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Interleaving Mayer–Vietoris spectral sequences

ÁLVARO TORRAS-CASAS

ULRICH PENNIG

We discuss the Mayer–Vietoris spectral sequence as an invariant in the context of persistent homology.
In particular, we introduce the notion of "–acyclic carriers and "–acyclic equivalences between filtered
regular CW–complexes and study stability conditions for the associated spectral sequences. We also look
at the Mayer–Vietoris blowup complex and the geometric realization, finding stability properties under
compatible noise; as a result we prove a version of an approximate nerve theorem. Adapting work by
Serre, we find conditions under which "–interleavings exist between the spectral sequences associated to
two different covers.

55N31, 55T99

1 Introduction

One of the benefits of homology as a topological invariant over, for example, the homotopy groups, is
its computability via long exact sequences. The classical Mayer–Vietoris exact sequence has been used
in countless examples to compute Hk.X/ from a decomposition of a space X into two open subsets U
and V . When we generalise this concept to open covers .Ui /i2I consisting of more than just two subsets,
the relations between the parts Hk.Ui / become more intricate and are encoded in the Mayer–Vietoris
spectral sequence. These sequences first appeared in work of Leray and later Serre, and they proved to be
one of the most powerful tools in pure algebraic topology. Applications of spectral sequences in applied
algebraic topology, however, is still a young subject.

In [Torras-Casas 2023] it was proven that the persistence Mayer–Vietoris spectral sequence can be used
to compute persistent homology. The starting point is a filtered simplicial complex X together with a
cover by subcomplexes U. Then, one computes PHi .U� / for all i � 0 and � 2 NU. Here, notice that
NU is the nerve of the cover U whose simplices � 2NU are subsets from U; this leads to the notation
U� D

T
U2� U . The Mayer–Vietoris spectral sequence starts from these groups and the morphisms

induced by inclusions and converges to PHi .X/. As pointed out in [Yoon and Ghrist 2020], the additional
insight gained from the cover U can be used, for example, for multiscale feature detection. Similar
information was also explored much earlier in [Zomorodian and Carlsson 2008] in the form of localized
homology.

Motivated by these results, we study the spectral sequenceE�p;q.X;U/ and answer the following questions:
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4266 Álvaro Torras-Casas and Ulrich Pennig

� Let a pair .X;U/ consist of a space,X , and a cover forX , U. The Mayer–Vietoris spectral sequence
E�p;q.X;U/ converges to PH�.�U.X//. Is PH�.�U.X// stable? Can this result be generalised?

� Suppose that the data in each covering set U� for � 2NU is modified slightly. If the underlying
cover U is ignored, then we would not expect E�p;q.X;U/ to be stable. Are there natural coherence
conditions between changes in the sets U� that imply stability? If so, what do we mean by stability
of spectral sequences?

� Let U and V be covers of the same space X . Can we compare E�p;q.X;U/ and E�p;q.X;V/ up to
"–interleavings?

To explain why the first question is important and how it is linked to spectral sequences, we note
that E�p;q.X;U/ converges to the target persistent homology PH�.�U.X// (this is usually denoted
by E�p;q.X;U/ ) PH�.�U.X//). The blowup complex �U.X/ already appeared in the context of
topological data analysis in [Lewis and Morozov 2015] and [Zomorodian and Carlsson 2008]. It is
homotopy equivalent to a homotopy colimit, and therefore enjoys good properties with respect to local
homotopy equivalences. For example, if we assume that U� is contractible for all � 2NU, then we can
use [Hatcher 2002, Proposition 4G.2] to recover Leray’s nerve theorem. That is, there are homotopy
equivalences

X '�U.X/'�U.�/DN.U/;

where � denotes the constant complex of spaces on U; see [Hatcher 2002, Appendix 4.G]. The fundamental
importance of this result in applied topology is underlined by the persistent nerve lemma presented in
[Chazal and Oudot 2008]. It is worth mentioning the approximate nerve theorem [Govc and Skraba
2018] and the generalised nerve theorem [Cavanna 2019], which are approximate versions of the Leray
theorem within the context of persistence. In particular, in [Govc and Skraba 2018] the spectral sequence
E�p;q.X;U/) PH�.X/ is examined, and it is studied how much it differs from another spectral sequence
E�p;q.�;U/) PH�.N.U//, by careful inspection of all pages as well as the extension problem.

Throughout the paper we focus on the category RCW-cpx of regularly filtered regular CW–complexes
as well as the subcategory FCW-cpx of filtered regular CW–complexes; see Section 2.1. Instead of
restricting our attention to a space X together with a cover U, we look at regular diagrams D in RCW-cpx
over a simplicial complex K. There is a natural replacement for the Mayer–Vietoris blowup complex
in this setting, denoted by �K.D/, as explained in [Hatcher 2002, Appendix 4.G]. This object also
appears in the context of semisimplicial spaces, where it is called the geometric realization [Ebert and
Randal-Williams 2019]; in fact, it has an associated spectral sequence [Ebert and Randal-Williams 2019,
Section 1.4]. As we explain in Section 3, there are good reasons why it is worth taking this more general
perspective. In particular, we consider the spectral sequence

E2p;q.D/) PHpCq.�KD/:

In order to address the first two questions, we introduce the notion of acyclic carriers to define "–acyclic
equivalences. Using the acyclic carrier theorem we show the following: Let X and Y be two objects
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in RCW-cpx. If there exists an "–acyclic equivalence F " WX � Y , then PH�.X/ is "–interleaved with
PH�.Y / (see Corollary 4.7 and Proposition 4.2 for a stronger statement in FCW-cpx). These equivalences
provide a very flexible notion that works in different contexts as Examples 4.5, 4.6 and 4.8 show.

We address the first question in the following way. Let D and L be two diagrams over the same simplicial
complex K and assume that for all � 2 K there are "–acyclic equivalences F "� W D.�/ � L.�/ which
satisfy a compatibility condition with respect to composition in the poset category associated to K;
see Theorem 5.2 for details. Then, there is an "–acyclic equivalence F " W �K.D/ � �K.L/. This
result implies stability in the targets of convergence of the spectral sequences. We use this result to
show a “strong approximate multinerve theorem” in Corollary 5.3. Later, in Section 6, we introduce
."; n/–interleavings, which are given by spectral sequence morphisms that start at some page n together
with a shift by a persistence parameter ">0. Assuming the same conditions as in the geometric realization
case, we can obtain a ."; 1/–interleaving between E�p;q.D/ and E�p;q.L/; see Theorem 5.2. This result
appears in Theorem 6.5 and a specialised strong statement for covers of spaces in FCW-cpx is given in
Proposition 6.4.

As for the third question about the comparison of the spectral sequences associated to two covers U and V of
a spaceX , we rely on work of Serre [1955], in which he studied the relation between the Čech cohomology
of two different covers; here we adapt this work in the context of cosheaves and cosheaf homology. Take
a cosheaf F of abelian groups on X and assume that there is a refinement V�U. Serre showed that the
refinement morphism induced on Čech homology �UV W LH�.V;F/! LH�.U;F/ is independent of the
particular choice of morphism in the cochains. In [Serre 1955] it was also shown that �UV can be factored
through a construction that uses a double complex associated to both covers Cp;q.U;VIF/, see [Serre
1955, Proposition 4, Section 29]. This construction introduces two double complex spectral sequences
IE
�

p;q.U;VIF/ and IIE
�

p;q.U;VIF/, both of which converge to LH�.U\VIF/' LH�.VIF/. Here one
might study conditions on IIE�p;q.U;VIF/ to find when an inverse of �UV exists. As an application,
Serre [1955, Theorem 1, Section 29] obtained an analogous result to the Leray theorem in the context of
sheaves.

We start our analysis of the third question in Section 7. In case V�U there is a unique morphism induced
by the refinement map on the second page

�UV
WE�p;q.X;V/!E�p;q.X;U/:

On the other hand, Theorem 7.10 tells us under what conditions there exists an "–shifted morphism
 WE�p;q.X;U/!E�p;q.X;V/Œ"� such that �UV and  form an ."; 2/–interleaving between E�p;q.X;U/
and E�p;q.X;V/. Finally, in Proposition 7.12 we give a means of obtaining an ."; 2/–interleaving be-
tween E�p;q.X;U/ and E�p;q.X;V/ through the computation of local Mayer–Vietoris spectral sequences
E�p;q.U� ;VjU� / for all � 2 NU. Since the open regions U� are assumed to be “small” in comparison
to X , this gives a means of using local calculations to deduce the interleaving. As Corollary 7.14 we
present the case when V does not need to refine U.
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2 Background

2.1 Regular CW–complexes with filtrations

Recall the definition of CW–complex from [Hatcher 2002, Chapter 0]. In contrast to the usual treatment
of CW–complexes, but in line with the structure we are dealing with in TDA, we consider the cell
decomposition as part of the data of our CW–complexes. For a CW–complex X , if c is an open cell
in X we follow the notation from [Cooke and Finney 1967] and denote this by c 2 X . We denote by
Xn the set of n–dimensional cells from X and we denote by X�n the n–skeleton from X . Recall that
X has a natural filtration given by its skeleta X0 �X�1 � � � � �X�N � � � � , and a cellular morphism
f WX ! Y respects this filtration, in the sense that it restricts to morphisms f m WX�m! Y �m for all
m� 0. We work with regular CW–complexes, which are CW–complexes where the attaching maps are
homeomorphisms. It is recommended to consult [Cooke and Finney 1967; Massey 1991] for properties
and results related to regular CW–complexes. An intuitive way of understanding incidences of cells in
regular complexes is through the barycentric subdivision, as explained in [Ellis 2019, Section 2.1]. Given
a pair of cells a 2Xn and b 2Xn�1, we denote by Œb W a� the degree of attaching map @a! Nb=@b.

Definition 2.1 A cellular morphism f WX ! Y is a regular morphism whenever the closure f .a/ is a
subcomplex of Y for all cells a 2X . For such a morphism and a pair a 2Xn and b 2 Y n, we denote by
Œb W f .a/� the degree of the morphism f restricted to the open cell a and mapping into the open cell b.

We write CW-cpx to denote the category of finite regular CW–complexes and regular morphisms. Denote
by R the ordered category .R;�/ of real numbers. We focus on functors X W R! CW-cpx which we
call regularly filtered CW–complexes, and we denote their category by RCW-cpx. We say that an object
X 2RCW-cpx is tame, whenever X is constant along a finite number of right open intervals decomposing
the poset R. For X 2 RCW-cpx, we write Xr for the regular CW–complex X.r/ for all r 2 R. On
the other hand we write X.r � s/ to denote the morphisms Xr ! Xs for all r � s in R; we call such
morphisms structure maps. The reader might find an example of such a regularly filtered complex in the
appendix. If the morphisms X.r � s/ W Xr ! Xs are injections preserving the cellular structure for all
r � s in R, then we call X a filtered CW–complex, denoting by FCW-cpx the corresponding subcategory
of RCW-cpx. Notice that objects in FCW-cpx can be seen as a pair .colimX�; f / where colimX� is a
regular CW–complex and f W colimX�!R is a filtration function.

Throughout this text, we work with a fixed field F . Given X 2 RCW-cpx, we define the persis-
tent homology in degree n as the functor PHn.X/ W R! vect given by computing cellular homology
PHn.X/r D Hcell

n .Xr IF/ for all r 2 R. As Xr is finite, the vector space PHn.X/r is finite dimensional
for all r 2 R. If in addition X is tame, PHn.X/ only changes at a finite number of points r 2 R. We call
the category of functors R! vectF persistence modules and denote it by PMod. Given a 2 .0;1/ and
X 2 RCW-cpx, we write XŒa� for the element of RCW-cpx such that XŒa�r DXrCa for all r 2 R. We
use †" to denote the "–shift functor †" W RCW-cpx! Hom.RCW-cpx/ which sends X 2 RCW-cpx to
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†"X WX !XŒ"�, where "� 0. Also, for any morphism of filtered CW–complexes f W A! B , one can
check that f Œ"� ı†"AD†"B ı f , where we use f Œ"� W AŒ"�! BŒ"�. Similarly, there are shift functors
for persistence modules †" W PMod! Hom.PMod/ for "� 0.

Remark 2.2 Notice that the standard algorithm for the computation of persistent homology cannot be
applied to objects in RCW-cpx. However, if X is tame and one successfully computes the coefficients
for the morphisms C cell

� .Xr/ ! C cell
� .Xs/ for all r � s in R, then one can use [Torras-Casas 2023,

Algorithm 2 image_kernel] to obtain a barcode basis for the filtered cellular complex C cell
� .X/. Then

we compute homology of the persistence morphisms given by the differentials dn W C cell
n .X/! C cell

n�1.X/

by the use of image_kernel. See [Torras-Casas 2023] for an explanation.

2.2 Acyclic carriers

Fix a field F . We say that X 2 CW-cpx is F–acyclic if the reduced homology zH�.X IF/ with F–
coefficients vanishes in all dimensions; as the field is understood from the context, we just say that X is
acyclic. Consider two objectsˆ and � from CW-cpx with their respective pairs of chains and differentials
.C cell
� .ˆ/; ıˆ/ and .C cell

� .�/; ı�/. Let h � ; � iˆ and h � ; � i� denote the inner products on C cell
� .ˆ/ and

C cell
� .�/, where the cells form an orthonormal basis. We define a relation � on ˆ by setting � � � if
h�; ıˆ.�/iˆ ¤ 0 and by taking the transitive closure. We denote by � the partial order generated by �.
Thus, � � � does not necessarily imply dim.�/C 1D dim.�/. Also, notice that h�; ıˆ.�/iˆ D Œ� W ��;
see the cellular boundary formula from [Hatcher 2002, Section 2.2].

