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A B S T R A C T   

Background: A radiology report communicates the imaging findings to the referring clinicians. The rising number 
of referrals has created a bottleneck in healthcare. Writing a report takes disproportionally more time than the 
imaging itself. Therefore, Automatic Radiology Report Generation (ARRG) has a great potential to unclog this 
bottleneck. 
Objectives: This study aims to provide a systematic review of Deep Learning (DL) approaches to ARRG. Specif-
ically, it aims to answer the following research questions. What data have been used to train and evaluate DL 
approaches to ARRG? How are DL approaches to ARRG evaluated? How is DL used to generate the reports from 
radiology images? 
Materials and methods: We followed the PRISMA guidelines. We retrieved 1443 records from PubMed and Web of 
Science on November 3, 2021. Relevant studies were categorized and compared from multiple perspectives. The 
corresponding findings were reported narratively. 
Results: A total of 41 studies were included. We identified 14 radiology datasets. In terms of evaluation, we 
identified four commonly used natural language generation metrics, six clinical efficacy metrics, and other 
qualitative methods. We compared DL approaches with respect to the underlying neural network architecture, 
the method of text generation, problem representation, training strategy, interpretability, and intermediate 
processing. 
Discussion and conclusion: Data imbalance (normal versus abnormal cases) and the inner complexity of reports 
pose major difficulties in ARRG. More appropriate evaluation metrics are required as well as datasets on a much 
larger scale. Leveraging structured representation of radiology reports and pre-trained language models warrant 
further research.   

1. Introduction 

1.1. Background 

Radiology tests based on modalities such as X-ray, ultrasound (US), 
computed tomography (CT), and magnetic resonance imaging (MRI) 
provide detailed insights into the patients’ bodies without them needing 
to undergo invasive explorative surgeries. They can help screening for 
and diagnosis of medical conditions as well as monitoring the response 
to treatments. As such, radiology tests remain the most common types of 
imaging tests. As many as 45.2 million imaging tests were reported in 
England between September 2018 and September 2019, the top four 
tests were the above radiology tests, which accounted for 96% of the 
imaging tests [1]. Before the pandemic in September 2019, more than 

9000 people were waiting for CT and MRI test for at least six weeks. In 
just a year, this number became almost ten times higher [2]. The volume 
of imaging referrals is continually increasing to the point that many 
departments promote the idea of 30–60 min turn-around times in order 
to stay competitive [3]. However, there were only 12.8 radiologists per 
million population in Europe in 2020, and the corresponding number in 
the UK was even smaller [2]. The issues of enormous daily diagnostic 
needs and the lack of radiologists are further aggravated by problems 
such as diagnostic errors [4–6] and interpretation discrepancies be-
tween radiologists and physicians [7]. 

An imaging report represents the most important means of commu-
nication between a radiologist and the referring medical professional, 
both serving an effort to provide a high-quality patient care [8]. Some of 
the most important skills any radiologist needs are observational skills to 
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identify abnormalities, analytical skills to relate observed abnormalities 
to the underlying pathology and communicative skills to convey their 
interpretation clearly to both clinicians and patients [8]. A widespread 
shortage of these skills [9] emphasizes the need for automation in this 
area, which leads us to the task of Automatic Radiology Report Gener-
ation (ARRG). 

1.2. The goal of ARRG 

ARRG is a specific application of Automatic Image Captioning (AIC) 
in the medical radiology domain. As a form of image-to-sequence gen-
eration, AIC relies on understanding images such as scenes, objects, 
object properties, and their interactions; and producing textual de-
scriptions that are both syntactically and semantically sound [10]. 
ARRG focuses solely on radiology images, with an emphasis on recog-
nizing normal and abnormal appearances and describing them accu-
rately and comprehensively. According to Kaur et al. [7], a high-quality 
automated radiology report should 1) be clear, concise, and structured 
for the referring clinician to read effortlessly; 2) be complete regarding 
positive and negative observations; 3) prioritize the observations; 4) use 
uniform language (medical terminology) to prevent ambiguity; 5) follow 
the conventional report format used by radiologists. 

To achieve this, attempts in this field involve generating narrative 
reports [11–14] and structured reports [15–17], and retrieving appro-
priate sentences from pre-constructed retrieval databases [18–21], as 
shown in Figs. 1 and 2. We define narrative radiology reports as direct 
descriptions of all relevant information and diagnostic impressions 
provided by radiologists with free or structured layouts. It is the most 
common report type in publicly available radiology image/text datasets. 
The narrative reports vary excessively in language, length and style, 
which may affect their clarity and hence the referring clinicians’ 
decision-making [22]. These issues gave rise to the idea of structured 
reporting, which has the potential to improve the clarity of radiology 
reports. Structured radiology reports use uniform, standardized, orga-
nized terms to describe the medical content without being affected by 
the reporting style of radiologists [23]. These terms are considered as 
structured report entities that can be easily converted into 
natural-sounding sentences via templates [24], such as a set of tuples 
including anatomy, anatomy qualifier, observation, observation quali-
fier, certainty and negation [25,26] and common data elements for 
radiology [27,28]. However, the existing surveys of ARRG have either 
reviewed only a few studies [29–31] or focused on a narrower scope [7], 
and none of them took into consideration the structured report gener-
ation, leaving room for a more comprehensive review of this area. 

2. Deep learning approaches to ARRG 

One of the earliest studies towards ARRG dates back to 2015 when 
Shin et al. [32] trained a deep Convolutional Neural Network (CNN) to 
generate keywords based on CT/MRI images. Later, Shin et al. [33] went 
on to design the first ARRG system, which could generate five keywords 
from chest X-rays concerning disease location, severity, and the affected 
anatomical sites. In 2018, research on ARRG systems started to gain 
widespread attention [12,14,20,34]. Further details about the evolution 
of relevant techniques are provided in Fig. 1. 

The ARRG models typically rely on Deep Learning (DL) approaches, 
which have shown promising results in AIC [10]. DL techniques enable 
the models to capture complex patterns and relationships directly from 
raw data. In contrast, non-DL approaches, such as conventional machine 
learning, necessitate manually engineered features to develop mathe-
matical or statistical models for pattern recognition [35]. The design and 
extraction of such features require domain knowledge [36], resulting in 
the formation of multi-disciplinary knowledge barriers. Today, non-DL 
approaches are rarely used as standalone methods in ARRG [37]. 
Instead, they are often employed in combination with DL methods by 
which the features are extracted to avoid the time-consuming manual 
feature engineering [18–21]. 

On the other hand, there is increasing literature showing that DL 
plays an important role in many single-modality tasks in healthcare, 
such as understanding and interpreting health records [38,39], and 
handling various medical imaging tasks (e.g. image segmentation) [40]. 
However, as a multi-modality generative task that involves computer 
vision [41], Natural Language Processing (NLP) [42] and medical image 
analysis [43], ARRG is a computationally challenging problem. To 
comprehensively discuss the DL approaches in ARRG, this review is 
conducted from three key aspects, including training datasets, model 
designs and evaluation methods, which correspond to the targets, ap-
proaches, and outcomes of the model training, respectively. 

3. Materials and Methods 

This review was conducted in accordance with the Preferred 
Reporting Items for Systematic Review and Meta-Analyses (PRISMA) 
2020 statement [44]. The main aim of this study is to systematically 
review DL approaches to ARRG in order to answer the following 
Research Questions (RQs). 

RQ1: What data have been used to train and evaluate DL approaches 
to ARRG? 

Fig. 1. A diagram showing the hieratical relationships between ARRG methods, framework, and architectures (left) and a timeline in terms of the milestones of the 
technologies involved in ARRG (right). 
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RQ2: How is DL used to generate the reports from radiology images? 
RQ3: How are DL approaches to ARRG evaluated? 

RQ1 aims to identify the key properties of data used to train and 
evaluate DL approaches to ARRG. These properties include imaging 
modalities used, anatomical sites involved, the internal structure of the 
reports, their labels and basic statistical properties. RQ2 describes the 
methods used to solve the problem of ARRG. This question is concerned 
with the way in which ARRG can be represented formally by mapping it 
onto a set of relevant computational problems (e.g. object detection, 
multi-label classification, text generation) so that any future research on 
ARRG can consider relevant literature that can be useful for but is not 
strictly limited to the ARRG. More importantly, it addresses the way in 
which they are integrated into a DL framework to support ARRG. 
Finally, RQ3 focuses on the evaluation methods for ARRG. The multi-
modal nature of this problem makes it difficult to compare the effec-
tiveness of different approaches, thus highlighting the need for a 
comprehensive evaluation framework. 

The scope of the review is defined by a set of inclusion and exclusion 
criteria described in Table 1. Relevant studies were identified from two 
scientific databases, Web of Science [45], which comprises 171 million 
citations in various academic disciplines, and PubMed [46], which in-
dexes more than 33 million citations on the subject of biomedical and 
life sciences. The process of constructing the search query is shown in 
Table 2. The query is built on top of three facets: “deep learning”, “text 
generation”, and “radiology”. They correspond to the method, target, 
and application area of ARRG, respectively. The three facets were 
combined into a Boolean search query using the AND operator. 

