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Abstract: Occupant behavior has an important impact on building energy consumption, and the
accuracy of an occupant behavior model directly affects the reliability of energy consumption sim-
ulation results. Ultra-low energy buildings are crucial to achieving building energy conservation
and carbon dioxide reduction in China. In order to effectively promote the development of ultra-low
energy buildings in Hot Summer and Cold Winter Climate Zones. where most residents adopt a
“part-time, part-space” pattern of intermittent energy use behavior, and to solve the problem of poor
indoor thermal environments and the high incremental cost of ultra-low energy, the study described
in this paper takes Changsha as an example to carry out a multi-objective optimization study on
ultra-low energy housing using a probabilistic behavioral model. On the basis of a probability model
representing the residents’ actual behavior in Changsha, the optimization objective indicators, key
variables and the technology benchmarks for ultra-low energy building were determined, then
multi-objective optimization was carried out for a range of energy efficient technologies to obtain the
Pareto optimal solutions. The results showed that the set of optimal solutions could reduce energy
demand by 50.2 to 60.2% and reduce indoor thermal discomfort time by 3.52–11.09% compared with
those of a reference base case, which just meets the requirements of the current design standard for
energy efficient domestic buildings. An optimum solution for energy savings and indoor thermal
comfort, along with economic costs, was identified, which can assist in decision-making by providing
different preferences and provide useful reference for the design of ultra-low energy buildings in Hot
Summer and Cold Winter Climate regions.

Keywords: ultra-low energy housing; probabilistic behavioral model; multi-objective optimization

1. Introduction
1.1. Background of Research

In order to reduce greenhouse gas emissions and mitigate global warming, the 2015
Paris Agreement [1] has set the goal of achieving net zero emissions by the second half
of this century. In the United States and Europe, building energy consumption accounts
for almost 40% of primary energy [2]. Building energy conservation is one of the most
effective ways to save energy and reduce CO2 emissions. The building energy regulations
published in 2016 by the United States Department of Energy require an increase of some
30% in energy efficiency compared to those published ten years previously [3,4]. Sweden
has set a building energy saving target of 20% by 2020 and 50% by 2050 compared with
1995 standards [5]. Belgian regions are considering increasing building energy performance
levels to “low energy” or “near zero energy” in line with the Energy Performance of
Building Directive (EPBD) [6]. As one of the world’s largest carbon dioxide emitters, China
proposes to reach carbon peak before 2030 and strives to achieve carbon neutrality before
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2060. Reducing building energy use will therefore play a major role in reducing China’s
CO2 emissions. The Implementation Path issued by the Ministry of Housing and Urban-
Rural Development of the People’s Republic of China [7] proposes that all new residential
buildings should achieve ultra-low energy performance by 2045.

1.1.1. Ultra-Low Energy Buildings

With reference to the Technical Standard for Near Zero Energy Buildings (issued
by the Ministry of Housing and Urban-Rural Development of the People’s Republic of
China) [8], the term ultra-low energy buildings in this study refers to buildings that adopt
energy efficient measures, such as high levels of thermal insulation and high envelope
airtightness, to reduce building energy demand and achieve an energy efficiency level
that is 50% higher than the current energy efficiency standards [9,10]. The current Design
Standard for Energy Efficiency of Residential Buildings in Hot Summer and Cold Winter
Zones JGJ134 [10] stipulates that the thermal envelope and HVAC design of buildings
should adopt energy conservation measures to control energy consumption for heating
and air conditioning within specified limits. Therefore, reducing the energy demand of
ultra-low energy buildings in this study only includes heating and air conditioning energy
consumption. The 2010 European Union’s EPBD [11] defines a near-zero energy building
as a building with very high energy performance, requiring almost zero or very low energy
that can be extensively covered by renewable energy produced on or near the site. Zeiler
et al. [12] state that the two main design strategies for near-zero energy buildings are to
minimize energy demand through energy efficient measures and to use renewable energy
sources. In this study, the ultra-low energy building is a near-zero energy building, without
renewable energy utilization.

Furton et al. [13] proposed that climate change has a significant impact on heating
and cooling energy consumption, as well as o indoor thermal comfort. Although practice
has proven that ultra-low energy buildings can greatly reduce energy consumption, it is
still difficult to promote ultra-low energy buildings in the Hot Summer and Cold Winter
Climate Zone of China. Established ultra-low energy buildings standards, such as the
Passivhaus, are based on operational conditions of “full space and continuous-time” for
heating and cooling [14], which do not correspond to typical energy-use behavior in China.
The energy efficiency potential for a technical solution will vary greatly along with energy-
use behavior [15]. Therefore, it is necessary to develop behavior models that match the
characteristics of energy-use behavior for a particular region to predict systems optimization
in practice. Mlecnik et al. [16] monitored the summer and winter thermal comfort of several
near-zero energy buildings in Germany, Austria and Switzerland, and found that between
9% and 49% of the residents were dissatisfied, pointing out that a building envelope with
high performance thermal insulation and high airtightness tends to make it difficult to
remove heat from indoor spaces. The heat gains from lighting, appliances and occupants
are trapped inside, resulting in uncomfortably high temperatures indoors [17]. In addition,
the high-performance thermal insulation materials, door and window components and
service systems used in ultra-low energy buildings are often “new products” and “new
technologies” at this stage, lacking the economic adaptability to social conditions, and have
relatively high costs. The problem of high investment costs resulting from the single pursuit
of low energy solutions is a well documented decarbonization challenge [12,18,19]. Szalay
et al. [20] proposed that the additional material requirements of increased insulation has
also resulted in a slight increase in global costs of buildings. For example, the incremental
cost of a demonstration project of an ultra-low energy building in Qinhuangdao, China,
was some 600 yuan/m2 higher [21], and such a high incremental cost makes the ultra-low
energy building less economically effective, which compromises its wider uptake [22].
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1.1.2. Characteristics of Energy Use Behavior in the Hot Summer and Cold Winter Climate
Zone of China

Human energy use behavior is an important factor affecting building energy consump-
tion [23]. The climate in China varies greatly among its regions, resulting in different character-
istics of energy use behavior and building energy consumption in different climate zones. The
Thermal Design Code for Civil Buildings (GB 50176-93, 1993) [24] defines five climate zones
based on the temperatures of the coldest and hottest months, including Severe Cold Zone
(tmin·m ≤ −10 ◦C), Cold Zone (10 ◦C < tmin·m ≤ 0 ◦C), Hot Summer and Cold Winter Zone
(0 ◦C < tmin·m ≤ 10 ◦C, 25 ◦C < tmax·m ≤ 30 ◦C), Hot Summer and Warm Winter Zone
(10 ◦C < tmin·m,25 ◦C < tmax·m ≤ 29 ◦C), and mild Zone (0 ◦C < tmin·m ≤ 13 ◦C,18 ◦C < tmax·m
≤ 25 ◦C). The relative humidity in the Hot Summer and Cold Winter Zone is 70–80% or
even higher throughout the year. It has long summers and winters (summer: early May to
late September; winter: mid-December to mid-February). The average external temperature
in the coldest month is 0–10 degrees Celsius, and the average external temperature in the
hottest month is 25–30 degrees Celsius. According to Chinese design regulations (GB 50176-93,
1993) [24] and traditional customs, there is no requirement for district heating in the Hot
Summer and Cold Winter (HSCW) climate zone, and residents mostly adopt a “part-time,
part-space” pattern of intermittent heating in separate rooms. The decision to turn on the air
conditioning is usually determined by a combination of factors, such as whether people are in
the room or whether they can tolerate the existing temperature, and only 1/3 to 1/2 of the
rooms are cooled during the cooling period, with an average cooling time of only 8 to 12 h.
This “part-time, part-space” energy use pattern not only meets the thermal comfort require-
ments of residents, but also conforms to the sustainable development concept of harmonious
coexistence between human beings and nature [25], and the average energy saving is 49.7%
when compared to the “continuous-time, full-space” operation pattern commonly assumed in
previous studies [23].

To sum up, it is of great significance to approach energy efficient technologies for
ultra-low energy buildings from three directions: energy saving, improving the indoor
thermal environment, and enhancing economic efficiency, based on the characteristics of
energy-use behaviors in the region.

1.2. Literature Review
1.2.1. Occupant Energy-Use ‘Action Behavior’ Model

‘Action behavior’ refers to the regulation and control of various types of equipment
indoors, which determines the change of equipment status and has a large impact on
building energy consumption [2]. It is the main factor that distinguishes “part time, part
space” from “continuous time, full space” energy use behavior. Four types of models
are often used to describe the action behavior of occupants: fixed-rest models, statistical
regression models such as ANN and polynomials based on large amounts of measured
data, threshold models, and conditional probability models.

Crawley and Yan used the fixed occupant schedule model [26,27] to describe the
hourly operation status of room equipment and the occurrence of occupant actions. This
is also the most common occupant behavior model used in building energy simulation
software, such as the “full space, continuous time” mode. Liu et al. [28] obtained a large
amount of data through field measurements in 34 buildings and used neural networks,
gradient-enhanced decision tree fitting to establish behavioral models in order to improve
the accuracy of energy consumption simulations. Indraganti et al. [29,30] investigated
the behavior of air conditioner use in India and Japan in large samples and used linear
relations, polynomial, and logistic nonlinear relationships to establish statistical correlations
between air conditioner usage rates (i.e., the proportion turned on) and indoor and outdoor
temperatures. Jian [31] proposed the concept of “tolerance temperature” to describe the
behavior of residents when they “turn on the air conditioner when they feel hot”, and only
turn on air conditioning when it exceeds this temperature, which is similar to Newsham’s
model of “closed curtains when feeling sunny” [32]. These are simple threshold models
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describing the feedback behavior within the environment. The threshold model reflects the
interaction between human behavior and the environment, which is similar to the fixed
occupant schedule method. Wang [33] proposed the “feedback-based” and “time-based”
conditional probability models to describe the occupants’ control in relation to turning
on and off the air conditioning equipment. The “feedback-based” model is environment-
related, meaning that actions are influenced and stimulated by environmental factors, so it
is a threshold model; the “time-based” model describes time-related actions, meaning that
actions occur at certain special moments.

