When another set e of acceptable arguments is observed, the above equation leads to

p(Att|ext, exte) ∝ p(Att)p(exte|Att)
∏
d

p(extd|Att)

∝ p(Att|ext)p(exte|Att).

Therefore, the most recent posterior distribution is proportional to the product of the
previous posterior distribution and the likelihood of the new observation.

Example 3.11. We here see how the probability distribution over attack relations is
updated. Let us assume set arg = {a, b, c} of arguments and three random variables
Att{a,b}, Att{a,c}, Att{b,c} of an attack relation. Now, suppose that we observe {a},
i.e., Ext{a} = 1. The posterior distribution over attack-relation variables given the
observation is given by

p(Att{a,b}, Att{a,c}, Att{b,c}|Ext{a} = 1)

∝ p(Ext{a} = 1|Att{a,b}, Att{a,c}, Att{b,c})p(Att{a,b})p(Att{a,c})p(Att{b,c})

= θ{a}|Att{a,b},Att{a,c},Att{b,c}

∏
m∈{{a,b},{a,c},{b,c}}

λAttmm (1− λm)1−Attm .

Let ext be (Ext{a} = 1) and θd|att be the exponential parameter shown in Table 1
with w = 2. The posterior distribution is then given as follows.

p(0, 0, 0|ext) ∝ (1/7)(1− λ{a,b})(1− λ{a,c})(1− λ{b,c})
p(1, 0, 0|ext) ∝ (3/7)λ{a,b}(1− λ{a,c})(1− λ{b,c})
p(0, 1, 0|ext) ∝ (3/7)(1− λ{a,b})λ{a,c}(1− λ{b,c})
p(1, 1, 0|ext) ∝ λ{a,b}λ{a,c}(1− λ{b,c})
p(0, 0, 1|ext) ∝ (1− λ{a,b})(1− λ{a,c})λ{b,c}
p(1, 0, 1|ext) ∝ (3/7)λ{a,b}(1− λ{a,c})λ{b,c}
p(0, 1, 1|ext) ∝ (3/7)(1− λ{a,b})λ{a,c}λ{b,c}
p(1, 1, 1|ext) ∝ λ{a,b}λ{a,c}λ{b,c}

Next, we suppose another observation {b}, i.e., Ext{b} = 1. The posterior distribution
is updated as follows.

p(Att{a,b}, Att{a,c}, Att{b,c}|Ext{a} = 1, Ext{b} = 1)

∝ p(Att{a,b}, Att{a,c}, Att{b,c}|Ext{a} = 1)p(Ext{b} = 1|Att{a,b}, Att{a,c}, Att{b,c})
∝ p(Att{a,b}, Att{a,c}, Att{b,c}|Ext{a} = 1)θ{b}|Att{a,b},Att{a,c},Att{b,c}
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Now, let ext be (Ext{a} = 1, Ext{b} = 1). The posterior distribution is updated as
follows.

p(0, 0, 0|ext) ∝ (1/7)2(1− λ{a,b})(1− λ{a,c})(1− λ{b,c})
p(1, 0, 0|ext) ∝ (3/7)2λ{a,b}(1− λ{a,c})(1− λ{b,c})
p(0, 1, 0|ext) ∝ (3/7)(1− λ{a,b})λ{a,c}(1− λ{b,c})
p(1, 1, 0|ext) ∝ (3/7)λ{a,b}λ{a,c}(1− λ{b,c})
p(0, 0, 1|ext) ∝ (3/7)(1− λ{a,b})(1− λ{a,c})λ{b,c}
p(1, 0, 1|ext) ∝ (3/7)λ{a,b}(1− λ{a,c})λ{b,c}
p(0, 1, 1|ext) ∝ (3/7)2(1− λ{a,b})λ{a,c}λ{b,c}
p(1, 1, 1|ext) ∝ λ{a,b}λ{a,c}λ{b,c}

We further suppose an additional observation {c}, i.e., Ext{c} = 1. The posterior
distribution is updated as follows.

p(Att{a,b}, Att{a,c}, Att{b,c}|Ext{a} = 1, Ext{b} = 1, Ext{c} = 1)

∝ p(Att{a,b}, Att{a,c}, Att{b,c}|Ext{a} = 1, Ext{b} = 1)θ{c}|Att{a,b},Att{a,c},Att{b,c}

Let ext be (Ext{a} = 1, Ext{b} = 1, Ext{c} = 1). The posterior distribution is updated
as follows.

p(0, 0, 0|ext) ∝ (1/7)3(1− λ{a,b})(1− λ{a,c})(1− λ{b,c})
p(1, 0, 0|ext) ∝ (3/7)2λ{a,b}(1− λ{a,c})(1− λ{b,c})
p(0, 1, 0|ext) ∝ (3/7)2(1− λ{a,b})λ{a,c}(1− λ{b,c})
p(1, 1, 0|ext) ∝ (3/7)2λ{a,b}λ{a,c}(1− λ{b,c})
p(0, 0, 1|ext) ∝ (3/7)2(1− λ{a,b})(1− λ{a,c})λ{b,c}
p(1, 0, 1|ext) ∝ (3/7)2λ{a,b}(1− λ{a,c})λ{b,c}
p(0, 1, 1|ext) ∝ (3/7)2(1− λ{a,b})λ{a,c}λ{b,c}
p(1, 1, 1|ext) ∝ λ{a,b}λ{a,c}λ{b,c}

