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Abstract

Unsupervised commonsense reasoning (UCR)
is becoming increasingly popular as the con-
struction of commonsense reasoning datasets
is expensive, and they are inevitably limited in
their scope. A popular approach to UCR is to
fine-tune language models with external knowl-
edge (e.g., knowledge graphs), but this usually
requires a large number of training examples.
In this paper, we propose to transform the down-
stream multiple choice question answering task
into a simpler binary classification task by rank-
ing all candidate answers according to their
reasonableness. To this end, for training the
model, we convert the knowledge graph triples
into reasonable and unreasonable texts. Ex-
tensive experimental results show the effective-
ness of our approach on various multiple choice
question answering benchmarks. Furthermore,
compared with existing UCR approaches us-
ing KGs, ours is less data hungry. Our code is
available at https://github.com/probe2/BUCA

1 Introduction

Commonsense reasoning has recently received sig-
nificant attention in NLP research (Bhargava and
Ng, 2022), with a vast amount of datasets now
available (Levesque, 2011; Gordon et al., 2012;
Sap et al., 2019; Rashkin et al., 2018; Bisk et al.,
2020; Talmor et al., 2019). Most existing methods
for commonsense reasoning either fine-tune large
language models (LMs) on these datasets (Lourie
et al., 2021) or use knowledge graphs (KGs) (Pan
et al., 2017) to train LMs (Liu et al., 2019a; Ya-
sunaga et al., 2022). However, it is not always
possible to have relevant training data available, it
is thus crucial to develop unsupervised approaches
to commonsense reasoning that do not rely on la-
beled data.

In this paper, we focus on the unsupervised mul-
tiple choice question answering (QA) task: given
a question and a set of answer options, the model
is expected to predict the most likely option. We
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Figure 1: After BUCA is trained on the above question
from the training set, it is then able to rate the reason-
ableness of each sentence of the downstream task.

propose BUCA, a binary classification framework
for unsupervised commonsense QA. Our method
roughly works as follows: we first convert knowl-
edge graph triples into textual form using manually
written templates, and generate positive and nega-
tive question-answer pairs. We then fine-tune a pre-
trained language model, and leverage contrastive
learning to increase the ability to distinguish rea-
sonable from unreasonable ones. Finally, we input
each question and all options of the downstream
commonsense QA task into BUCA to obtain the
reasonableness scores and select the answer with
the highest reasonableness score as the predicted
answer. Experimental results on various common-
sense reasoning benchmarks show the effectiveness
of our proposed BUCA framework. Our main con-
tributions are:

• We propose a binary classification approach
to using KGs for unsupervised commonsense
question answering.

• We conduct extensive experiments, showing
the effectiveness of our approach by using
much less data.

2 Related work

Language models are widely used in unsupervised
commonsense inference tasks, e.g. as an additional
knowledge source or as a scoring model. Rajani

https://github.com/probe2/BUCA


et al. (2019) propose an explanation generation
model for the CommonsenseQA dataset. Self-talk
(Shwartz et al., 2020) uses prompts to stimulate
GPT and generate new knowledge. SEQA (Niu
et al., 2021) generates several candidate answers
using GPT2 and then ranks each them.

Another research direction in unsupervised com-
monsense reasoning is the use of e.g. common-
sense KGs (Speer et al., 2016; Romero et al., 2019;
Malaviya et al., 2020) to train the model (Chen
et al., 2021; Geng et al., 2023). In Banerjee and
Baral (2020), given the inputs of context, question
and answer, the model learns to generate one of the
inputs given the other two. Ma et al. (2021) update
the model with a margin ranking loss computed on
positive and negative examples from KGs. MICO
(Su et al., 2022) uses the distance between the pos-
itive and negative question-answer pairs obtained
from the KG to calculate the loss. However, all
of the above approaches demand a large amount
of training data, sometimes reaching million of
training samples, while BUCA only needs tens of
thousands, cf. Table 2. The most similar to our
work is NLI-KB (Huang et al., 2021), which trains
a model on NLI data, then applies the correspond-
ing knowledge to each question-answer pair on the
downstream task. Our paper, instead, shows that is
not the NLI data but the retrieved knowledge that
helps.