The conditional probability model is stochastic and can accommodate both environment-
independent and environment-feedback features, the feature parameters are simple and
clear, and the underlying data are relatively easy to obtain. The four models are summa-
rized in Table 1.

Table 1. A comparison of the most popular occupant energy-use behavior models.

Model Type Basic Ideology Advantages and Disadvantages

Fixed-rest models
Describe the hourly operation status of

indoor equipment and the occurrence of
occupant actions

It is easy to obtain and define, but it does
not reflect the randomness of occupant

actions and indoor equipment operation,
and the interaction between human

behavior and the environment.

Statistical regression models

Establish statistical correlations between
occupant energy use behavior (such as

the proportion of turned on air
conditioner) and the related factors (such

as indoor and outdoor temperatures)

The mathematical rules between
occupant energy use behavior and the
related factors are relatively accurate.

However, statistical regression models
such as neural networks and polynomials
require a large amount of fine data over a

long period of time, the summarized
behavioral models are mostly applicable
to research subjects, and the universality

of regional applications is insufficient.

Threshold models Describe the feedback behavior of the
environment

They reflect the interaction between
human behavior and the environment,
which is similar to the fixed occupant

schedule method, but it does not reflect
the randomness of human actions.

Conditional probability models
Describe the occupants’ control in

relation to turning on and off the air
conditioning or other equipment

The models are stochastic and can
accommodate both

environment-independent and
environment-feedback features, the

feature parameters are simple and clear,
and the underlying data are relatively

easy to obtain.

1.2.2. Multi-Objective Optimization (MOO) Approach towards Low Energy Buildings

In the field of building performance simulation, various optimization methods are
used to solve multi-objective problems. There are two common approaches to the prob-
lem of optimizing buildings with the goals of reducing energy consumption or improv-
ing the indoor thermal environment, (1) the classical weighted sum approach [34] and
(2) the Pareto-dominance approach [35]. The classical weighted sum approach converts
MOO into a single scalar objective problem by attaching a corresponding weighting (e.g.,
weighting and algorithms) to individual objectives based on mathematical principles [36];
this method does not provide information about the mutual interference between differ-
ent sub-targets. The Pareto-dominance approach employs stochastic rules to find the set
of non-dominated solutions in the entire space of feasible decision variables, i.e., Pareto
solutions [35], optimizing all objectives simultaneously and providing a set of non-obvious
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optimal solutions, facilitating decision makers in choosing the optimal solution according
to different preferences [36]. Therefore, the Pareto dominance method is increasingly used
in the field of multi-objective optimization.

MOPSO and NSGA are the most commonly used evolutionary algorithms for solving
multi-objective problems for buildings [37]. Aiming at the regulatory compliance, asset
value and customer satisfaction of real estate property maintenance, Taillandier et al. [38]
took advantage of the optimality of the MOPSO algorithm and Pareto solutions to optimize
the operations of building component maintenance and obtain decision schemes that satisfy
the decision maker’s preferences. Delgarm et al. [39] used MOPSO to optimize parameters
such as orientation and window size, with the objective functions of annual cooling energy,
heating energy, lighting energy, and economy, to obtain the optimal set of design solutions.
Hamdy et al. [40] took a single-family near-zero energy house in Finland as a study, where
the NSGA-II multi-objective genetic algorithm was used in three stages to identify the
optimal combination of design variables such as building envelope (insulation thickness
of exterior walls, roofs, floors, window types, building sealing) and heat recovery devices
that affect the thermal performance of the house. Magnier et al. [41,42] took Canadian,
Portuguese and French residential buildings as research objects, used the ANN model to
describe the relationship between building envelope and HVAC system as those between
variables and energy consumption and indoor thermal comfort, then coupled this with
NSGA-II multi-objective arithmetic to obtain energy efficient technology solutions towards
the goals of energy-saving, indoor thermal environment improvement and economic
efficiency. The basic ideas and the advantages and disadvantages of MOPSO and NSGA
algorithms are shown in Table 2.

Table 2. A comparison of common algorithms for building performance optimization [43].

Algorithms Basic Ideology Advantages and
Disadvantages

MOPSO

To solve multi-objective
problems using PSO, the
optimization process is

deco-mposed into multiple
sub-problems with a single

objective, and the
optimization conditions are

changed step by step to find a
better solution.

The structure is simple and
convergence is fast. However,

the optimization problem
with discrete variables is not
well handled and easily falls

into local optimum.

NSGA-II

It uses the elitist strategy with
the crowding distance

operator to preserve diversity
and the efficient

non-dominated sorting
operator to select the

Pareto-dominant solutions.

The elite strategy is retained
to improve the overall

evolution of the population,
the convergence speed is fast,

the convergence and
distribution of the solution set
are better, but the calculation
of the crowding distance is

more complicated.

As mentioned above, the non-dominated ranking genetic algorithm NSGA-II with
elite strategy runs fast with a solution set of good convergence and distribution, and
it has been successfully used in multi-objective optimal design towards energy saving,
improving indoor thermal comfort, increasing economic efficiency or reducing carbon
emission in the building field. However, in previous studies [40–42] on multi-objective
optimization of building performance, the fixed work–rest model is often used to describe
energy use behavior, ignoring the impact of the characteristics of energy use behavior, such
as randomness, and influenced by environmental factors regarding energy consumption
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and economy, which are typical in regions such as the Hot Summer and Cold Winter
Climate Zone of China.

1.3. Aim of This Study

This study aims to explore the technical optimization scheme of ultra-low energy
housing that meets the multiple objectives of energy saving, thermal comfort and economy,
by using a probabilistic model of residents’ energy use behavior in the Hot Summer and
Cold Winter Zone of China, in order to provide more reliable research and technical bases
for the promotion of ultra-low energy housing in the region. In terms of behavior model,
this study overcomes the limitations found in previous studies, by taking into account
the stochastic nature of residents’ energy-use behavior and the influence of the interaction
between environment and behavior on energy consumption and economy, such as using
a conditional probability model based on regional survey results to construct a typical
model of residents’ energy use behavior. In terms of a multi-objective optimization method,
NSGA-II, a Pareto-dominance multi-objective algorithm is used to carry out the study.
Materials and methods applied in the study are discussed in the following section.

2. Materials and Methods

This study consists of four parts:

(1) Determining the relevant indicators to measure the optimization objectives of energy
efficiency, indoor thermal environment, and the economic goals of the building.

(2) Development of the building model and the residents’ behavior model.
(3) Identification of key technical variables to meet the energy efficiency benchmark for

ultra-low energy buildings.
(4) Multi-objective optimization to obtain the Pareto optimal solution set and the appro-

priate combinations of energy efficient technologies for ultra-low energy housing.

The research framework is shown in Figure 1.
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Figure 1. The research framework.

Changsha, the target city selected for this study, is an important central city in the
hot-summer and cold-winter region, and its climate is characterized by typical hot summers
and cold winters. The summer is hot and long, with an average daily temperature above
30 ◦C for 85 days and hot days above 35 ◦C for an average of about 30 days per year;
the average winter temperature below 0 ◦C is very short, and the average temperature in
January, the coldest month, is 4.4–5.1 ◦C. Most housing in this area does not have centralized
heating or cooling facilities, and the residents mainly adopt a “part time, part space” energy
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use pattern, which can represent the typical energy use behavior of residents in the Hot
Summer and Cold Winter Climate Zone.

2.1. Defining the Objective-Functions

The optimization objectives of this study, including energy efficiency, thermal comfort
and economy, are defined using indicators such as annual energy consumption, indoor
thermal discomfort hours and global cost increment, respectively.

The operational energy consumption of a building includes those from heating, cooling,
lighting, domestic hot water, and appliances. The energy use for lighting, domestic hot
water, and appliances does not vary significantly with the optimization variables in this
study. The heating and cooling energy use typically accounts for more than 50% of the total
building energy consumption [44], and this proportion is increasing [45]. Therefore, the
analysis of annual energy consumption in this study only takes into account heating and
cooling energy consumption.

f1(
→
x ) = Ecooling + Eheating (1)

where (
→
x ) is the optimized solution, f1(

→
x ) is the annual energy consumption per unit

area (kWh/m2), Ecooling is the cooling energy consumption per unit area (kWh/m2), and
Eheating is the heating energy consumption per unit area (kWh/m2).

Indoor air temperature is one of the most important factors affecting the indoor
thermal environment. The number of thermal discomfort hours in this study refers to the
number of hours when hourly indoor temperature exceeds the specified thermal comfort
temperature range under normal occupant behavior conditions throughout the year. For
the determination of annual thermal discomfort hours, the occupants’ indoor thermal
comfort quantitative demand under natural ventilation mode according to the Evaluation
Standard for Indoor Thermal Environment in Civil Buildings (GB/T 50785-2012) [46] is
used as the evaluation basis, and 18 ◦C≤ T≤ 28 ◦C is defined as the thermal comfort range.

f2(
→
x ) = ∑8760

0 T(18 ◦C < T and T > 28 ◦C) (2)

where (
→
x ) is the optimized solution, f2(

→
x ) is the annual indoor thermal uncomfortable

hours (h), and T is the number of data points located within the boundary of the thermal
comfort zone on a yearly basis (h).

