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Fig. 1. A masonry shell structure modeled by our approach, in which 181 shell elements fall into 60 discrete equivalence classes. Shell elements in

the same class have exactly the same shape and are rendered with the same color.

This paper proposes a method to model masonry shell structures where

the shell elements fall into a set of discrete equivalence classes. Such shell

structure can reduce the fabrication cost and simplify the physical con-

struction due to reuse of a few template shell elements. Given a freeform

surface, our goal is to generate a small set of template shell elements that

can be reused to produce a seamless and buildable structure that closely

resembles the surface. The major technical challenge in this process is bal-

ancing the desire for high reusability of template elements with the need

for a seamless and buildable final structure. To address the challenge, we

define three error metrics to measure the seamlessness and buildability of

shell structures made from discrete equivalence classes and develop a hier-

archical cluster-and-optimize approach to generate a small set of template

elements that produce a structure closely approximating the surface with

low error metrics. We demonstrate the feasibility of our approach on various

freeform surfaces and geometric patterns, and validate buildability of our

results with four physical prototypes. Code and data of this paper are at

https://github.com/Linsanity81/TileableShell.
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1 INTRODUCTION

Masonry shell structures have been built for centuries around the

world in the form of arches, domes and vaults, due to their advan-

tages like large span, lightweight, and high strength [Adriaenssens

et al. 2014]. The shapes of masonry shells are generally described by

3D curved surfaces since the thickness of these structures is signifi-

cantly smaller compared to its width and length. From a geometric

perspective, a masonry shell is a geometric tiling of a 3D surface

with a number of shell elements that contact one another with no

overlaps and no gaps. To tile a freeform 3D surface, it is likely that

each shell element has a unique shape when compared to the other

elements, requiring each element to be custom manufactured.

In this paper, we study a new problem of modeling freeform

shell structures where the shell elements fall into a set of discrete

equivalence classes. These shell structures have clear advantages

of reducing the fabrication cost and simplifying the physical con-

struction due to reuse of template shell elements. We model our

shell elements as convex polyhedrons since convex shapes and pla-

nar faces make it easy to fabricate, e.g., by molding. Shell elements

falling into the same discrete equivalence class should have exactly
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Fig. 2. Given an input surface (in black), we can approximate it with

three polygons (in blue) with the same shape. However, three shell

elements generated from the three polygons, respectively, with the

same thickness may have different shapes due to different side faces

(in green and orange) of the elements.

the same shape. That means the shell elements should have the

same top face that defines the shell’s appearance as well as the same

side faces that are used for contacting with other elements in the

final structure. Existing approaches [Fu et al. 2010; Liu et al. 2021;

Singh and Schaefer 2010] for modeling freeform surfaces using dis-

crete equivalence classes of polygons are insufficient to address our

problem since they ignore the shell elements’ thickness and do not

model the elements’ side faces; see Figure 2 for a 2D illustration.

Given a 3D freeform surface as an input, our goal is to compute a

small set of template shell elements whose instances can produce a

seamless and buildable shell structure that closely resembles the sur-

face. The major challenge in our problem arises from two conflicting

goals. On the one hand, we want to use a small set of template shell

elements to build the freeform shell structure, aiming to maximize

reusability of the templates. On the other hand, we aim for a seam-

less and buildable tiling of the freeform surface with the template

elements, where planar contacts between instance elements of the

templates should be preserved and gaps as well as overlaps between

the instance elements should be minimized. This seamless and build-

able tiling is achieved in conventional shell structures by using a

large number of template elements, where each template is used

only for once in many cases (i.e., no reuse of the template).

To address the challenge, we make the following technical con-

tributions:

• We parameterize the geometry of a shell structure with discrete

equivalence classes, and define three error metrics to measure

their seamlessness and buildability.

• We propose a hierarchical approach to clustering shell elements in

the parameter space, which is able to cluster elements of various

shapes including triangles, quads, n-gons, and a mix of them.

• We develop a hierarchical approach to optimizing the geome-

try of clustered shell elements, enabling to significantly reduce

the number of templates while preserving the final structure’s

seamlessness and buildability.

2 RELATED WORK

Modeling surfaces with discrete equivalence classes. One typical

application of modeling surfaces with discrete equivalence classes

is to rationalize freeform architectural surfaces. To simplify the

problem, existing works assume a fixed topology of the input surface

with only triangles [Huard et al. 2015; Singh and Schaefer 2010]

or quads [Fu et al. 2010], and generate the discrete equivalence

classes by clustering polygons and optimizing mesh vertex positions.

Instead of directly reusing the polygons, other works aim to reuse

molds that are used to fabricate curved panel elements [Eigensatz

et al. 2010] or triangle-based point-folding elements [Zimmer et al.