3 Methodology

We focus on the following multiple choice ques-
tion answering (QA) task: given a question q and
a set of options A, the model should select the
most likely single answer Ai ∈ A. We consider
an unsupervised setting in which the model does
not have access to the training or validation data.
Our BUCA approach first trains the model with a
knowledge graph and then uses the trained model
to test on multiple QA downstream tasks. Formally,
a knowledge graph (KG) (Pan et al., 2017) G is a
tuple (V,R, T ), where V is a set of entities, E is a
set of relation types and T is a set of triples of the
form (h, r, t) with h, t ∈ V the head and tail enti-
ties and r ∈ R the relation of the triple connecting
h and t.

Our approach has three main components:
knowledge graph transfer to training data, train-
ing loss design, and downstream task testing:

Converting Triples into Binary Classification
Training Data. Inspired by previous work (Su

et al., 2022), each KG triple is converted into
question-answer pairs by using pre-defined tem-
plates, so that the obtained pairs are then used as
the input of the classification task. We use the tem-
plates provided in (Hwang et al., 2020). For exam-
ple, the ATOMIC triple (PersonX thanks PersonY
afterwards, isAfter, PersonX asked PersonY for help
on her homework) can be converted to “After Per-
sonX asked PersonY for help on her homework, Per-
sonX thanks PersonY afterwards”. In the appendix
we show the distribution of the converted sequence
pairs. Along with the correct QA pairs created
from the KG triples, our framework is also trained
on negative QA pairs, so it can better discriminate
between reasonable and unreasonable QA pairs.
More precisely, in the training dataset, each correct
QA pair generated from a triple tp = (h, r, t) has a
corresponding negative pair obtained from a varia-
tion of tp in which t is substituted by t′, which is
randomly drawn from the existing tails in the KG.

Training Loss. For our binary classification
model, we add a classification head with two nodes
to the pre-trained language model. After normaliz-
ing the values on these two nodes, we can obtain
reasonable and unreasonable scores for the QA
pairs. From the triple conversion step, we obtained
n training examples, each consisting of a question
q, correct answer ac, and incorrect answer aw. For
each question-answer pair, we can then obtain the
reasonable and unreasonable scores r+i and r−i after
applying a softmax layer. In each loss calculation,
we jointly consider the correct and incorrect an-
swers. For binary classification, we use two kinds
of losses: Traditional Binary Loss (TBL).

L = −
n∑

i=1

(log(p+ac) + log(p−aw))

where p+ac and p−aw are the probabilities of correct
and incorrect answers, respectively corresponding
to reasonable and unreasonable scores.
Margin Ranking Loss.

L =

n∑
i=1

max(0, η − log(p+ac) + log(p+aw))

+max(0, η − log(p−aw) + log(p−ac))

where η is a margin threshold hyper-parameter.
In order to pull the representational distance be-

tween reasonable question-answer pairs as close as
possible and to push the representational distance



Methods Backbone Knowledge Source COPA OpenbookQA SIQA CSQA SCT
dev test dev test dev dev dev

Random - - 50.0 50.0 25.0 25.0 33.3 25.0 50.0
RoBERTa-L RoBERTa-L - 54.8 58.4 31.2 31.6 39.7 31.2 65.0

GPT2-L GPT2-L - 62.4 63.6 31.2 29.4 42.8 40.4 66.7
Self-talk GPT2 GPT2 66.0 - 28.4 30.8 46.2 32.4 -

Dou ALBERT ALBERT - - 41.6 39.8 44.1 50.9 -
Wang GPT2 GPT2 69.8 - - - 47.3 - 71.6

SMLM RoBERTa-L e.g., ATOMIC - - 34.6 33.8 48.5 38.8 -
MICO RoBERTa-L Concept 73.2 75.2 - - 44.6 51.0 -
MICO RoBERTa-L ATOMIC 79.4 77.4 - - 56.0 44.2 -