Definition 2.3 A carrier F Wˆ� � is a map from the set of cells of ˆ to subcomplexes of � that is
semicontinuous in the sense that for any pair � � � in ˆ, F.�/� F.�/. A carrier F Wˆ� � is called
acyclic, if for every � 2ˆ, F.�/ is a nonempty acyclic subcomplex of � .

Given a chain map wp W C cell
p .ˆ/! C cell

pCr.�/ of degree r D 0; 1, we say that it is carried by F if for all
cells � 2 p̂,

f 2 �pCr j hwp.�/; i� ¤ 0g � F.�/;

where we followed the notation from [Nanda 2012].

The next statement is an application of [Munkres 1984, Theorem 13.4]. In Proposition 4.2 we prove a
version of this statement that applies to filtered CW–complexes. Notice that this theorem works for carriers
which are F–acyclic and which do not necessarily need to be Z–acyclic; see the proof of Proposition 4.2.

Theorem 2.4 Let F Wˆ� � be an acyclic carrier between CW–complexes ˆ and � . Then:

� Existence There is a chain map carried by F .

� Equivalence If F carries two chain maps � and ', then F carries a chain homotopy between �
and '.

Algebraic & Geometric Topology, Volume 24 (2024)
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Given two acyclic carriers F;G Wˆ� � , we write F �G whenever F.�/�G.�/ for all � 2ˆ. Given
another pair of acyclic carriers F 0 W ˆ � � and G0 W � � ‰, we also define the composition carrier
G0 ıF 0 Wˆ�‰, where each � 2ˆ is sent to

G0 ıF 0.�/ WD
[

�2F.�/

H.�/:

In particular, notice that if f is carried by F 0 and g is carried by G0, then g ıf is “carried” by G0 ıF 0.
However, this composition does not need to be acyclic.

Example 2.5 Consider a regular morphism f Wˆ! � . We define the (not necessarily acyclic) carrier
Ff W ˆ� � induced by f that sends � 2 ˆ to f .�/. By continuity of f , for any pair � � � in ˆ, we
have that f .�/� f .�/. Also, f .�/¤∅ since it must contain at least a point. Given an acyclic carrier
G W � � ‰, we denote by G.f .�// the composition of carriers G ıFf .�/ for all � 2 ˆ. This comes
up very often in this text and whenever we are looking at the composition G ıFf we assume that it is
acyclic. Note that Ff is acyclic if f is an embedding of the regular CW–complex ˆ as a subcomplex
of � . The hypothesis that f is regular is key to define the carrier Ff . If we considered a more general
continuous morphism f Wˆ! � , a possible strategy would be to use outer approximations [Kaczynski
et al. 2004; Nanda 2012]. However, for simplicity, we restrict to regular morphisms in this article.

2.3 Regular diagrams of filtered complexes

First, recall a few gluing constructions that one can perform in algebraic topology. For a brief introduction
to these, see [Hatcher 2002, Appendix 4.G]. They are also relevant in Kozlov’s approach [2008], where
diagrams of spaces over trisps are studied.

Let K be a simplicial complex. We view K as a category whose objects are given by the simplices
� 2 K. For any pair of simplices �; � 2 K such that � � � , there is a unique arrow � ! � in K. We
are particularly interested in Kop, the opposite category of K whose arrows are given by reversing the
arrows of K. The example one should have in mind here is the case where K is the nerve of a cover of a
cellular complex. Splitting the input data up by the cover then provides a diagram over the nerve where
higher intersections of covering sets are included into smaller degree intersections. We formalise these
constructions in the following definition.

Definition 2.6 Let K be a simplicial complex. A functor D WKop!CW-cpx is called a regular diagram
of CW–complexes and its category is denoted by RDiag.K/; notice here that, for any pair of simplices
� � � of K, the morphism D.� � �/ WD.�/!D.�/ is regular; we call such morphisms face maps. Given
a pair of diagrams D;L 2 RDiag.K/, a morphism of diagrams ' W D! L is a natural transformation; ie
the commutativity relation

D.� � �/ ı'.�/D '.�/ ıD.� � �/

holds for any pair � � � of simplices in K.
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Example 2.7 Let L be a simplicial complex and suppose that it is covered by a pair of nontrivial
subcomplexes L0 and L1. Consider a pair of vertices v;w 2L0\L1 and suppose that both are connected
by a pair of paths 0 and 1 within the respective 1–skeletons of L0 and L1. Further, we ask that these
paths are simple, in the sense that they do not self intersect. Now, consider a diagram D 2 RDiag.�1/
given by the closures of the paths on the vertices D.0/D x0 and D.1/D x1, while D.Œ0; 1�/D�1, the
standard one-simplex. We define the face maps of D, for i D 0; 1, as the regular morphism mapping 0 7! v

and 1 7! w, while Œ0; 1� is sent to i . On the other hand, we consider a diagram L 2 RDiag.�1/ which
is given by the cover fL0; L1g; that is, we define L.0/DL0 and L.1/DL1, while L.Œ0; 1�/DL0\L1;
also, the face maps of L are given by inclusions. Then, we might consider a morphism of diagrams
' W D! L given by inclusions D.0/ ,! L.0/ and D.1/ ,! L.1/, while D.Œ0; 1�/D�1 is sent to some
path within L0 \L1 so that ' is well defined. In fact, ' can only be well defined whenever 0 D 1.
Later, in Definition 5.1, we introduce .";K/–acyclic carriers; in this case, one might be able to consider
such a carrier F " W D � L so that 0 and 1 are only required to lie within some acyclic complex.

The main object of study in this work are diagrams of filtered CW–complexes. These arise naturally in
topological data analysis, for example whenever point clouds come equipped with a cover. We therefore
make the following definition:

Definition 2.8 A regularly filtered regular diagram of CW–complexes D over K is a functor

D WKop
! RCW-cpxI

we denote this category by RRDiag.K/. As in RDiag.K/, morphisms in RRDiag.K/ are given by
natural transformations. We might consider the subcategory of RRDiag.K/ given by functors

D WKop
! FCW-cpx;

which we call filtered regular diagrams of CW–complexes, denoting the corresponding category by
FRDiag.K/. If for a diagram D 2 FRDiag.K/ the face maps D.� � �/ are inclusions respecting the
cellular structures for all � � � from K, then we call D a fully filtered diagram of CW–complexes, whose
category we denote by FFDiag.K/.

Example 2.9 Consider a filtered CW–complex X covered by filtered subcomplexes U. We define XU

over the nerve NU as XU.�/DU� for all � 2NU. This diagram XU is part of FFDiag.NU/ since all
morphisms XU.� � �/ are actually embeddings of subcomplexes. On the other hand, we can define the
constant diagram �U as �U.�/r D � if XU.�/r ¤∅ or �U.�/r D∅ otherwise; for all � 2 NU and all
r 2 R. We also have that �U is in FFDiag.NU/. Then, there is an obvious epimorphism of diagrams
XU!�U. Continuing with the same example, we can also define the complex of spaces �U

0 given by
�U
0 .�/D �0.U� / for all � 2NU; where for each r 2R, �0.U� .r// denotes the discrete topological space

given by the connected components of U� .r/. Thus, each �0.U� / is a disjoint union of points that are
identified with each other as the filtration value increases and so it cannot be an element in FCW-cpx,
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but rather an element from RCW-cpx. Thus, in this case �U
0 2 RRDiag.K/. For all r 2 R, there is an

epimorphism XU.r/! �0
U.r/ sending each cell from XU.r/ to its respective connected component

from �0
U.r/; these morphisms are consistent along R. Altogether we have a sequence of epimorphisms

XU! �0
U!�U.

2.4 Geometric realization

For an abstract simplicial complex K, we denote by jKj its underlying topological space. Given a simplex
� 2 K, we write j� j to denote the number of vertices of � . We use dim.�/ for the dimension of a
simplex � , that is dim.�/D j� j � 1. We denote by �n the topological space associated to the standard
n–simplex. Given a simplex � 2K, we use the notation �� WD�dim.�/ for simplicity. Given a pair � � �
in K, we have a corresponding inclusion �� ,!�� . As a special case of a CW–complex, we denote by
Kn and K�n the set of n–cells and the n–skeleton respectively.

Definition 2.10 Let D 2 RDiag.K/. The geometric realization �KD of D is the object in CW-cpx
defined as

�KDD
G
�2K

�� �D.�/
ı
�

where, for any pair � � � in K, the relation identifies a pair of points

.�� ,!�� /.x/�y � x �D.� � �/.y/

for each pair of points x 2�� and y 2 D.�/. This �KD has a natural filtration given by

F p�KDD
[

�2K�p

�� �D.�/

for all p � 0. A cell � � c is a face of another cell � � a if and only if � � � and also c 2 D.� � �/.a/.
If the underlying simplicial complex K is clear from the context, we write �D instead of �KD.

Notice that Definition 2.10 also applies to diagrams D 2 RRDiag.K/. We define �KD by setting
.�KD/r WD�K.Dr/ for all r 2 R. Notice that our gluing conditions are consistent in this case as

D.� � �/ ı†tD.�/.y/D†tD.�/ ıD.� � �/.y/

for any pair � �� fromK and all t >0 and all points y 2D.�/. Altogether we obtain�K.D/2RCW-cpx.
Given a regular morphism F W D! L of diagrams in RRDiag.K/, there is an induced morphism on the
geometric realization which we denote by �F. Denote by �D the diagram given by

�
D.�/r D

�
� if D.�/r ¤∅;
∅ otherwise:

and note that there is a homotopy equivalence �.�D/r ' jK
D
r j, where KD is the filtered simplicial

complex with the same underlying vertex set as K and � 2KD
r if and only if D.�/r ¤∅. The projection

onto the simplex coordinates gives a base projection pb W�D!�.�D/' jKDj.
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Example 2.11 Let D 2 FRDiag.K/. We define the multinerve of D as

MNerv.D/D�.�0.D//:

This object was first introduced in [Colin de Verdière et al. 2014] in the case of �U
0 for a space X covered

by U. In [Colin de Verdière et al. 2014] it was defined as a simplicial poset, a notion that is equivalent to
that of a �–complex. There are epimorphisms �D!MNerv.D/!�.�D/' jKj.

Remark 2.12 Let D be a diagram of CW–complexes over the simplicial complex K. We can extend
D to a diagram D0 on the barycentric subdivision Bd.K/ by defining D0.�0 � � � � � �n/D D.�n/ on an
n–simplex �0 � �1 � � � � � �n in Bd.K/. A nonidentity morphism in Bd.K/ that has �0 � �1 � � � � � �n
as its codomain must have the same flag with one of the �k left out as its domain. The diagram D0 maps
such a morphism to the identity in case k ¤ n or the morphism D.�n�1 � �n/ in case k D n. It is clear
from the definition of the homotopy colimit via the simplicial replacement that the geometric realization
�.D0/ coincides with the definition of hocolim D; see [Dugger 2008, Section 4] and also [Kozlov 2008,
Definition 15.8]. Notice that in the category K, each flag is to be interpreted as a sequence of arrows
�0  �1  � � �  �n. A modified version of the homotopy equivalence jKj ' jBd.K/j shows that
�.D/'�.D0/. Hence, we could have worked with homotopy colimits all throughout, but we chose to
work with the geometric realization since it is technically easier to handle and because in some instances
it is the Mayer–Vietoris blowup complex, which has already appeared before in TDA [Zomorodian
and Carlsson 2008]. An instance of a homotopy colimit in TDA can be found in [Cavanna et al. 2017,
Appendix B].

Proposition 2.13 Let F W D! L be a morphism of diagrams in RDiag.K/. If F.�/ is a homotopy
equivalence for all � 2K, then �F W�D!�L is a homotopy equivalence.

One way to see this is to view �D as a homotopy colimit (see Remark 2.12), which is a homotopy
invariant functor on diagrams. Also, a proof of this result in the more general context of diagrams of
spaces can be found in [Hatcher 2002, Proposition 4G.1].

Example 2.14 Let X 2 CW-cpx covered by U and recall the diagram XU from Example 2.9. In this
case �.XU/ is the Mayer–Vietoris blowup complex associated to the pair .X;U/ and it can be described
as a subspace of the product X � jNUj. This leads to the fiber projection pf W�.XU/! X and to the
base projection pb W�.XU/! jNUj. As shown in [Hatcher 2002, Proposition 4G.2], pf is a homotopy
equivalence �.XU/ ' X . If each XU.�/ is contractible for all � 2 NU, then pb is also a homotopy
equivalence by Proposition 2.13.

An interesting direction of research would be to use Proposition 2.13 to define compatible collapses, such
as in discrete Morse theory (see [Bauer 2011; Nanda 2012; Sköldberg 2006]) and end up with a diagram
of regular CW–complexes. This motivates the study of spectral sequences associated to such diagrams.
We see further reasons in Section 3. On the other hand, given the importance of Proposition 2.13, we
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would like to adapt it to an approximate version in the context of diagrams in RRDiag.K/. Instead of
studying homotopy equivalences, we consider equivalences induced by acyclic carriers. This is done in
Section 5.

2.5 Spectral sequences of bounded filtrations

Let A� be a graded module with differentials dn W An! An�1 for all n � 1, and such that Am D 0 for
all m< 0. Assume that there is a filtration 0D F�1A� � F 0A� � F 1A� � � � � � FNA� D A� of A�
that is preserved by the differentials d� in the sense that dn.F pA/� F pA for all p � 0. We say that A�
is a filtered differential graded module and denote this by the triple .A; d; F /. Then there is a spectral
sequence

E1p;q D Hq.F pA�=F p�1A�/) HpCq.A�/

for all p; q � 0; see [McCleary 2001, Theorem 2.6]. A morphism of spectral sequences is a sequence
of bigraded morphisms f r W Erp;q ! Erp;q that commute with the spectral sequence differentials, ie
dr ıf

r D dr ıf
r for all r � 0. Apart from that, these morphisms satisfy f rC1 DH.f r/ for all r � 0.