The economic objective is defined by the global cost increment [47], which is the difference
between the global cost Cg(j) integrating any energy-efficient technical variable j and the global
cost Cg(ref) of the reference base case just meeting the requirements of the current design
standard for energy efficient domestic buildings, to offset the impact of cost values on the
results of the economic evaluation, and the relevant calculation formula is as follows.

f3(
→
x ) = ∆Ch = Cg(j)− Cg(ref) (3)

Cg =
C1 + ∑50

i=1[Ce,i × Rd(i)]
Afloor

(4)

Rd(i) =
1− (1 + RR)

−i

RR
(5)

RR =
Ri − Re

1 + Re
(6)

In the above, (
→
x ) is the optimized solution, f3(

→
x ) is the global cost increment

(yuan/m2), C1 is the initial investment cost (yuan), Ce,i is the annual energy cost (yuan)
of year i, the initial energy price is 0.588 yuan/kWh [48], Rd(i) is the discount rate of year
I, Afloor is the floor area (m2), RR is the real interest rate, Re is the increase rate of energy
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price, which is taken as 1.2% [47], Ri is the market interest rate, which is taken as 4.25% [47],
and the calculation period is taken as 30 years, since results accuracy will be reduced
for economic calculation beyond 30 years [49]. The energy consumption of the building
is assumed to be constant during the calculation period, and the equipment would be
replaced once during the calculation period [50]. Since it is difficult and to quantify with
certainty the performance decay of the equipment system (air conditioning system), the
performance of the equipment system in this study is assumed to be constant during the
calculation period.

2.2. Defining and Verifying the Occupant Behavioral and Building Model
2.2.1. Questionnaire Survey

The results of the questionnaire survey are one of the main bases for determining the
architectural archetype and the energy use behavior model. The research group conducted
field and online questionnaire surveys from July 2021 to July 2022 to obtain basic infor-
mation and data from residents living in the new residential areas in Changsha city. The
questionnaire consisted of three parts, including basic household information, heating and
cooling equipment, energy use behavior habits, and etc., with a total of 40 questions. The
main content of the questionnaire is shown in Table 3.

Table 3. A summary of the main content of the questionnaire.

Question Type The Questions The Options

Basic family information

Age; gender; household income

Younger than 20 years, 20–40 years old, 40–60
years old, older than 60 years; male, female;

less than 50,000 yuan, 50–100,000 yuan,
100–200,000 yuan, 200,000 yuan

or more

House type Villas/row houses; multi-story buildings;
high-rise towers; high-rise slab buildings

Room type

One bedroom and one living room, two
bedrooms and one/two living room(s), three
bedrooms and one/two living room(s); four

bedrooms and one/two living room(s)

Heating and cooling equipment situation

What cooling systems or equipment are used
in summer

No cooling equipment; indoor central air
conditioning; wall-mounted or cabinet air

conditioning; electric fans

What heating systems or equipment are used
in winter

No heating equipment; centralized district
heating; floor heating; household central air
conditioning; wall-mounted or cabinet air

conditioning; fan heaters, electric radiators;
electric blankets

Occupant energy use behavior

When to turn on the air conditioning in
summer/winter

Never on; Always on; when entering the living
room; when feeling hot/cold; when having

guests; other

When to turn off the air conditioning in
summer/winter

Never off; when leaving the living room; when
going to bed at night; when feeling

cold/hot; other

When to open window in summer/winter

Never open; Always open in summer/winter;
when entering the living room; when waking
up; when feeling hot/cold; when the room is

smelly or stuffy; other

When to close window in summer/winter

Never closed; Closed after leaving room; when
feeling hot/cold; when it is noisy outside, or
when the environment outside is bad (wind

and rain, sand and dust); other

2.2.2. Defining and Verifying the Building Model

The most frequently occurring characteristics of orientation, building form, number of
households per floor, number of bedrooms and living rooms, and house area were selected



Buildings 2023, 13, 1172 9 of 27

as the parameters of the building archetype for this study. Based on the literature review,
questionnaires and market survey, drawings of nearly 100 new residential buildings were
collected to define the archetype. It was found that the most popular characteristics are
north–south orientation, high-rise slab-type, two staircases and four households per floor,
three bedrooms and two living rooms, and 90–100 m2 per single-family. Parameters such as
the window-to-wall ratio should meet the requirements of DBJ 43-2017 Design standard for
energy efficiency of residential buildings in Hunan province [9]. An archetype was finally
obtained and its simplified plan for a standard floor is shown in Figure 2. For speed of
simulation, only the standard floor, ground floor (first floor) and top floor are modelled in
this study (Figure 3). The window-to-wall ratios are 0.35 and 0.32 for the south and north
facades, respectively, with no windows on the east and west walls.
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A reference base case was defined using the building archetype, its building thermal
properties fulfilling the thermal performance indexes specified in DBJ 43-2017 Design
standard for energy efficiency of residential buildings in Hunan province [9]. The main
constructions and materials of the envelope are shown in Table 4. The split air conditioner
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has an e energy efficiency of level 3 (cop3.2/EER2.9) and the capacity is 1.87 kW. The
CSWD weather data for Changsha was used, and the heating period calculation using
a 5-day smoothing method was from 29 December 29 to 4 February, while the cooling
period calculation was from 2 June to 31 August [51]. The air change rate was assumed
to be 1.0 h−1. Based on the above design conditions, a typical housing model was created
in DesT (Figure 3), which is a software platform for building environment and HVAC
simulation, developed by Tsinghua University based on its own intellectual property rights.
It has been used to study the influence of occupant behavior on the effect of energy efficient
technologies in many studies [15,23].

Table 4. Thermal properties of the envelope of the reference base case.

Envelope Construction Details Performance Parameters

External walls

20 mm Cement mortar +
10 mmEPS + 200 mm Shale

porous brick + 20 mm mixed
mortar exterior
finish plastering

1.1 W/(m2·K)

Roof

10 mm cement mortar +
60 mmEPS + 100 mm
reinforced concrete

structural slab

0.6 W/(m2·K)

External windows 6 mm Low-e glass + 12 mm air
+ 6 mm clear glass

K = 3.2 W/(m2·K)
SHGC = 0.43

Internal walls 10 mm cement mortar +
200 mm shale porous brick 2.0 W/(m2·K)

External shading – –

Heating/cooling equipment Split air conditioners cop3.1/EER2.8

The DesT model was calibrated by comparing it with monitoring data. A room in
the middle floor of a residential building with the same building plan and envelope as the
archetype building was selected for temperature and humidity measurements, namely the
room marked with the symbol # in Figure 2. The room was in normal operation from 1
August to 7 August 2022, without active temperature control, and the indoor air temperature
and humidity were obtained using an AZ882 9 temperature and humidity self-recorder. The
weather data from 1 August to 7 August 2022 was obtained from the National Weather Science
Data Center and input to Dest software to simulate the daily profile of indoor air temperature
as influenced by outdoor temperature. The results are shown in Figure 4. As can be seen, the
variation of the predicted indoor air temperature is consistent with that of the measurement,
the absolute error of indoor air temperature is 0.39 ◦C and the relative error is 2.60%, which
indicates the accuracy of the modeling procedure.

2.2.3. Defining the Critical Parameters of the Occupant Behavior Model

In this study, we will choose one of the “feedback-based” and “time-based” conditional
probabilistic models (Table 5) to describe the residents’ energy use behavior. The human
control behavior for window and air conditioner is an important factor affecting energy
use [33]. The control behaviors for window and air conditioner with the largest proportion
in the survey were selected as the typical modes.
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Table 5. Probability models of action behavior.

Model Type Type of Action Behavior Probability Function Feature Parameters

Time-based

On when entering room, Off
when leaving room, On when
going to bed, Off when going

to bed, etc.
P =

{
p if entering/sleeping

0 if otherwise
p is the probability of an event

occurring at a given time

Feedback type
On when feeling hot/cold, Off

when feeling cold/hot, On
when feeling stuffy, etc.

P =

{
1− e−(

u−I
l )

k∆τ

if I < u
0 if I ≥ u

U represents threshold
parameters that characterize
human discomfort such as
indoor air temperatures to
turn on air conditioning or
open window, and indoor

CO2 concentration, l is a scale
parameter describing

environmental stimuli; k is the
slope parameter which refers
to the exponential sensitivity
of the action to the change of
the parameter; ∆t is the time
step used in the simulation.

When determining probabilistic model parameters for energy use behavior over a
wide range, the “time-based” model often estimates p values according to the literature or
experience, with values of 0.9 for frequent events and 0.1 to 0.2 for infrequent events [33].
The “feedback type” refers to the “two-point” method of Zhang [23] to determine the
occupant energy use behavior curve of air conditioners. For example, if the probability of
turning on the equipment is assumed to be 0.9 at a certain environmental threshold, and
0.1 at a certain environmental value when people feel comfortable, then these values can be
substituted into the model to obtain the relevant parameters.

2.2.4. Validating the Typicality of the Behavior Model

The above behavior model is input to the Dest model to obtain the annual cooling
and heating energy consumption. By collecting monthly electricity consumption data
from the residents surveyed by questionnaires, combined with literature research, the
actual building energy consumption, heating and cooling energy consumption and energy
efficiency data were obtained to verify and validate the model.
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2.3. Selection of Energy Efficient Technologies
2.3.1. Listing Energy Efficient Technologies

Previous studies [16,17] have shown that reducing the heat transfer coefficient of the
east and west walls has a bigger impact on improving the indoor thermal environment and
saving energy in this area compared with the south and north walls, so it is necessary to
optimize the building envelope by orientation. Since the north-facing windows receive the
least solar radiation, shading is not considered, while the south-facing windows would
benefit from horizontal shading to reduce their cooling load. This study refers to the
relevant energy conservation standards in force [52] in order to determine the value ranges
of the variables and the variable settings and related parameters which are summarized in
Table 6. The initial investment costs of external wall insulation, roof insulation, window
types, horizontal shading and equipment systems are obtained from the manufacturers.
The initial investment costs of external wall and roof insulation and windows include raw
material prices and construction costs. The literature review combined with questionnaire
surveys show that split air conditioners are mainly used in the area, while heat recovery is
rarely used, so heat recovery devices are not considered.

Table 6. Variable settings.