NLI-KB RoBERTa-L Concept 65.0 62.2 35.0 35.6 46.9 49.0 71.2
NLI-KB RoBERTa-L ATOMIC 65.2 61.6 39.0 37.2 46.7 52.1 72.1

Ma RoBERTa-L CSKG - - - - 63.2 67.4 -
BUCA RoBERTa-L/TBL Concept 84.4 90.6 43.0 47.2 53.5 63.5 87.3
BUCA RoBERTa-L/MRL Concept 86.2 89.6 45.2 47.6 52.6 65.4 88.0
BUCA RoBERTa-L/TBL ATOMIC 85.0 86.0 45.8 44.2 60.2 58.7 88.4
BUCA RoBERTa-L/MRL ATOMIC 84.6 87.8 43.2 46.0 61.4 60.3 85.5

Table 1: Accuracy (%) on five public benchmarks. Our best scores are highlighted in bold, and the results for the
best performing baseline are underlined. Recall that TBL and MRL refer to the loss functions used in BUCA.

between reasonable and unreasonable ones as far
as possible, we use supervised contrastive learning
(Gunel et al., 2021) along with the binary classi-
fication. This is done by considering as positive
examples of a given example within a category, all
those examples within the same category.
Contrastive Loss of the i-th QA pair

Lscl =
N∑
j=1

1yi=yj log
esim(hj ,hi)τ∑N

k=1 1i ̸=kesim(hk,hi)/τ

where τ is the temperature parameter and h denotes
the feature vector.

Inference. In the prediction phase for each candi-
date answer, we calculate its reasonableness score.
We choose the answer with the highest reasonable-
ness score as the predicted answer.

4 Experiments

In this section, we first describe our experiments
on five commonsense question answering datasets,
followed by ablation studies and data analysis.

4.1 Datasets and Baselines
We use two well-known commonsense KGs
for training our framework: ConceptNet (Speer
et al., 2017) and ATOMIC (Sap et al., 2018).
For evaluation, we use five commonsense QA
datasets: COPA (Gordon et al., 2012), Open-
BookQA (Mihaylov et al., 2018), SIQA (Sap
et al., 2019), CSQA (Talmor et al., 2019), and
SCT (Mostafazadeh et al., 2017), covering a wide
range of topics within commonsense reasoning.
We compare our approach with various baselines:

RoBERTa-Large (Liu et al., 2019b), GPT2 (Rad-
ford et al., 2019), Self-talk (Shwartz et al., 2020),
Dou (Dou and Peng, 2022), Wang (Wang and Zhao,
2022) and other unsupervised systems using KGs:
SMLM (Banerjee and Baral, 2020), MICO (Su
et al., 2022), NLI-KB (Huang et al., 2021) and Ma
(Ma et al., 2021). Most reported results are col-
lected from the literature. For NLI-KB, we used
their publicly available code to get the results.

Details of the KGs and datasets, as well as im-
plementation details, can be found in the appendix.

Methods Dataset Train Pair Valid Pair
Ma ConceptNet 363,646 19,139
Ma ATOMIC 534,834 60,289
Ma WikiData 42,342 2,229
Ma WordNet 256,922 13,523

MICO WordNet 256,922 13,523
MICO ATOMIC 1,221,072 48,710
BUCA ConceptNet 65,536 7,836
BUCA ATOMIC 61,053 2,435

Table 2: Statistics for the training and validation data
used by Ma, MICO and BUCA.

