
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/159930/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Geng, Dongling, Yan, Jun, Xu, Qi, Zhang, Qi, Zhou, Mengfang, Fan, Zhirui and Li, Haijiang 2023. Real-
time structure topology optimization using CNN driven moving morphable component method. Engineering

Structures 290 , 116376. 10.1016/j.engstruct.2023.116376 

Publishers page: https://doi.org/10.1016/j.engstruct.2023.116376 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Real-Time Structure Topology Optimization using CNN 

driven Moving Morphable Component Method 

Dongling Genga  Jun Yana,* Qi Xua  Qi Zhanga  Mengfang Zhoua  

Zhirui Fana  Haijiang Lib,* 

a Department of Engineering Mechanics, Dalian University of Technology, China 

b School of Engineering, Cardiff University, Cardiff, the Unite Kingdom 

 

 

 

 

 

 

 

 

*Corresponding Author: 

Prof. Jun Yan 

Department of Engineering Mechanics, Dalian University of Technology, Dalian, 

Liaoning Province, 116024, China 

Email: yanjun@dlut.edu.cn 

Postal Address: 

No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province, P.R.C., 116024 

 

*Corresponding Author: 

Prof. Haijiang Li 

School of Engineering, Cardiff University, Cardiff, CF10 3AT, Unite Kingdom 

Email: lih@cardiff.ac.uk 

Postal Address: 

S2.10C, Queen’s Buildings, 5 The Parade, Newport Road, Cardiff, Cf24 3AA 

Revised Manuscript [Clean version] Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

mailto:yanjun@dlut.edu.cn
mailto:lih@cardiff.ac.uk
https://www.editorialmanager.com/engstruct/viewRCResults.aspx?pdf=1&docID=39469&rev=1&fileID=922363&msid=b3a3829c-8558-4bd7-a573-b1fb0f9e5979
https://www.editorialmanager.com/engstruct/viewRCResults.aspx?pdf=1&docID=39469&rev=1&fileID=922363&msid=b3a3829c-8558-4bd7-a573-b1fb0f9e5979


Abstract 

Classical optimization methods require finite element analysis in iterations, which 

increase the computing time and decrease the algorithmic efficiency. The deep learning 

model can potentially realize real-time topology optimization design, but it normally 

requires large training set. This paper presents a real-time topology optimization 

algorithm based on the Moving Morphable Component (MMC) method using a 

Convolutional Neural Network (CNN). The optimization algorithm uses a new data 

pre-processing method, which can preserve the numerical characteristics and 

smoothness of the structure boundary, hence it can help CNN to capture data features 

with a limited sample set. The topology optimization boundary information of the 

optimized result is used as the sample set label to avoid the components dislocation 

phenomenon. The new algorithm effectiveness has been verified with several examples. 

The trained model can significantly improve the optimization efficiency of the MMC 

method and offer accurate results with a clear structure boundary. 

Keywords: MMC; Topology Optimization; Real-Time Optimization; Convolutional 

Neural Network; Deep Learning
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1. Introduction 

Structural topology optimization is used to obtain the optimal distribution of 

materials to realize an optimized structural performance under certain conditions [1]. A 

variety of topology optimization methods have been developed, such as density-based 

optimization method [2–6] and boundary evolutionary optimization method [7–12]. 

Some methods have been successfully applied to fluid, phonon crystals, and 

multidisciplinary problems [13]. However, optimization methods usually need finite 

element analysis and repeat iterations. This increases the time cost of topology 

optimization computation. Moreover, when the number of elements and problem 

dimensions increase, the computation efficiency decreases rapidly. 

Recently, deep learning has developed rapidly. Extensive research has been 

conducted on combining deep learning and topology optimization. The deep learning 

model uses neurons containing simple operations as the basic unit and establishes a 

functional relationship between the input and output. Therefore, a well-trained model 

can find the solution quickly.  

Zhang [14] used structural displacement, strain, and volume fraction information 

as the input of a CNN. The model was trained with 80,000 samples, and achieved real-

time topology optimization prediction of multiple load conditions. Yu [15] used a CNN 

and Generative Adversarial Network (GAN) trained with 100,000 samples to convert 

the low-resolution results to high-resolution results. Nakamura [16] added the spade 

layer [17] based on the work of Yu [15], which improved the performance of the model. 

Sosnovik [18] built a lightweight model to reduce the sample sets requirement and 

successfully accelerated the topology optimization calculation with 10,000 samples. 

Artificial density topology optimization method describes the structure by the 
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element density, which is similar to gray image. The above studies are mainly based on 

the combination of Solid Isotropic Material with Penalization (SIMP) and deep learning. 

However, owing to the probabilistic nature of the deep learning model, the inevitable 

prediction error may lead to the model prediction results without clear boundaries [16]. 

The MMC topology optimization method proposed by Guo [19] can generate clear 

structural boundaries. Xin [20] combined the KNN model with the MMC method to 

accelerate MMC topology optimization. Compared with Xin [20], Zheng [21] 

accelerated the MMC optimization process by using Attention U-Net [22]. However, 

due to the preprocessing method proposed by Zheng [21], the sample set label was 

composed of 0 or 1. 