Description of the
Variables Variable Names Probability Density

Functions Variation Ranges Initial Investment
Costs

South wall
EPS thickness X1 Continuous uniform 0.01–0.21 m 600 yuan/m3

North wall
EPS thickness X2 Continuous uniform 0.01–0.21 m 600 yuan/m3

West wall
EPS thickness X3 Continuous uniform 0.01–0.21 m 600 yuan/m3

East wall EPS thickness X4 Continuous uniform 0.01–0.21 m 600 yuan/m3

Roof EPS thickness X5 Continuous uniform 0.06–0.27 m 650 yuan/m3

Interior wall
EPS thickness X6 Continuous uniform 0–0.06 m 600 yuan/m3

South window K-value X7 Discrete
(0.8, 1.1, 1, 4, 1.7, 2.0,

2.3, 2.6, 2.9,
3.2) W/(m2·K)

(2500, 2300, 1200, 920,
900, 890, 800, 600,

500) yuan/m2

North window K-value X8 Discrete
(0.8, 1.1, 1, 4, 1.7, 2.0,

2.3, 2.6, 2.9,
3.2) W/(m2·K)

(2500, 2300, 1200, 920,
900, 890, 800, 600,

500) yuan/m2

Length of south-facing
horizontal external
shading

X9 Continuous uniform 0–0.6 m 300 yuan/m2

Air mass
flow coefficient X10 Discrete (0.5, 0.75, 1) h−1 (0, 5, 10) yuan/m2

HVAC: Split air
conditioner+ natural
ventilation

X11 Discrete
(cop3.1/EER2.8(level 3),
cop4.3/EER3.3(level 2),
cop5.4/EER3.6(level 1))

(100, 120,
140) yuan/m2

2.3.2. Screening Key Technologies

In this study, sensitivity analysis was used to screen the energy efficient technologies
in order to reduce the volume of the optimization model. It would be time consuming
and labor intensive to perform traversal calculations for 10 energy efficient technologies at
multiple energy efficient levels as shown in Table 6, so this study used Latin hypercube
sampling (LHS) to generate representative case samples, where the number of samples
should be more than 1.5 times the number of variables, thus creating 130 combinations
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of energy efficient technologies. Research [47] has proved that equipment type is one of
the key parameters affecting energy consumption and cost increment, so equipment type,
such as the air conditioner, is taken as one of the key technologies in this study, without
passing the screening step. The 130 combinations together with the occupants’ energy use
behavior model were input to Dest to obtain the predicted energy consumption and indoor
thermal discomfort hours. Then, a regression-based global sensitivity [53] analysis was
conducted to analyze the importance and significance of building energy consumption and
indoor thermal discomfort hours, and the global cost increment influenced by the technical
parameters of building energy efficiency based on standardized regression coefficients
(SRC) and significance p. Finally, the energy efficient technologies with significant impact
on energy consumption, indoor thermal discomfort hours, and cost increment indexes were
selected as key parameters.

The standardized regression coefficient (SRC) is the regression coefficient obtained
after standardizing the independent variable and dependent variable simultaneously. The
data are standardized to eliminate the effects of differences in magnitude and order of
magnitude, making them comparable. The standardized regression coefficients are used to
compare the influence of different independent variables on the dependent variable, and
the larger the absolute value of the independent variable SRC, the greater the influence
on the dependent variable. The p-value obtained from the significance level test indicates
the likelihood of the occurrence of an event, and the significance of the influence of the
independent variable on the dependent variable is judged by the F-value. If p < 0.05
indicates that the independent variable has a significant influence on the dependent variable,
the opposite is true for p ≥ 0.05 [54].

2.3.3. Determination of the Technical Variable Thresholds of Ultra-Low Energy Buildings

Traversal calculations were carried out for the combinations of technologies selected as
above, together with air conditioners with different energy efficiency levels, then solutions
achieving just 50% energy saving rate are identified. The solution with the smallest cost
increment is taken as the technical threshold for ultra-low energy building to ensure
that the energy efficiency benchmark can be met, and to further determine the technical
optimization ranges of ultra-low energy buildings.

2.4. Multi-Objective Optimization
2.4.1. Objective-Functions

In order to achieve the best comprehensive performance for energy saving, indoor
thermal environment, and economic benefits, a function consisting of minimizing the
total annual energy consumption per unit area, the number of hours of indoor thermal
discomfort, and the annual cost increment index is established as follows:

min{f1(
→
x ), f2(

→
x ), f3(

→
x )}, →x = [x1, x2, x3, . . . , xm] (7)

where f1(
→
x ) is the annual building energy consumption per unit area (kW·h/m2), f2(

→
x ) is

the annual indoor thermal discomfort hours (h), f3(
→
x ) is global cost increment (yuan/m2),

and
→
x is the optimization variable, i.e., the key building energy efficient technologies.

2.4.2. Defining the Objective Function Model

A database of 150 cases was obtained from the technology combination solutions to
meet the benchmark for ultra-low energy buildings. Based on the database, a quantitative
relationship model between key energy efficient technologies and energy consumption,
indoor thermal environment and global cost increment is developed. The average relative
error and R2 value are then used to evaluate the model. Mohamed et al. [40] showed
that the neural network model can reflect well the relationship between energy efficient
technology and energy consumption and indoor thermal environment. In this study, a
neural network model was used to establish the quantitative relationship model, in which
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80% of the samples were trained and 20% [53] were tested. The neural network model was
composed of three layers, one input layer containing neurons associated with the screened
key technologies, one hidden layer composed of n layers and one output layer containing
one neuron, which is energy consumption, or indoor thermal environment, or global cost
increment, respectively. The hidden neurons are determined using a trial-and-error method,
based on an evaluation of the average relative error of the neural network. The sigmoid
function is used as the activation function and the Levenberg-Marquardt algorithm is used
to adjust the weight values between layers.

If the average relative error of the neural network model is too large or the R2 is too
small, regression with other models, such as polynomial, is then considered, depending on
whichever is less than the error limit.

2.4.3. Multi-Objective Evolutionary Algorithm Optimization

In this study, to reach the objectives of reducing building energy consumption, en-
suring indoor thermal comfort and reducing cost increment, NSGA-II is used to optimize
the objective functions, consisting of key technical variables, energy consumption, indoor
thermal discomfort hours and cost increment, to obtain the Pareto optimal solution set.

NSGA-II initializes a random population consisting of a certain number of individuals
and generates offspring through recombination and variation to form a Pareto front solution
set. In this study, each individual represents a design solution, and individual genes
represent design parameters. In the Pareto optimal solution set, the combination solutions
that meet the energy saving benchmark of ultra-low energy buildings (50% more energy
efficient than the current energy saving standard) are screened, and the Pareto solution set
is analyzed in depth towards four different targets: the optimal energy saving effect, the
optimal indoor thermal environment, the optimal economy, and the optimal trade-off.

The algorithm for the trade-off solution refers to the individual utilization Weighting
Factor Method (WSM) proposed by Yu et al. [36], which converts the multi-criteria opti-
mization problem into a scalar problem by summing the normalized objective functions
and multiplying them by their weighting factor Wi to obtain the trade-off solution of the
Pareto front, as calculated in Equation (8):

Min : Fws(x) = wi ∑3
i=1 [

fi(x)− fi(x)
min

fi(x)
max − fi(x)

min ]

2

(8)

where f1(x), f2(x), f3(x) are objective function values;
k
∑

i=1
wi = 1, (k= 3), In this study, the

weights of the normalized objective functions are evenly assigned without preference,
therefore Wi is 1/3.

3. Results and Discussion
3.1. The Residents’ Energy Use Behavior Model
3.1.1. Development of the Energy Use Behavior Model

A total of 945 questionnaires were distributed, of which 905 were valid. To demonstrate
whether the 905 questionnaires met the requirements of the margin of error study at the
95% confidence level of the sample size, the sample size was calculated using Equation (9)
as follows [55]:

ME = Z×
√

P(1− P)(N− S)
NS

(9)

where S is the sample size, Z is the Z-score (i.e., the standard score, which measures how
many standard deviations the results show from the mean of the normal distribution curve),
and the confidence level is 95%. Z takes the value of 1.96 [55]; p is the percentage of people
who choose to participate in the survey (0.5 is used for the required sample size, meaning that
usually people have equal probability of choosing or refusing to participate in the survey, i.e.,
50%); ME represents the error range; and N is the overall size, which is the resident population
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of 1,047,900 in Changsha. When S = 905, ME = 3.21%, and S = 1003, the result is ME = 3.09,
indicating that we have a margin of error of approximately 3% at the 95% confidence level for
this sample size survey and the sample size is statistically accurate.

Selected results of the questionnaire surveys are shown in Figures 5–8. For window
opening and closing behaviors, the research results (Figures 5 and 6) show that the patterns
are basically the same in summer and winter. The window opening behavior is mainly
influenced by indoor environmental factors, so it is described by the “feedback type
conditional probability model”, where u is 700 ppm. Window closing behavior is mainly
triggered by outdoor environment (noise, wind, rain, dust) and time factors, such as closing
a window when the outdoor environment is bad, or when leaving home. Due to the
lack of data on outdoor noise and dust concentrations, the window closing model only
considers the working condition of closing when leaving home, and the value of p is 0.9 in
the probability model in Table 5.
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According to Figure 7, split air conditioners dominate the cooling mode in Changsha
area in summer, accounting for 84% of the total cooling mode; 40.52% of residents use
heaters and electric blankets for partial heating in winter, and 38.92% use spilt air condition-
ers for heating because partial heating behavior has a greater randomness and complexity,
cooling and heating behavior are studied along with the air conditioning control in this re-
search. The survey results for the control behavior of air conditioners are shown in Figure 8.
In summer, 34.16% of residents turn air conditioners on when they feel hot and off when
they feel cold, which is significantly higher than the other switching options. In winter,
28.64% of residents turn air conditioners on when they feel cold and off when they feel hot,
which is also higher than the other switching options. Therefore, “on when feeling hot and
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off when feeling cold” is the typical pattern of controlling air conditioning in summer; “on
when feeling cold and off when feeling hot” is the typical pattern of heating behavior in
winter, both of which are described by the “feedback-type conditional probability” model.
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Zhang [56] showed that the common temperature at which residents turned on the air
conditioner in hot summer areas was 30.1 ◦C. Xiao et al. [57] showed that the acceptable in-
door thermal comfort temperature for residents in winter is 9.61 ◦C through measurements
and subjective questionnaire evaluation of 30 residential houses in the Changsha area in
winter, while DBJ 43-2017 Energy-saving Design Standards for Residential Buildings in
Hunan Province [9] stipulates that the design temperatures in summer and winter are 26 ◦C
and 18 ◦C, respectively. Therefore, this study assumes that the design temperatures of air
conditioning in summer and winter are 30.1 ◦C and 9.61 ◦C (according to studies [56,57],
if it reaches the setpoints, most people would turn on the air conditioners), with a 90%
probability of air conditioning being turned on, while the comfortable temperatures in
summer and winter are 28 ◦C and 18 ◦C, respectively, (according to GBT50785-2012, the
set points can meet the thermal comfort requirements of 90% of the population), with a
10% probability of being turned on. Using the two-point method, the probabilistic behav-
ioral model of air conditioning (as shown in Table 5) shows that, in summer, U = 26.8 ◦C
on (30.2 off), l = 3.2 on (6.2 off), k = 3.85 on (3.8 off); in winter, U = 12.1 ◦C on (21 off),
l = 3.2, k = 3.85. U represents threshold indoor air temperatures at which to turn on or
off air conditioners, l is a scale parameter describing environmental stimuli, and k is the
slope parameter, which refers to the exponential sensitivity of the action to the change in
temperature. The probability curves are shown in Figures 9 and 10.
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3.1.2. Model Verification and Validation