In general, we suppose that Ext{a} = 1, Ext{b} = 1 and Ext{c} = 1 are repeatedly
observed N times in total in this order. Given N observations, denoted by ext, the
posterior distribution is given as follows.

p(0, 0, 0|ext) ∝ (1/7)N (1− λ{a,b})(1− λ{a,c})(1− λ{b,c})

p(1, 0, 0|ext) ∝ (3/7)N−bN/3cλ{a,b}(1− λ{a,c})(1− λ{b,c})

p(0, 1, 0|ext) ∝ (3/7)N−b(N+1)/3c(1− λ{a,b})λ{a,c}(1− λ{b,c})

p(1, 1, 0|ext) ∝ (3/7)N−b(N+2)/3cλ{a,b}λ{a,c}(1− λ{b,c})

p(0, 0, 1|ext) ∝ (3/7)N−b(N+2)/3c(1− λ{a,b})(1− λ{a,c})λ{b,c}
p(1, 0, 1|ext) ∝ (3/7)N−b(N+1)/3cλ{a,b}(1− λ{a,c})λ{b,c}
p(0, 1, 1|ext) ∝ (3/7)N−bN/3c(1− λ{a,b})λ{a,c}λ{b,c}
p(1, 1, 1|ext) ∝ λ{a,b}λ{a,c}λ{b,c}
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Figure 4. The horizontal axis shows the twenty iterated observations of Ext{a} = 1, Ext{b} = 1
and Ext{c} = 1 in this order. The vertical axis shows the posterior probability of each attack relation

(att{a,b}, att{a,c}, att{b,c}). We assumed the following parameters: λ{a,b} = 0.1, λ{a,c} = 0.15, λ{b,c} = 0.2

and the exponential parameters θd|att shown in Table 1 with w = 2.

Here, bxc denotes the floor function that returns the maximum integer that is equal to
or less than x. Figure 4 shows the posterior distribution over attack relations versus the
number of observations. When the number of observations increases, it is observed that
the posterior probability of the attack relation, (Att{a,b} = 1, Att{a,c} = 1, Att{b,c} =
1), converges to one. The result is reasonable in terms of complete semantics because
the attack relation successfully explained all of the observations.

3.5. Approximate Inference Algorithm

In practice, we can use the model M not only for solving the inverse and forward
problems, but also for solving their compound problems. Given noisy data about sets
of acceptable arguments, the compound problem is to find other sets of acceptable
arguments. Here, the output sets are predicted using the attack relations estimated
from the input sets. In a nutshell, it solves the forward problem using the result of the
inverse problem. Concretely, the compound problem is based on

p(Exte|ext) =
∑
att

p(Exte|att)p(att|ext)

=
∑
att

θExtee|att(1− θe|att)
1−Extep(att|ext).

However, the problem associated with the compound problem (and also the inverse
problem), is that the posterior probability p(att|ext) is generally not exactly calcu-
lable, due to its high complexity. We thus calculate its approximation, denoted by
p̂(att|ext). We obtain the approximation using Gibbs sampling (Geman and Geman,
1984), which is a simple and widely applicable Markov chain Monte Carlo algorithm.
It repeatedly updates a value of each random variable, one by one, using its posterior
distribution given values of all remaining random variables. For example, in the (i+1)-
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th iteration of the Gibbs sampling procedure, the presence of an attack, denoted by
atti+1

m , between two arguments labeled m (1 ≤ m ≤M) is sampled as follows.

atti+1
1 ∼ p(Att1|atti2, atti3, · · · , attiM , ext)

atti+1
2 ∼ p(Att2|atti+1

1 , atti3, · · · , attiM , ext)
...

atti+1
M ∼ p(AttM |atti+1

1 , atti+1
2 , · · · , atti+1

M−1, ext)

Here, ∼ denotes that the left value is sampled from the right distribution. Let

att
(i+1)
\m denote all attack-relation values except attm in the (i + 1)-th iteration, i.e.,

att
(i+1)
\m = (atti+1

1 , atti+1
2 , · · · , atti+1

m−1, att
i
m+1, · · · , attiM ). The right terms of the above

expressions can be written as the following single expression.

p(Attm|att(i+1)
\m , ext) =

p(ext|Attm,att(i+1)
\m )p(Attm)p(att

(i+1)
\m )

p(att
(i+1)
\m , ext)

∝ p(ext|Attm,att(i+1)
\m )p(Attm)

= λAttmm (1− λm)1−Attm
∏
d

θextd
d|Attm,att(i+1)

\m
(1− θd|Attm,att(i+1)

\m
)1−extd .

Here, we used Bayes’ theorem in the first line. The terms irrelevant to Attm are
eliminated in the second line. The remaining terms are expressed with their parameters
in the third line. In the Appendix, we show a Gibbs sampling algorithm for the abstract
argumentation model.