2012], in which elements of the same shape are fabricated with

molding and then cut into different sizes and forms for making the

architectural surface. The above works optimize specific discrete

equivalence classes for different input surfaces, a process known as

post-rationalization [Austern et al. 2018]. In contrast, Liu et al. [2021]

addressed the pre-rationalization problem of modeling various input

surfaces using predefined discrete equivalence classes of triangles

by developing a fabrication-error-driven remeshing algorithm.

Similar to the above works that post-rationalize a freeform sur-

face [Fu et al. 2010; Huard et al. 2015; Singh and Schaefer 2010],

our modeling approach also involves clustering and optimizing

polygons in a freeform surface to minimize intra-cluster variance.

However, there are two differences. First, we propose a hierarchi-

cal approach to clustering and optimizing polygons in a freeform

surface with various topologies, including surfaces with triangles,

quads, n-gons, and a mix of them. Second, our modeling approach

clusters and optimizes not only the polygons but also the dihedral

angles between the polygons, aiming to facilitate the clustering of

shell elements in the later stage.

Modeling structures with discrete equivalence classes. Modeling

3D structures with predefined discrete equivalence classes, also

called tileable blocks [Wang et al. 2021b], is a well-known problem.

A number of computational approaches have been developed to

approximate a given 3D shape with Lego bricks [Luo et al. 2015;

Testuz et al. 2013] or a Zometool construction set with nine struts of

different lengths and one universal joint [Zimmer and Kobbelt 2014;

Zimmer et al. 2014]. These tileable blocks, such as universal building

blocks [Chen et al. 2018] and the Zometool construction set [Shen

et al. 2020] have also been used to build infill structures for cost-

effective 3D fabrication. Besides these well-known tileable blocks,

researchers have developed new tileable blocks for modeling 3D

structures, including interlocking voxels [Zhang and Balkcom 2016],

SL blocks [Shih 2016], and various space filling blocks [Akleman

et al. 2020; Krishnamurthy et al. 2020; Subramanian et al. 2019].

Rather than developing predefined tileable blocks for pre-rationali-

zation, Brütting et al. [2021] addressed a post-rationalization prob-

lem of designing a bespoke kit of parts with beams of different

lengths and ball-like joints for modeling multiple input frame struc-

tures. Compared with pre-rationalization, post-rationalization al-

lows tomodel structures with various formswithout being restricted

by the shapes of predefined tileable blocks. In our paper, we address

a new post-rationalization problem: computing a small set of tem-

plate elements to model a seamless and buildable shell structure

that closely resembles a given freeform surface.

Optimizing masonry shell structures. Optimization of masonry

shell structures is an active area of research in the computer graphics

community. Some researchers [Wang et al. 2019; Whiting et al. 2009,
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Fig. 3. Overview of our approach. (a) Given a 3D guiding surface and a 2D tessellation, (b) we initialize a base polygonal mesh T by mapping the

2D tessellation onto the 3D surface using the as-rigid-as-possible algorithm [Liu et al. 2008]. (c) Next, we optimize the mesh vertices to cluster the

polygons as well as dihedral angles between the polygons. (d) Finally, we optimize the augmented angles to cluster the shell elements for modeling

a shell structure M′ with discrete equivalence classes. (e) A 3D printed prototype that validates the structure’s buildability.

Fig. 4. Parameterizing the geometry of (right) a shell structure using

(left) a base polygonal mesh with augmented vectors (in red).

2012] directly optimize geometry of shell structures to guarantee its

structural stability while others [de Goes et al. 2013; Liu et al. 2013;

Ma et al. 2019; Miki et al. 2015; Panozzo et al. 2013; Tang et al. 2014;

Vouga et al. 2012] design self-supporting shapes using geometry

processing methods. Different from the above works that optimize

for structural stability, we are the first to optimize the geometry

of shell structures for reusability of the shell elements. While self-

supporting is outside the scope of this paper, the above approaches

can be potentially used in combination with our method to create

self-supporting shell structures that are cost-effective to produce in

practice.

3 MODELING SHELL STRUCTURES

In this section, we model and parameterize the geometry of a shell

structure with discrete equivalence classes, and propose three er-

ror metrics to evaluate seamlessness and buildability of the shell

structure.

Parameterizing shell structures. We parameterize the geometry of

a shell structureM with convex elements by using a 3D polygonal

mesh T where each edge is augmented with a vector; see Figure 4.