As mentioned above, compared with the SIMP method, there are fewer studies on 

combining MMC with deep learning model. An important reason is the special data 

characteristics of the boundary evolution optimization method. Meanwhile, deep 

learning models usually have the requirements of the sample set size. Most of the 

models mentioned above were trained based on a large sample set (80,000 samples 

[14], 100,000 samples [15]), which hinders the deep learning application to topology 

optimization. 

The combination of MMC and deep learning is studied in this paper. Based on the 

mathematical characteristics of the MMC method, the structure boundary information 

is chosen as sample set label. It can avoid the “component dislocation” phenomenon in 

the model prediction results. Meanwhile, a new data preprocessing method is proposed 

to ensure the sample label’s accuracy in mathematic. High-quality sample labels are 

helpful to improve the model prediction accuracy based on limited sample sets. Finally, 

in the MMC method, the initial optimization stage will be greatly influenced by the 

initial components’ distribution. A sampling method is proposed to avoid collecting the 
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optimization information with severe fluctuations. Section 2 introduces the basic theory 

of the MMC method and CNN. In Section 3, a real-time topology optimization 

algorithm based on the MMC method is introduced. In Section 4, the algorithm’s 

accuracy is verified by several numerical examples. Section 5 is the summary of this 

study. 

2. The theoretical basis of a CNN-driven MMC real-time 

topology optimization 

2.1. MMC topology optimization method 

In the MMC topology optimization method, the structure is composed of 

components (bars). MMC can realize structure optimization by translation, rotation, 

and covering operations [19], as shown in Fig. 1. 

The MMC method uses the topology description function (TDF) 𝜙𝑖(𝑥, 𝑦)  to 

describe the structural boundary: 

                 

(a)                                                                     (b) 

Fig. 1 The basic concept of the MMC method: (a) distribution of components in the 

initial structure; (b) distribution of components in the optimized structure. 

                                    𝜙𝑖(𝑥, 𝑦) = (
𝑥′

𝐿𝑖
)

𝑝

+ (
𝑦′

𝑓(𝑥′)
)

𝑝

− 1 (1) 

                                    {
𝑥′

𝑦′
} = [

   𝑐𝑜𝑠𝜃𝑖 𝑠𝑖𝑛𝜃𝑖

−𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖
] {

𝑥 − 𝑥0𝑖

𝑦 − 𝑦0𝑖
} (2) 
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In Eq. (1), 𝑝 is the hyperelliptic parameter (𝑝 = 6 in this study). 𝑥′ and 𝑦′ are the 

coordinates under the local system. 𝑥 and 𝑦 are the coordinates under the global system. 

𝐿𝑖  denotes the half-length of the 𝑖th  component. Eq. (2) shows the coordinate 

transformation relationship between the local and global systems. 𝑥0𝑖 and 𝑦0𝑖 represent 

the coordinates in the center of 𝑖th component in the global system, and 𝜃𝑖 represents 

the tilt angle of the component. Function 𝑓(𝑥′) describes the change of the component 

section. Guo [11] presented three types of expressions of 𝑓(𝑥′) including the uniform 

thickness component, linearly varying thickness component, and quadratically varying 

thickness component. The third type of 𝑓(𝑥′) is used in this study. 

In Fig. 2, 𝑑𝑖  is the half-width of the component at three different points. The 

meanings of the other parameters are the same as those in Eq. (1) and Eq. (2). In the 

MMC method, the geometric parameters of the components are stored in the component 

geometry description vector 𝐃, and 𝐃 = (𝑥0, 𝑦0, 𝐿, sin𝜃, 𝑑𝑖)
𝑇
. 

 

Fig. 2 Quadratically varying thicknesses component. 

In the MMC method, the topology description boundary information (TDBI) 

matrix 𝜙𝑠(𝐱), which contains all the boundary information of the structure, is obtained 

according to 𝜙𝑠(𝐱) = max (𝜙1, … , 𝜙𝑛) , and 𝑛  is the number of components in the 

structure. According to Eq. (3), the TDBI matrix can describe the structure boundary 

clearly. The geometry meanings of Eq. (3) are shown in Fig. 3. 
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                                           {

 𝜙𝑠(𝐱) > 0,           𝑖𝑓 𝐱 ∈  𝛺𝑠      

𝜙𝑠(𝐱) = 0,           𝑖𝑓 𝐱 ∈ 𝜕𝛺𝑠    

  𝜙𝑠(𝐱) < 0,           𝑖𝑓 𝐱 ∈ 𝛺𝑑/𝛺𝑠 

 (3) 

 

Fig. 3 The structural topology representation of each component [11]. 

The optimization formulation of the MMC method can be expressed as Eq. (4). 