4. Results 

4.1. Study selection 

The search conducted on November 3, 2021, returned a total of 1443 
records. All titles and abstracts were screened by two independent re-
viewers (Y.L., I.S.), achieving high interrater agreement measured by 
Cohen’s kappa coefficient (K = 0.844, n = 1443) [47]. All disagreements 
were resolved by the third independent reviewer (H.L.). One reviewer 
(Y.L.) reviewed the full text of the 34 candidate studies. The inspection 
of their references revealed 21 additional studies, which were added to 
the pending list for full-text reviewing. Any uncertainties were resolved 
by discussion (Y.L., I.S., H.L.). Ultimately, a total of 41 studies were 
included. The selection process and its outcomes are summarized in 
Fig. 3. Data were extracted by one reviewer (Y.L.). After deeming 
meta-analysis not applicable to this review due to the heterogeneity of 
training data and evaluation methods, we conducted a narrative syn-
thesis of the main findings. 

4.2. RQ1: Data 

The quality of training data is an important factor affecting the 
performance of DL models. Table 3 summarizes publicly available 

Fig. 2. Overview of the ARRG system workflow.  

Table 1 
Inclusion and exclusion criteria.  

No. Inclusion Criteria 

1 Studies that use DL to generate radiology reports or labels (structured report 
entities) but only if the labels contain sufficient information allowing them to 
be easily expanded into a full report. 

2 Studies that apply data fusion of radiology images and radiology reports as 
part of training. 

No. Exclusion Criteria 

1 The text of the radiology report (either input or output) is written in a 
language other than English. 

2 Studies that are not original research, e.g. a review. 
3 Studies that have not undergone scrutiny procedures, e.g. peer review.  

Table 2 
Search queries for PubMed and Web of Science.  

Query PubMed Web of Science 

1 ("deep learning"[All Fields] OR 
"neural networks"[All Fields]) 

(deep learning OR neural 
networks) 

2 ("natural language processing"[All 
Fields] OR NLP[All Fields] OR 
"natural language generation"[All 
Fields] OR (("report*" OR "finding*" 
OR "text") AND "generat*") OR 
("image*" AND ("reporting" OR 
"captioning"))) 

(natural language processing OR 
natural language generation OR 
((report$ OR finding$ OR text) 
NEAR/10 (generat*)) OR (image$ 
NEAR/10 (reporting OR 
captioning))) 

3 (radiology[All Fields] OR 
radiography[All Fields] OR 
"computed tomography"[All Fields] 
OR CT[All Fields] OR "positron 
emission tomography"[All Fields] 
OR PET[All Fields] OR "magnetic 
resonance imaging"[All Fields] OR 
MRI[All Fields] OR X-ray[All Fields] 
OR ultrasound[All Fields] OR 
fluoroscopy[All Fields] OR 
mammography[All Fields] OR 
"nuclear medicine"[All Fields]) 

(radiology OR radiography OR 
computed tomography OR CT OR 
positron emission tomography OR 
PET OR magnetic resonance 
imaging OR MRI OR X-ray OR 
ultrasound OR fluoroscopy OR 
mammography OR nuclear 
medicine)  
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datasets used to train the ARRG systems. The imaging data were 
generated using four prevalent modalities, including X-rays, CT, MRI, 
and US. Some of the report have no specific structure, some are semi- 
structured by sections by means of headings, while others are fully 
structured as tuples, which can be extended into full reports by either 
rule-based or DL approaches [48]. Fig. 4 provides an example of a chest 
X-ray study, where the findings and impression are typically the primary 
targets for ARRG. The findings section describes a radiologist’s obser-
vations regarding different regions in the image, whereas the impression 
section summarizes these observations. A comprehensive list of head-
ings is provided in Fig. 5. 

Some of the datasets used in the reviewed studies were not publicly 

available or were found not to be appropriate for the ARRG tasks when 
used on their own. For example, ChestX-ray8/ChestX-ray14 [77] and 
CheXpert [78] contain only diseases labels rather than reports, which 
were typically used to pre-train [20,21,51,54,56,62,65,68] or fine-tune 
[61] a model, or used in combination with other datasets [34,58]. Other 
datasets used in the included studies were not publicly available, 
including MRI datasets [17,79,80], US datasets [11,81–83], a chest 
X-ray dataset [84], and a mammography dataset [71]. 

Fig. 3. PRISMA flow diagram of search strategy and study selection.  

Table 3 
A summary of publicly available radiology image/text datasets used in training the ARRG systems.  

Dataset Image Text Used by 

Modality Size Format Type Size Type Report 
Format 

Description 

IU X-ray 
(2016) [49] 

Chest X-ray 7470 PNG, 
DICOM 

Frontal and 
lateral views 

3955 Semi- 
structured 
reports +
MeSH tagsa 

XML The reports mainly contain 
four headings: comparison, 
indication, findings, 
impression. 

[11–14,19–21,33, 
34,50–65] 

MIMIC-CXR 
(2019) [66, 
67] 

Chest X-ray 377,110 JPEG, 
DICOM 

Frontal and 
lateral views 

227,835 Semi- 
structured 
reports +
Labels 

TXT The reports mainly contain 
seven sections as in Fig. 5. 
The labels are automatically 
mined. 

[13,16,18,19,59, 
63,68,69], 
[57] 
(generalisation 
measurement) 

INbreast 
(2012) [70] 

Mammography 410 DICOM CC and MLO 
viewsb with 
contours 

117 Free-text 
reports +
Labels 

TXT The labels consist of 
annotations and classification 
labels of lesions. 

[71] 

DeepLesion 
(2018) [72] 

CT 32,120 PNG CT slides with 
32,735 lesion 
bounding boxes 

22,842 Structured 
reports 

Not 
available 

The reports consist of 171 
unique labels cover organs, 
lesions, and the corresponding 
shape, size, location. 

[15,73] 

Liver CT 
Annotation 
(2015) [74] 

Liver CT 50 MAT 3D CT images 
with liver masks 
and bounding 
boxes 

50 Structured 
reports 

RDF The reports consist of 73 
classification questions with 
either a close-ended answer or 
an open-ended numerical/ 
narrative answer. 

[75] 

PEIR Gross 
(2018) [12] 

21 categories 7442 JPEG Pathology 
images 

7442 Free-text 
reports 

Plain text Short captions. [12] 

Note: If not specified, the annotations of images and text (e.g. bounding boxes, labels and reports) were manually generated by radiologists. 
a MeSH [76] is a biomedical and health-related thesaurus, in which the terms are hierarchically organized and have synonyms. 
b Craniocaudal (CC) view and mediolateral oblique (MLO) view. 
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4.3. RQ2: Deep learning approaches 

4.3.1. Overview of frameworks, network architectures, and techniques 
ARRG is a branch of AIC applied in radiology. The majority of ARRG 

models were derived from one or more AIC models and were further 
enhanced to meet specific application requirements. This section gives a 
broad overview of the fundamental frameworks, architectures, and 
techniques involved in the ARRG models to help researchers build a 
general picture regarding ARRG. We refer the reader to the recent AIC 
review study for the details [10]. 

4.3.1.1. Frameworks for developing ARRG models 
4.3.1.1.1. Encoder-decoder framework. The encoder-decoder archi-

tecture is a basic framework for developing DL-based, end-to-end AIC 
models [10]. It was originally introduced for sequence-to-sequence 
generation [85] and later adopted for image-to-sequence generation in 
the AIC field [86]. This framework consists of two core components: a 
visual encoder that extracts image features and a textual decoder that 
learns the mapping from the image representation to text representation 
and consequently generates sequences. In ARRG, the generated se-
quences may consist of narrative words [11–14,20,21,34,50–52,54–65, 

69,71,81–83] or structured report entities [15–17,33,53,68,73,75,79, 
80,87,88]. Moreover, the encoder and decoder can be implemented by 
different network architectures, as shown in Fig. 1. For example, 
CNN-RNN architecture [11,33,34,53,65,68,71,81–83] is one of the 
implementations, of which CNN serves as the encoder and RNN serves as 
a decoder. 

4.3.1.1.2. Retrieval framework. A less commonly seen framework in 
ARRG is the retrieval framework, which has no fixed architecture 
[18–21]. The key concern of using this framework is the design of 
retrieval methods that match the extracted image feature to corre-
sponding sentence templates, which raises two other considerations – 
the methods for visual feature extraction and the construction of tem-
plate databases for retrieval. We identified four retrieval methods in 
ARRG, including computing cosine similarity between the visual em-
beddings of images and choosing the corresponding sentences [19]; 
aligning the visual and semantic features and computing the 
visual-semantic similarities via an attention-weighted sum of squared 
l2-normalized Euclidean distance [18]; treating sentence selection as a 
multi-label classification problem [21]; or training an agent to retrieve 
sentence via reinforcement learning [20]. 

4.3.1.1.3. Other frameworks. Some researchers have approached the 

Fig. 4. An example of radiology images with the corresponding report from the MIMIC-CXR dataset [66].  