4.2 Main results

Table 1 shows the results for the five benchmarks.
Overall, BUCA achieves the best performance on
all datasets. More precisely, our results respec-
tively outperform baselines on the validation and
test sets as follows: MICO by 6.8% and 13.2% on
COPA; Dou by 4.2% and 7.8% on OpenbookQA.
We also outperform MICO by 5.4% on SIQA; NLI-
KB by 13.3% on CSQA, and NLI-KB by 16.3%
on SCT. Ma does not provide results for COPA,



Backbone CKG COPA OpenbookQA SIQA CSQA SCT
dev test dev test dev dev dev

BERT-base Concept 63.0 67.6 29.6 32.8 40.5 49.6 64.9
BERT-base ATOMIC 64.8 73.2 31.2 34.0 45.0 45.3 68.7
RoBERTa-base Concept 70.0 72.8 30.0 32.8 46.6 49.0 65.6
RoBERTa-base ATOMIC 70.4 77.4 33.4 34.2 50.6 46.9 70.6
RoBERTa-large Concept 86.2 89.6 45.2 47.6 52.6 65.4 88.0
RoBERTa-large ATOMIC 84.6 87.8 43.2 46.0 61.4 60.3 85.5

Table 3: Backbone model study

Backbone CKG COPA OpenbookQA SIQA CSQA SCT
dev test dev test dev dev dev

RoBERTa-large Concept 86.2 89.6 45.2 47.6 52.6 65.4 88.0
w/o contrastive Concept 83.3 89.0 42.6 46.8 51.9 64.5 87.0
RoBERTa-large ATOMIC 84.6 87.8 43.2 46.0 61.4 60.3 85.5
w/o contrastive ATOMIC 84.2 86.6 42.0 44.0 60.6 59.8 84.1

Table 4: The influence of contrastive learning

OpenBookQA and SCT, but it achieves state-of-
the-art results on CSQA 67.4 and on SIQA 63.2,
while BUCA’s best results respectively are 65.4 and
61.4. However, Ma uses multiple KGs to train a
single model, ConceptNet, WordNet, and Wikidata
for CSQA and ATOMIC, ConceptNet, WordNet,
and Wikidata for SIQA, with a total training data
of 662,909 and 1,197,742, while BUCA only uses
65,536 and 61,530, cf. Table 2. Considering the dif-
ference on used training data and the closeness of
results, BUCA’s approach clearly demonstrates its
effectiveness. We can also observe the same trend
as in MICO: ConceptNet is more helpful for CSQA
and ATOMIC is more helpful for SIQA. This is ex-
plained by the fact that SIQA is built based on
ATOMIC and CSQA is built based on ConceptNet.
On other datasets our framework shows similiar be-
havior with both KGs. As for the loss functions, the
margin ranking loss is on average 0.8% higher than
the binary loss on ConceptNet, and 0.1% higher
on ATOMIC. These results are explained by the
fact that the ranking loss separates more the scores
between reasonable and unreasonable answers. In
light of this, we will only consider margin ranking
loss in the below analysis.

4.3 Ablation Studies

In this section, we analyze the effects of the back-
bone models, the effect of contrastive learning, and
explore the vocabulary overlap between the knowl-
edge training set and the downstream task as well
as the accuracy of our BUCA method.

Backbone Pre-trained LMs Our experiments
using different backbone models show that in gen-
eral the stronger the PLM the better the perfor-

mance on the downstream task. Regarding the
KGs, in the BERT-base and RoBERTa-base vari-
ants, the ATOMIC-trained models perform better
than the ConceptNet-trained models, while in the
RoBERTa-large one they perform similarly. This
might be explained by the fact that as the model
capacity increases it has more inherently available
event-like commonsense knowledge, necessary in
the ATOMIC-based datasets. Detailed results are
shown in Table 3.

Effects of Contrastive Learning Our experi-
ments show that the RoBERTa-large variant with
contrastive learning outperforms the version with-
out it on all datasets, regardless of the used KG.
Detailed results are shown in Table 4.

Accuracy of the Binary Classifier Inspired by
Ghosal et al. (2022), we evaluate how often in-
put sequences corresponding to correct and in-
correct answers are accurately predicted. To this
end, we use the RoBERTa-large variant trained
on ATOMIC. Table 5 shows that our model tends
to predict all answers as reasonable since in our
training set the negative examples are randomly se-
lected, many QA pairs are semantically irrelevant
or even ungrammatical. For the manually crafted
candidate answers, many of them are semantically
relevant and grammatical, so our model predicts
them as reasonable. We also see that the accuracy
metrics for SCT and COPA are the highest. Our
findings are consistent with Ghosal et al. (2022).