Suppose that .A�; Nd; F / is another filtered differential graded module together with its corresponding spec-
tral sequence Erp;q . Consider a morphism f WA�!B� that commutes with the differential f ıd D Nd ıf
and also preserves filtrations f .F pA�/� F p.A�/ for all p � 0. This induces a morphism of spectral
sequences

Erp;q!Erp;q

by [McCleary 2001, Theorem 3.5]. We denote by SpSq the category of spectral sequences, and we denote
by PSpSq the category of functors F W R! SpSq.

3 Spectral sequences for geometric realizations

Recall the persistent Mayer–Vietoris spectral sequence [Torras-Casas 2023] associated to a pair .X;U/ of
a space with a cover:

(1) E1p;q.X;U/D
M
�2N

p
U

PHq.XU.�//) PHpCq.�XU/' PHpCq.X/:

For the details about this spectral sequence in the persistent case we refer the reader to [Torras-Casas
2023]. There are some limitations to the applicability of this spectral sequence to Vietoris–Rips complexes
that were already pointed out in [Yoon and Ghrist 2020]: if we choose a cover of a point cloud X and
then deduce a cover U of the associated Vietoris–Rips complex VR�.X/ by subcomplexes, then we
can only recover PHk.VR.X// from PHk.�VR�.X/U/ for filtration parameters below an upper bound
R determined by the overlaps of the covering sets. In this section we present a regular diagram of
CW–complexes that avoids this upper limit problem completely; see Example 3.6.
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Before we solve our problem, we need to introduce some chain complexes. We come back to the case of
filtrations later, but for now we focus on regular diagrams instead. Given a diagram D in RDiag.K/, we
denote by D.� � �/� the induced morphism of cellular chain complexes C cell

� .D.�//!C cell
� .D.�//. The

cellular chain complex C cell
� .�D; ı�/ associated to �D is defined as follows: For all m� 0 we have that

C cell
m .�D/ is a vector space generated by cells � � c with dim.�/D p and c 2D.�/q so that pCq Dm.

On such a cell � � c the differential ı� is given byX
�i��

.�1/i
� X
a2D.�i��/.c/

Œa W D.�i � �/.c/��i � a

�
C .�1/dim.�/

X
b2Ncnc

Œb W c�� � b

where the first sum runs over the faces �i of � . As shown in the proof of Lemma 3.1, the map ı� is
indeed a differential. In addition, notice that the filtration of �K.D/ carries over to C cell

� .�KD/ by taking
F pC�.�KD/ WD C�.F

p�KD/ for all p � 0.

Now, consider the double complex .Cp;q.D/; dV ; dH / given by

Cp;q.D/D
M
�2Kp

C cell
q .D.�//

for all p; q � 0. The vertical differential is defined by the direct sum of chain differentials

dVp;q D .�1/
p
M
�2Kp

d�q

where d�� denotes the differential from C cell
� .D.�// for all � 2Kp; of course dV ıdV D 0. The horizontal

differential is given by the Čech differential dHp;q which is defined for a cell a 2 D.�/ asX
�i��

.�1/iD.�i � �/�.a/;

where D.�i � �/� denotes the induced chain morphism C cell
� .D.�//! C cell

� .D.�i // for all faces �i
from � . Also, dH ıdH D0 by functoriality ofC cell

� . � / and the fact that D.�� �/�D.� ��/�DD.���/�

for any three simplices � � � � � . Note that for each pair of indices i < j , the face map D.�ij � �/�

appears twice with respective coefficients .�1/i .�1/j and .�1/i .�1/j�1; which have opposite sign and
cancel out. On the other hand, anticommutativity dV ı dH D�dH ı dV follows since D.� � �/� is a
chain morphism for all � � � from K.

Now, we consider the double complex spectral sequence from [McCleary 2001, Section 2.4]. Given D in
RDiag.K/ there is a spectral sequence

E1p;q.D/D
M
�2Kp

Hq.D.�//) HpCq.STot
� .D//

where STot.D/ is the total complex defined as

STot
n .D/D

M
pCqDn

Cp;q.D/
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together with a differential dTot D dV C dH . Also, recall that the total complex has a filtration induced
by the vertical filtration on Cp;q.D/ given by

FmSTot
� .D/D

M
pCqDn
p�m

Cp;q.D/

for all integers m� 0; see [Torras-Casas 2023] for an explanation. Next, we relate this total complex to
the geometric realization from Definition 2.10.

Lemma 3.1 There is an isomorphism C cell
� .�D; ı�/ ' STot

� .D/ which preserves filtration. That is ,
F pC cell

� .�D; ı�/' F pSTot
� .D/ for all p � 0.

Proof First we define a chain morphism  W C cell
m .�D/! STot

m .D/ generated by the assignment: a cell
��c 2 .�D/m with � 2Kp and c 2D.�/q for integers pCqDm, is sent to  .��c/D .c/� 2 STot

m .D/;
where by .c/� we refer to the vector from STot

m .D/which is zero in all components except at the component
indexed by � , where it is equal to c. On the other hand,  is a chain morphism since we have the equality

 .ı�.� � c//D
X
�i��

.�1/i
� X
a2D.�i��/.c/

.Œa W D.�i � �/.c/�a/�i

�
C .�1/dim.�/

X
b2Ncnc

.Œb W c�b/�

D

X
�i��

.�1/i .D.�i � �/�.c//�i C .�1/
dim.�/.d�q .c//�

D .dH C dV /..c/� /

D dTot..c/� /:

One can see that  is injective, and admits an inverse  �1 W STot
m .D/! C cell

m .�D/ that sends .�/c to
� � c. Notice that by definition  sends a chain in F pC cell

n .�D/ to a chain in F pSTot
n .D/ for all p � 0

and in particular it preserves filtration.

Remark 3.2 Continuing with Remark 2.12, as both �Bd.K/D
0 and hocolim.D/ refer to the same space,

we could have considered the homotopy colimit spectral sequence

E1p;q.Bd.K/;D0/D
M

�2Bd.K/p
Hq.D0.�//) HpCq.hocolim D/:

Let us construct a diagram of spaces whose geometric realization is homeomorphic to jKj for any finite
simplicial complex K. We start by taking a finite partition P of the vertex set V.K/ and denote by K.U /
the maximal subcomplex of K with vertices in U 2 P. We denote by �P the standard simplex with
vertices in P. For a simplex � 2K, we define P.�/ 2�P to be the simplex consisting of all partitioning
sets U 2 P such that � \ U ¤ ∅. In particular if U 2 P.�/, then it determines a standard simplex
�.U / 2K.U / of dimension j� \U j � 1� 0 whose vertices are precisely those from � \U , so that there
is an inclusion ��.U / ,! jK.U /j. For a vertex v 2 K, we denote by P.v/ the partitioning set from P

which contains v.
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We define the .K;P/–join diagram JKP W .�
P/op! FCW-cpx for all � � P by assigning the subspace

formed by the union of products of images

JKP .�/D
[
�2K

P.�/D�

Y
U2�

Im.��.U / ,! jK.U /j/

for all � 2�P; by definition, notice that JKP .�/�
Q
U2� jK.U /j. Additionally, JKP .U /D jK.U /j for all

U 2P. However, JKP .�/ could even be empty for � 2�P with dim.�/ > 0. For any pair � � � in�P, we
consider the projection ���� W

Q
U2� jK.U /j!

Q
U2� jK.U /j that forgets all product components which

are indexed by vertices of � that are not vertices of � . We claim that ���� restricts to a well-defined face
map JKP .� � �/ W J

K
P .�/! JKP .�/. In order to show this, we consider an arbitrary simplex � 2K such

that P.�/D � . Next, we consider the face �.�/� � which is spanned by the vertices from �\U for all
U 2 � , so that P.�.�//D � and also �.�/.U /D �.U / for all U 2 P. Then, we obtain the equality

����

� Y
U2�

Im.��.U / ,! jK.U /j/
�
D

Y
U2�

Im.��.�/.U / ,! jK.U /j/;

so the face maps are well defined, as claimed.

Lemma 3.3 Let K be a simplicial complex together with a partition P of its vertex set V.K/. There is a
CW–complex homeomorphism �.JKP /' jKj.

Proof Consider the continuous map f W�.JKP /! jKj defined by mapping a point� X
U2P.�/

yUU;

�X
v2U

xvv

�
U2P.�/

�
2�P.�/

�

Y
U2P.�/

��.U /
.
�

to
P
v2� yP.v/xvv in�� for all � 2K, where we have values 0� yU � 1 and 0� xv � 1 for all U 2P.�/

and all v 2 U , and such that
P
U2P.�/ yU D 1 and

P
v2U xv D 1 for all U 2 P. On the other hand, letP

v2� xvv 2�
� be a point such that 0� xv � 1 for all v 2�� and such that

P
v2� xv D 1. Then we can

define the inverse continuous map

f �1
�X
v2�

xvv

�
D

� X
U2P.�/

�X
v2U

xv

�
U;

�
 U

�X
v2�

xvv

��
U2P.�/

�
;

where we consider a map  U W�� !��.U / given by

 U

�X
v2�

xvv

�
D

8<:
P
v2�.U /

�
xvP

v2�.U / xv

�
v if

P
v2�.U / xv ¤ 0;

� 2��.U / otherwise, where � denotes any point (see below):

By the equivalence relation used to define �.JKP /, the product factor ��.U / is collapsed to a single point
for the subset of points whose U –coordinate in �P.�/ vanishes. If

P
v2�.U / xv D 0, then xv D 0 for all

v 2 �.U / and the U –coordinate of the point
P
v2� xvv in �P.�/ is 0. It is straightforward to check that

f and f �1 are well defined and consistent along K.
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K

U V

JKP .U / JKP .V /

JKP .ŒU; V �/

ŒU; V �U V

�P

JKP

�JKP

Figure 1: Depiction of K, JKP and �JKP from Example 3.4. Over the edge ŒU; V �, we consider
JKP .ŒU; V �/� jK.U /j � jK.V /j, where we add dashed lines to illustrate the embedding into the
product. On the bottom left we depict �JKP , where each red dashed line and each green line is
collapsed to a single point.

Example 3.4 Consider the simplicial complex K depicted in the top left part of Figure 1, formed by
gluing a 2–simplex to a 4–simplex along an edge. We consider a partition of the vertex set of K into the
two subsets PD fU; V g, where points in U are indicated by black circles and points in V are indicated by
red squares. In the top right of Figure 1, we depict the standard 1–simplex �P together with the diagram
JKP over it. In particular, notice that JKP .ŒU; V �/ is a subset of the product jK.U /j � jK.V /j and that the
morphisms JKP .ŒU; V �/! JKP .V /D jK.V /j and JKP .ŒU; V �/! JKP .U /D jK.U /j are both projections.
In addition, notice that JKP .ŒU; V �/ has five vertices corresponding to the five different edges connecting
vertices from U to V , five edges corresponding to five 2–simplices containing vertices in both U and
V and a single 2–cell corresponding to the unique 4–simplex in K. Finally, the bottom left of Figure 1
shows the geometric realization �JKP .

Observe that JKP is a diagram of prodsimplicial complexes as in [Kozlov 2008, Definition 2.43], which are
in particular regular CW–complexes. By the observations above we can therefore consider the associated
double complex spectral sequence

E1p;q.J
K
P /D

M
�2�P

Hq.JKP .�//) HpCq.�JKP /' HpCq.K/:

Next, we show that the “size” of K is the same as the “size” of the diagram JKP . For this, recall that each
simplex � 2K corresponds to a unique simplex P.�/ 2�P. This is different to the case of a cover U

for K, where a simplex in K might correspond to several simplices from the nerve NU. Here, we write
#L for the number of cells in a complex L.
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Proposition 3.5 #K D
X
�2�P

#JKP .�/.

Proof Consider an assignment  W K !
F
�2�P JKP .�/ given by sending � 2 K to .�.U //U2P.�/ in

JKP .P.�//, where .�.U //U2P.�/ 2
Q
U2P.�/ jK.U /j. By the definition of JKP ,  is well defined and

surjective. Also,  is injective as the vertex set from � 2K is uniquely determined by the simplices �.U /
for all U 2 P.�/.

Now, let us consider a filtered simplicial complex K� 2 FCW-cpx such that its vertex set V.K�/ is
fixed throughout all values of R. Let P be a partition of V.K�/. We define the filtered regular diagram
JKP 2 FRDiag.P/ by sending r 2 R to JKrP . These diagrams inherit the shift morphisms †K� from K�

in the following way: Let � 2�P and notice that we have restrictions †s�rKjU W jKr.U /j ! jKs.U /j
for all U 2 � , so that we have induced morphismsY

U2�

†s�rKjU W J
Kr
P .�/! JKsP .�/

for all � 2�P. In turn, these induce a shift morphism on �JKP which respect filtrations, so that we have
a commutative diagram

E�p;q.J
Kr
P / �JKrP Kr

E�p;q.J
Ks
P / �JKsP Ks

'

'

and thus PH�.�JKP /' PH�.K�/. For each simplex � 2�P one can see JKP .�/ as a filtered simplicial
complex, so that

E1p;q.J
K
P /D

M
�2.�P/p

PHq.JKP .�//) PHpCq.K/:

Example 3.6 Consider a point cloud X, a partition P and consider its Vietoris Rips complex VR�.X/ in
FCW-cpx. In this case we have a fixed partition of the vertex set of VR�.X/, which allows us to consider
the spectral sequence

E1p;q.J
VR�.X/
P /D

M
�2�P

PHq.J
VR�.X/
P .�//) PHpCq.VR�.X//:

This is very convenient as it avoids the main difficulties with the Mayer–Vietoris blowup complex
associated to a cover. Namely, one recovers PH�.K/ completely without any bounds depending on the
cover overlaps. In addition, notice that �J

VR�.X/
P has the same number of cells as VR�.X/, contrary to

the Mayer–Vietoris blowup complex, whose number of cells is much larger, as shown in Proposition 3.5.