Fig. 5. The common sections (the inner circle) and a few corresponding headings (the outer circle) in semi-structured reports. Extracted from the MIMIC-CXR 
dataset [66]. 
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ARRG problem by transforming it into a multi-label classification 
problem, using various frameworks [15–17,73,75,79,80,87]. These 
frameworks can be divided into two broad categories, one of which is 
utilizing CNN-based methods for fine-grained label classification [15,16, 
73,75,80,87], while the other leverages Generative Adversarial Network 
(GAN)-based methods for classification accompanied by image seg-
mentation [17,79]. The generated labels are pre-designed structured 
report entities that can be easily compiled into narrative reports via 
different approaches, such as using pattern matching [16], decision trees 
[80,87], and symbolic logic reasoning [17]. 

4.3.1.2. Network architectures used in ARRG model frameworks 
4.3.1.2.1. Convolutional Neural Network (CNN). CNNs are feed- 

forward neural networks with convolution layers that operate on adja-
cent pixels to extract features from images, such as edges, shapes, and 
textures. In ARRG, CNNs are widely used for visual feature extraction in 
various frameworks. Fig. 6 illustrates the extraction processes, which 
produce two categories of visual features. The first category is global 
image features that are typically extracted using pre-trained CNNs. 
These features could be in the form of a global feature vector from the 
last pooling layer [11,16,19,20,33,50,53,55,57,60,68,71,75,82,83,87] 
or a matrix of spatial image features reshaped from a set of feature maps 
[12,13,17,18,21,34,52,56,58,61–64,69,88], or a combination of both 
[14,54,59]. The spatial feature matrix facilitates the attention mecha-
nism to better attend to various spatial locations [64]. The second 
category is regional image features of areas of interest detected by CNN 
detectors [11,15,51,65,73,81]. Apart from serving as visual encoders, 
CNNs can also be used for labelling images, with generated labels either 
used to promote the text generation module to conduct longer reports 
[12,34,50,54,56,60,64,65,71] or compiled into reports if they corre-
spond to informative structured report entities [15,16,73,75,80,87]. 

4.3.1.2.2. Recurrent neural network (RNN). RNN and their variants 
(e.g. LSTM [89] and GRU [90]) can maintain long-range sequential in-
formation in their hidden state, ensuring that each word is generated 
according to its context. In ARRG, they are typically integrated with 

CNNs and responsible for textual decoding, forming the basic CNN-RNN 
architecture [11,33,34,53,65,68,71,81–83]. Moreover, there are two 
modified branches of CNN-RNN architecture, including CNN-SRNN [20, 
55,88] and CNN-HRNN [12,14,52,54,56–61,64]. CNN-SRNN employs 
stacked RNNs (SRNN) as the decoder. Compared with general RNNs, 
SRNN has multiple recurrent hidden layers stacked on top of each other, 
increasing the observation and capture of sequence inputs at different 
time scales, thus allowing a more natural representation of sequence text 
[91,92]. The SRNN structure is also feasible to be integrated into more 
complex CNN-HRNN architecture [14,57,58]. On the other side, 
CNN-HRNN uses hierarchical RNN (HRNN) as the decoder. HRNN stacks 
multiple RNNs in a way that models the hierarchical structure of text 
sequence, enabling it better capturing linguistic features and generate 
longer texts [93]. Generally, text is hierarchically structured into sen-
tences and words. Therefore, the decoding process typically starts with a 
sentence decoder that generates sentence-level semantic features (also 
known as topic vectors), followed by a word decoder that parses the 
topic vector into a sequence of words [12,52,54,60,64]. In addition, the 
radiology report structure also gives rise to a hierarchy that HRNN can 
leverage [14,57,58]. 

4.3.1.2.3. Transformer. The transformer architecture is based on the 
encoder-decoder framework and exclusively employs self-attention 
units [94]. This design makes the training parallelizable, leading to a 
greater computational efficiency, and enable better capture of 
long-range dependencies in sequences. Although the transformer 
encoder and decoder can be split and composited with other architec-
tures, such as CNN encoder or RNN decoder [10], the entire transformer 
architecture is usually connected to a CNN encoder in ARRG [13,62,63, 
69]. More details about the self-attention unit are discussed in Section 
3.3.1.3.3. 

4.3.1.2.4. Generative Adversarial Network (GAN). GAN [95] aims to 
train a generator network that can generate new data resembling a given 
training dataset. This is accomplished through an adversarial training 
process, where an additional discriminator network is introduced to 
work against the generator network. Specifically, the generator network 

Fig. 6. The visual extraction processes of using CNNs. The upper two paths indicate the global feature encoding. The lower path shows the regional feature encoding.  
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is trained to generate realistic data that can evade detection by the 
discriminator network, while the discriminator network is trained to 
distinguish between the generated data and the real data. In ARRG, GAN 
is typically employed for the segmentation of the spinal structures in 
lumbar spine MRI [17,79]. Nevertheless, one study innovatively used 
the inverse mapping of the GAN’s generator instead of the traditional 
CNN encoder for visual extraction [50]. 

4.3.1.3. Techniques to enhance ARRG models 
4.3.1.3.1. Graph structure. The graph is a useful structure for 

explicitly representing the relationships between entities, which consists 
of nodes and edges. Both image and text can be encoded as a graph [21]. 
For example, an image can be converted into a graph by treating pixels 
as nodes and linking adjacent pixel with edges. Similarly, in text, indi-
vidual words can be assigned as nodes and the relationships among 
words can be represented by edges. In ARRG, Graph Neural Networks 
(GNNs) such as the Graph Convolutional Network (GCN) and Graph 
Transformer (GTR) have been utilized to leverage the graph structure 
[21,56]. Fig. 7 shows a simplified framework that incorporates GNNs for 
learning graph representations. In ARRG, graph structures are typically 
designed based on prior knowledge of radiology ontology and con-
structed from corresponding reports [21,56]. Conversely, in AIC, graphs 
are constructed using object detection and relationship prediction [10, 
96] or directly by off-the-shelf scene graph parsers [97,98]. Graph 
structures have also been used to improve the consistency of spinal 
structure classification [17]. In this case, prior knowledge of spinal 
structures was converted into a graph and embedded into the model to 
enable reasoning capabilities. 

4.3.1.3.2. Reinforcement learning (RL). RL is a machine learning 
paradigm that aims to train an agent to interact with an environment 
with optimal actions [99]. In supervised learning, ARRG is commonly 
performed by minimizing the cross-entropy loss via gradient descent, 
allowing the model to fit the data. However, this approach may not 
necessarily allow the model to optimize toward a specific metric of in-
terest. In contrast, RL can directly use metrics as rewards and optimize 
the model by policy gradient, alleviating the discrepancy between the 
model training goal and a given evaluation metric. In ARRG, RL has been 
combined with different architectures, including the CNN-HRNN 

architecture [20,59,61] and CNN-transformer architecture [51], in 
which the REINFORCE algorithm [100] is the most commonly used 
policy-gradient method. When RL is introduced, the ARRG problem is 
redefined as follows: the agent refers to an ARRG model; the environment 
is the input of the model (i.e. the visual features and the input se-
quences); the policy is the model’s parameter; the model’s outputs 
indicate a sequence of actions taken by the agent under the current 
policy; the ground-truth reports define the optimal sequences of actions; 
and the rewards are obtained by comparing the agent’s actions and the 
optimal actions via the target metrics. 

4.3.1.3.3. Attention mechanism. The attention mechanism is a 
method that can combine the elements of distinct feature embeddings 
with different weights according to element-wise correlation rather than 
relying solely on a fixed representation [101,102]. In ARRG, this method 
can be divided into cross-model attention (CMA) [12,14,17,18,20,34, 
52,54,56–61,64,65,68,69,88] and intra-model attention (IMA) [13,21, 
34,51,62,63,69]. The major difference is that the feature embeddings in 
CMA come from distinct models, whereas those in IMA are the same 
embedding from a single model. Furthermore, CMA typically equips the 
soft attention mechanism [101,102] to establish dynamic associations 
between visual features and linguistic features [14,18,34,52,54,56–59, 
61,64,65,68,69,88]. Several soft-attention improvements have been 
proposed in ARRG to capture more information from various aspects, 
such as local semantic attention, which discloses the dependency of local 
visual features and distinct symbolic nodes [17]; multi-attention, which 
refines the visual attention process into channel- and position-level 
processing [52]; and co-attention, which enables the linguistic fea-
tures to simultaneously attend to visual features and predicted label 
features [12,60]. On the other hand, IMA is typically combined with 
CMA, following the transformer architecture [13,21,51,62,63,69]. In 
transformer, both types of attention are based on the scaled dot-product 
attention mechanism (also known as self-attention) [94]; IMA captures 
the internal dependencies of the feature embeddings in the encoder and 
the decode, and the resulting weighted feature representations are 
correlated by the processing of CMA. In addition to the sequential usage 
in the transformer architecture, IMA can also be used in parallel with 
CMA, of which both weighted features are concatenated and used for 
auxiliary classification [34]. Fig. 8 illustrates the common usages of 

Fig. 7. Overview of encoder-decoder framework integrated with GNN for graph embedding. The construction processes of graphs are demonstrated in three cases. 
Case 1 is training a GNN to learn to generate graphs for ARRG [21]. Cases 2 and 3 are found in general image captioning. Case 2 uses pre-defined predictors to extract 
the semantic and spatial relationships from the detected object and forms them in graph structures [96]. Case 3 uses an off-the-shelf graph parser to generate scene 
graphs [97]. 
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CMA and IMA in ARRG. 