4.4 Data Analysis

To better understand why transfer learning from
CKGs is more suitable than from other datasets



Dataset Prediction All
Neg Pos Incor as Neg Cor as Pos Accurate

COPA (dev) 0.2 88.0 11.2 99.0 11.0
COPA (test) 0.4 88.4 11.2 99.2 10.8
OpenbookQA (dev) 1.4 67.8 4.8 93.2 3.4
OpenbookQA (test) 1.8 73.8 2.8 93.0 1.0
SIQA (dev) 6.3 50.2 15.7 86.7 9.4
CSQA (dev) 1.2 35.1 6.5 94.2 5.2
SCT (dev) 0.3 87.8 11.8 99.4 11.6

Table 5: The Neg and Pos column indicate % of instances for which all answer choices are predicted as negative or
positive. The Incor as Neg, Cor as Pos, and Accurate column indicate % of instances for which all incorrect answers
are predicted as negative, the correct answer is predicted as positive, and all answers are predicted accurately as
negative or positive. Accurate is the intersection of Incor as Neg and Cor as Pos.

(i.e. MNLI or QNLI) in the commonsense QA task,
we performed an analysis on the training data in
NLI-KB (Huang et al., 2021) and the used CKGs.
Following (Mishra et al., 2021), we first compare
the vocabulary overlap of ConceptNet, ATOMIC
and MNLI (training data) with our evaluation QA
datasets. We follow the definition of overlap intro-
duced in (Mishra et al., 2021). Table 6 shows that
MNLI has higher vocabulary overlap with all the
evaluation datasets than both used CKGs. How-
ever, the results for NLI-KB in Table 1 show that
the vocabulary overlap is not a key factor for perfor-
mance as otherwise, NLI-KB fine-tuned with the
NLI datasets (before injecting knowledge) should
perform better that the other models in the down-
stream task due to the high lexical similarity.

Concept ATOMIC MNLI
COPA (dev) 50.4 70.0 98.0
COPA (test) 52.1 71.9 86.4
OpenbookQA (dev) 48.4 54.8 92.1
OpenbookQA (test) 48.8 55.2 93.1
SIQA (dev) 37.3 54.6 94.5
CSQA (dev) 59.1 63.2 85.0
SCT (dev) 41.2 57.5 94.5

Table 6: Vocabulary Overlap

SIQA Example

Question: After a long grueling semester,
Tracy took the final exam and finished
their course today. Now they would grad-
uate. Why did Tracy do this?
Answer: complete their degree on time

MNLI
Because I had a deadline. This entails I
had to finish by that time.

ATOMIC
Tracy wants finish before time expires.
because Tracy takes the exam.

ConceptNet pass class causes graduation.

Table 7: Alternative answers for SIQA-question.

We also analyze the distance to the sentence
embeddings. Our results show that the MNLI en-
tries performed poorly in commonsense knowledge

retrieval for SIQA-queries as they are not reason-
able answers. In contrast, the sentences generated
from ATOMIC and ConceptNet successfully pair
the SIQA-questions with reasonable answers. This
reveals that, although MNLI has a higher lexical
coverage, MNLI does not have suitable examples
to match SIQA questions. Thus models fine-tuned
with the NLI dataset hardly get any benefit for
downstream commonsense reasoning tasks. Tables
7 and 8 present a random sample showing this,
where reasonable alternatives are in bold.

CSQA Example
Question: If you have leftover cake,
where would you put it?
Answer: refrigerator

MNLI

In the waste-paper basket. This entails
in the garbage bin.
In the middle of the dinner plate (or is it
a base drum?) This entails in the center
of the dinner plate.
We always keep it in the hall drawer. This
entails it’s always kept in the drawer in
the hall.

ATOMIC

John cuts the cake. as a result, John
wants put the rest of the cake in fridge
John places in the oven. but before, John
needed to mix the cake ingredients

John puts in the fridge. but before, John
needed to grab it off the table

ConceptNet

oven is the position of cake

refrigerator is the position of moldy left-
over

fridge is the position of leftover

Table 8: Alternative answers for CSQA question.