The .K;P/–join diagram is related to [Robinson 2020, Example 4]. There the motivation behind
the filtrations is given by a consistency radius and a filtration based on the differences between local
measurements. The same example appears (without a filtration) as one of the opening examples in
[Hatcher 2002, Appendix 4.G].
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4 "–acyclic carriers

The following definition encodes our notion of “noise”.

Definition 4.1 Let X; Y 2 RCW-cpx. An "–acyclic carrier F "� W X� � Y Œ"�� is a family of acyclic
carriers F "a WXa � YaC" for all a 2 R such that

Y.aC "� bC "/F "a .c/� F
"
b .X.a � b/.c//

for all cells c of Xa and a; b 2 R with a � b.

The proposition below is an adaptation of [Munkres 1984, Theorem 13.4] or [Cooke and Finney 1967,
Lemma 2.4] to the context of tame filtered CW–complexes.

Proposition 4.2 Let X�; Y� 2 FCW-cpx be tame , and assume that there exists an "–acyclic carrier

F "� WX�� Y Œ"��:

Then there exist chain morphisms f "a W C�.Xa/ ! C�.YaC"/ carried by F "a for all a 2 R, so that
Y.aC " � b C "/ ı f "a D f "

b
ıX.a � b/. Furthermore , given another such sequence of morphisms

g"a W C�.Xa/! C�.YaC"/, there exist chain homotopy equivalences H "
a W g

"
a ' f

"
a which are carried by

F "a for all a 2 R.

Proof Let b 2 R and assume that f "a has already been defined for all values a < b, where we allow for
b D �1. We first define f "

b
on all cells which are in the image of X.a < b/ for any a < b using the

definition
f "b ıX.a < b/D Y.aC " < bC "/ ıf

"
a :

Notice that the assumption that Xa � Xb is crucial for this to work. By hypotheses, given a cell
c 2 Im.X.a < b//, its image f "

b
.c/ is then contained in

Y.aC " < bC "/F "a . Qc/� F
"
b .X.a < b/. Qc//;

where Qc 2Xa is such that c DX.a < b/. Qc/. Hence, f "
b

satisfies the carrier condition. Next we define f "
b

on the remaining cells in
zXb DXb n

�[
a<b

X.a < b/

�
:

We proceed to prove this by induction. First, choose a 0–cell f "
b
.v/ 2 F "

b
.v/ for each remaining 0–cell

v 2 zXb , and notice that d�f "b .v/D 0D f
"
b
.d�v/, where we use d� for the chain complex differentials.

Next, by induction, assume that for a fixed p � 0, the p–cells s 2 Xb have image f "
b
.s/ carried by

F "
b
.s/ and such that d� ı f "b .s/ D f

"
b
ı d�.s/. We would like to extend f "

b
to the .pC1/–cells. By

semicontinuity, given such a cell c 2 Xb , its boundary d�c is contained in F "
b
.c/. On the other hand,

notice that by linearity and the induction hypotheses d�f "b .d�c/D f
"
b
.d�d�c/D 0; thus f "

b
.d�c/ is a
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cycle in C�.F "b .c//. By acyclicity, there exists h 2C�.F "b .c// such that d�hD f "b .d�c/ and thus we can
define f "

b
.c/D h. Altogether, we have defined a chain morphism f "

b
which is carried by F "

b
.

Since X� is tame, there exist a finite sequence of values a1 < a2 < � � �< aN such that Xs DXai for all
s 2 .ai�1; ai / where we define a0D�1 and aNC1D1. We apply the construction of f "

b
for all values

b ranging over ai from i D 1 up to i DN . This determines the chain morphism f "� WC�.X�/!C�.Y Œ"��/,
where we set f "s D f

"
ai

for all s 2 .ai�1; ai � where i D 1; 2; : : : ; N and also f "t D f
"
aN

for all t > aN .

Now, assume that g"
b

is also carried by F "
b

for all b 2R. Following [May 1999, Section 12.3], we define
the chain complex I given by I0 D hŒ0�; Œ1�i and I1 D hŒ0; 1�i and Ik D 0 for k � 2. This is the cellular
chain complex of the unit interval I decomposed into two 0–cells and one 1–cell. A chain homotopy
h"
b
W f "
b
' g"

b
corresponds to a chain map h"

b
W C cell
� .Xb/˝I! C cell

� .Yb/ such that h"
b
.x; Œ0�/D f "

b
.x/

and h"
b
.x; Œ1�/D g"

b
.x/ for all x 2 Xb . Let H "

b
.c; i/D F "

b
.c/ for a cell .c; i/ 2 X � I . By assumption,

H " WX � I � Y is an "–acyclic carrier. Note that C cell
� .Xb/˝IŠ C cell

� .Xb � I /. Replicating the first
part of the proof we can now extend any map h"

b
W C cell
� .Xb/˝I0! C cell

� .Yb/ with the above properties
to all cells of X � I .

Definition 4.3 Let X�; Y� 2RCW-cpx. A shift carrier is an "–acyclic carrier I "X WX��X�C" carrying
the standard shift †"X�. Let two "–acyclic carriers

F " WX�� Y�C"; G" W Y��X�C";

together with shift carriers I 2"X and I 2"Y . We say that X� and Y� are "–acyclic equivalent whenever we
have inclusions G" ıF " � I 2"X and F " ıG" � I 2"Y .

The motivation for the definition of "–acyclic equivalences is the following lemma:

Proposition 4.4 Let X� and Y� be two tame elements from FCW-cpx which are "–acyclic equivalent.
Then PH.X�/ and PH.Y�/ are "–interleaved.

Proof By Proposition 4.2 we know that there exist two chain maps f "� W C�.X�/! C�.Y�C"/ and
g" W C�.Y�/! C�.X�C"/ carried by F " and G" respectively. By hypothesis the compositions g" ı f "

and f " ı g" are carried by corresponding shift carriers I 2"X and I 2"Y . Thus, using the second part of
Proposition 4.2 we obtain chain homotopies g" ıf " '†2"C�.X/ and f " ıg" '†2"C�.Y /. Altogether,
in homology these compositions are equal to the corresponding shifts, and PH�.X�/ and PH�.Y�/ are
"–interleaved.

Example 4.5 Consider two finite metric spaces X and Y . Let dH .X;Y / be their Hausdorff distance
and set " D 2dH .X;Y /. Given a subcomplex K � VR.X/, we denote its vertex set by X.K/ � X.
Likewise for a simplex � 2 VR.X/, we write X.�/ � X for the vertices spanning � . Define a carrier
F " W VR.X/� VR.Y / by mapping a simplex � 2 VR.X/a to

F ".�/D
ˇ̌
supfK � VR.Y /aC" j dH.X.�/;Y .K//� "=2g

ˇ̌
:
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This is clearly semicontinuous. If v0; : : : ; vn are vertices in F ".�/, then by definition fv0; : : : ; vng is
an n–simplex in F ".�/. Therefore we have F ".�/ ' �N for some N 2 Z�0, which is acyclic. In
particular, F " is an "–acyclic carrier. Interchanging the roles of X and Y we also obtain an "–acyclic
carrier G" W VR.Y /� VR.X/. Similarly, we define for a simplex � 2 VR.X/a the shift carrier

I 2"X .�/D
ˇ̌
supfK � VR.X/aC2" j dH.X.�/;X.K//� "g

ˇ̌
:

Analogously one defines I 2"Y . Since G" ı F " � I 2"X and F " ıG" � I 2"Y , Proposition 4.4 implies that
PH�.VR.X// and PH�.VR.Y // are "–interleaved. This is similar to the proof using correspondences;
see [Oudot 2015, Proposition 7.8, Section 7.3].

Example 4.6 Consider RN together with a 1–Lipschitz function f W RN ! R with constant " > 0.
On the other hand, consider the lattices ZN and rZN C l for a pair of vectors r; l 2 RN such that the
coordinates of r satisfy 0 < ri � 1 for all 1� i �N . Then we take their corresponding cubical complexes
C.ZN / and C.rZN C l/ thought as embedded in RN . The function f induces a natural filtration for
these cubical complexes: a vertex v 2C.ZN / is contained in C.ZN /f .v/, while a cell a 2C.ZN / appears
at the maximum filtration value on its vertices. There is an "–acyclic carrier F " W C.ZN /� C.rZN C l/

sending each cell a 2 C.ZN / to the smallest subcomplex F ".a/ containing all b 2 C.rZN C l/ such
that Nb \ a ¤ ∅. In an analogous way the inverse acyclic carrier can be defined, and the compositions
F " ıG" and G" ıF " define the shift carriers. Thus, using Proposition 4.4, one shows that PH�.C.ZN //
and PH�.C.rZN C l// are "–interleaved.

An important assumption of Proposition 4.2 is that we are dealing with tame filtered CW–complexes.
However, what if we considered a pair of elements X�; Y� 2 RCW-cpx instead? In this context, we
notice that given an "–acyclic carrier F " WX�! Y�Œ"�, it is not necessarily true that the compositions

Y.aC "� bC "/F "a .c/ and F "b .X.a � b/.c//

are still acyclic for all pairs a�b from R. Thus, whenever we talk about "–acyclic carriers F " WX�!Y�Œ"�

in this context we assume that F "
b
.X.a � b/.c// is acyclic for all pairs a; b 2 R with a � b and all cells

c 2X.a/.

Corollary 4.7 Let X�; Y� 2 RCW-cpx be a pair of elements such that both are "–acyclic equivalent in
the above sense. Then dI .PH�.X�/;PH�.Y�//� ".

Proof For each persistence value a 2 R, we use Theorem 2.4 twice to obtain a pair of chain morphisms
fa WC

cell
a .X/!C cell

aC".Y / and gaC" WC cell
aC".Y /!C cell

aC2".X/. In a similar way we obtain a pair of chain ho-
motopies gaC"ıfa' .†2"C cell

� .X//a and faC"ıga' .†2"C cell
� .Y //a so that we have equalities between

the induced homology morphisms ŒgaC"�ı Œfa�D Œ.†2"C cell
� .X//a� and ŒfaC"�ı Œga�D Œ.†2"C cell

� .Y //a�

for all a 2 R. Now, for a pair of values a � b from R, it is not necessarily true that

Y.aC "� bC "/ ıfa D fb ıX.a � b/:
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However, since Y.aC " � b C "/ ı fa and fb ıX.a � b/ are both included in F "
b
.X.a � b/.c// by

hypotheses, then by applying Theorem 2.4 again there is a chain homotopy equivalence

Y.aC "� bC "/ ıfa ' fb ıX.a � b/;

which implies
ŒY.aC "� bC "/� ı Œfa�D Œfb� ı ŒX.a � b/�;

and we have defined a persistence morphism Œf�� W PH�.X�/! PH�.Y�Œ"�/. Similarly, we can also put
together the ga for all a 2 R so that we obtain a morphism Œg�� W PH�.Y�/! PH�.X�Œ"�/. This leads to
the claimed "–interleaving.

Example 4.8 In the appendix, we describe a filtered CW–complexX , a regularly filtered CW–complex Y ,
together with a pair of 0–acyclic carriers (ie " D 0) F W Y � X and G W X � Y which, together with
the compositions G ıF and G ıF as shift carriers, define a 0–acyclic equivalence between Y and X .
Therefore, by Corollary 4.7 we obtain isomorphisms PHn.X/Š PHn.Y / for all n� 0. In this case, notice
that Y is much smaller than X ; thus it is worth considering the regularly filtered complex Y in place of X .
Next, we briefly describe how one could use "–equivalences. In this case, one could have considered a
filtered complex zX which is equal to X� outside the intervals .i � "; i C "/ for values i D 1; 2; 3; 4 and
for some " < 1=2. Notice that in this case one should be able to obtain an "–acyclic equivalence between
zX and Y , so that by Corollary 4.7 PHn. zX/ and PHn.Y / are "–interleaved for all n� 0.

Remark 4.9 Notice that our notion of acyclicity is different from that in [Cavanna 2019] and [Govc and
Skraba 2018]. In [Govc and Skraba 2018] a filtered complex K� is called "–acyclic whenever the induced
homology maps H�.Kr/! H�.KrC"/ vanish for all r 2R. In this case, one can still (trivially) define
acyclic carriers between � and K�. The problem arises when defining the shift carrier IA"K for some
constant A> 0, which does not exist in general. One can however, adapt the proof of Proposition 4.2 so
that there is a chain morphism  ".dim.Kr /C1/ W C�.Kr/! C�.KrC".dim.Kr /C1//; and that this coincides
up to chain homotopy with the composition through C�.�/. One does this by following the same proof
as in Proposition 4.2, but increasing the filtration value by " each time we assume that some cycle lies in
an acyclic carrier. Thus, if we have dim.K/D supr2R.dim.Kr// <1, then one could say that there is
an ".dim.K/C1/–approximate chain homotopy equivalence between C.�/ and C.K�/.