4. Correctness

This section discusses the relation between the abstract argumentation model and
solutions to both of the inverse and forward problems of the abstract argumentation.
We show that a solution to the inverse problem is equivalent to a maximum likelihood
(ML) estimate, and that a solution to the forward problem is equivalent to an ML
prediction. We next discuss the finding that the ML estimate and prediction are both
special cases of probabilistic inference on the abstract argumentation model. Finally,
we show experiments on the inverse problem, using a synthetic dataset.

4.1. Solutions to Inverse Problems

For simplicity, we do not distinguish attack relation att ⊆ arg×arg and value sequence
att of attack-relation variables when (Att(a,b) = 1) ∈ att iff (a, b) ∈ att and (Att(a,b) =
0) ∈ att iff (a, b) /∈ att, for all a, b ∈ arg. Similarly, we do not distinguish extension
set S ⊆ Pow(arg) and value sequence ext of extension variables when (Exts = 1) iff
s ∈ S and (Exts = 0) iff s /∈ S, for all s ∈ Pow(arg).

Given extensions ext, an attack relation âtt is known as an ML estimate if it
satisfies the following equation.

âtt = arg max
att

p(ext|att)
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Recall that a semantics ε, a set arg of arguments and a known attack relation ãtt
are all arbitrary but fixed. The following two theorems state that a solution to the
inverse problem is an ML estimate in M, but not vice versa.

Theorem 4.1. Given extensions ext, if attack relation att is a solution to the inverse
problem then att is an ML estimate in M.

Proof. See the Appendix.

The converse of Theorem 4.1 does not hold in general.

Proposition 4.2. Given extensions ext, if attack relation att is an ML estimate in
M then att is not necessarily a solution to the inverse problem.

Proof. It is enough to show a counterexample. Given ext = {∅, {a, b}} and ãtt = ∅,
there is an ML estimate att(a,b) since p(ext|ãtt, att(a,b)) ≥ 0 holds for any att(a,b).
However, it is never a solution to the inverse problem since there is no attack relation
of which ext is the set of extensions.

These two theorems imply that a solution to an ML estimate is weaker than that of
an inverse problem. Here, ‘weak’ does not mean ‘worthless’. The weakness of an ML
estimate allows us to consider the presence of noise and the multiplicity of solutions.

Example 4.3. Let arg = {a, b}, ext = {∅, {a, b}} and ãtt = ∅. Given ext, there is no
solution to the inverse problem as no attack relation yields ext. However, (Att(a,b) =
1, Att(b,a) = 1) is the ML estimate because we have

p(Ext∅ = 1, Ext{a,b} = 1|Att(a,b) = 0, Att(b,a) = 0) ∝ θ∅|0,0θ{a,b}|0,0 = 0

p(Ext∅ = 1, Ext{a,b} = 1|Att(a,b) = 1, Att(b,a) = 0) ∝ θ∅|1,0θ{a,b}|1,0 =
1

9

p(Ext∅ = 1, Ext{a,b} = 1|Att(a,b) = 0, Att(b,a) = 1) ∝ θ∅|0,1θ{a,b}|0,1 =
1

9

p(Ext∅ = 1, Ext{a,b} = 1|Att(a,b) = 1, Att(b,a) = 1) ∝ θ∅|1,1θ{a,b}|1,1 =
1

3
.

Here, we assumed the attack parameters λ(a,b) = λ(b,a) = 1/2 and exponential param-
eter θd|att defined with w = 2 and complete semantics.

Example 4.3 shows that the ML estimate is more useful than the solution to the
inverse problem. The reason is that it gives an answer regardless of the presence or
absence of a noise in the observation.

We can benefit more from the model M due to the fact that an ML estimate is
an approximation to the posterior distribution p(Att|ext). Since it is a probability
distribution, it can be written as an N -tuple

p(Att|ext) = 〈p(att1|ext), p(att2|ext), · · · , p(attN |ext)〉,

where N is the number of possible different attack relations. Now, we assume that
the posterior distribution has a sharp peak at an attack relation, denoted by âtt. It
means that âtt is very likely when given the extensions. Under the assumption, we
have p(Att|ext) ' 1 if Att = âtt and p(Att|ext) ' 0 otherwise, where ' denotes an
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approximation. âtt is now expressed as follows.

âtt = arg max
att

p(att|ext) = arg max
att

p(ext|att)p(att)
p(ext)

= arg max
att

p(ext|att)p(att)

Here, âtt is known as a maximum a posteriori (MAP) estimate, which maximises the
posterior probability, i.e., p(âtt|ext).

Next, we further assume that the prior distribution over attack relations is a uniform
distribution. It means that we assume no information about the presence or absence
of attack relations. Let c be a constant such that p(att) = c, for all att. We then have

âtt = arg max
att

p(ext|att)c = arg max
att

p(ext|att).

Here, âtt is known as an ML estimate, which maximises the likelihood function, i.e.,
p(ext|att).