5 Conclusion

We presented a framework converting KGs into
positive/negative question-answer pairs to train a
binary classification model, discriminating whether
a sentence is reasonable. Extensive experiments
show the effectiveness of our approach, while using
a reasonably small amount of data. For future work,
we will explore how to better select negative cases.



Limitations

The method to select negative examples could be
improved, as randomly selecting negative exam-
ples for training might lead to identifying most of
examples in the evaluation datasets as reasonable.
Secondly, we did not explore using other number
of candidates in the training set, we always use 2
candidate answers for each question.
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Appendix

A KGs, Datasets, and Implementation

This section contains more experimental details.
In particular, we give details of the used KGs and
datasets. We also discuss implementation details.

ConceptNet

ConceptNet (Speer et al., 2017) is a traditional KG
that focuses on taxonomic, lexical and physical
relations (e.g., IsA, RelatedTo, PartOf ). In our ex-
periment, we employed the CN-82K version which
is uniformly sampled from a larger set of extracted
ConceptNet entity-relations (Li et al., 2016).

ATOMIC

The ATOMIC KG (Sap et al., 2018) focuses
on social-interaction knowledge about everyday
events, and thus has a higher coverage in the field of
commonsense query answering. It consists of 880K
knowledge triples across 9 relations (e.g. xNeed,
oEffect, xReact). This includes mentions of topics
such as causes and effects, personal feelings to-
ward actions or events, and conditional statements.
The ATOMIC dataset is collected and validated
completely through crowdsourcing.

As seen in Table 2, in comparison to related
works: Ma (Ma et al., 2021) and MICO (Su et al.,
2022), our methods used much less data from the
CKGs (~5-8x Ma, ~2-20x MICO) while still main-
taining competitive performance on the evaluation
dataset.

A.1 Generation of QA pairs

The QA pairs were generated using the templates
in the ATOMIC paper (Hwang et al., 2020), which
is compatible with relations in both ConceptNet
and ATOMIC. These templates help to convert
KG triples into natural sentences, examples shown
in Table 9. The head entity and mapped relation
phrases are joined as a question. The correct tail
entity and a randomly sampled tail from the dataset
are used as the positive and negative answers, re-
spectively, for contrastive learning.

A.2 Evaluation Datasets

We evaluate our framework using five downstream
QA tasks: COPA, OpenBookQA, SIQA, CSQA,
and SCT, which covere a wide range of topics
within commonsense reasoning. Accuracy is used

as the evaluation metric. All experiments are per-
form in an unsupervised setting, where our model
are not train on the source task.

Choice of Plausible Alternatives (COPA) (Gor-
don et al., 2012) is a two-choice question-answer
dataset designed to evaluate performance in open-
domain commonsense causal reasoning. Each entry
contains a premise and two possible answers, the
task is to select the answers that most likely have a
causal relationship with the premise. The dataset
consists 500 questions for both debvelopment and
test sets.

OpenBookQA (Mihaylov et al., 2018) is in-
spired from open book exams that assess human
understanding in real life. This QA task requires a
deeper understanding about both open book facts
(e.g., metals is a heat conductor) and a broad com-
mon knowledge (e.g., a steal spoon is made of
metal) to answer questions like: Which of these ob-
jects conducts the most heat: A metal spoon, pair
of jeans, or cotton made clothing? It contains 500
multiple-choice science questions for both devel-
opment and test sets.

SocialIQA (SIQA) (Sap et al., 2019) contains
multiple-choice questions with topics concerned
with emotional and social interactions in a variety
of everyday situations. Each entry comes with a
context, a question, and 3 candidate answers. The
questions are generated using the ATOMIC KG by
converting triples into question sentences using
predefined templates, and the answers are crowd-
sourced. The dataset’s development split is used as
evaluation dataset, containing 1,954 questions.