5 Interleaving geometric realizations

Next, we focus on acyclic carrier equivalences between a pair of diagrams D;L 2 RRDiag.K/. We start
by taking "–acyclic carriers F "� W D.�/� L.�/ for all � 2K which have to be compatible in the sense
that for any pair � � � and any cell c 2 D.�/, there is an inclusion

(2) L.� � �/.F "� .c//� F
"
� .D.� � �/.c//
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and we assume in addition that F "� .D.� � �/†
rD.�/.c// is acyclic for all r � 0. This compatibility leads

to “local” diagrams of spaces. That is, given a pair of values a 2 R and r � 0 and a cell c 2 D.�/a, we
consider an object F r;"��c 2 RDiag.�� /. It is given by the space F r;"��c.�/D F "�

�
D.� � �/†rD.�/.c/

�
for all faces � � � . For any sequence � � � � � in K, there are morphisms in F r;"��c given by restricting
morphisms from L:

� F
r;"
��c.�/ F "�

�
D.� � �/†rD.�/.c/

�
� F

r;"
��c.�/ F "�

�
D.� � �/†rD.�/.c/

�L.���/�

Using condition (2) repeatedly on the cells from L D D.� � �/†rD.�/.c/, we see that we have an
inclusion

L.� � �/.F "� .L//� F
"
�

�
D.� � �/.L/

�
:

Thus the diagram F
r;"
��c is indeed well defined, and we may consider the geometric realization �F r;"��c .

By hypothesis, each F
r;"
��c.�/ is acyclic for all � � � , so the first page of the spectral sequence

E�p;q.F
r;"
��c/) HpCq.�F

r;"
��c/ is equal to

E1p;q.F
r;"
��c/D

M
�2.�� /p

Hq.F r;"��c.�//D
�L

�2.�� /p F if q D 0;
0 otherwise:

In fact, computing the homology with respect to the horizontal differentials on the first page corresponds
to computing the homology of �� . Thus, E2p;q.F

r;"
��c/ is zero everywhere except at p D q D 0 where it

is equal to F . Thus, the spectral sequence collapses on the second page, and �F r;"��c is acyclic. We use
the notation F "��c D F

0;"
��c .

Definition 5.1 Let D and L be two diagrams in RRDiag.K/. Suppose that there are "–acyclic carriers
F "� W D.�/� L.�/ for all � 2K, and that

L.� � �/.F "� .c//� F
"
� .D.� � �/.c//

for all c 2 D.�/ and in addition F "� .D.� � �/†
rD.�/.c// is acyclic for all r � 0. Then we say that the

set fF "� g�2K is an .";K/–acyclic carrier between D and L. We denote this by F " W D � L.

Theorem 5.2 Let D and L be two diagrams in RRDiag.K/. Suppose that there are .";K/–acyclic
carriers F " W D � L and G" W L � D, together with a pair of shift .";K/–acyclic carriers I 2"D W D � D

and I 2"L W L � L, and such that these restrict to acyclic equivalences

G"� ıF
"
� � .I

2"
D /� and F "� ıG

"
� � .I

2"
L /�

for each simplex � 2K. Then there is an "–acyclic equivalence F " W�D ��L which preserves filtration.
That is , there are "–acyclic equivalences F pF " W F p�D � F p�L for all p � 0.
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Proof Let � �c 2�D be a cell, where c is an m–cell in D.�/. Define an acyclic carrier F " W�D ��L

by sending � � c to the acyclic carrier �F "��c , which is a subcomplex of �L. Let us first check
semicontinuity. For any pair of cells � � a � � � c in �D, the cell a is contained in the subcomplex
D.� � �/.c/, and by continuity of D.� � �/ we have that D.� � �/.a/� D.� � �/.c/. Thus there are
inclusions

F "� .D.� � �/.a//� F
"
� .D.� � �/.c//D F

"
� .D.� � �/.c//

for all � � � . More concisely, F "��a.�/ � F
"
��c.�/ for all � � � . As a consequence �F "��a � �F

"
��c

and semicontinuity holds.

Next, notice that F ".†r�D.� � c// D F ".� �†rD.�/.c// D �F r;"��c which is an acyclic carrier. In
order for F " to be an "–acyclic carrier, it remains to show the inclusion †r�L ıF " � F " ı†r�D for
all r � 0. For this, take � � c 2�D and see that

†r�L ıF ".� � c/D†r�L

�[
���

� �F "� .D.� � �/.c//

�
D

[
���

� �†rL.�/
�
F "� .D.� � �/.c//

�
�

[
���

� �F "� .†
rD.�/D.� � �/.c//

D

[
���

� �F "�
�
D.� � �/†rD.�/.c/

�
D F ".� �†rD.�/.c//D F " ı†r�D.� � c/:

Similarly, one can define an "–acyclic carrier G" W�L ��D sending � �c 2�L to �G"��c . In addition,
we define respective shift "–acyclic carriers I 2"D W�D ��D and I 2"L W�L ��L sending, respectively,
� � c 2�D to �.I 2"D /��c and � � a 2�L to �.I 2"L /��a. Then we have

G" ıF ".� � c/DG".�F "��c/

DG"
�[
���

� �F "� .D.� � �/.c//

�
D

[
�����

��G"�
�
L.� � �/F "� .D.� � �/.c//

�
�

[
���

��G"�F
"
� .D.� � �/.c//��.I

2"
D /��c D I

2"
D .� � c/;

where we have used the commutativity condition and equivalence of F "� and G"�. Consequently,
G" ıF " � I 2"D ; the other inclusion F " ıG" � I 2"L follows by symmetry. Altogether, we have obtained
an "–equivalence F " W �D � �L. Finally, notice that for all p � 0 and for each cell � � c 2 F p�D,
its carrier �F "��c is contained in F p�D and so it preserves filtration. The same follows for the other
acyclic carriers.
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Let X 2 FCW-cpx together with a cover U. Recall the definitions of the diagrams XU and �U
0 over NU

from Example 2.9. Let dI
�
PH�.XU.�//;PH�.�U

0 .�//
�
� " for all � 2 NU. This example has been of

interest before; see for example [Govc and Skraba 2018] or [Cavanna 2019]. As mentioned in Remark 4.9,
our notion of "–acyclicity is much stronger than that from [Govc and Skraba 2018]. This is why we obtain
a result closer to the persistence nerve theorem from [Chazal and Oudot 2008] than to the approximate
nerve theorem from [Govc and Skraba 2018].

Given a diagram D 2 FRDiag.K/, recall the diagram �0D from Example 2.11. We may define an
.";K/–acyclic carrier �"0D W D � �0D where we send cells to their corresponding connected component
classes. The compatibility condition �0.D.� � �//.�"0D.D.�///� �"0D.D.�// also follows for any pair
of simplices � � � from K.

Corollary 5.3 (strong approximate multinerve theorem) Consider a diagram D in FRDiag.K/. Assume
that there is a .";K/–acyclic carrier F " W �0D � D such that the composition F "� ı �

"
0D� carries the

shift morphism †2"D� for all � 2 K. Then , there is an "–acyclic equivalence F " WMNerv.D/ � �D.
Consequently,

dI .PH�.MNerv.D//;PH�.�D//� ":

Proof The shift .2";K/–carrier I 2"�0D sends points to points, while the other I 2"D is defined as the
composition F "� ı�

"
0D� , which is a .2";K/–acyclic carrier by hypotheses. Thus, by Theorem 5.2 there

exists an "–acyclic equivalence F " WMNerv.D/��D.

Example 5.4 Consider a filtered simplicial complex L� together with a partition of its vertex set P. As-
sume that the .L�;P/–join diagram JL�P is such that there exists a .";K/–acyclic carrierF " W�0JL�P �JL�P

such that F "� ı�
"
0JL�P .�/ is a carrier for †2"JL�P .�/ for all � 2�P . Then, by Corollary 5.3, there is an

"–acyclic equivalence ��0.J
L�
P /��JL�P such that

dI
�
PH�.MNerv.JL�P //;PH�.L�/

�
� ":

Acyclic carriers have been used in [Kaczynski et al. 2004] and in [Nanda 2012] for approximating
continuous morphisms by means of simplicial maps. Here we have used the same tools to obtain an
approximate homotopy colimit theorem. The acyclic carrier theorem is an instance of the more general
acyclic model theorem; see [Eilenberg and MacLane 1953, Section 2]. An interesting future research
direction would be to see how that general result can bring new insights into applied topology.

6 Interleaving spectral sequences

Definition 6.1 Let A and B be from SpSq. A n–spectral sequence morphism f WA!B is a spectral
sequence morphism f WA!B which is defined from page n.

Algebraic & Geometric Topology, Volume 24 (2024)



Interleaving Mayer–Vietoris spectral sequences 4287

Definition 6.2 Given two objects A and B in PSpSq. We say that A and B are ."; n/–interleaved
whenever there exist two n–morphisms  WA!BŒ"� and ' WB!AŒ"� such that the diagram

(3)

A B

AŒ"� BŒ"�

AŒ2"� BŒ2"�

 †"A ' †"B

 Œ"�†"AŒ"� 'Œ"� †"BŒ"�

commutes for all pages r � n. This interleaving defines a pseudometric in PSpSq,

dnI .A;B/ WD inff" jA and B are ."; n/–interleavedg:

Proposition 6.3 Suppose that A and B are ."; n/–interleaved. Then these are .";m/–interleaved for all
m� n. In particular , we have that

dmI .A;B/� d
n
I .A;B/

for any pair of integers m� n.

Proof This follows directly from the definitions.

We start now by considering Mayer–Vietoris spectral sequences. Under some conditions which are a
special case of Theorem 5.2, one can obtain one-page stability. In fact, this stability is due to morphisms
directly defined on the underlying double complexes, which is a very strong property.

Proposition 6.4 Let X and Y be two tame elements in FCW-cpx together with a pair of respective finite
covers U and V by subcomplexes such thatK DNUDNV. Suppose that there are .";K/–acyclic carriers
F " WXU � Y V and G" W Y V �XU, together with a pair of shift .";K/–acyclic carriers I 2"

XU WX
U �XU

and I 2"
Y V W Y

V � Y V, and such that these restrict to acyclic equivalences

G"� ıF
"
� � .I

2"
XU/� and F "� ıG

"
� � .I

2"
Y V/�

for each simplex � 2K. Then there is a pair of double complex morphisms

�" W C�;�.X;U/! C�;�.Y;V/Œ"� and  " W C�;�.Y;V/! C�;�.X;U/Œ"�

inducing a first page interleaving between E��;�.X;U/ and E��;�.Y;V/.

Proof Unpacking the definitions, this means we have to give chain homomorphisms

.�"� /r W C�.X
U.�/r/! C�.Y

V.�/rC"/; . "� /r W C�.Y
V.�/r/! C�.X

U.�/rC"/

that are natural in � 2K and in r 2R. Since K is a poset category, these can be constructed inductively as
follows: As in Proposition 4.2 we may define �"� on all simplices � 2K of dimension dim.�/D dim.K/.
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Note that .�"� /r is carried by .F "� /r for all r 2 R. Assume by (reverse) induction that �"� are defined
and carried by F "� for all � 2 K with n � dim.�/ � dim.K/ in such a way that for all cofaces � � �
the naturality condition �"� ıX

U.� � �/ D Y V.� � �/Œ"� ı �"� holds. Now let � 2 K have dimension
dim.�/ D n � 1 � 0. The naturality condition on the simplices fixes �"� on the filtered subcomplex
X� D

S
��� Im.XU.� � �//, where the union is taken over all cofaces � of � . Here notice that we

can assume that �"� is well defined since the previous choices of �"� for all cofaces � � � are consistent
due to the fact that for each cell c 2 X� there exists a unique maximal simplex � 2 NU such that
c 2 XU.�/. In addition, notice that by hypotheses Y V.� � �/..F "� /.c// � F

"
� .X

U.� � �/.c// for all
a 2 R and c 2XU.�/, so that our definition of �"� in X� is indeed carried by F "� . We then proceed as in
Proposition 4.2 to define .�"� /a on all simplices in the subset XU.�/a nX

�
a for all a 2 R. The resulting

chain map .�"� /a is carried by .F "� /a for all a 2 R. Since XU is tame, we only need finitely many steps
to obtain a morphism �"� W C�.X

U.�//! C�.Y
V.�/Œ"�/ that satisfies the induction hypotheses.

Thus, we obtain double complex morphisms �"p;q WCp;q.X;U/!Cp;q.Y;V/Œ"� for all p; q � 0 by adding
up our defined local morphisms

�"p;q W
M
�2Kp

�"� W
M
�2Kp

Cq.X
U.�// �!

M
�2Kp

Cq.Y
V.�//Œ"�:

Notice that the �"p;q commute both with horizontal and vertical differentials since we assumed that each
�"� is a chain morphism and these satisfy a naturality condition with respect to K. Thus, this double
complex morphism induces a spectral sequence morphism �"p;q W E

�
p;q.X

U/! E�p;q.Y
V/Œ"�. By doing

the same construction, we can obtain local chain morphisms  "� WC�.Y
V.�//!C�.X

U.�//Œ"� so that by
Proposition 4.2 we have equalities Œ "� �ıŒ�

"
� �D Œ†

2"C�.X
U.�//� and also Œ�"� �ıŒ 

"
� �D Œ†

2"C�.Y
V.�//�

for all � 2K. Then we can construct a double complex morphism  "p;q W Cp;q.Y;V/! Cp;q.X;U/Œ"�

inducing an “inverse” spectral sequence morphism  "p;q WE
�
p;q.Y;V/!E�p;q.X;U/Œ"�. These are such

that from the first page, �"�;� and  "�;� form a ."; 1/–interleaving of spectral sequences.

Notice that the proof of Proposition 6.4 relies heavily on the fact that the diagrams we are considering
come from a cover. This allows us to define a pair of double complex morphisms that are compatible
along the common indexing nerve. However, in Theorem 5.2 we observed that, under some conditions,
the geometric realizations of regularly filtered regular diagrams are stable. Does this stability carry over
to the associated spectral sequences? The next theorem shows that this is indeed the case.