In sum, we saw that a MAP estimate is an approximation to the posterior distri-
bution in the sense that they are equivalent under the assumption that the posterior
distribution over attack relations has a sharp peak. We also saw that an ML estimate
is an approximation to a MAP estimate in the sense that they are equivalent under the
assumption that the prior distribution over attack relations is a uniform distribution.
The following practical implications follow from these facts.

• One should use an ML estimate instead of a non-probabilistic approach because
it gives a solution regardless of the presence or absence of noises in observations.
• One should use a MAP estimate instead of an ML estimate because it allows us to

consider a prior belief on the presence or absence of attacks between arguments.
• One should use the posterior distribution instead of a MAP estimate because it

tells us the uncertainty about the extent to which each attack relation is likely
to be the case.

4.2. Solutions to Forward Problems

We next investigate the relation between modelM and solutions to the forward prob-
lem of the abstract argumentation. Given an attack relation att, set ˆext of extensions
is known as an ML prediction if it satisfies the following equation.

ˆext = arg max
ext

p(ext|att)

The following theorem states that an ML prediction in M is equivalent to a solution
to the forward problem.

Theorem 4.4. Given attack relation att, set ext of extensions is a solution to the
forward problem in M iff ext is an ML prediction with w ≥ 2.

Now, we ask how probabilistic inference on M extends solutions to the forward
problem. To answer this, we derive the solution to the forward problem from the evi-
dence (or marginal likelihood), which is the most general concept given by probabilistic
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inference on M for the forward problem. The evidence is given by

p(Ext) =
∑
att

p(Ext,att) =
∑
att

p(Ext|att)p(att).

Here,
∑

att is the abbreviation for
∑

attm1

∑
attm2

· · ·
∑

attmN
, for all attmn

∈ att where

1 ≤ n ≤ N . Let us assume that the prior distribution over attack relations has a sharp
peak, meaning that there is a very likely attack relation. Let âtt denote the attack
relation. Then, p(Att) ' 1 if Att = âtt and p(Att) ' 0 otherwise. We thus have∑

att

p(Ext|att)p(att) ' p(Ext|âtt).

Here, p(Ext|âtt) is known as a likelihood distribution.
Next, we further assume that the likelihood distribution has a sharp peak, meaning

that there is a very likely set of extensions when given the attack relation. Then,
p(Ext|âtt) ' 1 if Ext = ˆext and p(Ext|âtt) ' 0 otherwise. ˆext is now expressed as
an ML prediction as follows.

ˆext = arg max
ext

p(ext|âtt)

In sum, we saw that the likelihood distribution is an approximation to the evidence
in the sense that they are equivalent under the assumption that the prior distribution
over attack relations has a sharp peak. We then saw that an ML prediction is an
approximation to the likelihood distribution in the sense that they are equivalent
under the assumption that the likelihood distribution has a sharp peak. The following
practical implications follow from these facts.

• There is no positive reason to use an ML prediction instead of a non-probabilistic
approach to solve the forward problem.
• One should use the likelihood distribution instead of an ML prediction because

it tells us the uncertainty about the extent to which each set of arguments is an
extension.
• One should use the evidence instead of the likelihood distribution because it

allows us to discuss extensions caused by more than one uncertain attack relation.

4.3. Experiments

The abstract argumentation model was discussed in terms of a theoretical point of
view in Sections 4.1 and 4.2. In this section, we empirically discuss the correctness
of its solutions to the inverse problems by using synthetic datasets. Each dataset is
generated from the extensions of a randomly generated AF (abstract argumentation
framework) with different assumptions. We add different amounts of noise to the ex-
tensions and then feed the noisy extensions to the abstract argumentation model. The
model predicts the attack relation of the AF. We discuss the correctness of the predic-
tion under different noise levels, acceptability semantics, numbers of arguments and
restrictions on attack relations.

A noise is either subtractive or additive. A noise is subtractive if it causes a subtrac-
tion of random sets of arguments from the set of the extensions. A noise is additive
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if it causes an addition of random sets of arguments to the set of extensions. As the
constant w of the exponential parameter becomes larger, the likelihood distribution
becomes sharper. It generally contributes to the convergence of the attack-relation
distribution. However in practice, large w often causes division by zero in probabilistic
inference. The occurrence of the error depends on the cardinality of the dataset, which
is affected by the noise types and levels. We manually set a large enough w that does
not cause the error, for all noise types and levels. We introduce no prior knowledge
about the presence of an attack relation. We thus assumed the uniform prior distri-
butions over attack relations. We assumed the number of iterations I = 500 and the
burning period B = 0 in the approximate inference.

A true positive example is a positive example correctly classified as being positive
whereas a true negative example is a negative example correctly classified as being
negative. A false positive example is a negative example incorrectly classified as being
positive whereas a false negative example is a positive example incorrectly classified as
being negative. TP, TN, FP and FN denote the numbers of true positive examples, true
negative examples, false positive examples and false negative examples, respectively.
Accuracy, precision and recall are defined as follows.

Accuracy =
TP + TN

TP + FN + FP + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-measure is defined as the harmonic mean of precision and recall.