CommonsenseQA (CSQA) (Talmor et al., 2019)
contains questions focused on various common-
sense aspects. Each entry contains a question and
five candidate answers. The questions are con-
structed by crowd workers. The answer candidates
include distractors comprised of hand-picked ones
or nodes from ConceptNet. The development set is
used as evaluation set, containing 1,221 questions.

Story Cloze Test (SCT) (Mostafazadeh et al.,
2017) is a LSDSem’17 shared task, evaluating story
understanding and script learning. Each entry con-
tains a four-sentence story and two possible fifth
sentences, where the model has to pick the most
suitable ending for the story. The development
set is used as the evaluation set, containing 1572
different stories.



Triple Source Negative Triple Generated QA Pairs

(chopstick, AtLocation, table) ConceptNet (bread, is created by, flour)
Q: Chopstick located or found at
A: table
B: flour

(PersonX wants to go to the office,
ATOMIC

(PersonX leaves the room, Q: PersonX wants to go to the
office, as a result, PersonX will

oEffect, get dressed up) xWant, to go somewhere else) A: get dressed up
B: to go somewhere else

Table 9: QA pairs generated by KG Triples

A.3 Implementation details
Our experiments are run on a single A100 GPU
card. We use RoBERTa-Large as our backbone
model. The training batch size is 196, and the
maximal sequence length for training is 64. The
learning rate is set to 5e-5 for all experiments. For
experiments with the margin ranking loss, η is set
to 1. The validation set is evaluated by accuracy
and used to select a best model for further evalu-
ation. The models are trained for 20 epochs and
early stopped when the change of validation loss is
within 1%.

B Ablation Studies

We present the full results for the ablation studies
discussed in Section 4.3. Table 3 for the back-
bone models study; Table 4 for the influence of
contrastive learning; and Table 5 for accuracy.

C Data Analysis

In the analysis of the distance to sentence embed-
dings, we treat each entry in the CKG datasets
as possible answers and encode them using
the SBERT pre-trained model (all-mpnet-base-
v2) (Reimers and Gurevych, 2019, 2020). Then,
the cosine-similarity between the SIQA question
and the encoded sentences is calculated to rank
their semantic relatedness.

We retrieved the top 3 answers for each source
and listed by similarity score at descending or-
der. Table 10 extends the results presented in Sec-
tion 4.4; Table 11 show the alternative answers
from CKG datasets COPA questions.



SIQA Example
Question: After a long grueling semester, Tracy took the final exam and finished
their course today. Now they would graduate. Why did Tracy do this?
Answer: complete their degree on time

MNLI

Because I had a deadline. This entails I had to finish by that time.
The professors went home feeling that history had been made. This entails The
professors returned home.
They got married after his first year of law school.This entails Their marriage
took place after he finished his first year of law school.

ATOMIC
Tracy wants finish before time expires. because Tracy takes the exam

Tracy wanted to get a degree. as a result Tracy finishes Tracy’s test

Tracy graduates with a degree. but before, Tracy needed get pass with good
marks.

ConceptNet
pass class causes graduation
study ends with the event or action graduate

graduation because take final exam

Table 10: Complete results of alternative answers retrieved from MNLI, ATOMIC and ConceptNet for SIQA
question. Reasonable alternatives are in bold.

COPA Example
Question: The boy wanted to be muscular. As a result,
Answer: He lifted weights.

MNLI

Emboldened, the small boy proceeded. This entails the small boy felt bolder
and continued.
Out of shape, fat boy. This entails the boy was obese.
When Sport Resort won the contract for the construction of a new hotel center
for 1200 people around the Olympic Sports Arena (built as a reserve for the
future, to have it ready in time for the next championships), Gonzo began to push
his weight around, because he felt more secure. This entails when Sport Resort
won the contract for the construction of a new hotel Gonzo felt more secure.

ATOMIC
John wanted to build his physique. as a result the boy lifts weights
The boy starts working out. as a result, the boy wants to gain more muscle

The boy starts lifting weights. as a result, the boy will build muscle

ConceptNet
lift could make use of muscle
person desires strong body
build muscle because exercise

Table 11: Alternative answers from CKGs for COPA question.