The objective function is compliance minimization, and the constraint is structure 

volume fraction. 

find     𝐃 = ((𝐃𝟏)T, … , (𝐃𝒊)T, … , (𝐃𝒏)T)T, 𝒖(𝐱) 

(4) 

min     𝐶 = ∫ 𝐻(𝜙𝒔(𝐱; 𝐃))𝐟 ∙ 𝐮𝑑𝑉 + ∫ 𝐭 ∙ 𝐮𝑑𝑆
Γt𝛺𝑑  

subject to  

∫ (𝐻(𝜙𝒔(𝐱; 𝐃)))
q

𝔼: 𝛆(𝐮): 𝛆(𝐯)𝑑𝑉 = ∫ 𝐻(𝜙𝒔(𝐱; 𝐃))𝐟 ∙ 𝐯𝑑𝑉 + ∫ 𝐭 ∙ 𝐯𝑑𝑆
Γt

, ∀𝐯 ∈ 𝑈𝑎𝑑
𝛺𝑠𝛺𝑠

 

                                     ∫ 𝐻(𝜙𝒔(𝐱; 𝐃))𝑑𝑉 ≤ �̅�
𝛺𝑠

, 𝐃 ⊂ 𝐔𝐃, 𝐮 = �̅�, 𝑜𝑛  Γu 

In Eq. (4), 𝛺𝑠 =∪𝑖
𝑛 𝛺𝑖, 𝑖 = 1, . . . , 𝑛 and 𝛺𝑖 represents the region occupied by 

𝑖𝑡ℎ component. 𝐮 and 𝐯 are the displacement field and the corresponding test function 

defined on 𝛺𝑠 with 𝑈𝑎𝑑 = {𝐯|𝐯 ∈ H(𝐃), 𝐯 = 0 𝑜𝑛 Γu}; H(𝐱) is the Heaviside function. 

𝐟  and 𝐭  are the body force density in 𝛺𝑖  and the surface traction on the Neumann 

boundary Γt. �̅� denotes the displacement on the Dirichlet boundary Γu. 𝛆 represents the 

second-order linear strain tensor, and 𝔼𝑖 represents the elastic tensor. �̅� represents the 

upper bound of the structure available volume, and 𝐔𝐃 is the constraint matrix for 𝐃.  
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2.2. CNN model and evaluation method 

Traditional neural networks, such as Back Propagation (BP) neural network [23], 

use dense layers to connect the entire model. Generally, such neural networks have 

unaffordable computational costs when dealing with large-scale data. Unlike the BP 

network, CNN has convolutional and pooling layers that enable the model to process 

large-scale data. The CNN is also called the "translational invariant neural network" 

[24]. It allows shift-invariant operations such as translations, rotations, and size scaling. 

In addition, the CNN has the characteristics of weight sharing and local connection, 

which can further reduce the number of model parameters.  

The mean square error (MSE) loss function is chosen to deal with the regression 

problem, as shown in Eq. (5). 𝑦𝑖
𝑝
 is the value predicted by the CNN, and 𝑦𝑖 is MMC 

optimized result, 𝑛 is the number of samples.  

                                                        MSE =
∑ (𝑦𝑖 − 𝑦𝑖

𝑝)2𝑛
𝑖=1

𝑛
 (5) 

The model performance can be obtained by observing the trend of the loss function. 

To alleviate the overfitting problem of the model, dropout layers [25] and batch 

normalization layers [26] are used in the model. Dropout operation is a standard 

treatment to deal with the model overfitting problem. There is a hyperparameter called 

dropout rate in the dropout layer. This layer will randomly cause some neurons to lose 

learning ability during the iteration process. The dropout rate determines the percentage 

of neurons without learning ability. Dropout operation can alleviate the overfitting 

problem by reducing model complexity. Batch normalization layers can process the 

data through normalization operations. It can improve the model training stability and 

overfitting phenomenon. 

In this work, structural compliance (objective function), MSE value, and 
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multiscale structural similarity (MSSIM) [27] are chosen to evaluate the CNN 

prediction results. The MSE value reflects structural similarity based on the Euclidean 

distance. The MSSIM value comprehensively compares two specified pictures’ 

brightness, contrast, and structural similarity. For the problem in this study, the 

brightness and contrast of the pictures are the same. Therefore, the MSSIM value is 

chosen as the evaluation function from the image perspective.  

3. New data preprocessing method and the corresponding 

CNN training  

3.1. Data preprocessing method for TDBI 

The MMC method’s component geometry description matrix (𝐃 ) contains the 

basic optimization parameters. And matrix 𝐃 is converted to TDBI by Eq. (1). Finally, 

TDBI describes the structure boundary with a smooth 0 contour line. Both TDBI and 

component geometry description matrix ( 𝐃 ) contain geometric information. The 

intuitive idea is choosing matrix 𝐃 as the sample set label. However, choosing 𝐃 as the 

sample label will influence the model prediction accuracy. On the one hand, the deep 

learning model is probabilistic. There are inevitable prediction errors in results. Eq. (1) 

may greatly magnify the errors. On the other hand, each parameter in 𝐃  has the 

information enrichment characteristic, and minor prediction errors may lead to 

significant structural changes. Different from 𝐃, choosing TDBI as the sample set label 

can avoid the processing of Eq. (1). The amplification of model prediction errors can 

be avoided. Although the scale of total parameters will increase significantly, CNN has 

a strong learning ability for such data. Meanwhile, as the total number of parameters 

increases, the information contained by each parameter in TDBI decreases. It provides 
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more tolerance for the model learning process. For the above reasons, the TDBI 

information in MMC is chosen as the sample set label in this work. 