Theorem 6.5 Let D and L be two diagrams in RRDiag.K/. Suppose that there are .";K/–acyclic
carriers F " W D � L and G" W L � D, together with a pair of shift .";K/–acyclic carriers I 2"D W D � D

and I 2"L W L � L, and such that these restrict to acyclic equivalences

G"� ıF
"
� � .I

2"
D /� and F "� ıG

"
� � .I

2"
L /�

for each simplex � 2K. Then
d1I .E.D; K/;E.L; K//� ":

Algebraic & Geometric Topology, Volume 24 (2024)



Interleaving Mayer–Vietoris spectral sequences 4289

Proof Recall from Theorem 5.2 that there is a filtration-preserving "–acyclic carrier F " W�KD ��KL.
Given r 2R, this implies that there is a chain complex morphism f "r WC�.�D/r!C�.�L/rC" carried by
F "r and which respects filtrations in the sense that f "r .F

pC�.�D/r/� F
pC�.�L/rC" for all p � 0. By

Lemma 3.1 this defines a morphism f "r W S
Tot
� .D/r ! STot

� .L/rC" which respects filtrations. Altogether
we deduce that f "r determines a morphism of spectral sequences f "r WE

�
p;q.D/r!E�p;q.L/rC". Similarly

as in Corollary 4.7, the commutativity

(4) †sE�p;q.L/rC" ıf
"
r D f

"
rCs ı†

sE�p;q.D/r

does not need to hold for all r 2 R and all s � 0. However, by definition of "–acyclic carrier, there
is an inclusion †s�L ı F " � F " ı†s�D where the superset is acyclic, so †sC�.�L/rC" ı f

"
r and

f "rCs ı†
sC�.�D/r are both carried by the filtration preserving acyclic carrier F " ı†s�Dr . This implies

that there exist chain homotopies h"r W Cn.�D/r ! CnC1.�L/rCsC" which respect filtrations and satisfy

f "rCs ı†
sC�.�D/r �†

sC�.�L/rC" ıf
"
r D ı

�
ı h"r C h

"
r ı ı

�:

for all r 2 R and all s � 0. Recall that the zero page terms are given as quotients on successive filtration
terms E0p;q.D/r D F pSTot

pCq.D/r=F
p�1STot

pCq.D/r , for all r 2 R and all integers p; q � 0. Thus, by
Lemma 3.1, these chain homotopies carry over to STot

� .D/r and the commutativity relation from (4) holds
from the first page onwards.

Similarly, we can define spectral sequence morphisms g"r WE
�
p;q.L/r !E�p;q.D/rC" for all r 2 R which

commute with the shift morphisms from the first page. Also, by inspecting the shift carriers, we can obtain
equalities of 1–spectral sequence morphisms g"rC"ıf

"
r D†

2"E�p;q.D/r and also f "rC"ıg
"
rD†

2"E�p;q.L/r

for all r 2 R, and the result follows.

Example 6.6 Consider a pair of point clouds X;Y 2RN , together with partitions P and Q for X and Y

respectively. Also, assume that there is an isomorphism � W�P!�Q such that dH .X\V;Y \�.V // < "
for all V 2 P. As defined in Example 4.5, there are "–acyclic carrier equivalences

F "V W VR�.X\V /� VR�.Y \V /

for all V 2U. Now suppose that, for some � > 0, if J
VR�.X/
P .�/r ¤∅ then J

VR�.Y/
P .�.�//rC� ¤∅ for

all � 2�P and all r 2 R. For any � 2�P, one can define ."C�/–acyclic carriers

zF ."C�/� W J
VR�.X/
P .�/� J

VR�.Y/
Q .�/

by sending a cell
Q
V 2� �V 2J

VR�.X/
P .�/r to

Q
V 2� †

�VR�.Y\V /.F "V .�V //2J
VR�.Y/
Q .�/rC."C�/ for

all r 2 R. Similarly, we assume the converse that J
VR�.Y/
P . Q�/r ¤∅ implies J

VR�.X/
P .��1. Q�//rC� ¤∅

for all Q� 2�Q and all r 2 R. With an analogous definition to that of zF ."C�/� , we obtain “inverses” for
the carriers zF ."C�/� , so that these become ."C�/–acyclic equivalences. One can check that these are
compatible along �P and �Q, so by Theorem 6.5

d1I
�
E��;�.J

VR�.X/
P ; �P/; E��;�.J

VR�.Y/
Q ; �Q/

�
� "C �:
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7 Interleavings with respect to different covers

7.1 Refinement induced interleavings

In the previous sections we considered general diagrams in FRDiag.K/ for some simplicial complex K.
We now focus on the situation where we have a filtered complex X together with a cover U, which
provides a diagram XU WNU! FCW-cpx. The associated spectral sequence is denoted by E��;�.X;U/,
as done at the start of Section 3. We want to measure how E��;�.X;U/ changes depending on U and
follow ideas from [Serre 1955] to achieve this. First we consider a refinement V � U, which means
that for all V 2 V, there exists U 2 U such that V � U . In particular, one can choose a morphism
�U;V W NV! NU such that V� � U�� for all � 2 NV. This choice is of course not necessarily unique.
We would like to compare the Mayer–Vietoris spectral sequences of both covers. For this, we recall the
definition of the Čech chain complex outlined in the introduction of [Torras-Casas 2023], which leads to
the following isomorphism on the terms from the 0–page:

(5) E0p;q.X;U/D LCp.UIC
cell
q / WD

M
�2N

p
U

C cell
q .U� /'

M
s2Xq

f
�.s;U/
� .C cell

p .��.s;U///:

Here, �.s;U/ is the simplex of maximal dimension in NU such that s 2XU.�.s;U//, and

f �.s;U/ W��.s;U/ ,!NU

denotes the inclusion. The isomorphism in (5) is given by sending a generator

.a/� 2
M
�2N

p
U

C cell
q .U� /

to its transpose .�/a, for all cells a 2X and all � 2NU.

Returning to a refinement V�U and a morphism �U;V WNV!NU, there is an induced double complex
morphism �

U;V
p;q W Cp;q.X;V/! Cp;q.X;U/ given by

�U;V
p;q ..�/a/D

�
.�U;V�/a if dim.�U;V�/D p;

0 otherwise;

for all generators .�/a 2 Cp;q.X;V/ with � 2Np
V and a 2Xq .

Lemma 7.1 �
U;V
�;� is a morphism of double complexes. Thus , it induces a morphism of spectral sequences

�U;V
p;q WE

�
p;q.X;V/!E�p;q.X;U/

dependent on the choice of �U;V.

Proof Let ıV and ıU denote the respective Čech differentials from LCp.VIC cell
q / and LCp.UIC cell

q /. The
refinement �U;V WNV!NU induces a chain morphism �

U;V
� W C

cell
� .NV/! C cell

� .NU/, so that we have
commutativity �U;V

�;� ıı
VD ıUı�

U;V
�;� . This implies that �U;V

�;� commutes with the horizontal differential dH.

Algebraic & Geometric Topology, Volume 24 (2024)



Interleaving Mayer–Vietoris spectral sequences 4291

For commutativity with dV, we consider a generating chain .�/a 2E0p;q.X;V/ with � 2Np
V and a 2Xq .

Then, if dim.�U;V�/D p,

�
U;V
p;q�1 ı d

V ..�/a/D �
U;V
p;q�1

�
.�1/p

X
b�Na

.Œb W a��/b

�
D .�1/p

X
b�Na

.Œb W a��U;V�/b D .�1/
pd cell
q ..�U;V�/a/D d

V
ı �U;V
p;q ..�/a/

and for dim.�U;V�/ < p commutativity follows since both terms vanish.

A morphism of double complexes gives rise to a morphism of the vertical filtration. By [McCleary 2001,
Theorem 3.5] this induces a morphism of spectral sequences �U;V

�;� .

Since �U;V W NV ! NU is not unique, the induced morphism �
U;V
�;� on the 0–page does not need to be

unique either. We have, however, the following:

Proposition 7.2 The 2–morphism obtained by restricting �U;V
�;� is independent of the particular choice of

refinement map �U;V WNV!NU.

Proof We have to show that �U;V
�;� is independent of the particular choice of the refinement morphism.

First, define a carrier R WNV �NU by the assignment

� 7!R.�/D f� 2NU j V� � U�g:

The geometric realization of the subcomplex R.�/ is homeomorphic to a standard simplex, in particular
contractible, so R is acyclic. Note that �U;V

�;� is carried by R. Hence, by Theorem 2.4 for any pair of
refinement maps �U;V; �U;V WNV!NU, there exists a chain homotopy k� WCn.NV/!CnC1.NU/ carried
by R such that

k�ı
V
C ıUk� D �

U;V
� � �U;V

�

for all n� 0 and where �U;V
� and �U;V

� are induced morphisms of chain complexes C�.NV/!C�.NU/. In
particular, using the same notation, this translates into chain homotopies k� WE0p;q.X;V/!E0pC1;q.X;U/

on the 0–page such that
k�ı

V
C ıUk� D �

U;V
�;� � �

U;V
�;� :

Thus, �U;V
�;� D �

U;V
�;� from the second page onward.

Example 7.3 Consider a filtered cubical complex C�. At value 0, C� is given by the vertices on R2

at the coordinates a D .0; 0/, b D .1; 0/, c D .2; 0/, d D .3; 0/, e D .0; 1/, f D .1; 1/, g D .2; 1/ and
hD .3; 1/, together with all edges contained in the boundary of the rectangle adhe. Then, at value 1
there appears the edge bf with the face abfe. At value 2 the edge gc with the face fgcb, and finally
at value 3 the face ghdc appears. This is depicted on Figure 2. Then, consider the cover U0 by three
subcomplexes on the squares AD .a; b; f; e/, B D .b; c; g; f / and C D .c; d; h; g/. Also, we consider
the cover U1 given by A and C [B , and U2 given by all C�. The induced morphisms on second-page
terms at different filtration values are either null or the identity, as illustrated on Figure 3.
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a b c d

e f g h

a b c d

e f g h

a b c d

e f g h

a b c d

e f g h

Figure 2: Cubical complex C� at values 0, 1, 2 and 3.

A consequence of Proposition 7.2 is that if we have a space X together with covers U� V�U, then by
uniqueness the morphism on the second page induced by the consecutive inclusions coincides with the
identity. This gives rise to the next result.

Proposition 7.4 Suppose a pair of covers U and V of X are a refinement of one another. Then there is a
2–spectral sequence isomorphism E2�;�.X;U/'E

2.X;V/.

This implies that for any cover U of X , the cover U[X obtained by adding the extra covering element
X is such that the second page E2p;q.X;U[X/ has only the first column nonzero.

Lemma 7.5 Consider a cover U of a space X , and suppose that X 2U. Then E2p;q.X;U/D 0 for all
p > 0.

Proof This follows from the observation that the cover fXg consisting of a single element satisfies
fXg �U� fXg. Using Proposition 7.4 we therefore obtain isomorphisms E2p;q.X;U/'E

2
p;q.X; fXg/,

and the result follows.

Suppose that none of the two covers V and U refines the other. One can still compare them using the
common refinement V\UD fV \U gV 2V;U2U which is a cover of X . Thus, there are two refinement
morphisms

(6) E2p;q.X;U/
�

U;V\U
p;q
 ����E2p;q.X;V\U/

�
V;V\U
p;q
����!E2p;q.X;V/:

Id
0

U0

0
1

Id
2

0

U1

Id

Id

U2

Figure 3: Cubical complex C� with covers U0, U1 and U2, and with filtration values 0, 1 and 2.
Blue dots represent classes in E21;0.C;Ui / and red loops represent classes on E20;1.C;Ui /, for
i D 0; 1; 2.
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.V1\V2/\U2

V1\U1 V1\U2 V2\U2 V1\ .U1\U2/

.V1\V2/\U2

V1\U1 V1\U2 V2\U2 V1\ .U1\U2/

Figure 4: Cp;q.V;U;PHk/ at filtration values 0 and 1.

Following [Serre 1955, Section 28] we can now build the double complex Cp;q.V;U;PHk/ which, for
each k � 0, is given byM

�2N
pC1
V

�2N
q
U

PHk.V� \U� /
M

�2N
pC1
V

�2N
qC1
U

PHk.V� \U� /

M
�2N

p
V

�2N
q
U

PHk.V� \U� /
M
�2N

p
V

�2N
qC1
U

PHk.V� \U� /

ıV

.�1/pC1ı U

ıV

.�1/pı U

for any pair of integers p; q � 0. From this double complex we can study the two associated spectral
sequences

IE1p;q.V;UIPHk/D
M
�2N

p
V

LHq.V� \UIPHk/;

IIE1p;q.V;UIPHk/D
M
�2N

q
U

LHp.V\U� IPHk/;

whose common target of convergence is LHn.V \ UIPHk/ with p C q D n. For details about the
spectral sequence associated to a double complex, the reader is recommended to look at [McCleary 2001,
Theorem 2.15].

Example 7.6 Consider the cubical complex C� from Example 7.3. Set UDU1, that is, U is the cover
by the sets U1 D A and U2 D B [C . On the other hand, consider V to be formed of V1 D A[B and
V2DC . The double complex Cp;q.V;U;PHk/ is illustrated on Figure 4 for filtration values 0 and 1, and
for k D 0. We encourage the reader to work out the refinement morphisms from (6) and see that these are
actually projections.

Consider the nerve NV\U as a subset of the product of nerves NV �NU. We have then two projections
�VWNV\U!NV and�UWNV\U!NU, both of which induce chain morphisms�V

� WC�.NV\U/!C�.NV/
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and�U
� WC�.NV\U/!C�.NU/. For example, �V

� is given by�V
� .���/D� if dim.�/D0 or�V

� .���/D0

otherwise, for all � 2NV and � 2NU. These induce a pair of morphismsM
�2N

p
V

C cell
k .V� /

�V
p;k
 ��

M
�2N

p
V

�2N
q
U

C cell
k .V� \U� /

�U
q;k
��!