F -measure = 2× Precision×Recall
Precision+Recall

F-measure is more appropriate than accuracy, as the data (on the presence or absence
of attacks) used to generate the dataset is skewed in our experiments. Figure 5 shows
the average expected values or the average values of the F-measure of ten synthetic
datasets. The top left figure allows us to compare different estimations available in
the abstract argumentation model. For example, each F-measure value on the curve
with the caption ‘Bayes & Stable’ was obtained by using the posterior attack-relation
distribution estimated by using stable semantics. Each F-measure value on the curve
with the caption ‘MAP & Complete’ was obtained by using the attack relation with a
MAP estimated by using complete semantics. Each dataset was generated from an AF
with an argument set with the cardinality of ten and a symmetric and irreflexive attack
relation with the cardinality of ten. It is observed that the use of stable semantics still
keeps the F-measure values of over 0.8 given the datasets with the noise of 40%.
Complete semantics is inferior to stable semantics in the F-measure and there is a
difference between the Bayesian and MAP estimations with complete semantics. The
result suggests that a relatively large number of data on complete semantics makes
the posterior distribution difficult to converge.

The top right figure in Figure 5 allows us to compare the F-measure values on
different numbers of arguments. Given stable semantics, each F-measure value on the
curve with the caption ‘10 args & Bayes’ was obtained by using the posterior attack-
relation distribution on ten arguments. It is thus equivalent to the curve with the
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caption ‘Bayes & Stable’ shown on the top left figure in Figure 5. Each F-measure
value on the curve with the caption ‘15 args & MAP’ was obtained by using the
attack relation with a MAP probability on fifteen arguments. Each dataset on ten
(resp. fifteen) arguments was generated using stable semantics and an AF with an
argument set with the cardinality of ten (resp. fifteen) and a symmetric and irreflexive
attack relation with the cardinality of ten (resp. fifteen).

The bottom left figure in Figure 5 allows us to compare the effects of the subtractive
noise and additive noise. As the noise becomes heavier, the F-measure values in the
subtractive noise become worse than the ones in the additive noise. The reason is
that the increase in the subtractive noise is equivalent to the approach to the empty
dataset, which provides nothing with the model. Each dataset was generated using
stable semantics and an AF with an argument set with the cardinality of fifteen and
a symmetric and irreflexive attack relation with the cardinality of fifteen.

The bottom right figure in Figure 5 allows us to compare the F-measure values in the
prediction of attack relations with and without symmetricity. Each dataset was gener-
ated using stable semantics, subtractive noises and an AF with an argument set with
the cardinality of ten and an irreflexive attack relation with or without symmetricity,
with the cardinality of ten. The result shows that the abstract argumentation model is
totally useless for the prediction of an attack relation without symmetricity. The rea-
son is that, as discussed in Proposition 2.5, there are generally multiple AFs resulting
in the same set of extensions when the attack relations are not symmetric. In practice,
this causes the divergence of the posterior distribution in the approximate inference.

4.4. Application Example

Figure 6 shows data, denoted by D, about the acceptability of arguments. We manually
extracted the ten arguments from an online forum.4 We then showed the ten arguments
to twenty-nice individuals and collected their sentiments regarding the acceptability of
each argument anonymously. The input to Algorithm 1 is as follows: ext = D, ε = c,
w = 100, λ{a,b} = 0.5 for all arguments a and b, I = 100 and B = 0.

Figure 7 shows the all attack relations sampled during one hundred iterations of the
Gibbs sampling procedure. Notably, the algorithm very frequently sampled the first
three attack relations, which all agree the presence of attacks {a, h}, {b, d}, {b, g} and
{c, e}. They are all intuitively reasonable. For {a, h}, a states ‘euthanasia (painless
death) should be allowed by law because doctors should respect patient’s will in medical
treatment ’, and h states ‘patient’s will for death is not enough to apply euthanasia.’
The attack {a, h} would be more straightforward if we consider the following argu-
ments. Indeed, g states ‘it is possible that doctors apply euthanasia when their (i.e.,
patient’s and her family’s) will for euthanasia is confirmed.’ For {b, d}, b states ‘I doubt
doctor’s right to commit a murder ’, and d states ‘only doctors can apply euthanasia
appropriately.’ For {b, g}, b is the same as shown above and g states ‘it is possible that
doctors apply euthanasia.’ For {c, e}, c states ‘... but disagree with the point that one
who applies euthanasia is a doctor ’, and e states ‘it will be scary if there are profes-
sionals for euthanasia.’ Here, it is straightforward from the series of argumentation
that ‘professionals’ means professionals other than doctors.

4See Appendix for the textual contents of the ten arguments.
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Figure 5. The average expected values or average values of the F-measure, which shows the correctness of

predictions in the inverse problems. The horizontal axes are the amounts of noises in percentage.

5. Conclusions and Discussion

This paper provided an abstract argumentation model that gives broad views of solu-
tions to the forward and inverse problems of the abstract argumentation. Given sets of
acceptable arguments, the inverse problem is to find attack relations that explain the
acceptability in terms of the acceptability semantics. It is the inverse of the forward
problem that is the traditional problem; aiming to find the acceptability of arguments
from an attack relation by using the acceptability semantics. We showed that solu-
tions to the inverse and forward problems are equivalent to an ML estimation and ML
prediction available in the model, respectively. They are special cases of the posterior
distribution and the evidence, respectively, which are both obtained by probabilistic
inference on the model.