The initialization method of neurons in the deep learning model, such as the 

gaussian initialization and Xavier initialization [28], significantly influence the model 

training process. Generally, the sample also needs to be scaled down to a small numeric 

range through a normalization operation to accelerate the convergence of the CNN 

training process. TDBI describes the structure boundary with a continuous and smooth 

0 contour line. The MMC optimization result boundary is clear in graphically and 

mathematically. In the process of data preprocessing, this characteristic should be 

preserved. However, the numerical range of TDBI is large. For example, the value range 

of TDBI is [-2786.3, 1.0] in Fig. 5(b), which cannot meet the requirement of CNN 

training. Meanwhile, for different load conditions, the range of TDBI is different. 

Therefore, finding a proper data preprocessing method for TDBI characteristics is 

difficult. 

Eq. (6) is a standard data normalization method called the Max-Min normalization 

method. 𝐗  represents all the samples for different load conditions, and 𝐗 =

{𝐗𝟏, 𝐗𝟐, . . . , 𝐗𝐢, . . . , 𝐗𝐧}，n is the sample set size. In Eq. (6) and Eq. (7), the 𝐗𝐦𝐢𝐧 =

{𝑚𝑖𝑛(𝐗𝟏), 𝑚𝑖𝑛(𝐗𝟐), . . . , 𝑚𝑖𝑛(𝐗𝐧)} ,  𝐗𝐦𝐚𝐱 = {𝑚𝑎𝑥(𝐗𝟏), 𝑚𝑎𝑥(𝐗𝟐), . . . , 𝑚𝑎𝑥(𝐗𝐧)} . 

�̅�𝐓𝐫𝐮𝐞 is the normalized result of the TDBI. The data can be converted within [0, 1] by 

Eq. (6). Eq. (7) is the inverse operation of Eq. (6).  �̅� is the TDBI matrix predicted by 

the CNN. Because the CNN is probabilistic, �̅� = �̅�𝐓𝐫𝐮𝐞 + ∆𝐗 . ∆𝐗  is the CNN 

prediction error, and �̅�𝐓𝐫𝐮𝐞 is the accurate result computed by Eq. (6).  

                                                      �̅�𝐓𝐫𝐮𝐞 =
𝐗 − 𝐗𝐦𝐢𝐧

𝐗𝐦𝐚𝐱 − 𝐗𝐦𝐢𝐧
 

 
   (6) 
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                                              𝐗 = �̅�(𝐗𝐦𝐚𝐱 − 𝐗𝐦𝐢𝐧) + 𝐗𝐦𝐢𝐧       (7) 

The Max-Min normalization method may seriously influence the training of CNN 

for real-time MMC topology optimization. This preprocessing method will blur the data 

information at the structural boundary. CNN cannot be trained based on this sample set. 

On the other hand, the TDBI preprocessed by Eq. (6) needs an inverse operation like 

Eq. (7). There are inevitable errors in the prediction results obtained by the deep 

learning model, �̅� = �̅�𝐓𝐫𝐮𝐞 + ∆𝐗. In Eq. (7), the 𝐗𝐦𝐚𝐱 − 𝐗𝐦𝐢𝐧 may greatly magnify the 

CNN prediction errors. For the above reasons, the Max-Min normalization method is 

unsuitable for TDBI preprocessing. 

Considering the above problems, a boundary feature preserving normalization 

method is proposed. The data preprocessing method of TDBI is realized by Eq. (8) and 

Eq. (9). This method can effectively control the value range of TDBI. 

                                            𝜙𝑖
′(𝐱) = exp(𝜙𝑖(𝐱)) − 𝜆 (8) 

                            { 
  𝜙𝑖

′(𝐱) = −1                𝑖𝑓   𝜙𝑖
′(𝐱) < −1

 𝜙𝑖
′(𝐱) =    1                𝑖𝑓   𝜙𝑖

′(𝐱)  >   1
 (9) 

In Eq. (8), 𝜆 is the numerical boundary control parameter. If 𝜆 = 1, the TDBI still 

describes the structural boundary with 0 contour line. The definition of the numerical 

structure boundary does not change during data preprocessing (𝜆 = 1 in this study). 

This method preserves the accurate mathematical and geometric boundaries of TDBI.  

The results of different TDBI preprocessing methods are shown in Fig. 4. Fig. 4(a) 

and Fig. 4(b) show the optimized structure and its level map, respectively. When Eq. 