Figure 11 shows a comparison of the simulation results of adopting the probabilistic
behavior model with the actual surveyed data. As can be seen from Figure 11, the predicted
energy consumption is within the range of the surveyed data and close to the actual mea-
sured mean data, which confirms the representativeness and accuracy of the probabilistic
behavior model.

Buildings 2023, 13, x FOR PEER REVIEW  17  of  28 
 

   

(a)  (b) 

Figure 9. Cooling probability model diagram:  (a) “On when  feeling hot”;  (b) “Off when  feeling 

cold”. 

   
(a)  (b) 

Figure 10. Heating probability model diagram: (a) “On when feeling cold”; (b) “Off when feeling 

hot”. 

3.1.2. Model Verification and Validation 

Figure 11 shows a comparison of the simulation results of adopting the probabilistic 

behavior model with the actual surveyed data. As can be seen from Figure 11, the pre-

dicted energy consumption is within the range of the surveyed data and close to the actual 

measured mean data, which confirms the representativeness and accuracy of the proba-

bilistic behavior model. 

 

Figure 11. Verification of the probabilistic behavior model. Figure 11. Verification of the probabilistic behavior model.



Buildings 2023, 13, 1172 18 of 27

3.2. Identification of Key Technical Variables in Achieving Ultra-Low Energy Housing
3.2.1. Sensitivity Analysis

The results of the sensitivity analysis are shown in Figures 12–14.
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According to Figures 12 and 13, the most influential variable for building energy con-
sumption is the south window type, while that for heat discomfort hours is the ventilation
rate, as well as cost increment. This is because the windows are the weak points of heat
insulation for the envelope, the solar radiation to the south windows are greater than those
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to the north, and the insulation performance of the south windows can effectively prevent
heat transfers between indoor and outdoor, reducing the heat loss and increasing cooling
energy. However, the initial investment costs for high performance windows are high,
which should be considered in the decision-making for south window selection.

The influence of air mass flow coefficient on energy consumption is consistent with
that on indoor thermal environment, and ventilation rate is one of the most sensitive
variables for both objectives, indicating that the airtightness of a building envelope is
extremely important for improving the indoor thermal environment and reducing energy
consumption. The air mass flow coefficient should meet the minimum requirement of the
indoor air change rate to ensure air quality and minimize the possibility of moisture and
mold problems.

The influence of the insulation thicknesses of the west wall, east wall and north wall
on energy consumption and indoor thermal discomfort time is negative, indicating that a
thick layer of insulation is beneficial to energy saving and improving the indoor thermal
environment. Among these, west wall insulation is most sensitive to energy consumption,
while east wall insulation is most sensitive to indoor thermal discomfort. Both east and west
walls have a great impact on cost increment. Therefore, more attention should be paid to east
and west wall insulation when carrying out energy efficiency design of the building envelope.

The length of the south-facing horizontal sunshade has a positive effect on energy
consumption and indoor thermal discomfort time, indicating that the lengthening of the
south-facing horizontal sunshade is an effective strategy to improve the building energy
performance and indoor thermal comfort. What needs to be emphasized here is that the
south horizontal shading is also an important factor influencing indoor natural lighting,
which is not considered in this study. Therefore, even if it is beneficial to reduce energy
consumption and indoor thermal discomfort time, it should be carefully designed according
to the indoor lighting requirement in practice.

According to Figure 12, the significant impact factors on building energy efficiency are
south window K-value, west wall EPS thickness, north wall EPS thickness, east wall EPS
thickness, air mass flow coefficient, and south-facing horizontal shading. For the thermal
discomfort time, the key impact factors include air mass flow coefficient, south window K-
value, east wall EPS thickness, west wall EPS thickness, north wall EPS thickness, and south-
facing horizontal shading, as shown in Figure 13. According to Figure 14, the significant
impact factors on global cost increment are south window K-value, north window K-value,
east wall EPS thickness, and west wall EPS thickness. The heat transfer coefficient of
the north-facing windows has a significant impact on the cost increment, since the initial
investment cost of reducing the heat transfer coefficient of exterior windows is more than
those of the other technologies, but it has little effect on saving energy and improving indoor
thermal environment, so it is not considered as a key factor. The thickness of roof insulation
has little impact on the overall energy consumption and indoor thermal environment of a
building, but is conducive to improving the thermal comfort and energy consumption of the
top floor, so it is still considered as a key factor. Therefore, the finalized key energy efficient
technologies are the heat transfer coefficient of south windows, insulation thickness of
the west wall, insulation thickness of the east wall, insulation thickness of the north wall,
ventilation rate, south-facing horizontal shading, thickness of roof insulation, and type of
heating and cooling equipment.

3.2.2. Baseline Values of the Technical Variables for Ultra-Low Energy Buildings

According to Dest, the energy consumption of the reference base case is estimated
to be 10.50 kwh/m2 and the annual thermal discomfort time is estimated to be 3868 h.
Traversal calculations were carried out for key technologies selected from the sensitivity
analysis as above. Compared with the reference case, the technology combination schemes
achieving around 50% energy saving rate (the ultra-low energy housing benchmark) were
identified and summarized in Table 7.
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Table 7. A summary of the selected technology combination schemes.

No.
Insulation Thickness (m) South

Window K
Value

W/(m2·K)

Horizontal
Overhang
Shading

(Length: m)

ACR
(h−1)

Air Con-
ditioner

Type

Energy
Use

(kwh/m2)

Energy
Saving

Rate

Global Cost
Increment
(yuan/m2)

North
Wall

West
Wall

East
Wall Roof

1 0.11 0.07 0.07 0.08 1.1 0 0.75 Level 1 5.20 50.46% 475.02

2 0.03 0.19 0.11 0.06 2 0.2 1 Level 1 5.23 50.20% 226.57

3 0.21 0.03 0.05 0.09 2.3 0.2 0.75 Level 1 5.22 50.26% 221.61

4 0.07 0.09 0.09 0.06 2.6 0 1 Level 1 5.23 50.20% 155.89

5 0.03 0.17 0.15 0.06 2.6 0 0.5 Level 1 5.21 50.33% 166.58

6 0.19 0.11 0.05 0.07 2.6 0 0.5 Level 1 5.20 50.41% 207.25

7 0.15 0.13 0.03 0.12 2 0 0.5 Level 1 5.16 50.86% 218.02

8 0.09 0.11 0.19 0.15 2.6 0 0.5 Level 1 5.16 50.84% 175.25

9 0.13 0.05 0.15 0.06 1.7 0 0.5 Level 1 5.23 50.19% 225.58

10 0.21 0.07 0.09 0.14 1.7 0.6 0.75 Level 1 5.16 50.84% 249.41

11 0.01 0.19 0.13 0.15 1.7 0.5 0.5 Level 2 5.21 50.43% 218.04

Scheme 4 in Table 7 has the smallest global cost increment, with an energy consumption
of 5.23 kwh/m2 and an energy saving rate of 50.2%. This is taken as the threshold of the
technical parameters of ultra-low energy housing; namely, its technical parameters are
used as the optimized benchmark values, including the minimum insulation thicknesses of
north wall, west wall, east wall and roof at 0.07 m, 0.09 m, 0.09 m and 0.06 m, respectively.
Therefore, for ultra-low energy housing in the area, the variable ranges of insulation
thicknesses of north wall, west wall and east wall should be 0.07–0.21 m, 0.09–0.21 m and
0.09–0.21 m, respectively, and the variation range of roof insulation thickness should be
0.06–0.27 m; the length of horizontal external sunshade and the ventilation rate are constant,
with no horizontal external sunshade and a ventilation rate of 1 air change rate. The energy
saving rate of 50% may also be achieved when the equipment type is of level 1, so the
optimized equipment type range can include both level 1 and level 2.

Therefore, eight influential variables and their ranges in total were finally determined,
as identified in Table 8.

Table 8. Influential variables and ranges.