From a statistical point of view, our abstract argumentation model is called a mix-
ture model as it is a sequential combination of two types of distributions; one for
attack relations and the other for extensions. Following the abstract argumentation,
our model assumes that all extensions are generated from the same attack relation. It
is different from the typical model, e.g., the mixtures of Bernoulli distributions and
Gaussian distributions (Bishop, 2006). Indeed, it assumes that each element of the
child distribution can be generated from a different element of the parent distribution.

22



Figure 6. Twenty-nine anonymous participants’ sentiments regarding acceptability of ten individual argu-

ments on active euthanasia. Each white and grey cell denotes that the participant agrees and disagrees the
argument respectively.

Besides, a random variable is assigned to each pair of arguments in the abstract ar-
gumentation model. We could have assigned a random variable to a directed graph,
i.e., an attack relation on the set of arguments. Such a model and the abstract argu-
mentation model behave in exactly the same way in the exact probabilistic inference.
However, we decided to use the latter as a Gibbs sampling method is not available in
the former.

The past two decades in the field of computational argumentation in AI have wit-
nessed an intensive study of acceptability semantics and dialectical proof theories.
They give various interpretations and derivations of the acceptability of arguments
when argumentative knowledge is represented as argumentation frameworks, e.g.,
(Amgoud, 2009; Baroni et al., 2005; Bench-Capon, 2002; Caminada, 2006; Cayrol
and Lagasquie-Schiex, 2005; Coste-Marquis et al., 2005; Dung et al., 2006; Leite and
Martins, 2011; Modgil and Luck, 2009; Verheij, 1996). On the other hand, another
emerging research direction is to find, complement or revise an argumentation frame-
work from the acceptability of arguments, e.g., (Kido, 2018; Kido and Okamoto, 2017;
Niskanen et al., 2016, 2018, 2019; Riveret and Governatori, 2016). In particular, the
authors (Kido, 2018; Kido and Okamoto, 2017) introduce a generative model of ac-
ceptability of arguments into computational argumentation and use it to solve an
inverse problem of the abstract argumentation. The generative model formalises the
inferential process by which acceptability of arguments is probabilistically generated
from attack relations by following the acceptability semantics. The term ‘inverse prob-
lem’ the authors introduced in (Kido and Liao, 2019) is gaining popularity, e.g., see
(Nir Oren et al., 2022). However, since the generative model lacks generality, it is still
not clear what kinds of general problems should be solved and what kinds of problems
can be solved based on the idea of generative models. In Section 2, we thus defined
the forward and inverse problems of the abstract argumentation as the problems to
be solved and discussed in the presence of noise. In Section 3, we then gave a simple
but general generative model for the solutions to the problems. In Sections 4.1 and
4.2, we statistically characterised the properties of the solutions provided by proba-
bilistic inference on the generative model. We finally demonstrated its applicability in
argumentation mining in Sections 4.3 and 4.4.

To the best of our knowledge, this paper for the first time offers a general discussion
about a generative model of acceptability of arguments in the context of computational
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Figure 7. Sampled attack relations versus the number of samples.

argumentation. The inverse problem cannot be solved properly without the theory of
the forward problem. This paper thus also contributes to finding another value of these
formalisms of the forward problem for their inverse problems. From a data science point
of view, a weakness of the study of the abstract argumentation, and of symbolic AI
in general, is the knowledge acquisition bottleneck on how to acquire knowledge from
data. This is because, in general, a knowledge representation is not what one assumes,
but what one wants and can obtain as a result of problem analysis. The input to
the inverse problem, in practice, is a set of sentiments regarding the acceptability of
arguments. In contrast to an attack relation required in the forward problem, it is
unstructured data and thus it can be collected from the web more easily, e.g., via
votes in various social networking services.

At the same time, the most important future work for practical applications is
the scalability of the abstract argumentation model. We implemented the Gibbs sam-
pling algorithm for approximate probabilistic inference on the abstract argumentation
model. However, our model still cannot handle hundreds or thousands of arguments in
the inverse problem. The most promising approach would be a stochastic block model,
which is a statistical approach to graph and digraph clustering. The key idea is that
the probability distribution over an edge between two nodes is assumed to depend
only on the probability distribution over an edge between the latent groups to which
they belong. Here, the number of latent groups is assumed to be much smaller than
the number of nodes. It is worthwhile investigating whether the idea is effective in the
inverse abstract argumentation problem. The abstract argumentation model serves as
a basis for developing the stochastic block model of the abstract argumentation.
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Appendix A. Proofs of Theorems