(6) is used for TDBI data preprocessing, TDBI cannot use the 0 contour line to describe 

the structure boundary. The numerical boundary features of the TDBI matrix at the 

structure boundary are blurred (Fig. 4(c)). In contrast, Eq. (8) and Eq. (9) can adjust the 

value range while retaining the characteristics of TDBI (Fig. 4(d)). By comparing the 
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local features in Fig. 4(c) and Fig. 4(d), when using the preprocessing method proposed 

in this study (Eq. (8) and Eq. (9)), the TDBI numerical distribution is more uniform and 

reasonable.  

If 𝜆 = 1, the structural boundary is numerically unchanged. The proposed method 

is helpful to train the CNN based on accuracy structural boundaries. On the contrary, 

when using the Max-Min normalization method, the local feature of TDBI disappears 

(such Fig. 4(c)). CNN cannot effectively capture the features of TDBI based on this 

method. Finally, there is no inverse operation for this method. The CNN prediction error 

amplification problem is avoided. Meanwhile, the structure boundary numerical 

characteristics are retained when the value range of TDBI changes. Eq. (9) can remove 

the data features inside and outside the structure. It reduces the feature complexity of 

the input data and highlights the structure boundary features. This operation can help 

the model capture data characteristics with limited sample set. The preprocessing 

method has the effect of data enhancement.  

The proposed preprocessing method is suitable for the data with Eq. (3) 

characteristics. Moreover, boundary evolution optimization methods generally have 

such features. The data preprocessing method proposed in this section is helpful for 

real-time boundary evolution topology optimization. 
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(a)                   (b)  

  

(c)                       (d) 

Fig. 4 Numerical characteristics of TDBI matrices obtained with different data preprocessing methods: (a) Optimized result by the MMC and 

described the boundary with 0  contour line. (b) Optimized structure level map (unprocessed). (c) Optimized structure level map after data 

preprocessing by Eq. (6). (d) Optimized structure level map after preprocessing by Eq. (8) and Eq. (9) (𝜆 = 1). 
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3.2. The input data of the deep learning model 

As mentioned above, TDBI was chosen as the sample set label. As shown in Fig. 

6, there are four input data types: the node displacement in the x or y direction (𝐔𝐱, 𝐔𝐲), 

node strain energy density matrix 𝐄 and the preliminary optimization structure matrix 

𝐓. The data type selection of sample set is mainly inspired by the research on real-time 

SIMP optimization methods. The input data of the model usually choose the element 

node displacement and initial optimization structure [15,29]. And there is no difference 

between SIMP method and MMC method. Yan [30] pointed out that using the data with 

various physical information can improve the model training effect. The node strain 

energy density matrix is also chosen as the input data for the model in this work.  

 

(a) 

  

(b) (c) 
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(d) (e) 

Fig. 6 Four model input data types: (a) The specific load and constraint condition. 

(b, c) The node displacement in y and x direction. (d) The strain energy density at 

element nodes and its computing method. (e) The initial optimized structure. 

The input data types for the model are discussed above, and the iterative steps to 

extract data will be described. The component is the basic unit of the MMC 

optimization method. Although the initial component layout has no significant 

influence on the MMC method’s global optimization ability, the initial component 

layout will affect the initial optimization iteration process. In order to discuss this 

phenomenon, the cantilever beam is taken as an example. The structure is divided by 

40 × 80 finite element mesh. 16 and 8 components are used as the initial number of 

components, respectively. The component layout is shown in Fig. 7. 

  

(a) (b) 

Fig. 7 The components distribution with different initial component numbers: (a) and 

(b) show the initial distribution of 16 and 8 components layout. 

The training set of the model is collected based on the load condition shown in Fig. 
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8. The boundary on the left is fixed, and the concentrated force along the −𝑦 direction 

is randomly placed in the load domain. The load domain is a rectangular area with 25 

elements widths and 40 elements heights on the right side. Young’s modulus is 1, and 

Poisson ratio is 0.3. Fig. 9 shows the changes of the objective function values in the 

first 15 optimization iteration steps with 16 initial components. For the 8 initial 

component distributions, Fig. 10 shows the objective function values changes in the 

first 25 optimization iteration steps. The specific statistics are shown in Tab. 1 and Tab. 

2, respectively. 

 

Fig. 8 The load condition of cantilever beam example. 

Because MMC optimization method regards components as the basic unit for 

structural optimization, the distribution of initial components will influence the MMC 

initial iteration process. For example, large objective function values will be generated 

when there is no component distribution at the loading point. Fig. 9 and Tab. 1 show 

the iterative process for the first 15 steps with 16 initial component distribution 

conditions. At the 15th iteration, the average change rate of objective function is less 

than 6% and close to 5%. It is called the stable calculation process. Moreover, for the 8 

initial components distribution condition, the stable calculation process is entered in the 

24th iteration step. Optimization parameters influenced by the component’s distribution 
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(a) (b) 

Fig. 9 The first 15 steps of optimization process information (16 components distribution): (a) the objective function values variation. (b) the 

objective function value changes. 