Description of the Variables Variable Names Probability Density
Functions Variation Ranges

North wall EPS thickness X2 Continuous uniform 0.07–0.21 m

West wall EPS thickness X3 Continuous uniform 0.09–0.21 m

East wall EPS thickness X4 Continuous uniform 0.09–0.21 m

Roof EPS thickness X5 Continuous uniform 0.06–0.27 m

South window K-value X7 Discrete (0.8, 1.1, 1, 4, 1.7, 2.0, 2.3, 2.6,
2.9, 3.2) W/(m2·K)

Length of south-facing
horizontal external shading X9 Continuous uniform 0–0.6 m

Air mass flow coefficient X10 Discrete (0.5, 0.75, 1) h−1

HVAC: Split air conditioner+
natural ventilation X11 Discrete (cop4.3/EER3.3 (level 2),

cop5.4/EER3.6 (level 1))

3.3. Multi-Objective Optimization
3.3.1. Training and Validation of the Objective Functions

The objective function was trained with the BP model, which is a type of neural
network model. The relationship between global cost increment and key technical variables
is with a goodness-of-fit not greater than 0.53 when described by a neural network model,
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regardless of how the hidden layer neuron number is changed, and a goodness-of-fit of 0.97
when using polynomial regression (Figure 15), of which the average relative error is 1.89%.
Therefore, the global cost increment is regressed using the polynomial model, as follows:

12.891× X2 ± 1.481× (X2)
2 + 38.199× X3 + 551.806× (X3)

2+

349.217× X4 − 1220.65× (X4)
2 + 0.091× X5 + 0.121× (X5)

2+

508.865× X7 − 1183.08× (X7)
2 − 222.14× X9 + 28.764× (X9)

2−
13.476× X10 + 53.877× (X10)

2 + 12.175× X11 − 0.865× (X11)
2 + 339.75 = f3(x)

(10)
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Figure 15. Verification of the objective function of energy saving technology variables and global cost
increments (R2 = 0.97).

When the objective function is energy consumption and indoor thermal environment
with two neural network models, the input layer contains eight neurons (key technical
variables screened in Section 3.2.1), the number of hidden layer neurons is three, and the
output contains one neuron (energy consumption or indoor thermal discomfort time), the
objective function models have the relatively best agreement with the calculated results
of Dest simulation, and the results are shown in Figures 16 and 17. It can be seen that the
average relative errors of energy consumption and indoor thermal discomfort time are
0.46% and 1.54%, respectively, and the R2 values of the BP models of the key technologies
with energy consumption and indoor thermal discomfort time are larger than 0.98. As
shown above, the fit of the objective function models with the calculated results from Dest
simulations is good.

3.3.2. Optimization Results and Discussion

The objective function model composed of key energy efficient technologies is opti-
mized and calculated by NSGA-II with a population size of 20, a crossover rate of 0.9 and
a variation rate of 1, the constraints of the model based on variation ranges as shown in
Table 8. After 500 generations [53] of operations, the Pareto front results are obtained, as
shown in Figure 18, and summarized as technique schemes, as shown in Table 9. From
Table 9, the technical combinations towards the optimal energy-saving effect, the optimal
thermal comfort, the optimal economic benefit and the optimal trade-off, as well as the
benchmark scheme for ultra-low energy buildings in the region, are shown as follows:
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Table 9. Technique schemes from multi-objective optimization.

No.
Insulation Thickness (m) South

Window Heat
K Value

W/(m2·K)

Horizontal
Overhang Shading

(Length: m)

ACR
(h−1)

Air Con-
ditioner

Type

Energy
Saving

Rate

Thermal
Discomfort

Time Reduction
Rate

Global Cost
Increment
(yuan/m2)

North
Wall

West
Wall

East
Wall Roof

0 0.01 0.01 0.01 0.06 3.2 0.00 1.00 Level 3 0 0 0

1 0.07 0.21 0.21 0.27 0.80 0.00 1.00 Level 1 60.20% 5.98% 536.52

2 0.14 0.09 0.21 0.21 0.80 0.51 0.50 Level 1 52.96% 11.09% 478.30

3 0.07 0.09 0.09 0.06 2.60 0.00 1.00 Level 1 50.20% 3.88% 155.89

4 0.08 0.15 0.09 0.06 1.10 0.10 1.00 Level 1 55.15% 6.34% 396.03

5 0.17 0.21 0.21 0.06 0.80 0.18 0.75 Level 1 53.06% 9.37% 526.99

6 0.20 0.09 0.19 0.06 1.10 0.53 0.50 Level 1 52.77% 10.30% 443.34

7 0.07 0.12 0.19 0.23 0.80 0.05 1.00 Level 1 53.82% 8.03% 493.85

8 0.18 0.14 0.10 0.06 2.00 0.45 1.00 Level 1 51.06% 5.60% 260.09

9 0.20 0.09 0.15 0.06 1.40 0.48 0.50 Level 1 51.63% 9.27% 348.56

10 0.20 0.09 0.15 0.21 1.70 0.48 0.50 Level 1 50.87% 9.18% 330.49

11 0.13 0.14 0.13 0.20 1.10 0.08 1.00 Level 1 53.06% 7.04% 427.19

12 0.18 0.21 0.09 0.06 2.30 0.43 1.00 Level 1 52.01% 3.52% 224.88

13 0.13 0.19 0.09 1.80 2.00 0.49 0.50 Level 1 51.91% 7.65% 287.09

14 0.11 0.09 0.17 0.06 0.80 0.52 0.50 Level 1 52.39% 9.75% 431.94

15 0.07 0.13 0.19 0.06 0.80 0.06 1.00 Level 1 53.72% 7.89% 487.25

16 0.21 0.10 0.21 1.90 0.90 0.51 0.50 Level 1 52.87% 10.84% 464.53

17 0.21 0.12 0.09 0.06 1.70 0.34 0.50 Level 1 51.72% 7.99% 300.65

18 0.07 0.16 0.09 0.06 1.40 0.09 1.00 Level 2 53.25% 5.72% 354.39

19 0.70 0.21 0.90 0.20 1.40 0.59 0.75 Level2 56.01% 11.09% 546.48

20 0.07 0.20 0.09 0.06 1.40 0.51 1.00 Level2 55.63% 6.67% 436.48

The optimal technical combination scheme for the energy efficiency objective is case 1
in Table 9. Compared with the reference case (case 0), its energy saving rate is 60.20% and
the thermal discomfort time is reduced by 5.98%, while the global cost increment is high
for 536.52 yuan/m2.

The optimal technical combination scheme for the indoor thermal comfort objective is
case 2 in Table 9. Compared with the reference case, its energy saving rate is 52.96% and
the thermal discomfort time is reduced by 11.09%, while the global cost increment is still
high for 478.30 yuan/m2.

The optimal technical combination scheme towards the economic objective is case 3 in
Table 9. Compared with the reference case, its energy saving rate is 50.20% and the thermal
discomfort time is reduced by 3.88%. Its global incremental cost is only 115.9 yuan/m2,
indicating the best economic feasibility among all the schemes. In addition, its technical
parameters are the same as those of the ultra-low energy benchmark housing, which have
been identified at an early stage.

The optimal technical combination scheme for the trade-offs objective is case 4 in Table 9.
It is 55.15% more energy efficient and has 6.34% less thermal discomfort time compared with
the reference case. It is 4.95% more energy efficient and with 2.46% less thermal discomfort
time compared with the economically optimal scheme. It has 26.16% and 17.20% less global
incremental cost compared with the optimal energy-saving and the optimal indoor thermal
environment schemes, which greatly improves the economic viability.

Table 9 shows that both the optimal energy-saving scheme and the optimal indoor
thermal environment scheme require that the thermal insulation performance of the east
and west walls should be the best, which is consistent with the sensitivity analysis results.
Besides, according to calculation, the energy consumption of the benchmark scheme of
the ultra-low energy housing adopting a “full space and continuous energy use behavior”
is 8.6 kWh/m2 (with reference to GBT 51350 [8]), with an incremental cost of 105.13
yuan/m2. As shown in Table 10, its energy consumption is 64.43% higher than that of
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the benchmark scheme adopting the probabilistic behavior model, while the saved energy
consumption compared with the reference case is 1.78 times, and therefore its incremental
cost is 50.76 yuan/m2 lower. This is probably an important reason why the promotion of
ultra-low energy housing in the Hot Summer and Cold Winter Zone is more difficult than
those in the Cold and Severe Cold Zones, where “all space and continuous time” energy
use behavior is more popular.

Table 10. The energy consumption and global cost increment comparisons of two energy-use behavior models.

Behavioral Model
Type

Technique Scheme
Type

Energy
Consumption
(kWh/(m2·a))

Global Cost
Increment (yuan/m2)

Full space and
continuous energy

use behavior [8]

Reference scheme
(case 0 of Table 9) 18.01 0

Benchmark scheme
(case 3 of Table 9) 8.60 105.13

The probabilistic
behavioral model

(Section 3.1)

Reference scheme
(case 0 of Table 9) 10.50 0

Benchmark scheme
(case 3 of Table 9) 5.23 155.89

4. Conclusions

Improving the indoor thermal environment and economic efficiency is key to further
promoting the uptake of ultra-low energy buildings. This is a multi-objective optimization
problem, regarding how to effectively use technical measures such as roof insulation, sun
shading, etc., to achieve optimal energy saving, indoor thermal comfort, and economic
objectives simultaneously. The energy-use behavior model employed in thermal simulations
does not usually reflect the randomness and complexity of residents’ energy-use behavior in
the Hot Summer Cold Winter Climate Zone of China, for which the basic data is difficult to
collect, and as a result the gaps between predicted and actual energy consumption are large.

This paper presented a method that employs a probability model of the residents’
actual energy use behavior in the Hot Summer and Cold Winter Climate Zone of China, to
carry out multi-objective optimization for ultra-low energy housing in the region. Firstly,
the objective indicators measuring the energy efficiency, indoor thermal comfort and eco-
nomic performance were determined; a building energy model and a probabilistic model
to represent the residents’ energy use behavior were obtained and input to DesT to pro-
vide more accurate calculation on energy consumption; then, key technical variables were
identified through sensitivity analysis and the threshold values to achieve ultra-low energy
housing were obtained; NSGA-II was used to carry out optimization towards the objectives
of energy reduction, improved indoor thermal comfort and increased economic effective-
ness with key technical variables, and the Pareto optimal solution set was obtained; finally,
the corresponding combination schemes towards multiple objectives, but with different
preferences, were determined by assigning weight values to the objective indicators. Both
the building energy model and the probabilistic behavior model have gone through the
verification process and have been proved to be reliable. In the development of the ob-
jective function model to describe the relationship between the objective indicators and
key technical variables, the regression of global cost increment, unlike those of energy
consumption and indoor thermal discomfort time, employs a polynomial model instead of
a neural network model to achieve a larger goodness-of-fit.