Proposition 2.5. This directly follows from the fact that, for any two abstract argu-
mentation frameworks AF1 and AF2 with the same set of arguments, and symmetric
and irreflexive attack relations, if ε(AF1) = ε(AF2) then AF1 = AF2 for any semantics
except grounded semantics. As for grounded semantics, it is obvious because the empty
set is the grounded extension of any AFi (i = 1, 2) with a symmetric non-empty attack
relation. For the remaining semantics, since AFi is symmetric and irreflexive, it can be
regarded as an undirected graph without self-loop where a node and an edge represent
an argument and an attack between arguments, respectively. For all independent sets
S of this graph, S is an admissible set of AFi. There is thus a set T ⊇ S such that T
is a preferred extension AFi. Since AFi is symmetric, a set of arguments is a preferred
extension if and only if it is a stable extension. It is moreover obvious that a preferred
extension is a complete extension. If AF1 6= AF2 then the set of independent sets of
AF1 does not coincide with that of AF2. Therefore, the set of preferred extensions of
AF1 does not coincide with that of AF2.

Proposition 3.6. Let f be the normalized exponential function. We then have

lim
w→∞

f(x) = lim
w→∞

wx−|arg| − 1
w|arg|

1− 1
w|arg|

= lim
w→∞

wx−|arg| =

{
1 x = |arg|
0 otherwise.

Proposition 3.7. Let f be the normalized exponential function. Using l’Hôpital’s
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rule, we have

lim
w→∞

f(x) = lim
w→1

wx − 1

w|arg| − 1
= lim

w→1

xwx−1

|arg|w|arg|−1
=

x

|arg|
.

Theorem 4.1. Let ãtt be an arbitrary attack relation. ext can be divided into four
disjoint sets.

ext11 = {(Extd = 1) ∈ ext|d ∈ ε(arg, ãtt ∪ att)}
ext10 = {(Extd = 1) ∈ ext|d /∈ ε(arg, ãtt ∪ att)}
ext01 = {(Extd = 0) ∈ ext|d ∈ ε(arg, ãtt ∪ att)}
ext00 = {(Extd = 0) ∈ ext|d /∈ ε(arg, ãtt ∪ att)}

Since acceptability is independent and identically distributed, we have

p(ext|ãtt ∪ att)
= p(ext11|ãtt ∪ att)p(ext10|ãtt ∪ att)p(ext01|ãtt ∪ att)p(ext00|ãtt ∪ att)
=

∏
extd1∈ext11

θd1|ãtt∪att

∏
extd2∈ext10

θd2|ãtt∪att

∏
extd3∈ext01

(1− θd3|ãtt∪att)∏
extd4∈ext00

(1− θd4|ãtt∪att).

Since att is a solution to the inverse problem, i.e., ext = ε(arg, ãtt ∪ att), ext11 ∪
ext00 = ext and ext01 ∪ ext10 = ∅ holds. We thus have

p(ext|ãtt ∪ att) =
∏

extd1∈ext11

θd1|ãtt∪att

∏
extd4∈ext00

(1− θd4|ãtt∪att).

Now, any attack relation that is not a solution to the inverse problem causes a shift
of an element from ext11 to ext10 or ext00 to ext01. However, this never makes the
probability higher. This is because θd1|ãtt∪att > θd2|ãtt∪att and (1− θd4|ãtt∪att) > (1−
θd3|ãtt∪att) hold from Definition 3.5 where θd1|ãtt∪att = 1, θd2|ãtt∪att < 1, θd3|ãtt∪att =

1 and θd4|ãtt∪att < 1 hold.

Theorem 4.4. (⇒) ext can be divided into four disjoint sets.

ext11 = {(Extd = 1) ∈ ext|d ∈ ε(arg, att)}
ext10 = {(Extd = 1) ∈ ext|d /∈ ε(arg, att)}
ext01 = {(Extd = 0) ∈ ext|d ∈ ε(arg, att)}
ext00 = {(Extd = 0) ∈ ext|d /∈ ε(arg, att)}
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Since acceptability is independent and identically distributed, we have

p(ext|att) = p(ext11|att)p(ext10|att)p(ext01|att)p(ext00|att)
=

∏
extd1∈ext11

θd1|att
∏

extd2∈ext10

θd2|att
∏

extd3∈ext01

(1− θd3|att)∏
extd4∈ext00

(1− θd4|att).

Since att is a solution to the forward problem, ext = ε(arg,att) holds. Thus, ext11∪
ext00 = ext and ext01 ∪ ext10 = ∅ holds. We thus have

p(ext|att) =
∏

extd1∈ext11

θd1|att
∏

extd4∈ext00

(1− θd4|att) (A1)

Now, any acceptability that is not a solution to the forward problem causes a shift
of an element from ext11 to ext01 or ext00 to ext10. However, this never makes
the probability higher because θd1|att > (1 − θd3|att) and (1 − θd4|att) > θd2|att hold.
This is because, from Definition 3.5, if w ≥ 2 holds then θd1|att = 1, θd2|att < 0.5,
θd3|att = 1 and θd4|att < 0.5 hold. Here, we prove θd|att < 0.5 holds if d /∈ ε(arg,att)
and w ≥ 2, as follows. Let d be a set of arguments such that there is, at best, an
extension e ∈ ε(arg, att) satisfying |sim(d, e)| = |arg| − 1. Here, we do not need to
think of |sim(d, e)| < |arg| − 1 because of the monotonicity of θd|att. We then have

θd|att =
w|arg|−1 − 1

w|arg| − 1
=

1

w

w|arg| − w
w|arg| − 1

2θd|att =
2

w

w|arg| − w
w|arg| − 1

.