4.3.2. Targeting the report generation 
Existing studies have been proposed to address the ARRG problem by 

transforming it into specific DL tasks that cater to different objectives 

and requirements based on the application scenarios (training datasets). 
These approaches have resulted in the development of various ARRG 
models, which can be broadly classified into three categories, as 
depicted in Fig. 9. The most salient features of these ARRG models are 
illustrated in Appendix A. 

Fig. 8. The general structures of ARRG models that utilize attention mechanisms. We use the encoder-decoder framework as examples: (a) without attention 
mechanism; (b) with cross-model attention; (c) with intra-model attention; (d) with both cross- and intra-model attention n. 

Y. Liao et al.                                                                                                                                                                                                                                     



Informatics in Medicine Unlocked 39 (2023) 101273

9

4.3.2.1. Narrative report generation 
4.3.2.1.1. Simple clinical caption. Narrative report generation is the 

most prevalent objective of ARRG models. However, the expected forms 
of the generated reports would affect the choice of the model architec-
ture. In the case of generating US reports, which tend to be short de-
scriptions or voice-over captions explaining the image, the 
corresponding ARRG models are designed using a simple CNN-RNN 
architecture [11,81–83]. CNN-RNN-Merging [83] simply concatenated 
the feature vectors of the CNN encoder and RNN decoder and passed 
them to a fully connected layer to predict the following words. 
HCNN-RNN [82] proposed an ensemble of multiple CNNs to cope with 
their multi-class dataset. FRCNN-RNN [81] and SFNet [11] captured the 
location and semantic information of focus areas, producing overall 
representations that were subsequently concatenated with text features 
for report generation. Notably, SFNet fused the features of focus areas at 
a different time node, achieving better accuracy of pathological infor-
mation when generating reports. 

4.3.2.1.2. Long coherent report. The need to generate longer 
coherent reports is more commonly seen in ARRG. For this reason, it is 
necessary to improve the simple CNN-RNN architecture designed for 
AIC. To achieve this, CNN-MSRNN [55] proposed using three stacked 
LSTMs to substitute the general RNN decoder. This model performed 
better in generating reports for normal samples than for abnormal 
samples. Furthermore, CNN-HRNN-MultiAtt [52] adopted the 
CNN-HRNN architecture and proposed a multi-step attention mecha-
nism which decomposed the single-step visual attention into the chan-
nel- and position-level processing. 

Apart from the traditional encoder-decoder architecture, recent 
studies have explored the use of transformer-based methods. Both 
MemoryDrivenTR [13] and DSTR [69] implemented a transformer 
encoder for the secondary encoding of visual features and followed by a 
transformer decoder for report generation. Moreover, MemoryDrivenTR 
used a memory mechanism to enhance the transformer decoder, while 
DSTR utilized extract disease labels to fine-tune the model to improve 
the clinical coherence of the report. CDGPT2 [62] and ConsecutiveTR 
[63] directly employed large language models pre-trained using the 
transformer architecture as the decoders. Additionally, ConsecutiveTR 
added an intermediate process to perform an abstract transformation 
from image features to high-level reporting context. The Natural Lan-
guage Generation (NLG) scores reported in the original studies [13,62, 
63,69] suggested that ConsecutiveTR and MemoryDrivenTR had similar 

performance, whereas CDGPT2 and DSTR also had similar performance 
but worse than the former two. 

Other studies have combined RL with the above architectures to 
address this task. CMAS [61] and CNN-HRNN-RL [59] were based on the 
CNN-HRNN architecture, while RTMIC [51] used a CNN-transformer 
architecture. Among them, HRGR-Agent and RTMIC used CIDEr as re-
wards, while CMAS used BLEU-4 as the basis for rewards. 
CNN-HRNN-RL also incorporated a novel reward regarding clinical 
efficacy. 

4.3.2.1.3. Utilizing auxiliary classification. To enable the CNN-RNN 
architecture to be utilized for long report generation, ARRG models 
often incorporate classifiers alongside the traditional CNN-RNN archi-
tecture. For example, TieNet [34] performed disease classification and 
report generation simultaneously, utilizing two attention mechanisms to 
highlight essential words and image areas over the outputs. However, it 
might sacrify the classification performance for better generation per-
formance [65]. Therefore, Vispi [65] proposed to perform disease clas-
sification and report generation in order, thereby utilizing the former to 
enhance the latter. Moreover, Vispi’s classification module not only 
predicted disease labels but also located the lesion areas. Hence, the 
generation module could separately generate overall abnormal findings, 
fine-grained abnormal findings, and normal findings. In addition, 
FCN-MLC-LSTM [71] proposed using U-Net’s down-sampling portion 
[103] as the CNN encoder backbone to identify and classify lesions in 
mammography. Then the corresponding label was transformed into se-
mantic embedding and passed to the decoder. 

Moreover, this approach can also be seen in other architectures. In 
the CNN-HRNN architecture, CNN-HRNN-CoAtt [12] and 
CNN-HRNN-AttF [54] performed visual feature extraction and label 
prediction during the encoding stage, of which the former jointly rep-
resented the features and labels through the co-attention mechanism, 
and the latter directly passed them to separate decoders. In addition to 
leveraging the detected tags, CNN-HRNN-GLP [60] proposed embed-
ding the outputs of the decoders into the same semantic space and 
augmenting the training data by using similarity matching. The diversity 
of the generated sentences was consequently improved. To mitigate data 
imbalance, CNN-HRNN-Dual [64] proposed dual word-level LSTMs with 
a sentence predictor, which processed normal findings and abnormal 
findings, respectively. Notably, CNN-HRNN-GLP introduced a novel 
pooling approach for its classification module, which achieved higher 
recall and precision than traditional global feature pooling. The other 

Fig. 9. Fine-grained classification of ARRG systems. The systems are further distinguished by colour and symbols according to different features. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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involved models are SentSAT-KG [56], which used graph structures to 
embed prior knowledge into their CNN-HRNN-based model to improve 
generation performance, where the graph embedding module was 
pre-trained via multi-label classification; and GAN-ARAE [50], which 
proposed using a GAN’s generator to extract image features and using 
the decoder of the Adversarially Regularized Autoencoders [104] to 
generate a diagnosis label and text simultaneously. 

4.3.2.1.4. Leveraging report hierarchy. The final method is explicitly 
designed for chest X-rays to generate the two-section reports (i.e. find-
ings and impression). This method leverages the CNN-HRNN architec-
ture and takes into account the report hierarchy rather than the 
linguistic hierarchy. In this regard, the findings and impression sections, 
which indicate the detailed descriptions of images and the correspond-
ing summaries, are usually handled by different modules and trained 
jointly or separately. In CNN-HRNN-RecAtt [14], the visual features 
were passed to an RNN decoder to generate the impression. Subse-
quently, a sequence-to-sequence model was employed to extract the 
semantic features of impression, which were combined with the regional 
visual features to generate the findings recurrently. CNN-HRNN-IDC 
[58] used the same structure as CNN-HRNN-RecAtt. However, the se-
mantic features of impression were combined with visual features as 
additional constraints to initialize the decoder of the findings module, 
making the generated sentences conform to the topic of the entire 
report. Additionally, STS [57] combined the ideas of Vispi and 
CNN-HRNN-RecAtt. It first utilized a binary classifier to distinguish 
normal image samples from abnormal cases. A model with CNN-SRNN 
architecture was then used to generate findings from the classified im-
ages. Finally, a summarization module based on sequence-to-sequence 
architecture was employed to summarize the generated findings into 
impressions. 

4.3.2.2. Structured report generation. This task aims to generate struc-
tured reports comprised of a large number of labels that refer to 
anatomical sites and lesions together with the corresponding intensity, 
location, shape, size, etc. These detailed descriptive entities can be easily 
converted into narrative reports. The intuitive solution is to use CNN- 
based classification framework. For instance, LesaNet [15] and its pre-
decessor, pre-LesaNet [73], used CNNs to predict 171/145 predefined 
structured report entities. These detailed descriptive entities can be 
easily converted into narrative reports, such as by ontological mapping 
used in CNN-FFL [16] or by decision trees used in MultusRadBot [80, 
87]. CNN-SVM [75] decomposed the task into 43 independent classifi-
cation questions with close-ended answers and open-ended numerical 
answers, each associated with its own CNN. 

CNN-RNN architecture is also eligible for this task. Cascade CNN- 
RNN [33] proposed recurrently learning different levels of information 
through weight reuse. However, such a design was prone to raising error 
propagation and deteriorating the model generalization ability. To 
conquer this, Sequence CNN-RNN [53] changed the timing and manner 
of passing image feature embeddings onto the decoder. Such that the 
model can maintain the correlation between the image features and the 
generation process of structured report entities at the time-step level, 
resulting in a better generation performance. CNN-SAT [68] employed 
the classic AIC model [102] and proved that introducing additional 
patient data could effectively increase the percentage of correctly 
generated structured diagnostic report sentences. In addition to 
CNN-RNN architecture, CNN-SRNN-Att [88] replaced the 1-layer RNN 
decoder with two-stacked LSTMs to generate structured report entities, 
which were then expanded into reports by templates. 