  

(a) (b) 

Fig. 10 The first 25 steps of optimization process information (8 components distribution): (a) the objective function values variation. (b) the 

objective function value changes. 
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Tab. 1 The first 15 steps optimization process numerical characteristics (16 initial components distribution condition). 

Iteration Mean values Standard deviation values 
Mean values of 

step-by-step ratio 

Standard deviation values of 

step-by-step ratio 

1 2.89 × 105 2.89 × 105 ~ ~ 

2 1.96 × 107 1.44 × 107 −9.65 × 105 % 1.45 × 106 % 

3 8.47 × 106 1.26 × 107 −3.08 × 105 % 1.77 × 105 % 

…
 

…
 

…
 

…
 

…
 

13 164.20 95.59 7.44% 5.72% 

14 151.73 82.44 6.52% 5.10% 

15 142.17 72.10 5.29% 4.82% 

Tab. 2 The first 25 steps optimization process numerical characteristics (8 initial components distribution condition). 

Iteration Mean values Standard deviation values 
Mean values of 

step-by-step ratio 

Standard deviation values of 

step-by-step ratio 

1 3.84 × 107 9.63 × 106 ~ ~ 

2 1.50 × 107 3.74 × 106 53.79% 52.9% 

3 5.44 × 106 5.97 × 106 −5.39 × 104% 1.21 × 105 % 

…
 

…
 

…
 

…
 

…
 

23 133.78 63.62 6.72% 4.09% 

24 124.74 56.14 5.94% 3.65% 

25 117.05 50.15 5.49% 3.60% 
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are minimal in this process. The optimization information in this process is problem-

related and not significantly influenced by the initial component. The sample set is 

constructed during the stable calculation process. The sampling method can reduce the 

influence of the initial component distribution, and the deep learning model can be 

trained based on the data set related to the optimization problem. 

This manuscript uses NVIDIA Corporation TU102 [Titan RTX] for the deep 

learning model training. And the model is constructed by Python 3.6.12 and Keras 2.3.1. 

The sample set is obtained by MATLAB 2016b. 

4. Method validation and result analysis  

The accumulation of the sample set is shown in Fig. 8. The sample set is extended 

by data enhancement technology (data rotation). Finally, 2000 samples were obtained 

for model training. The ratio of the training set to validation set is 0.8: 0.2 . Fig. 11 

shows the 1000 iterations process of classical CNN [24], U-Net [31], and attention U-

Net [22]. The mean square error (MSE) loss function and Adam optimizer [32] are used 

in three models. Compared with the classical CNN, U-Net with a skip connection skill 

has better convergence stability. Due to the structure complexity of attention U-Net, the 

model requires longer iterations to achieve convergence. The primary purpose of this 

chapter is to verify the effectiveness of the data preprocessing method mentioned above,. 

The following discussion is based on the U-Net. In U-Net, the learning rate is 0.001. 

The batch size is 128, and the total iterations are 3000. The training curve of the U-Net 

model verification set is shown in Fig. 12. 
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Fig. 11 The 1000 iteration history for different models.  

 

Fig. 12 The validation set loss function curve for U-Net model (3000 iterations). 

4.1. Model prediction results for 2D compliance optimization 

problem with different initial component numbers. 

The model prediction results with 16 components’ initial distribution are shown in 

Tab. 3. In comparison, the model prediction results with 8 components’ initial 

distribution are shown in the Tab. 4. The “Obj” in Tab. 3 and Tab. 4 is the objective 

function value. MSE shows the structural similarity according to Euclidean distance. 

Multi-scale structural similarity (MSSIM) [27] comprehensively compares the 

brightness, contrast, and structural similarity of two pictures. When the MSSIM value 

is close to 1, it means that the similarity of the two images is high.  
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The deep learning model based on small sample set can obtain high prediction 

accuracy results by using the data preprocessing method proposed in this work. The 

relative errors of the objective function in Tab. 3 are -9.8%, 0.025%, 0.19%, and 5.5%, 

respectively, and those of the model prediction structures in Tab. 4 are 3.6%, 2.26%, 

0.68%, and 0.35%, respectively. The MES and MSSIM values also show the model’s 

high prediction accuracy. Tab. 3 and 4 show that the model prediction accuracy is high 

for various initial component distributions. The sampling method can avoid the 

influence of initial component distribution and extract the information related to the 

optimization problem. It ensures the model’s applicability to different initial component 

distributions. 

The preprocessing method proposed in this manuscript can adjust the range of 

TDBI matrix value and keep the structure boundary features accurate. It can enhance 

the model’s ability to capture the data features. Enhancing the "information" contained 

in each sample can reduce the size of the sample set required for real-time topology 

optimization. This data preprocessing method is helpful for real-time boundary 

evolution optimization methods.  