Research on the probabilistic behavior model indicates that window opening behavior
is mainly influenced by indoor environmental factors, while window closing behavior is
triggered by outdoor environment and time factors. Residents in the region also tend to
turn air conditioners on or off according to their feelings of thermal comfort. The sensitivity
analysis concludes that the key energy efficient technologies towards ultra-low energy
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housing should include heat transfer coefficient of south windows, insulation thickness of
west wall, insulation thickness of east wall, insulation thickness of north wall, ventilation
rate, south-facing horizontal shading, thickness of roof insulation, and type of heating
and cooling equipment. The identification of the optimal technical combination schemes
towards energy efficiency, indoor thermal comfort, economic and trade-off objectives can
assist with design decision-making for ultra-low energy housing with different prefer-
ences in the region. A comparison of the benchmark scheme for ultra-low energy housing
employing a “full space and continuous time energy use behavior” with that employing
the probabilistic behavior model shows a lower incremental cost, on top of that of the
associated reference base case compared with the former, which confirms the reason why
the promotion of ultra-low energy housing in the Hot Summer and Cold winter Zone is
more difficult than those in the Cold and Severe Cold Zones, where “all space and continu-
ous time energy use behavior” is adopted. Findings from this study will provide a good
research basis for further developing ultra-low energy housing performance benchmarks
and design standards tailored for the energy use patterns and indoor environment creation
modes in the Hot Summer and Cold Winter Climate Zone of China.

It is worth noting that the archetype building proposed in this study is for a new
residential building, and similar methods can be used to obtain archetypes for other
building types to reduce the computational workload. Although the probability model of
the residents’ energy use behavior developed in this study is supportive in increasing the
accuracy of energy consumption simulation, it is more applicable to the simulation of a
large scale group of residential buildings, as it was originally developed based on regional
survey results. However, a similar method can be used to obtain a specific probability
model of energy use behavior for a specified single building. Besides, the thermal comfort
model employed in the research is a simple one based on temperature only, so will be
optimized in future studies. Future research will refine the numerical models of different
occupants’ energy use behaviors to analyze the impact of energy use behavior scenarios on
energy consumption and indoor thermal environment; meanwhile, research will expand to
include other optimization variables and objective functions, such as carbon emissions, as
well as considering the variations of relevant technical parameters in the time dimension,
such as the decay of building thermal parameters and energy efficiency of air conditioners.

Author Contributions: Conceptualization, J.X. and X.L.; methodology, J.X. and X.L.; software, J.X.;
validation, J.X.; formal analysis, J.X.; investigation, J.X.; resources, J.X. and H.L.; data curation,
J.X.; writing—original draft preparation, J.X.; writing—review and editing, J.X., X.L., P.J. and E.P.;
visualization, J.X.; supervision, X.L.; project administration, X.L. and H.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was sponsored by the Natural Science Foundation of Hunan (NO. 2022JJ30140)
and the Postgraduate Scientific Research Innovation Project of Hunan Province (NO. QL20210109).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on

12 December 2015).
2. Saving Energy and Money with Building Energy Codes in the United States; US Department of Energy: Washington, DC, USA, 2014.
3. Development of Ultra-low Energy Building Standards in European Countries. Available online: http://chinagb.chinasus.org/

bencandy.php?fid=60&id=121347 (accessed on 19 July 2019).
4. Yang, X.Y.; Zhang, S.C.; Xu, W. Impact of zero energy buildings on medium-to-long term building energy consumption in China.

Energy Policy 2019, 129, 574–586. [CrossRef]
5. National Program for Energy Efficiency and Energy-Smart Construction. Available online: http://www.government.

se/information-material/2006/05/nationalprogramme-for-energy-eciencyand-energy-smart-construction/ (accessed on
20 April 2009).

https://unfccc.int/process-and-meetings/the-paris-agreement
http://chinagb.chinasus.org/bencandy.php?fid=60&id=121347
http://chinagb.chinasus.org/bencandy.php?fid=60&id=121347
https://doi.org/10.1016/j.enpol.2019.02.025
http://www.government.se/information-material/2006/05/nationalprogramme-for-energy-eciencyand-energy-smart-construction/
http://www.government.se/information-material/2006/05/nationalprogramme-for-energy-eciencyand-energy-smart-construction/


Buildings 2023, 13, 1172 26 of 27

6. Mlecnik, E. Defining nearly zero-energy housing in Belgium and the Netherlands. Energy Effic. 2012, 5, 411–431. [CrossRef]
7. Ministry, C.C. Carbon Peaking and Carbon Neutral Targets and Implementation Paths in the Building Sector; China Industry Press:

Beijing, China, 2021; pp. 3–20.
8. GBT 51350:2019; Technical Standard for Near Zero Energy Buildings. Ministry of Housing and Urban-Rural Development of the

People’s Republic of China (MOHURD): Beijing, China, 2019.
9. DBJ 43:2017; Design Standard for Energy Efficiency of Residential Buildings in Hunan Province. Changsha Urban and Rural

Construction Committee: Beijing, China, 2017.
10. JGJ134-2016; Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Cold Winter Zones. Ministry of

Housing and Urban-Rural Development of the People’s Republic of China (MOHURD): Beijing, China, 2016.
11. Ferrara, M.; Monetti, V.; Fabrizio, E. Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A

Critical Review. Energies 2018, 11, 32. [CrossRef]
12. Zeiler, W.; Gvozdenovic, K.; De Bont, K.; Maassen, W. Toward cost-effective nearly zero energy buildings: The dutch situation.

Sci. Technol. Built Environ. 2016, 22, 911–927. [CrossRef]
13. Furton, B.; Szagri, D.; Nagy, B. The Effect of European Climate Change on Indoor Thermal Comfort and Overheating in a Public

Building Designed with a Passive Approach. Atmosphere 2022, 13, 27. [CrossRef]
14. Schnieders, J.; Feist, W.; Rongen, L. Passive Houses for different climate zones. Energy Build. 2015, 105, 71–87. [CrossRef]
15. Chen, G.D.Y.; Guo, S.J. An Research on Prototype Building Models in Beijing Based on Actual Energy Consumption Characteristics.

Build. Sci. 2020, 36, 14–22. [CrossRef]
16. Mlecnik, E.S.T.; Jansen, S.J.T.; De Vries, G.; Visscher, H.J.; Van Hal, A. End-user experiences in nearly zero-energy houses. Energy

Build. 2012, 49, 471–478. [CrossRef]
17. Li, Z.; Hao, Y.; Zhao, Q.; Qi, D.; Zhang, D. Thermal Design Optimization and Analysis on Load of Ultra-Low Energy Buildings in

Hot Summer and Cold Winter Regions. Build. Sci. 2017, 33, 182–187. [CrossRef]
18. Becchio, C.; Bottero, M.C.; Corgnati, S.P.; Ghiglione, C. nZEB Design: Challenging between Energy and Economic Targets. In

Proceedings of the 6th International Building Physics Conference (IBPC), Torino, Italy, 14–17 June 2015; Elsevier Science Bv:
Amsterdam, The Netherlands, 2015.

19. Kalaycioglu, E.; Yilmaz, A.Z. A new approach for the application of nearly zero energy concept at district level to reach EPBD
recast requirements through a case study in Turkey. Energy Build. 2017, 152, 680–700. [CrossRef]

20. Szalay, Z.; Szagri, D.; Bihari, A.; Nagy, B.; Kiss, B.; Horvath, M.; Medgyasszay, P. Development of a life cycle net zero carbon
compact house concept. Energy Rep. 2022, 8, 12987–13013. [CrossRef]

21. Liu, Y. Research and Practice of The “On the Water Side” Passive House Demonstration Project in Qinhuangdao. Constr. Technol.
2012, 17, 78–79+81. [CrossRef]

22. Teni, M.; Culo, K.; Krstic, H. Renovation of Public Buildings towards nZEB: A Case Study of a Nursing Home. Buildings 2019,
9, 14. [CrossRef]

23. Zhang, Z. A simulation study on the behavioral energy savings of residential buildings in Hot and Humid Climate: A case study
on the use of air-conditioning. Build. Sci. 2018, 34, 19–24+77. [CrossRef]

24. GB 50176:93; Thermal Design Code for Civil Building. Ministry of Housing and Urban-Rural Development of the People’s
Republic of China (MOHURD): Beijing, China, 1993.

25. Fu, X. Reaserch on passive energy-saving techniques for ultra low-energy residential buildings in hot summer and cold winter
zone. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2019.

26. Crawley, D.B.; Lawrie, L.K.; Winkelmann, F.C.; Buhl, W.F.; Huang, Y.J.; Pedersen, C.O.; Strand, R.K.; Liesen, R.J.; Fisher, D.E.;
Witte, M.J.; et al. EnergyPlus: Creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331.
[CrossRef]

27. Yan, D.; Xia, J.J.; Tang, W.Y.; Song, F.T.; Zhang, X.L.; Jiang, Y. DeST-an integrated building simulation toolkit part I: Fundamentals.
Build. Simul. 2008, 1, 95–110. [CrossRef]

28. Liu, H.T.; Sun, H.J.; Mo, H.; Liu, J.J. Analysis and modeling of air conditioner usage behavior in residential buildings using
monitoring data during hot and humid season. Energy Build. 2021, 250, 13. [CrossRef]

29. Indraganti, M. Behavioural adaptation and the use of environmental controls in summer for thermal comfort in apartments in
India. Energy Build. 2010, 42, 1019–1025. [CrossRef]

30. Indraganti, M. Thermal comfort in apartments in India: Adaptive use of environmental controls and hindrances. Renew. Energy
2011, 36, 1182–1189. [CrossRef]

31. Jian, Y.; Jiang, Y. Investigation and analysis of the operating condition of residential room air conditioners. Heat. Vent. Air Cond.
2005, 2, 11–14.