On the other side, we found that ARRG models prefer generating 
structured report entities for lumbar spine MRI reporting [17,79,80,87]. 
However, the structural correlations of the lumbar spine are an impor-
tant basis for the reporting, necessitating a segmentation of the disc 
regions. In this regard, MultusRadBot employed DeepSPINE [105] in 
their segmentation module, while RGAN-PL [79] and NSL-AGNet [17] 

applied GAN to segment and classify the lumbar spine structures. The 
classification results were expanded to structured report entities and 
compiled to report templates by logical reasoning methods and 
rule-based methods. Moreover, NSL-AGNet converted the prior knowl-
edge of spinal structures into graph structures and embedded them into 
the model to improve the consistency of spinal structure identification. 

4.3.2.3. Retrieval-based approach and Hybrid retrieval-generation 
approach. Unlike the traditional generation-based approach, the 
retrieval-based approach does not generate new text. Instead, it fetches 
the topmost relevant data from an existing database. Generally, the data 
are unified into a joint embedding space to compute their similarity, and 
the results will be stored in a database for later usage. For example, 
CNN-CVSE [18] proposed a metric learning-based method to learn the 
visual-semantic embeddings, whereby the fine-grained similarity be-
tween the lesion regions and abnormal findings could be measured. 
However, although it successfully mitigates the weaknesses of the 
generation-based approach in producing repetitive sentences and bias 
toward normal findings, its performance appeared not to achieve satis-
factory NLG scores. On the other hand, RTEx [19] compared the visual 
features between the input images and the database images using cosine 
similarity and assigned the diagnostic sentences of the most similar 
image to the target image. It achieved high clinical correctness through 
retrieval constraints on image tags and priority training on abnormal 
exams. 

In addition, several studies were interested in using the retrieval- 
based approach to complement report generation. One example is 
HRGR-Agent [20] which uses a CNN-SRNN architecture to combine 
sentence retrieval and report generation. It utilized RL to train the model 
with CIDEr as a reward, in which an agent determined whether to use a 
word decoder to generate sentences or to retrieve directly from the 
database based on the topic states of a sentence decoder. Another study, 
KERP [21], utilized graph structures to represent reports as intermediate 
states in the process of image-to-report generation. These states were 
then used to perform disease classification and retrieve template sen-
tences. KERP introduced a Graph Transformer to process multi-domain 
graph structure data and re-write the template sentences into final re-
ports. It outperformed HRGR-Agent in BLEU and ROUGE scores, while 
its CIDEr score was lower. 

4.4. RQ3: evaluation 

The ability to generate high-quality radiology reports that are both 
readable and accurate is the key consideration when developing an 
effective ARRG model. The included studies employed a wide range of 
methods to evaluate the outputs of ARRG quantitatively or qualitatively. 
The quality of automatically generated text can be measured as a 
function of how closely it resembles a natural language as it is used by 
humans. A range of automatic measures have been devised to the ma-
chine translation field and have been spread to natural language gen-
eration (NLG). However, these common NLG metrics are not specifically 
designed for the ARRG task. Thus, complementary metrics were pro-
posed for measuring the quality of radiology reports with respect to their 
clinically relevant content. Nonetheless, the finer-grained judgements of 
the quality of automatically generated text can currently only be pro-
vided by humans themselves. Some of the included studies adopted 
human expert evaluation. Typically, a Likert scale is used to elicit re-
sponses from medical experts and various statistics are used to measure 
the reliability of these responses. The full range of methods used to 
evaluate ARRG is summarized in Table 4. 

4.4.1. Quantitative evaluation 
We hoped to compare all ARRG models directly by referring to 

specific values of the relevant metrics. Unfortunately, the reported re-
sults of many ARRG models and other studies’ baseline experiments 

Y. Liao et al.                                                                                                                                                                                                                                     



Informatics in Medicine Unlocked 39 (2023) 101273

11

proved inconsistent. First, there is no benchmark that would allow the 
models to be evaluated on a common dataset. Second, different metrics 
are used to report the results. To provide an overview of the perfor-
mance, we restricted the comparison between models to the baseline 
experiments of a single study and exhibited them in a performance 

matrix, as shown in Fig. 10. More specifically, we designed a simple 
metric score merging algorithm that uses percentages to show the per-
formance gap between models. Given any target model t and baseline 
model b, the performance gap p(t,b): 

p =
yt − yb

yb
,# (1)  

y =

∑
mi

num(i)
,# (2)  

where i ∈ BLEU,ROUGE,METEOR,CIDEr, mi is a specific metric value, 
and num(i) is the number of the metrics used. If i = BLEU, then: 

mi =

∑
mBLEU− x

num(x)
, (x ∈ 1, 2, 3, 4).# (3) 

Note that for each row in Fig. 10, the red colour with a positive value 
indicates that the target model outperformed the baseline model and 
vice versa. From the perspective of columns, the target models are 
compared by benchmarking to the same baseline model. However, such 
ranking results vary with the choice of different baseline models, which 
also reflects the inconsistency issue. 

4.4.2. Qualitative evaluation 
We reviewed eight relevant studies that have presented human 

expert evaluation. Although some studies claimed that their models can 
generate more accurate and reasonable reports than baseline models, 
the gap between these generated reports and expert-written reports was 
not clearly evaluated [19–21]. In contrast, several studies highlighted 
the need for further advancement of ARRG models for more reliable 
outputs [62,80,83,87]. In particular, CDGPT2 [62] pointed out that 
their model was capable of generating correct reports for 99% of normal 
samples. However, the generated reports for abnormal samples suffer 
from missing information and incorrect diagnosis and often lack the 
necessary details to describe the abnormalities present in the images. In 
CNN-SRNN-Att [88], the evaluation noted that clinicians preferred the 
combination of visual interpretation and "human style" textual expla-
nations for pelvic X-rays. The reliability assessment of MultusRadBot 
[80,87] disclosed a small "opinion discrepancy" between the generated 
reports and expert-written reports in lumber spine MRI, and such dis-
crepancies in reporting can significantly impact subsequent clinical 
decisions. In GAN-ARAE [50], the model’s usefulness was confirmed in 
helping radiologists achieve higher accuracy diagnoses and, perhaps, 
quicker decision-making processes for edge samples. 

5. Discussions 

5.1. Current state of affairs and challenges 

Radiology images, especially ultrasound images, have relatively low 
resolution and blurred boundaries between the foreground and back-
ground. Radiology reports, on the other hand, tend to be lengthy, 
complex, and heterogeneous, covering descriptions of findings, im-
pressions, and other patient-related information. They also contain ex-
pressions that convey negation and uncertainty. Furthermore, the 
structure and style of radiology reports may vary significantly between 
institutions or individual radiologists, raising the concerns of interob-
server variability in the training data. During the clinical reporting 
process, the radiologist’s wording could have been influenced by af-
fective (unconscious emotional reaction) and cognitive (distortions of 
thinking) biases [87]. When the data originate from a small number of 
institutions, they may not be representative, which may lead to over-
fitting [116]. Moreover, the available open-source datasets are often 
limited in size and unbalanced in the distribution of normal and 
abnormal samples, making it even more difficult to train a robust model. 
Across all datasets identified in this review, we argue that only the 

Table 4 
The quantitative and qualitative metrics used for evaluating ARRG.  

Metrics Description Used by Count 

Quantitative evaluation 
BLEU [106] A precision-based metric 

that counts how many n- 
grams from the generated 
text exist among ground 
truth references. 

[11–14,18–21, 
33,34,50–65, 
68,69,71,81,83, 
88,107]. 

33 

ROUGE [108] A recall-based metric that 
counts how many n-grams 
from the ground truth 
references exist in the 
generated text. 

[11–14,18,20, 
21,34,50,52, 
54–65,69,81, 
83,107] 

26 

METEOR [109] A metric that counts 
unigram matches using an 
F1-like measure. 

[11–14,18,34, 
50,54,55, 
57–60,62–64, 
69,81,107] 

19 

CIDEr [109] The cosine similarity 
between the vectors 
weighted by term frequency- 
inverse document 
frequency, which measures 
the consensus between the 
ground truth references and 
the generated text. 

[11,12,20,21, 
50–52,55–62, 
64,65,69,71, 
81] 

20 

Keywords Accuracy 
[14] 

The ratio of the number of 
diagnostic keywords in the 
generated reports to the 
number of all diagnostic 
keywords among the ground 
truth references. 

[14] 1 

Clinical Efficacy [59] Measures the accuracy, 
precision, and recall of 
disease labels extracted by 
CheXpert from the ground 
truth references and the 
generated reports. 

[13,59,63,69] 4 

MeSH Accuracy [52] The ratio of the number of 
MeSH terms correctly 
generated by a model to the 
number of all MeSH terms in 
the ground truth references. 

[52] 1 

Anatomical Relevance 
Score [83] 

Matches the words in GRs 
against the terminology of 
the anatomical class of 
interest. 

[83] 1 

Medical Abnormality 
Terminology 
Detection Accuracy 
[20] 

Compares the average 
precision and average false 
positives of 10 most frequent 
medical abnormality 
terminologies in the ground 
truth references and the 
generated reports. 

[20] 1 

MIQRI [56] Evaluates the quality of 
paired reports by graph 
matching. 

[56] 1 

Qualitative evaluation 
Human expert 

evaluation 
E.g. average score, average 
preference percentage, etc. 