At the same time, the CNN model can handle large-scale matrix data, which makes 

it possible to use TDBI as the sample label. On the one hand, it avoids the TDF 

function's processing of prediction results, which may lead to the components 

dislocation phenomenon. For another, the model trained in such labels can directly 

predict the final optimized structure without any iteration. The above reasons ensure 

the model prediction results’ integrity and continuity. 
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Tab. 3 Real-time topology optimization results of the cantilever beam based on the CNN (16 initial components distribution). 

 
The final results 

 
Evaluation criteria 

Load Condition 
 Prediction results (CNN) Obj Optimized results (MMC) Obj  MSSIM MSE 

1 

 

17.18 

 

17.35 

 

0.98 0.0049 

 

2 

 

39.86 

 

39.85 

 

0.97 0.0067 

 

3 

 

10.31 

 

10.29 

 

0.98 0.0047 

 

4 

 

49.27 

 

46.70 

 

0.98 0.0060 
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Tab. 4 Real-time topology optimization results of the cantilever beam based on the CNN (8 initial components distribution). 

 
The final results  Evaluation criteria 

Load Condition 
 Prediction results (CNN) Obj Optimized results (MMC) Obj  MSSIM MSE 

1 

 

21.56 

 

20.81 

 

0.97 0.0073 

 

2 

 

12.20 

 

11.93 

 

0.97 0.0070 

 

3 

 

40.95 

 

40.67 

 

0.97 0.0066 

 

4 

 

8.55 

 

8.52 

 

0.98 0.0073 
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4.2. Model prediction results for 3D compliance optimization 

problem 

In this section, a 3D compliance optimization problem is used to evaluate the 

validity of the proposed method. The structure is discretized by 80 × 3 × 40. And the 

geometry size is 7 × 1 × 3 .The load condition is shown in Fig. 13 and the initial 

components distribution are shown in Fig. 14. The Young’s model and Poisson ratio are 

the same as those in 2D optimization problem. The volume fraction constraint is 0.35. 

The external force location is randomly placed in the load domain with 21 × 3 × 40 on 

the right side. After the data enhancement operation, the sample set size is 1088. The 

training set to validation set ratio is approximately 0.8:0.2. 

 

Fig. 13 The load condition of cantilever beam example for 3D optimization problem 

 

Fig. 14 The initial components distribution for 3D optimization problem
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Tab.5 Real-time topology optimization results of 3D cantilever beam example 

 Prediction results (CNN) Optimized results (MMC) Evaluation criteria 

1 

  
 

Load Point: (80, 1:4, 39), MSE: 9.9 × 10−3 

Obj: 136.66 Obj: 136.14 Relative error: −0.38% 

2 

  

 

Load Point: (69, 1:4, 2), MSE: 9.8 × 10−3 

Obj: 53.05 Obj: 52.48 Relative error: −1.08% 

3 

  
 

Load Point5: (80, 1:4, 27), MSE: 1.5 × 10−2 

Obj: 64.66 Obj: 64.32 Relative error: −0.54% 
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For the loading condition shown in Fig. 13, the sampling method is the same as 

the 2D optimization condition. And the model training history is shown in Fig. 15. The 

MSE loss function is still used in this model. The relative errors of objective function 

shown in Tab. 5 are −0.38% , −1.08%  and −0.54%  and the MSE values are 9.9 ×

10−3 , 9.8 × 10−3  and 1.5 × 10−2 , respectively. For the validation set of the deep 

learning model, the model predictions’ average absolute error and standard deviation of 

objective function is 1.7% and 2.13 × 10−2, respectively. It can be seen from Tab. 5 

that the proposed method is also applicable to 3D MMC optimization problems. The 

preprocessing method takes into account the mathematical characteristics of MMC 

method and can effectively improve the sample set accuracy.  

 

Fig. 15 The loss function value curve for 3D U-Net 

Meanwhile, the average prediction time cost of the three conditions (2D structure 

with 16 components, 2D structure with 8 components and 3D structure with 16 

components) is 1.03 × 10−2 s, 9.29 × 10−3 s, 1.17 × 10−1 s. Compared with the 

classical MMC optimization method, the model prediction time cost can be ignored. A 

well-trained model can offer the optimized structure in real-time. 
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4.3. Result analysis with different data preprocessing 

methods and models 

As mentioned in the introduction, the previous MMC real-time topology 

optimization method was based on traditional machine learning methods. Deep learning 

has a stronger data feature extraction ability than machine learning. This part will 

compare the prediction effect of the traditional machine learning model and U-Net. The 

authors will also discuss the influence of different preprocessing methods on the model 

performance. 

4.3.1. Comparison of the U-Net and SVR model 

A comparison of the prediction results obtained by the SVR model [20] and the U-

Net is shown in Tab. 6. The first and second columns are the prediction results based 

on the SVR model and reference results, respectively. The third column shows the 

MSSIM value of the structure in the first two columns. The fourth and fifth columns 

are the prediction results based on the U-Net and the reference results. The sixth column 

shows the MSSIM values for U-Net prediction results. 