M
�2N

q
U

C cell
k .U� /;

for any pair of integers p; q � 0. The induced map �V
p;k

on Ck.V� \U� / satisfies

�V
p;k..� � �/a/D .�

V
� .� � �//a

for all � 2 Np
V , � 2 NU and all a 2 .V� \U� /

k . The map �U
�;� acts similarly. By definition �U

�;� and
�V
�;� both commute with the Čech differentials ıU and ıV respectively. Let � 2Np

V and � 2N 0
U. Then

we have

.� � �/a .�/a

P
b2Na.Œb W a�� � �/b

P
b2Na.Œb W a��/b

�V
�;�

dn dn

�V
�;�

for all cells a 2 .V� \U� /
k . This implies that �V

�;� commutes with dn and the same holds for �U
�;�. We

obtain a morphism �V
p;k
W LCp.V\UIC cell

k
/! LCp.VIC

cell
k
/ commuting with d� and ıV\U and ıV. This

induces �V
p;k
W LCp.V\UIPHk/! LCp.VIPHk/ and, in turn, this induces

�
V;V\U
p;k

W LHp.V\UIPHk/! LHp.VIPHk/:

There is a very natural way of understanding how much �V;V\U
p;k

fails to be an isomorphism. To start,
notice that �V

p;k
is equal to the composition

LCp.V\UIPHk/� IE0p;0.V;UIPHk/
I�V
p;k
��! LCp.VIPHk/;

where the first morphism forgets the summands with � … N 0
U; the second morphism is the restriction

of �V
p;k

to the remaining terms. Next, we take for each simplex � 2 Np
V , the Mayer–Vietoris spectral

sequence for V� covered by V� \U

M 2
q;k.V� \U/) PHqCk.V� /;

where we changed the notation from E2
q;k
.V� ;V� \U/ to M 2

q;k
.V� \U/ as it helps distinguishing this

spectral sequence from IE�p;q . Then, we write more compactly

IE1p;q.V;UIPHk/D
M
�2N

p
V

M 2
q;k.V� \U/:

Taking IE
1
p;0.V;UIPHk/ as a chain complex, I�

V
p;k induces a chain morphism

I�
V
p;k W

IE
1

p;0.V;UIPHk/! LCp.VIPHk/
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for all p � 0. In particular, the restriction of I�V
p;k

to the summand M 2
0;k
.V� \U/ equals the composition

M 2
0;k.V� \U/�M10;k.V� \U/ ,! PHk.V� /:

Notice that PH0 is a cosheaf, and in this case M 2
0;0.V� \U/D PH0.V� / for all � 2Np

V . This implies
that I�V

p;0 is an isomorphism for all p � 0. By the same argument, there is another chain morphism for
all q � 0,

II�
U
q;k W

IIE
1

0;q.V;UIPHk/! LCq.UIPHk/:

Going back to the morphism �
V;V\U
p;k

, it is given by the composition

LHp.V\UIPHk/� IE1p;0.V;UIPHk/ ,!
IE2p;0.V;U;PHk/

I�V
p;k
��! LHp.VIPHk/:

Using Lemma 7.5, if V�U then M 2
q;k
.V� \U/D 0 for all q > 0 and I�V

p;k
becomes an isomorphism.

In addition, IE1p;q D 0 for all q > 0 and the first two arrows in the above factorisation of �V;V\U
p;k

are isomorphisms. Altogether, the inverse .�V;V\U
p;k

/�1 is well defined, and by composition we define
morphisms �U;V

p;k
D �

U;V\U
p;k

ı .�
V;V\U
p;k

/�1. Here notice that �U;V\U
p;k

is defined in an analogous way
to �V;V\U

p;k
, but it factors through II�U

q;k
instead of I�V

p;k
. The following proposition should also follow

from applying an appropriate version of the universal coefficient theorem to [Serre 1955, Proposition 4.4].
Instead, we prove the dual statement of this proposition by means of acyclic carriers.

Proposition 7.7 Suppose that V�U, and let �U;V denote a refinement map. The morphism

�
U;V
p;k
WE2p;k.X;V/!E2p;k.X;U/

coincides with the standard morphism induced by �U;V.

Proof Since V�U, the morphism �
V;V\U
p;k

W LHp.V\U;PHk/! LHp.V;PHk/ is an isomorphism. Now
consider the diagram

LHp.VIPHk/ LHp.UIPHk/

LHp.V\UIPHk/ IIE10;p.V;UIPHk/ IIE20;p.V;UIPHk/

�
U;V
p;k

' II�U
p;k

To check that it commutes we study triangles of acyclic carriers

NV\U

NV NU

PUF

R

where R is defined in Proposition 7.2. The carrier F is given for every � 2NV by F.�/D�� � jR.�/j.
In fact, F defines an acyclic equivalence by considering the inverse carrier PV WNV\U �NV sending
� � � to �� . In this case the shift carrier IV W NV � NV is given by the assignment � 7! �� , and
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IV\U WNV\U �NV\U is given by � �� 7!�� ���[�
0

, where � 0 2NU is such that jR.�/j D��
0

�NU.
Here, we need to show that �� ���[�

0

is a subcomplex of NV\U. First notice that, by hypotheses,
V� \U� ¤ ∅ and, by definition of R.�/, we have V� � U� 0 . Consequently V� \ .U� \U� 0/ ¤ ∅,
which accounts for �� ���[�

0

being a subcomplex of NV\U.

Since F is acyclic, there exists �� W C�.NV/! C�.NV\U/ carried by F and inducing a chain morphism
f� W LCp.V; C

cell
k
/! LCp.V\U; C cell

k
/ by the assignment .�/s 7! .��.�//s for all cells s 2 X and all

� 2NV. On the other hand, recall that �V;V\U
p;k

is induced by �V
p;k

, which is given as an assignment

.� � �/s! .�V
� .� � �//s:

As �V
� is carried by PV and, as noted earlier, F defines an acyclic equivalence, it follows that �V

� ı ��

is the identity in C�.NV/ up to boundary. Thus, �V
p;k
ı f� is the identity in LCp.V; C cell

k
/ up to the

Čech boundary LıV. This implies that f� D .�
V;V\U
p;k

/�1 as morphisms LHp.V;PHk/! LHp.V\U;PHk/.
Consequently, �U;V

p;k
is induced by the assignment .�/s 7! .�U

� ı ��.�//s for all � 2 NV and all s 2 X ,
where �U

� ı �� is carried by PUF D R. Altogether, as �U;V is carried by R, we obtain the equality
�

U;V
p;k
D �

U;V
p;k

as morphisms LHp.V;PHk/! LHp.U;PHk/.

Still assuming that V�U, we now look for conditions for the existence of an inverse of �U;V
p;k

,

'
V;U
p;k
WE2p;k.X;U/!E2p;k.X;V/:

Proposition 7.8 Suppose that V�U. If M 2
p;k
.V\U� /D 0 for all p > 0, k � 0 and all � 2N q

U, then
the maps �U;V

�;� induce a 2–isomorphism of spectral sequences

E�2�;�.X;U/'E
�2
�;�.X;V/:

Proof By Propositions 7.2 and 7.7 we can choose a refinement map �U;V WNV!NU giving a morphism
of spectral sequences

�U;V
�;� WE

�2
�;�.X;V/!E�2�;�.X;U/

that coincides with �U;V
�;� . Our assumption aboutM 2

p;k
implies IIE

2
p;q.V;UIPHk/D 0 for all p >0, which

in turn, gives

(7) Ker
�
LHq.V\UIPHk/� IIE

1

0;q.V;UIPHk/
�
D 0

and

(8) Coker
�IIE

1

0;q.V;UIPHk/ ,!
IIE

2

0;q.V;U;PHk/
�
D 0:

Now note that II�U
q;k

yields an isomorphism IIE
2
0;q.V;U;PHk/' LHq.U;PHk/. This shows that �U;V

q;k
is

a composition of isomorphisms; thus the statement follows.

We now relax the conditions in Proposition 7.8 and use the relations of left-interleaving and right-
interleaving of persistence modules (denoted by �"L and �"R, respectively) to achieve this (see [Govc and
Skraba 2018, Section 4]). We have to adapt [Govc and Skraba 2018, Proposition 4.14].
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Lemma 7.9 Suppose that we have persistence modules A, B and C , and a parameter " � 0 such that
A�"R B and B �"L C . Denote by ˆ the morphism ˆ W A! C given by the composition A� B ,! C .
Then there exists ‰ W C ! AŒ2"� such that ˆ and ‰ define a 2"–interleaving A�2" C .

Proof By hypothesis, we have a sequence

E1! A
f
�� B

g
,�! C ! E2

which is exact inA andC and where E1�
" 0 and E2�

" 0. Then, let v2C and notice that†"C.v/2 Im.g/.
Thus, there exists a unique vector w 2 B such that g.w/ D †"C.v/. On the other hand, there exists
z 2 A, not necessarily unique, such that f .z/ D w. This defines a unique element †"A.z/ 2 A. To
see this, suppose that another z0 2 A is such that f .z0/D w. Then f .z � z0/D 0 and z � z0 2 Ker.f /,
which implies 0D†"A.z� z0/D†"A.z/�†"A.z0/, and then †"A.z/D†"A.z0/. Altogether, we set
‰ D†"A ıˆ�1 ı†"C , which is well defined.

Recall that for V�U we have that LHq.VIPHk/' LHq.V\UIPHk/ for all k � 0 and q � 0. There is a
natural way to relax (7) and (8) to the persistent case. We assume that for "� 0, there are right and left
interleavings

(9) LHq.V\UIPHk/�
"
R

IIE
1

0;q.V;UIPHk/�
"
L

IIE
2

0;q.V;U;PHk/:

If we define ˆq;k W LHq.V \ UIPHk/ ! IIE
2
0;q.V;U;PHk/ to be the composition of the associated

persistence morphisms as in Lemma 7.9, then there exists

‰q;k W
IIE

2

0;q.V;U;PHk/! LHq.V\UIPHk/Œ2"�

such that ˆq;k and ‰q;k define a 2"–interleaving. We repeat this argument for the local Mayer–Vietoris
spectral sequences. Assume that for some � � 0 there are interleavings

(10) IIE
1

0;q.V;U;PHk/�
�
R

M
�2N

q
U

M1k;0.V\U� /�
�
L

M
�2N

q
U

PHk.U� /:

Let …q;k W IIE
1
0;q.V;U;PHk/!

L
�2N

q
U

PHk.U� / be the composition of the associated morphisms. By
Lemma 7.9 there exists „q;k such that …q;k and „q;k define a 2�–interleaving. By slight abuse of
notation we continue to denote the induced 2�–interleaving between IIE

2
0;q.V;U;PHk/ and LHq.UIPH�/

by …q;k and „q;k . Altogether we have that

�
U;V
q;k
D…q;k ıˆq;k ı .�

V;V\U
q;k

/�1

and in this situation there is an “inverse”  V;U
q;k
D �

V;V\U
q;k

ı‰q;k ı„q;k , which increases the persistence
values by 2."C �/.

Theorem 7.10 Suppose that V�U and for "� 0 and � � 0 the interleavings in (9) and (10) hold. Then

 V;U
p;q WE

�
p;q.X;U/!E�p;q.X;V/Œ2."C �/�
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A B

C D

Figure 5: Cubical complex C� at values 0, 1 and 1C ".

is a 2–morphism of spectral sequences such that �U;V
p;q and  V;U

p;q define a second page 2."C�/–interleaving
between E�p;q.X;U/ and E�p;q.X;V/.

Proof The only thing that remains to be proved is that  V;U
p;q commutes with the spectral sequence

differentials dn for all n� 2. Since these differentials commute with the shift morphisms †2."C�/, this
follows from considering the diagram

Enp;q.X;U/ Enp�n;qCn�1.X;U/

Enp;q.X;V/ Enp�n;qCn�1.X;V/

Enp;q.X;V/Œ2."C �/� Enp�n;qCn�1.X;V/Œ2."C �/�

dn

 
V;U
p;q  

V;U
p�n;qCn�1

dn

�
U;V
p;q

†2."C�/

�
U;V
p�n;qCn�1

†2."C�/
dn

in which the two trapeziums and the two triangles commute.

Example 7.11 Consider a cubical complex C� as shown in Figure 5, together with the covers

VD fA;B;C ;Dg and UD fA[B;C [DgI

see Figure 5 for the cells A, B , C and D. In this case, we have

LH1.VIPH0/' LH1.V\UIPH0/' I.0; 1C "/˚ I.1; 1C "/�" I.0; 1/' IIE
2

0;1.V;U;PH0/

and also
IIE

1

0;0.V;U;PH1/' 0�" I.1; 1C "/˚ I.1; 1C "/'
M

dim.�/D0

PH1.U� /:

These interleavings are shown in Figure 6. Theorem 7.10 implies that there is a 4"–interleaving between
E�p;q.X;U/ and E�p;q.X;V/. Notice that in this example, the nontrivial interleaved terms are in different
positions of the spectral sequences. Therefore we can improve the upper bound to 2". We use this
observation later in Proposition 7.12.

Id 0

Figure 6: Morphisms �U;V
1;0 along Œ0; 1/ and along Œ1; 1C "/.
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7.2 Interpolating covers and spectral sequence interleavings

Consider X 2 FCW-cpx, together with a pair of covers W and U such that W �U. Motivated by the
interleaving constructed in Theorem 7.10 we take a closer look at the following finite sequence of covers
interpolating between W and a cover that both refines and is refined by U. Let the strict r th intersections
of U be the family of sets Ur D fU�g�2N rU

for all r � 0. We define the .r;W;U/–interpolation as the
covering set Wr DW[Ur . In particular, note that the .0;W;U/–interpolation has the property that
W0 �U�W0, and consequently E2p;q.X;U/'E

2
p;q.X;W

0/. In addition if U is a finite cover, then we
have UN D∅ for N � 0 sufficiently large and consequently WN DW.