[20,21,62,88] 4 

Likert scale [110] A rating system used to 
measure the opinion of 
medical experts regarding 
the quality of generated 
reports. 

[83] 1 

Cohen’s kappa 
coefficient [47] 

A statistic used to measure 
inter-rater reliability. 

[19,87] 2 

Fleiss’ kappa 
coefficient [111] 

A statistic used to measure 
inter-rater reliability. 

[50] 1 

Cronbach’s alpha 
coefficient [112] 

A measure of internal 
consistency. 

[87] 1  
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MIMIC-CXR dataset meets three key conditions: large-scale, publicly 
available and containing original reports. 

Regarding the assessment of the generated reports, many ARRG 
models were benchmarked using ordinary AIC metrics, such as BLEU, 
ROUGE, METEOR and CIDEr, which are based on n-gram overlap and 
focus more on language fluency. However, n-gram overlap is neither 
necessary nor sufficient for two sentences to convey the same meaning 
[117]. It was widely believed that accurate detection of pathology 
should take precedence over language fluency when evaluating the 
generated reports. Hence various clinical efficacy metrics based on the 
accuracy, precision, and recall of disease labels were designed for the 
ARRG task [14,20,52,59,83]. Nevertheless, these metrics might not be 
sufficient for evaluating a report since the pathological description not 
only concerns specific disease labels but also involve their qualifiers, 
certainties and negations. Although MIQRI [7] have taken into consid-
eration all these attributes, its effectiveness is yet to be fully proven. 

Due to the discrepancy between general image/caption datasets and 
radiology image/report datasets, using conventional AIC models on the 
ARRG task might only produce reports that look real but are not clini-
cally correct. Therefore, it is necessary to tailor DL approaches specif-
ically for the ARRG task. To summarize, retrieval-based methods 
leverage the similarity of data features, which might generate fewer 

repetitive sentences and mitigate the bias toward generating normal 
findings [18–21]. RL can train an ARRG model to generate reports to-
ward specific metrics of interest, such as better pathological accuracy 
[59]. Some studies enhanced the generating process by integrating 
auxiliary classifiers [11,12,21,34,54,56,57,60,64,65] or taking into ac-
count the report hierarchy, while other studies substituted the conven-
tional generation process by generating more informative structured 
report entities [15–17,33,53,68,73,75,79,80,87,88]. In order to provide 
radiologists with more interpretable information, researchers offered 
many ideas, including applying GAN to generate similar images [50], 
employing class activation maps and saliency maps (e.g. attention maps) 
to bring visual interpretation [12,13,18,21,34,50,59,62,65,68,88], or 
using the predicted pathology labels from the auxiliary classifier as 
supplementary of the generated reports. It has also been demonstrated 
that introducing patient background information could have positive 
impacts [52,68]. There were also studies that proposed separate pro-
cessing of normal and abnormal samples to address the data imbalance 
problem [57,64,65]. 

It can also be observed that most of the ARRG systems were designed 
for X-ray tests, in which the difficulty of data access might be the leading 
cause of why researchers preferred to show the results on the IU X-ray 
than the larger MIMIC-CXR dataset. For CT scans, the proposed ARRG 

Fig. 10. Model performance matrix. Each row is a set of comparisons of model performance gaps computed based on the baseline experiments of the target model. 
Results are limited to the IU X-ray dataset (top) and the MIMIC-CXR dataset (bottom). Some common AIC baseline models are used in addition to the ARRG models, 
including #NIC [86], #SAT [102], #Att2in Ref. [113], #LRCN [114] and #AdaAtt [115]. The target models are sorted in descending according to the performance 
compared to the CNN-HRNN-CoAtt [12] and #NIC models. 
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systems were largely based on image classification. Current MRI datasets 
were all focused on the lumbar spine. Due to the structural correlation of 
the lumbar spine and the particular report format, the proposed systems 
tend to deem it as segmentation and classification problems and 
combine with non-DL approaches to compile the predicted labels into 
reports. Considering that both US and X-ray datasets are intrinsically 
similar, even though US reports tend to be shorter, the corresponding 
ARRG systems could be easily repurposed. 

5.2. Future research Directions 

ARRG systems certainly have the potential to streamline clinical 
workflow. However, the current state of the art in ARRG has yet to 
generate high-quality reports. We propose exploring the following as-
pects for further improvement. 

First, language models pre-trained on large datasets can help alle-
viate the data scarcity issue by allowing ARRG models to use smaller 
training datasets for fine-tuning. In addition, the capability of large 
language models to capture semantically equivalent contexts can help 
develop better evaluation metrics. Despite their great success in a wide 
range of NLP tasks [118,119], their full potential in the ARRG domain is 
yet to be realized due to the delay of technique shift across domains. 
Therefore, together with large language models, which are commonly 
trained by transformer architectures, we can expect ARRG to follow a 
trend observed in NLP by shifting away from RNNs to transformers. 

Second, the automatically generated text sometimes deviates from 
the ground-truth text in terms of structure, coverage, and lexical con-
tent. This can be attributed to the interobserver variability within the 
training data. This variability is caused by the inherent diversity of 
natural language, which allows for the same information to be expressed 
in numerous ways. These issues can be mitigated by adopting structured 
reports, which use uniform language and structure to describe radiology 
findings accurately [120]. Even though structured reporting is increas-
ingly being used, especially in abdominal and neuroradiological CT and 
MRI reports [121], the cultural and technological shift required will 
inevitably delay their widespread adoption. Instead, we propose 
resorting to NLP approaches to automatically structure the legacy 
radiology reports and used them not only to reduce interobserver vari-
ability, but also to train DL approaches to automatically generate 
structured reports. 

Third, the metrics for evaluating the generated radiology reports 
require further investigation as the current metrics cannot comprehen-
sively assess the quality of the generated report. Advances in measuring 
the semantic similarity for general image description can be seen in 
SPICE [122], which is a new concept-based AIC metric using a semantic 
graph to capture the meaning of two captions. This measurement 
approach has been widely adopted in recent AIC models. Although 
MIQRI made the first attempt in ARRG to develop a graph-based clinical 
semantic measurement, its effectiveness is underdetermined. We believe 
future research can draw inspiration from SPICE and MIQRI to develop 
an evaluation system that can capture the correctness of pathological 

information and the relationship between pathological attributes and 
thoroughly verify its effectiveness via thorough baseline experiments 
and manual evaluation. Finally, radiology images other than chest 
X-rays are rarely available publicly and at scale. Therefore, appropriate 
domain-specific evaluation metrics together with large-scale publicly 
available datasets are required to both deepen and broaden the existing 
research into ARRG. 

6. Conclusions 

In this study, we review of 41 ARRG studies selected from 1443 re-
cords. We first illustrate six publicly available radiology image/report 
datasets and other auxiliary datasets involved in these studies. Secondly, 
we provide an overview of the frameworks, network architectures, and 
techniques employed by ARRG models. Each individual model is dis-
cussed from the perspective of its targeted tasks and implementation 
methods. Then, we summarize the evaluation methods used in these 
models. Meanwhile, we illustrate the relative performance of these 
models in quantitative evaluation and present the opinions of human 
experts to the automatically generated reports. Finally, we discuss the 
current challenges and future research directions of ARRG. Overall, 
ARRG is promising in playing an important role in the clinical workflow, 
but further advancement is still required to generate reports that are 
indistinguishable from those written by radiologists. 
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APPENDIX 

A. Comparison of ARRG Systems  

Method (Proposed by) Field Key Technique Problem Representation Pre-trained model 

CNN-based ARRG systems 
CNN-CVSE (Ni et al., 

2020) [18] 
X-ray: chest  – Image feature extraction: DenseNet- 

121 [123]  
– Semantic embedding extraction: 

BioWordVec [124]  

– Sentence selection (find the closest 
abnormal findings from database 
via visual-semantic similarity)  

– Heatmap on image (attention map)  

– Pre-trained DenseNet-121 [123]  
– Pre-trained BioWordVec [124] 
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Method (Proposed by) Field Key Technique Problem Representation Pre-trained model  

– Joint embedding and visual-semantic 
similarity: conditional visual- 
semantic embeddings 

RTEx (Kougia et al., 
2021) [19] 

X-ray: chest  – Ranking: RTEx@R: CNN (DenseNet- 
121 [123])  

– Tagging: RTEx@T: CNN (DenseNet- 
121 [123])  

– Captioning: RTEx@X: CNN 
(DenseNet-121 [123]) 

Sentence selection (find the most 
similar image in database and assign 
its text to the target image) 

None declared 

CNN-FFL (Syeda- 
Mahmood et al., 
2020) [16] 

X-ray: chest  – Define Fine Finding Labels (FFL)  
– Extract FFL from reports and 

construct dataset  
– FFL prediction: CNN (FPN [107] that 

combines pre-trained VGG-16 [125] 
and ResNet-50 [126]) with dilated 
blocks  

– Ontological mapping 

Structured report generation (fine- 
grained finding labels)  

– Pre-trained VGG-16 [125] and 
ResNet-50 [126] on ImageNet [127] 

MultusRadBot 
(Lewandrowski et al., 
2020) [80,87] 

MRI: lumbar spine  – Image processing: CNNs (FC- 
DenseNet [128] and DeepSPINE 
[105]) and principal component 
analysis (PCA)  

– Multi-class classification: two CNNs 
(VGG [125])  

– Report generation: decision trees  

– First: segment, stacked region 
cropping, and diameter prediction  

– Then: multi-label classification  
– Finally: compile to reports 

None declared 

Pre-LesaNet (Yan et al., 
2019) [73] 

CT: 115 body parts, 
27 types, and 29 
attributes  

– Lesion annotation: CNN (VGG-16 
[125]) 

Structured report generation (multi- 
label classification of 145 labels) 

None declared 

LesaNet (Yan et al., 
2019) [15] 

CT: 115 body parts, 
27 types, and 29 
attributes  

– Image feature: CNN (VGG-16 [125])  
– Classifier: a score propagation layer  
– Enrich label relations:  

‧ Label expansion 
‧Relational hard example mining 

Structured report generation (multi- 
label classification of 171 labels) 

None declared 

CNN-SVM (Loveymi 
et al., 2021) [75] 

CT: liver For each question:  
– Image feature: CNN (MobileNet 

[129], LeNet-5 [130])  
– Classifier: SVM with linear kernel 

Structured report generation 
(independent classification for 43 pre- 
defined questions with close-ended 
answers and open-ended numerical 
answers). 