Now, 2θd|att < 1 holds, for all w ≥ 2. Indeed, if w = 2 then 2/w = 1 and (w|arg| −
w)/(w|arg|− 1) < 1 hold. If w > 2 then 2/w < 1 and (w|arg|−w)/(w|arg|− 1) < 1 hold
as well.

(⇐) We show that if ext is not a solution to the forward problem then it does not
maximize the likelihood of ext. We do not need to consider the case where there is
no solution to a forward problem because it does not satisfy the antecedent. If ext
is not a solution then ext11 ∪ ext00 ⊂ ext and ext10 ∪ ext01 ⊃ ∅ hold. However,
since a forward problem satisfies the solution uniqueness, there is a unique ext′ such
that ext′11 ∪ ext′00 = ext′ and ext′10 ∪ ext′01 = ∅. Since θd1|att > (1− θd3|att) and
(1− θd4|att) > θd2|att hold in Equation (A1), p(ext′|att) > p(ext|att) holds.

Appendix B. Gibbs Sampling Algorithm

Algorithm 1 shows the Gibbs sampling algorithm for the abstract argumentation
model. Lines 3-10 show how a value of every attack relation is generated based on
the above formula. The algorithm iterates this process I times. In line 12-16, it con-
structs a histogram of the attack relations sampled after B iterations. It finally returns
the normalized distribution of the histogram.
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Algorithm 1 Gibbs sampling for the abstract argumentation model
Require: Observation ext, semantics ε, constant w of the exponential parameters, constant

λm of the attack parameters, iteration number I and burn-in period B
Ensure: Approximation p̂(Att|ext) of the posterior distribution p(Att|ext)

1: Get att(0) by randomly assigning 0 or 1 to all elements of Att
2: for i = 0 to I do
3: for all Attm ∈ Att do

4: prob ← [1− λm, λm] . Compute p(att
(i+1)
m )

5: for all extd ∈ ext do . Compute p(extd|att(i+1)
m ,att

(i+1)
\m )

6: prob[0]← prob[0] · θextd
d|Attm=0,att

(i+1)

\m
(1− θ

d|Attm=0,att
(i+1)

\m
)1−extd

7: prob[1]← prob[1] · θextd
d|Attm=1,att

(i+1)

\m
(1− θ

d|Attm=1,att
(i+1)

\m
)1−extd

8: end for
9: att

(i+1)
m ∼ prob . Generate att

(i+1)
m from p(Attm|att(i+1)

\m , ext)

10: end for
11: end for
12: freq ← ∅
13: for all att ∈ {att(i)|B < i ≤ I} do . Compute an attack relation histogram
14: count← the number of occurrence of att in (att(i)|B < i ≤ I)
15: freq ← freq ∪{(count,att)}
16: end for
17: return (count/(I −B)|(count,att) ∈ freq)

Appendix C. Argument Data

The ten arguments used in our empirical analysis have the following textual contents.
They were presented in this order in (SYNCLON, 2013). We manually extracted and
translated them into English.

a: Laws should not allow euthanasia (painless death) because doctors should respect
patient’s will in medical treatment.

b: Laws should not allow euthanasia. You assume that one who applies euthanasia is
a doctor. I doubt doctor’s right to commit a murder.

c: I agree with you that euthanasia should be allowed by law, but disagree with the
point that one who applies is a doctor. Doctors should always consider the way
to cure diseases.

d: If doctor’s role is only to cure diseases then they can do nothing for patients with
an untreatable disease. I think that medical treatment should consider death more
seriously. Only doctors can apply euthanasia appropriately because they can judge
patients’ physical and mental state accurately.

e: But, it will be scary if there are professionals for euthanasia.
f: I mean that I disagree with the point that doctors encourages a patient to choose

euthanasia. Doctors can help patients with an untreatable disease without encour-
aging them to choose euthanasia. Doctors and patients can lay heads together to
think about how they can live with a disease. This is how doctors can consider
patients’ death.

g: Of course, no one has a right to encourage patients to choose euthanasia. Euthana-
sia can be applied on the basis of the agreement by the patient and her family. I
think it is possible that doctors apply euthanasia when their will for euthanasia
is confirmed.

h: I think that the agreement or confirmation does not show patient’s true will. I
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occasionally wish for death when I have a hard experience. But, it sometimes
comes from a temporary emotion. I am sure that my experience is something
little compared to patient’s sufferance. But, I think that patient’s will for death
is not enough to apply euthanasia.

i: Can you accept legal euthanasia if it is based not only on patient’s will, but also her
family’s will?

j: I cannot accept legal euthanasia even though it is based not only on patient’s will, but
also her family’s will. I cannot accept euthanasia without considering patient’s
physical condition. So, I agree with passive euthanasia.
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