Proposition 7.12 (local checks) Let W�U be a pair of covers for X , where U is finite. Let N � 0 be
such that UN D∅. For every 0� r �N , we assume that there exist "r � 0 and �r � 0 such that for all
� 2N r

U,
E20;q.U� ;W

rC1
jU�

/�
�r
R E10;q.U� ;W

rC1
jU�

/�
�r
L PHq.U� /;

and also
dI .E

2
p;q.U� ;W

rC1
jU�

/; 0/� "r

for all p > 0 and q � 0. Then we have that

d2I
�
E�p;q.X;W

r/; E�p;q.X;W
rC1/

�
� 2max."r ; �r/:

Therefore , by using the triangle inequality, we obtain

d2I
�
E�p;q.X;U/; E

�
p;q.X;W/

�
�

NX
rD0

2max."r ; �r/:

Proof We need to consider the spectral sequence IIE2p;q.W
rC1;Wr IPHk/. Note that, by the construction

of Wr, for each � 2NUr with dim.�/ > 0 the set Wr
� is contained in one of the open sets from WrC1. By

Lemma 7.5 this implies that IIE1p;q.W
rC1;Wr IPHk/D 0 for all p > 0, q > 0 and k � 0. Moreover, we

have that IIE10;q.W
rC1;Wr IPHk/D

L
�2N

q

Wr
PHk.Wr

� / for all q > 0 and k � 0. The resulting spectral
sequence is shown in Figure 7.

As a consequence of these observations condition (10) holds for these indices with � D 0. In addition,
IIE20;q.W

rC1;Wr IPHk/DE2q;k.X;W
r/ holds for all q � 2 and k � 0 (see Figures 7 and 8). In particular,

IIE12;0.W
rC1;Wr IPHk/ 0 0

: : :

IIE11;0.W
rC1;Wr IPHk/ 0 0 0

IIE10;0.W
rC1;Wr IPHk/

M
�2N1

Wr

PHk.Wr
� /

M
�2N2

Wr

PHk.Wr
� /

M
�2N3

Wr

PHk.Wr
� /

d1

Figure 7: First page of IIE
�

p;q.W
rC1;Wr IPHk/.
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� "r 0 0
: : :

� "r 0 0 0

IIE
2
0;0.W

rC1;Wr IPHk/ IIE
2
0;1.W

rC1;Wr IPHk/ E2
2;k
.X;Wr / E2

3;k
.X;Wr /

d2

d3

Figure 8: Second page of IIE
�

p;q.W
rC1;Wr IPHk/ together with higher differentials.

there is only one possible nontrivial differential for each entry in the bottom row as indicated in Figure 8.
Note that our hypothesis dI .E2p;q.U� ;W

rC1
jU�

/; 0/� "r applies to the entries in the first column with p > 0
and gives left and right interleavings of the form

LHq.W
rC1
\Wr

IPHk/�
"r
R

IIE10;q.W
rC1;Wr

IPHk/�
"r
L

IIE20;q.W
rC1;Wr

IPHk/

for all q > 0 and k � 0. Hence, condition (9) holds with value "r .

Let us look now at the case q D 0. Here we have LH0.W
rC1 \Wr IPHk/ D IIE

2
0;0.W

rC1;Wr IPHk/
and consequently (9) holds with value "D 0. Next, by hypothesis, for all k � 0 we have right and left
interleavings

M 2
0;k.U� \WrC1/�

�r
R M10;k.U� \WrC1/�

�r
L PHk.U� /;

for all � 2N r
U. Thus by taking the direct sum of these interleavings we obtain

IIE10;0.W
rC1;Wr

IPHk/�
�r
R

M
�2N 0

Wr

M10;k.W
r
� \WrC1/�

�r
L E10;k.X;W

r/:

and condition (10) also holds for q D 0. The result now follows from Theorem 7.10.

Notice that we can slightly improve the statement of Theorem 7.10 here: for each term in the bottom
row of the spectral sequence in this particular example only one of the two conditions (9) and (10) is
nontrivial, and the proof of Theorem 7.10 carries over with 2max."r ; �r/ replacing 2."r C �r/.

Remark 7.13 Notice that for reasonable cases the parameters �r are bounded above by K"r for some
constant K > 0 by a result from [Govc and Skraba 2018]. Nevertheless, we would like to keep �r and "r
separated here, since we hope to compute it from M �

p;k
.U� ;W

rC1
jU�

/ for � 2N r
U hereby get more accurate

estimates. Intuitively, asking for "r and �r to be small is equivalent to asking for cycle representatives in
covers from Wr to be approximately contained in covering sets from WrC1.

Finally, we would like to compare two separate covers U and V and have an estimate for the interleaving
distance between the associated spectral sequences. The main idea of Proposition 7.12 is to translate this
comparison problem into a few local checks that can be run in parallel. We formalize this in the following
corollary.

Corollary 7.14 (stability of covers) Consider two pairs .X;U/ and .X;V/, where X is a space and U

and V are covers. Let W D U\V and denote by Wr
U and Wr

V the respective .r;W;U/ and .r;W;V/
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interpolations. For every 0� r �N , we assume that there exist "r ; "0r � 0 and �r ; �0r � 0 such that for all
� 2N r

U and � 2N r
V

E20;q.U� ;W
rC1
U /�

�r
R E10;q.U� ;W

rC1
U /�

�r
L PHq.U� /;

E20;q.V� ;W
rC1
V /�

�0r
R E10;q.V� ;W

rC1
V /�

�0r
L PHq.V� /;

for all r � 0, and also

dI .E
2
p;q.U� ;W

rC1
U /; 0/� "r ; dI .E

2
p;q.V� ;W

rC1
V /; 0/� "0r

for all p > 0, and q � 0. Then we have that

d2I
�
E�p;q.X;U/; E

�
p;q.X;V/

�
�R.U;V/

where R.U;V/Dmax
�PN

rD0 2max."r ; �r/;
PN
rD0 2max."0r ; �

0
r/
�
.

Proof By Lemma 7.1 there are double complex morphisms given by the refinement maps

LCp.U; C
cell
q /

�
U;W
p;q
 �� LCp.W; C cell

q /
�

V;W
p;q
��! LCp.V; C

cell
q /:

In turn, these induce 2–morphisms of spectral sequences

E2p;q.X;U/
�

U;W
p;q
 ��E2p;q.X;W/

�
V;W
p;q
��!E2p;q.X;V/:

Let  U;W
p;q and  V;W

p;q be the “inverses” of �U;W
p;q and �V;W

p;q , respectively, witnessing the interleavings of the
two spectral sequences (see Theorem 7.10 and Proposition 7.12). The result follows from considering the
commutative diagram

E2p;q.X;U/ E2p;q.X;W/ E2p;q.X;V/

E2p;q.X;U/ŒR.V;U/� E2p;q.X;W/ŒR.V;U/� E2p;q.X;V/ŒR.V;U/�

†R.V;U/
 

W;U
p;q

�
U;W
p;q �

V;W
p;q

†R.V;U/ †R.V;U/
 

W;V
p;q

�
U;W
p;q �

V;W
p;q

where all arrows are 2–morphisms of spectral sequences.

8 Outlook

We expect spectral sequences associated to the geometric realizations of diagrams of CW–complexes
to have a natural use in the distributed computation of persistent homology. The first future research
direction is to develop further examples and use cases that benefit from the theory developed in this
article.

The "–acyclic carriers and equivalences which we introduced here in the context of persistent homology
are of course based on acyclic carriers, which are similar to the ones used for example in [Björner 2003,
Theorem 6] to prove a generalisation of the nerve theorem. A possible future research direction might
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be to ask for conditions on the acyclic carriers with the goal of obtaining similar results as those from
[Björner 2003] within the category of regularly filtered diagrams.

The bounds obtained in Section 7 for the interleavings between the second pages of two spectral sequences
can certainly be improved; one possible direction is to explore similar examples as those in [Govc and
Skraba 2018, Section 9] where the authors found sharp bounds.

In general, we think that spectral sequences deserve a more prominent role in applied algebraic topology
and hope that the tools we developed here will motivate further study.

Appendix Example of acyclic equivalence in RCW-cpx

Consider a filtered regular CW–complex X which is constant along R, except at values 1, 2, 3 and 4,
where it changes; see Figure 9. In order to describe X , we use the notation .CD/1 for the edge between
C and D, .FGIJ /2 for a two cell whose vertices are F , G, I and J , and so on. By regularity of X , and
since we do not define multiple edges between the same pair of vertices, X is determined by

X1 D fA;B;C;D;E; F;H g[f.AH/1; .BC/1; .CD/1; .EF /1g;

X2 DX1[fGg[f.AB/1; .DE/1; .FG/1; .GH/1g;

X3 DX2[fI; J g[f.BI /1; .CJ /1; .FJ /1; .GI /1; .IJ /1g[f.FGIJ /2g;

X4 DX3[fKg[f.AK/1; .CK/1; .EK/1; .GK/1g[f.ABCK/2; .CDEK/2; .EFGK/2; .AKGH/2g;

where X0 D ∅; this is shown in Figure 9, which illustrates X . Of course, as X is a filtered complex,
the structure maps of X are given by inclusions Xs ,! Xt for all s < t from R. Next, we describe the
regularly filtered CW–complex Y , which is constant along R, except at values 1, 2, 3 and 4, where it
changes; this is also depicted in Figure 9. We define Y� by

Y1 D f˛; ˇ; g;

Y2 D Y1[f.˛ˇ/1; .˛/1; .ˇ/1g;

Y3 D .Y2 n f.˛/1g/[fı; �g[ f.�/1; .�ı/1; .˛ı/1; .ˇı/1; .ˇ�/1g;

Y4 D Y3 n f˛; .˛ˇ/1; .˛ı/1g;

and Y0 D∅.

The structure maps of Y are defined as follows, where we use the overline notation N� to denote the closure
of some cell:

� Y.1� 2/ is an inclusion,

� Y.2 � 3/ restricts to an inclusion in the subcomplex .˛ˇ/1 [ .ˇ/1, while .˛/1 is sent to
.˛ı/1[ .ı�/1[ .�/1.

� Y.3� 4/ restricts to the identity in Y3 n f.˛ˇ/1; ˛; .˛ı/1g while it maps the vertex ˛ to  , the edge
.˛ˇ/1 to .ˇ/1 and the edge .˛ı/1 to f.�/1; �; .�ı/1g.
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Figure 9: The spaces Yi are shown at the top and Xi are at the bottom for values i D 1; 2; 3; 4. In
filtration value 4, a cone with vertex in K is attached along the octahedron at the boundary of X3;
notice that we used 2–cells which are not 2–simplices.

One might check that Y is well defined according to Section 2.1. Next, we proceed to define an acyclic
carrier F W Y �X , which we depict in Figure 10, as follows:

� F1.˛/D .AH/1, F1.ˇ/D .BC/1[ .CD/1, F1./D .EF /1,

� F2..˛ˇ/1/ D F1.˛/ [ F1.ˇ/ [ f.AB/1g, F2..˛/1/ D F1.˛/ [ F1./ [ f.HG/1; G; .FG/1g,
F2..ˇ/1/D F1.ˇ/[F1./[f.DE/1g,

� F3.ı/DG, F3.�/DF, F3..˛ı/1/D.AH/1[.HG/1, F3..ı�/1/D.IJFG/2, F3..�/1/D.EF /1,
F3..ˇı/1/D .BC/1[ .CD/1[ .BI /1[ .IG/1, F3..ˇ�/1/D .BC/1[ .CD/1[ .CJ /1[ .JF /1,

� F4./D F4..ˇ/1/D F4..�/1/D St.K/.

If we did not define a carrier, this is because we assume it is continued from an earlier definition. On the
other hand, we define the carrier G WX � Y as follows:

� G1.A/D G1.H/D G1..AH/1/D ˛, G1.E/D G1.F /D G1..EF /1/D  , G1.B/D G1.C /D
G1.D/DG1..BC/1/DG1..CD/1/D ˇ,

� G2..AB/1/D .˛ˇ/1, G2..DE/1/D .ˇ/1, G2..HG/1/DG2.G/DG2..GF /1/D .˛/1,

� Define A3 D fI; J;G; .IJ /1; .GI /1; .FJ /1; .HG/1; .GF /1; .FGIJ /2g; then for all � 2 A3, we
have G3.�/D .˛ı/1[ .ı�/1[ .�/1, G3..BI /1/D .ˇı/1, G3..CJ /1/D .ˇ�/1,

� for all � 2X4 n f.BI /1; .CJ /1g, G4.�/D .ˇ/1[ .�/1[ .�ı/1.

We define the shift carriers on X and Y by composition, that is, I 0X DG ıF and I 0Y D F ıG, which in
this particular case lead to well-defined acyclic carriers as one can check; to illustrate this, we write a
couple of compositions:

G3 ıF3..ˇ�/1/D .˛ı/1[ .ı�/1[ .�/1[ .ˇ�/1;

F3 ıG3..IJ /1/D .AH/1[ .HG/1[ .IJFG/2[ .EF /1:
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Figure 10: We depict the acyclic carriers from F . For each acyclic carrier we include its initial
filtration value within a square on the top left while we write the cell(s) it corresponds to within
a square on the top right; sometimes we write a pair of numbers a; b to indicate that the carrier
applies for the filtration values in Œa; b/ and that a new carrier is defined at b. Solid lines connecting
the middle top of a box to the middle bottom of another box indicate that the containment relation
must hold, where the carrier in the lower box needs to be embedded into the carrier on the
upper box. We use dashed lines for containment relations involving a union of carriers, eg
F3..˛ı/1/� F4..�/1/[F4..ı�/1/.

One can check that the conditions from Definition 4.3 are satisfied and so by Corollary 4.7 we obtain
isomorphisms PH�.X/Š PH�.Y /.
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