MobileNet [129] that trained on ImageNet 
[127] 

CNN-RNN-based ARRG systems 
Cascade CNN-RNN 

(Shin et al., 2016) 
[33] 

X-ray: chest  – Image representation: CNN 
(GoogLeNet [131])  

– Text generation: LSTM [89]/GRU 
[90]  

– Training method: re-train the model 
in a cascade workflow 

Structured report generation 
(composite image labelling) 

None declared 

Sequence CNN-RNN 
(Gasimova, 2020) 
[53] 

X-ray: chest  – Enriched concept extraction (multi- 
label classification: CNN  

– Image representation: CNN (VGG-16 
[125]/ResNet-50 [126])  

– Text generation: LSTM [89] 

Structured report generation (visually 
significant medical concepts extracted 
from raw reports) 

Pre-trained VGG-16 [125]/ResNet-50 
[126] that trained on ImageNet [127] 

CNN-SAT (Rodin et al., 
2019) [68] 

X-ray: chest  – Image encoder: CNN (DenseNet-121 
[123])  

– Text decoder: LSTM [89] with a soft 
attention [101]  

– Additional background information 
embedding  

– Structured report generation 
(assertion pair about pathology 
presence, location and severity)  

– Heatmap on images (attention map)  

– DenseNet-121 [123] that trained on the 
ChestX-ray14 [77]  

– Word2vec that trained on PubMed 
[132] 

TieNet (Wang et al., 
2018) [34] 

X-ray: chest  – Image encoder: CNN (ResNet-50 
[126])  

– Text decoder: LSTM [89] with soft 
attention [101] and self-attention 
mechanism proposed by Lin et al. 
[ref])  

– Joint learning of visual and textual 
weighted features for classification  

– Multi-label disease classification  
– Report generation (findings +

impression)  
– Heatmap on text (attention map)  

– ResNet-50 [126] that trained on 
ImageNet [127]  

– The Gensim word2vec implementation 
[133] trained on PubMed articles 

Vispi (Li et al., 2019) 
[65] 

X-ray: chest  – Classification: CNN (DenseNet-121 
[123])  

– Localization: CNN (Grad-CAMs 
[134])  

– Generation: attention-based encoder- 
decoder model 

‧Encoder: CNN (ResNet-101 [126]) 
‧Decoder: LSTMs [89] with soft 
attention [101]  

– Multi-label disease classification 
and localization  

– Report generation (findings +
impression)  

– Heatmap on image (class activation 
map)  

– ResNet-101 [126] that trained on 
ImageNet [127]  

– DenseNet-121 [123] that trained on 
ImageNet [127] and ChestX-ray8 [77] 

FCN-MLC-LSTM (Sun 
et al., 2019) [71] 

Mammography  – Image encoder and multi-label 
classification:  
‧ U-net’s down-sampling part [103]  

– Multi-label disease classification  
– Report generation 

None declared 
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‧ Fully Convolutional Network based 
on ResNet [126]  

‧ Multi-label classification (MLC): the 
last two layers of ResNet [126]  

– Text generation: LSTM [89]  
– Post-processing: beam search 

CNN-RNN-Merging 
(Alsharid et al., 
2019) [83] 

US: fetal  – Image representation: CNN (VGG-16 
[125]).  

– Text representation: LSTM [89]/GRU 
[90]  

– Joint representation: merging the 
output layer of CNN–FCN and the 
hidden layer of RNN. 

Report generation (voice-over caption 
from sonographer)  

– VGG-16 [125] that trained on ImageNet 
[127]  

– The Google Code word2vec 
implementation that trained on Google 
News dataset [135], GloVe that trained 
on Wikipedia-2014 corpus [136]. 

HCNN-RNN (Zeng 
et al., 2018) [82] 

US: gallbladder, 
liver, kidney  

– Organ (coarse) classification: CNN 
(VGG-16 [125])  

– Disease (fine-grained) encoder: CNNs 
(VGG-16 [125])  

– Text decoder: LSTM [89] 

Report generation (short annotation 
text that explain the disease 
information in the ultrasound image) 

VGG-16 [125] that trained on ImageNet 
[127] 

FRCNN-RNN (Zeng 
et al., 2020) [81] 

US: gallbladder, 
kidney, liver  

– Image encoder: VGG-16 [125] and 
Faster RCNN [137]  

– Text decoder: LSTM [89]  

– Image detection  
– Report generation (a short 

description of ultrasound image) 

Pre-trained VGG-16 [125] 

SFNet (Zeng et al., 
2020) [11] 

– US: gallbladder, 
kidney, liver 
– X-ray: Chest  

– Image detection: CNNs (ResNet-50 
[126], Faster RCNN [137])  

– Text: LSTM with a sentinel gate [138]  

– Lesion area detection and 
pathological information 
classification  

– Report generation (impression) 

ResNet-50 [126] that trained on ImageNet 
[127] 

CNN-SRNN-based ARRG systems 
CNN-MSRNN (Singh 

et al., 2019) [55] 
X-ray: chest  – Image encoder: CNN (Inception-v3 

[139])  
– Text decoder: multi-stage stacked 

LSTMs initialized by RadGlove [140] 

Report generation (findings +
impression)  

– Inception-v3 [139] that trained on 
ImageNet [127]  

– Pre-trained GloVe [136], RadGlove that 
trained on 4.5 million radiology reports 
[140] 

CNN-SRNN-Att (Gale 
et al., 2019) [88] 

X-ray: hip fractures 
in pelvic  

– Image representation: CNN (DenseNet 
[123])  

– Text generation: two stacked LSTMs 
with soft attention [101]  

– Structured report generation (each 
sentence had a general structure)  

– Heatmap on images (saliency map) 

Pre-trained DenseNet [123] 

CNN-HRNN-based ARRG systems 
CNN-HRNN-CoAtt 

(Jing et al., 2018) 
[12] 

– X-ray: chest 
– Mixed: 21 
different sub- 
categories (from 
PEIR)  

– Image encoder and tag prediction: 
CNN (VGG-19 [125])  

– Sentence encoder: LSTM [89] with 
proposed co-attention mechanism  

– Word decoder: LSTM [89]  

– Multi-label classification (tags 
prediction)  

– Report generation (findings +
impression)  

– Heatmap on image and text (co- 
attention map) 

None declared 

CNN-HRNN-AttF (Yuan 
et al., 2019) [54] 

X-ray: chest  – Image encoder: a multi-view CNN 
(ResNet-152 [126])  

– Medical concepts prediction  
– Sentence decoder: LSTM [89] with 

soft attention [101]  
– Word decoder: concept enriched 

LSTM with attention mechanism (soft 
attention [101])  

– Multi-label classification  
– Report generation (findings +

impression)  
– Heatmap on image (attention map) 

ResNet-152 [126] that pre-trained on 
CheXpert [78] 

CNN-HRNN-MultiAtt 
(Huang et al., 2019) 
[52] 

X-ray: chest  – Image encoder: CNN (ResNet-152 
[126])  

– Sentence decoder: LSTM [89] with 
proposed multi-attention mechanism  

– Word decoder: Bi-LSTM [141] with 
embedded background information 
and soft attention [101] 

Report generation (Findings +
impression)  

– ResNet-152 [126] that trained on 
ImageNet [127]  

– Pre-trained GloVe [136] 

CNN-HRNN-GLP (Yin 
et al., 2019) [60] 

X-ray: chest  – Multi-label classification: CNN 
(DenseNet [123]) with a global label 
pooling mechanism  

– Sentence encoder: LSTM [89] with 
topic attention mechanism (which 
closely resembles co-attention [12])  

– Word decoder: LSTM [89]  

– Multi-label classification 
(abnormality detection)  

– Report generation (findings +
impression) 

DenseNet [123] that trained on ImageNet 
[127], and then pre-trained it on IU X-rays 
[49] 

CNN-HRNN-Dual 
(Harzig et al., 2019) 
[64] 

X-ray: chest  – Image encoder: CNN (ResNet-152 
[126])  