It can be seen from Tab. 6 that the prediction results of both models inherit the 

advantages of the MMC method, such as clear boundary and local features. However, 

by comparing MSSIM values and structures predicted by the two models, the accuracy 

of the structures predicted by U-Net is better than those of SVR. The MSSIM values of 

U-Net prediction results are significantly improved. There is an obvious component 

dislocation phenomenon in SVR prediction results, which leads to unfavorable 

structural continuity. On the contrary, the structures predicted by U-Net have good 

continuity. There are several reasons for this phenomenon. In addition to the influence 
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of data preprocessing of the TDBI matrix discussed in section 3, it can also be discussed 

from the following perspective. Limited by the parameter processing ability of the SVR 

model, the component geometry description vector 𝐃 is chosen as the sample label.  

The parameters in matrix 𝐃 contain more information than those in TDBI. The 

model prediction error of parameters in 𝐃  has great influence on the prediction 

structures. Therefore, choosing 𝐃  as the sample set label requires higher prediction 

accuracy. Meanwhile, the parameters in 𝐃  have practical geometric meaning. For 

example, the prediction error of component tilt angle parameter may be amplified by 

the component length. The model needs to accurately predict every parameter in 𝐃. 

Compared with matrix 𝐃, the interaction between TDBI parameters is smaller. This 

means that the prediction error of a single parameter has little influence on the overall 

structure. Using TDBI as sample set label can reduce the requirement for the model 

prediction accuracy and effectively avoid the component dislocation phenomenon in 

prediction results. 
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Tab. 6 A comparison of the results obtained with the SVR model and CNN. The SVR results are obtained from Lei [20]. The MSSIM value is 

calculated based on the prediction results and the reference results optimized by MMC. 

SVR Model  CNN 
 

Predicted Optimized structure MSSIM Predicted Optimized structure MSSIM 

  

0.8162 

  

0.9042 

  

0.7473 

  

0.8320 

  

0.7253 

  

0.8936 
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4.3.2. Comparison of different data preprocess methods 

Lei [20] adopted component parameters as the sample set labels for combination 

of MMC and deep learning. Similar to this manuscript, Zheng [33] also adopted the 

TDBI matrix as the sample set label. Therefore, they also faced the TDBI preprocessing 

problem. As shown in Fig. 13, a discretization data preprocess method is adopted. The 

area with the material is set to 1, and no material area is set to 0. The processing method 

is convenient. The sample set label is converted into a discrete data type. Therefore, 

based on this label, it is inclined to use the model classification ability to deal with real-

time MMC optimization problem. Zheng also pointed out that the binary cross-entropy 

loss function had the best model training effect, which also supported the above 

conclusions. 

 

Fig. 13 The TDBI matrix preprocess method proposed by Zheng [33] 

The classical MMC optimization method uses a smooth level set function to 

describe the structure boundary. If the discretization preprocessing method based on 

finite element mesh is adopted, the boundary of the structure will be displaced. From 

the numerical perspective, describing the continuous boundary with discrete data will 

lead to the movement of structural boundaries. From the graphic perspective, the 

discrete data processing method will produce zigzag phenomenon at the structural 
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boundaries. Different from the above method, the data preprocessing method proposed 

in this manuscript takes the characteristics of the MMC optimization method into 

account, and proposes a new TDBI matrix preprocessing method. This preprocessing 

method effectively maintains the accuracy and continuity characteristics of structural 

boundaries. It also highlights the mathematical features of structure boundaries, which 

is more conducive to identification and extraction. 

The accuracy of sample set label will affect model prediction accuracy. The data 

preprocessing method proposed in this manuscript will use the regression ability of 

deep learning model to deal with real-time MMC optimization. This preprocessing 

method can obtain sample set labels with continuous boundary characteristic. By 

providing more accurate sample set labels, the training effect of the model can be 

effectively improved. 

  

(a) (b) 

Fig. 14 The model prediction result based on different TDBI preprocess methods: (a) 

Model prediction result based on TDBI preprocess method proposed in this 

manuscript. (b) Model prediction result based on the discrete preprocess method. 

5. Conclusion 

This paper realizes real-time MMC topology optimization based on a trained U-

Net with limited sample sets. By analyzing the mathematical characteristics of the 

MMC method, the TDBI is chosen as the sample label, which effectively avoiding the 
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component dislocation phenomenon in the model prediction results. CNN can predict 

the structure with a good continuous boundary. Based on the numerical characteristics 

of the TDBI, a new data preprocessing method is proposed. This preprocessing method 

can ensure the mathematical and geometric accuracy of the structure boundary. It can 

also enhance the data characteristics, and the model can be trained based on a small 

sample set. Several numerical examples demonstrate the method applicability. The 

computational efficiency of the MMC method is significantly improved. The algorithm 

implemented in this study can be applied to real-time topology optimization based on 

the MMC method, and the preprocessing method can also be employed in real-time 

topology optimization using other boundary evolution optimization methods. 
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