32. Newsham, G. Manual control of window blinds: Implications for comfort and energy consumption. Indoor Built Environ. 1993,
3, 135–144.

33. Wang, C. Simulation Research on Occupant Energy-related Behaviors in Building. Ph.D. Thesis, Tsinghua University, Beijing,
China, 2014.

34. Wang, J.J.; Zhai, Z.Q.; Jing, Y.Y.; Zhang, C.F. Particle swarm optimization for redundant building cooling heating and power
system. Appl. Energy 2010, 87, 3668–3679. [CrossRef]

https://doi.org/10.1007/s12053-011-9138-2
https://doi.org/10.3390/en11061478
https://doi.org/10.1080/23744731.2016.1187552
https://doi.org/10.3390/atmos13122052
https://doi.org/10.1016/j.enbuild.2015.07.032
https://doi.org/10.13614/j.cnki.11-1962/tu.2020.06.03
https://doi.org/10.1016/j.enbuild.2012.02.045
https://doi.org/10.13614/j.cnki.11-1962/tu.2017.12.28
https://doi.org/10.1016/j.enbuild.2017.07.040
https://doi.org/10.1016/j.egyr.2022.09.197
https://doi.org/10.16116/j.cnki.jskj.2012.17.023
https://doi.org/10.3390/buildings9070153
https://doi.org/10.13614/j.cnki.11-1962/tu.2018.04.03
https://doi.org/10.1016/S0378-7788(00)00114-6
https://doi.org/10.1007/s12273-008-8118-8
https://doi.org/10.1016/j.enbuild.2021.111297
https://doi.org/10.1016/j.enbuild.2010.01.014
https://doi.org/10.1016/j.renene.2010.10.002
https://doi.org/10.1016/j.apenergy.2010.06.021


Buildings 2023, 13, 1172 27 of 27

35. Qu, Y.; Ma, Z.; Clausen, A.; Jorgensen, B.N. A Comprehensive Review on Evolutionary Algorithm Solving Multi-Objective
Problems. In Proceedings of the 22nd IEEE International Conference on Industrial Technology (ICIT), Valencia, Spain,
10–12 March 2021.

36. Yu, Z.; Lu, F.; Zou, Y.; Xu, W.; Sun, D.; Liu, C. A simulation-based multi-objective optimization approach for design of nearly zero
energy buildings. Build. Sci. 2019, 35, 8–15. [CrossRef]

37. Coello, C.A.C.; Lechuga, M.S. MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the IEEE
World Congress on Computational Intelligence (WCCI2002), Honolulu, HI, USA, 12–17 May 2002.

38. Taillandier, F.; Fernandez, C.; Ndiaye, A. Real Estate Property Maintenance Optimization Based on Multiobjective Multidimen-
sional Knapsack Problem. Comput.-Aided Civil Infrastruct. Eng. 2017, 32, 227–251. [CrossRef]

39. Delgarm, N.; Sajadi, B.; Kowsary, F.; Delgarm, S. Multi-objective optimization of the building energy performance: A simulation-
based approach by means of particle swarm optimization (PSO). Appl. Energy 2016, 170, 293–303. [CrossRef]

40. Hamdy, M.; Hasan, A.; Siren, K. A multi-stage optimization method for cost-optimal and nearly-zero-energy building solutions
in line with the EPBD-recast 2010. Energy Build. 2013, 56, 189–203. [CrossRef]

41. Magnier, L.; Haghighat, F. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and
Artificial Neural Network. Build. Environ. 2010, 45, 739–746. [CrossRef]

42. Gossard, D.; Lartigue, B.; Thellier, F. Multi-objective optimization of a building envelope for thermal performance using genetic
algorithms and artificial neural network. Energy Build. 2013, 67, 253–260. [CrossRef]

43. Orosz, T.; Rassolkin, A.; Kallaste, A.; Arsenio, P.; Panek, D.; Kaska, J.; Karban, P. Robust Design Optimization and Emerging
Technologies for Electrical Machines: Challenges and Open Problems. Appl. Sci. 2020, 10, 33. [CrossRef]

44. Xu, Y.Z.; Zhang, G.L.; Yan, C.C.; Wang, G.; Jiang, Y.L.; Zhao, K. A two-stage multi-objective optimization method for envelope and
energy generation systems of primary and secondary school teaching buildings in China. Build. Environ. 2021, 204, 14. [CrossRef]

45. HVAC Accounts for 50% of Total Building Energy Consumption. Available online: https://www.china5e.com/news/news-2563
24-0.html (accessed on 28 November 2012).

46. GB/T 50785:2012; Evaluation Standard for Indoor Thermal Environment in Civil Buildings. Chongqing Urban and Rural
Construction Committee: Chongqing, China, 2012.

47. Wu, D.; Liu, L.; Li, X.; Liu, C. Research on Passive Low Energy Building Technology Based on Multi-objective Optimization. J.
South China Univ. Technol. 2018, 46, 98–104.

48. Changsha Electricity Tariff Step Charge Standard. Available online: https://www.angyang.net.cn/post/118192.html (accessed
on 21 October 2022).

49. Six Questions about The Life Expectancy of Chinese Buildings “30 years”. Available online: http://news.sohu.com/20100416/n2
71561721.shtml (accessed on 16 April 2010).

50. How Long Is The Service Life of Air Conditioners in General. Available online: https://baijiahao.baidu.com/s?id=169862590909
6124154&wfr=spider&for=pc (accessed on 3 May 2021).

51. Li, K. Study on the Thermal Performance Index of the Enclosure Structure of Existing Residential Buildings in Changsha Area.
Master’s Thesis, Hunan University, Changsha, China, 2020.

52. GB/T 51366: 2019; Standard for Building Carbon Emission Calculation. Ministry of Housing and Urban-Rural Development of
the People’s Republic of China (MOHURD): Beijing, China, 2019.

53. Gou, S.Q.; Nik, V.M.; Scartezzini, J.L.; Zhao, Q.; Li, Z.R. Passive design optimization of newly-built residential buildings in
Shanghai for improving indoor thermal comfort while reducing building energy demand. Energy Build. 2018, 169, 484–506.
[CrossRef]

54. Wu, D.; Zhang, X.; Fu, M. Research on target value of auxiliary energy consumption in passive ultra-low energy consumption
building design in cold zone. Ind. Constr. 2021, 51, 81–86. [CrossRef]

55. Zhang, Y.; Bai, X.M.; Mills, F.P. Characterizing energy-related occupant behavior in residential buildings: Evidence from a survey
in Beijing, China. Energy Build. 2020, 214, 18. [CrossRef]

56. Zhang, Y.; Chen, H.; Meng, Q. Thermal comfort in buildings with split air-conditioners in hot-humid area of China. Build. Environ.
2013, 64, 213–224. [CrossRef]

57. Xiao, J.; Zou, J.; Xu, F.; Zhang, G. Evaluation Index For Indoor Thermal Environment of Residential Buildings Based on Thermal
Comfort in Hot Summer Cold Winter Zone. J. Cent. South Univ. Sci. Technol. 2012, 43, 3693–3697.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.13614/j.cnki.11-1962/tu.2019.10.02
https://doi.org/10.1111/mice.12246
https://doi.org/10.1016/j.apenergy.2016.02.141
https://doi.org/10.1016/j.enbuild.2012.08.023
https://doi.org/10.1016/j.buildenv.2009.08.016
https://doi.org/10.1016/j.enbuild.2013.08.026
https://doi.org/10.3390/app10196653
https://doi.org/10.1016/j.buildenv.2021.108142
https://www.china5e.com/news/news-256324-0.html
https://www.china5e.com/news/news-256324-0.html
https://www.angyang.net.cn/post/118192.html
http://news.sohu.com/20100416/n271561721.shtml
http://news.sohu.com/20100416/n271561721.shtml
https://baijiahao.baidu.com/s?id=1698625909096124154&wfr=spider&for=pc
https://baijiahao.baidu.com/s?id=1698625909096124154&wfr=spider&for=pc
https://doi.org/10.1016/j.enbuild.2017.09.095
https://doi.org/10.13204/j.gyjzG21060909
https://doi.org/10.1016/j.enbuild.2020.109823
https://doi.org/10.1016/j.buildenv.2012.09.009

	Introduction 
	Background of Research 
	Ultra-Low Energy Buildings 
	Characteristics of Energy Use Behavior in the Hot Summer and Cold Winter Climate Zone of China 

	Literature Review 
	Occupant Energy-Use ‘Action Behavior’ Model 
	Multi-Objective Optimization (MOO) Approach towards Low Energy Buildings 

	Aim of This Study 

	Materials and Methods 
	Defining the Objective-Functions 
	Defining and Verifying the Occupant Behavioral and Building Model 
	Questionnaire Survey 
	Defining and Verifying the Building Model 
	Defining the Critical Parameters of the Occupant Behavior Model 
	Validating the Typicality of the Behavior Model 

	Selection of Energy Efficient Technologies 
	Listing Energy Efficient Technologies 
	Screening Key Technologies 
	Determination of the Technical Variable Thresholds of Ultra-Low Energy Buildings 

	Multi-Objective Optimization 
	Objective-Functions 
	Defining the Objective Function Model 
	Multi-Objective Evolutionary Algorithm Optimization 


	Results and Discussion 
	The Residents’ Energy Use Behavior Model 
	Development of the Energy Use Behavior Model 
	Model Verification and Validation 

	Identification of Key Technical Variables in Achieving Ultra-Low Energy Housing 
	Sensitivity Analysis 
	Baseline Values of the Technical Variables for Ultra-Low Energy Buildings 

	Multi-Objective Optimization 
	Training and Validation of the Objective Functions 
	Optimization Results and Discussion 


	Conclusions 
	References