– MTI (Medial Text Indexer) tag 
prediction  

– Sentence encoder: LSTM [89] with 
soft attention [101]  

– Word decoder: an abnormal word 
LSTM and a normal word LSTM  

– Multi-label classification (MTI tags)  
– Report generation (findings +

impression) 

Word2vec that trained on PubMed and 
Wikipedia [132] 

CNN-HRNN-RecAtt 
(Xue et al., 2018) 
[14] 

X-ray: chest  – Image encoder: CNN (ResNet-152 
[126])  

– Sentence generative model: LSTM 
[89]  

– Report generation (impression)  
– Report generation (findings) 

ResNet-152 [126] that trained on 
ImageNet [127] 
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– Recurrent paragraph generative 
model:  
‧ Sentence encoder: Bi-LSTM 

[141]/1D-CNN [142]  
‧ Sentence decoder: stacked 2-layer 

LSTM with soft attention [101] 
CNN-HRNN-IDC (Xue 

et al., 2019) [58] 
X-ray: chest  – Image encoder: CNN (ResNet-152 

[126])  
– Impression generation: LSTM [89]  
– Findings generation:  

‧ Sentence encoder: Bi-LSTM [141]  
‧ Sentence decoder: two stacked 

LSTMs with soft attention [101]  

– Report generation (impression)  
– Report generation (findings) 

ResNet-152 [126] that trained on 
ImageNet [127] 

STS (Singh et al., 2021) 
[57] 

X-ray: chest  – Image classification module: CNN 
(Inception-v3 [139])  

– Generation module: CNN-SRNN 
(Inception-v3 [139] as encoder and 
stacked LSTM as decoder [89]))  

– Summarization module: proposed by 
[143]  
‧ Encoder: Bi-LSTM [141] with soft 

attention [101]  
‧ Decoder: LSTM [89] with “copy” 

mechanism [ref]  

– Image classification  
– Report generation (findings)  
– Report summarization (impression)  

– Inception-v3 [139] that trained on 
ImageNet [127]  

– Pre-trained Glove [136], pre-trained 
RadGlove [140] 

Transformer-based ARRG systems 
MemoryDrivenTR 

(Chen et al., 2020) 
[13] 

X-ray: chest  – Visual extractor: CNN (ResNet-101 
[126])  

– Encoder: the transformer’s encoder 
[94]  

– Decoder: the transformer’s decoder 
[94] with memory module (a 
relational memory and a novel 
memory-driven conditional layer 
normalization)  

– Report generation (long report)  
– Heatmap on image (attention map) 

ResNet-101 [126] that trained on 
ImageNet [127] 

DSTR (Lovelace et al., 
2020) [69] 

X-ray: chest  – Image encoder: CNN (DenseNet-121 
[123])  

– Report generation: transformer [94] 
with differentiable sampling  

– A differentiable CheXpert model [78] 
to fine-tune the generation model:  
‧ Bi-LSTM [141] with soft attention 

[101];  
‧ or CNN with scaled dot-product 

attention [94]  

– Report generation (findings)  – Pretrained DenseNet-121 [123]  
– Word2Vec [144] that pre-trained on 

MIMIC-CXR [66] 

CDGPT2 (Alfarghaly 
et al., 2021) [62] 

X-ray: chest  – Image encoder:  
‧ visual feature: CNN (CheXNet 

[145])  
‧ semantic features: word 

embeddings (McDonald’s word2vec 
implementation [146])  

– Text Decoder: transformer 
(DistilGPT2 [147])  

– A conditioning approach  

– Report generation (findings +
impression)  

– Heatmap on image (attention map)  

– CheXNet [145] that trained on 
ChestX-ray14 [77]  

– Word2vec that trained on MEDLINE/ 
PubMed data [146]  

– DistilGPT2 [147] that trained on 
OpenWebTextCorpus [148] 

ConsecutiveTR 
(Nooralahzadeh 
et al., 2021) [63] 

X-ray: chest  – A visual backbone (CNN: DenseNet 
[123])  

– A visual language model for high- 
level context generation: Meshed- 
Memory Transformer [149])  

– A language model for narrative report 
generation: transformer-based 
encoder-decoder model (BART [150])  

– High-level context (resemble 
structured report entities)  

– Report generation (full report)  

– Pre-trained DenseNet [123]  
– Pre-trained language model BART [150] 

RL-based ARRG systems 
HRGR-Agent (Li et al., 

2018) [20] 
X-ray: chest  – Image encoder: CNN (DenseNet 

[123]/VGG-19 [125])  
– Sentence decoder: stacked RNNs with 

a soft attention varient [ref]  
– A generation module: same as the 

sentence decoder  
– Training method: hierarchical 

reinforcement learning using a CIDEr 
based reward 

Hybrid report generation and sentence 
selection (findings) 

DenseNet [123] that jointly pre-trained on 
ChestX-ray8 [77] and CX-CHR [20] 

CNN-HRNN-RL (Liu 
et al., 2019) [59] 

X-ray: chest  – Image encoder: CNN (DenseNet-121 
[123])  

– Sentence decoder: LSTM [89]  
– Word decoder: LSTM [89] with 

attention mechanism  

– Report generation (findings)  
– Heatmap on images (attention map) 

Word embedding that pretrained with 
Gensim [151] 
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– Training method: reinforcement 
learning using both language fluency 
and clinically coherent reward 

CMAS (Jing et al., 
2019) [61] 

X-ray: chest  – Image encoder: CNN (ResNet-50 
[126])  

– Global state encoder: LSTM [89] with 
soft attention [101]  

– Planner: a two-layer feed-forward 
network  

– Writer:  
‧ Normality Writer: LSTM [89]  
‧ Abnormality Writer: LSTM [89]  

– Training method: reinforcement 
learning using a reward based on 
BLEU-4  

– Duplicated modules for Findings and 
Impression.  

– Report generation (findings +
impression) 

ResNet-50 [126] that trained on ImageNet 
[127] 

RTMIC (Xiong et al., 
2019) [51] 

X-ray: chest  – Image encoder: a bottom-up region 
detector (CheXNet [145]), a top-down 
visual encoder (the transformer’s 
encoder [94])  

– Captioning decoder: the transformer’s 
decoder [94] 

– Training method: self-critical rein-
forcement learning using CIDEr as 
reward  

– Image captioning (findings) CheXNet [145] that trained on 
ChestX-ray14 [77] 

GAN-based ARRG systems 
GAN-ARAE (Spinks 

et al., 2019) [50] 
X-ray: chest  – Text representation: Adversarially 

Regularized Autoencoders (ARAE) 
[104], with LSTMs [89] as encoder 
and decoder.  

– Image representation: CNN, inverse 
mapping of GAN’s generator  

– Text generation: ARAE’s decoder  
– Training method: text-to-image GAN 

(StackGAN [152])  
– Visualization: saliency maps from the 

activation-based attention schemes 
[153]  

– Classification + Image captioning 
(generate diagnosis label and 
findings simultaneously)  

– Similar image generation  
– Heatmap on images (saliency map) 

None declared 

RGAN-PL (Han et al., 
2018) [79] 

MRI: lumbar spine  – Segmentation, and classification: 
recurrent GAN  
‧ Generative network: A deep atrous 

convolution autoencoder module, 
with a spatial LSTM [89] in the 
middle  

‧ Discriminative network: an 
adversarial module  

– Positional labeling: strong prior 
knowledge based unsupervised 
symbolic program synthesis approach  

– Template-based captioning: symbolic 
template based structural captioning 
method  

– Segmentation  
– Classification  
– Structured report generation 

None declared 

Graph-based ARRG systems 
KERP (Li et al., 2019) 

[21] 
X-ray: chest  – Encode: visual feature to knowledge 

graph  
‧ CNN + Graph Transformer  

– Retrieve: knowledge graph to 
template sequence  
‧ Graph Transformer  

– Paraphrase: template sequence to 
report  
‧ Graph Transformer  

– Multi-label classification: graph to 
graph  
‧ Graph Transformer  

– Multi-label classification  
– Report generation (findings)  
– A generated disease graph as 

concluding information for medical 
reports  

– Heatmap on images (attention map) 

Extract the visual features from a DenseNet 
[123] that jointly pre-trained on CX-CHR 
[20] and ChestX-ray8 [77] 

SentSAT-KG (Zhang 
et al., 2020) [56] 

X-ray: chest  – Image encoder: CNN (DenseNet-121 
[123]) + GNN (GCN [154]) with soft 
attention [101]  

– Sentence decoder: LSTM [89] with 
soft attention [101]  

– Word decoder: LSTM [89]  

– Multi-label classification  
– Report generation (findings +

impression) 

DenseNet-121 [123] that pre-trained on 
CheXpert [78] 

NSL-AGNet (Han et al., 
2021) [17] 

MRI: lumbar spine  – Image segmentation and 
classification: GAN with a symbolic 
graph reasoning module and local 
semantic attention  

– Segmentation and classification of 
spinal structures  

– Induction of the pathological 
relations 

None declared 
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– Discovery: symbolic logic reasoning 
for structured report entities (first- 
order logic programming, meta- 
interpretive learning)  

– Report Generation: ruled-based 
approach  

– Structured report generation  
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