Given a 3D freeform surface S, we first remesh it to obtain a 3D

polygonal mesh T, called a base mesh, in which each polygonal face

is planar and convex. Specifically, we obtain the base mesh T by

Fig. 5. Two constraints

on the augmented angles

{𝜃𝑖 𝑗 }; see Equations 1

and 2.

parameterizing the surface S using the as-rigid-as-possible algo-

rithm [Liu et al. 2008] and then mapping a 2D tessellation with con-

vex polygons onto the surface. Since the tessellation is unbounded

in 2D, users are allowed to adjust its location, orientation, and scale,

relative to the surface S, to specify its portion that is mapped to the

surface [Song et al. 2013]. Users are also allowed to choose a desired

2D tessellation for the mapping, and the 2D tessellation is preferred

to be a monohedral, dihedral, or trihedral tiling to limit the number

of distinct tiles in the tessellation; see Figure 3(a&b).

We construct a shell element 𝑆𝑖 for each face 𝐹𝑖 in the mesh T. To

represent the side faces of shell elements, we augment each edge

e𝑖 𝑗 in the base mesh T with a unit vector n𝑖 𝑗 that is orthogonal

to e𝑖 𝑗 ; see Figure 4 (left). Each edge e𝑖 𝑗 of the mesh T together

with the augmented vector n𝑖 𝑗 define a 3D partitioning plane 𝑃𝑖 𝑗 ,

whose normal is e𝑖 𝑗 × n𝑖 𝑗 . For each face 𝐹𝑖 , we intersect all the 3D

planes associated with its edges to construct convex geometry of

the corresponding shell element 𝑆𝑖 . Since the intersected geometry

is generally infinite, we trim each element 𝑆𝑖 using offset planes

with normal ±N𝑖 and offset distance ±0.5𝜏 , where N𝑖 is the normal

of face 𝐹𝑖 and 𝜏 is the shell thickness; see Figure 4 (right).

According to our modeling strategy, each side face of a shell

element induces a dihedral angle 𝜃𝑖 𝑗 ∈ [0, 𝜋) between the base

polygon 𝐹𝑖 and the partitioning plane 𝑃𝑖 𝑗 ; see Figure 5. We call

these dihedral angles {𝜃𝑖 𝑗 } augmented angles. In particular, these

augmented angles are subject to the following constraint:

𝜃𝑖 𝑗 + 𝜃 𝑗𝑖 = 𝛼𝑖 𝑗 (1)

where 𝛼𝑖 𝑗 ∈ [0, 2𝜋) is the dihedral angle between two neighbor-

ing base polygons 𝐹𝑖 and 𝐹 𝑗 ; see again Figure 5. Moreover, when

choosing each partitioning plane 𝑃𝑖 𝑗 , it has to be close to the plane

bisecting the dihedral angle 𝛼𝑖 𝑗 . This makes the shell structure ap-

proximate the guiding surface nicely with planar shell elements that

ACM Trans. Graph., Vol. 42, No. 4, Article xxx. Publication date: August 2023.
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Fig. 6. We (left) cluster elements in a shell structure M and (right)

model a shell structure M′ with discrete equivalence classes by replac-

ing each clustered element in the structureMwith a template, resulting

in undesirable contacts, gaps, and overlaps between the elements (see

the zooming views).

have the same thickness. This constraint is formulated as:
�

�𝜃𝑖 𝑗 − 𝛼𝑖 𝑗/2
�

�

< 𝛽 (2)

where 𝛽 is a threshold set as 10◦ in our experiments. Figure 5 shows

two partitioning planes in green and red respectively, where the red

plane does not satisfy Equation 2. This results in visibility of the

purple element’s side face, hurting the structure’s aesthetics.

Thanks to our parameterization method, shell elements contact

one another exactly with their planar side faces in the structure

M, making the structure seamless and buildable; see again Figure 4

(right). However, the problem with the structureM is that each shell

element is likely to have a unique shape, making them unable to be

reused. To model a shell structure with discrete equivalence classes,

we partition the 𝑁 shell elements in the structureM into 𝐾𝑆 clus-

ters according to the elements’ shape similarity; see Figure 6 (left).

We generate a template shell element for each cluster and replace

each original element in the structure M with the corresponding

template. By doing this, we model a shell structureM′ with discrete

equivalence class; see Figure 6 (right) and Section 4. The reusability

of shell elements in the structure M′ is measured using 𝑁 /𝐾𝑆 .

Three error metrics. The cost of reusing shell elements is that the

structure M
′ may have undesirable contacts, gaps, and overlaps

between the elements, making the structureM′ not seamless and/or

not buildable; see again Figure 6 (right). These errors are a result of

the shape difference between each original element and the template

used for replacement. We propose the following metrics to measure

these errors:

• Contact error occurs when the two side faces of two adjacent shell

elements are not parallel; see Figure 7 (left). We measure the error

by computing the dihedral angle between the two side faces.

• Gap error is caused by a mismatch between the two side faces of

two adjacent elements, resulting in a separation or gap between

them; see Figure 7 (middle). We measure the error by computing

the gap volume and normalize it by the average volume of all the

elements in the structure M′.

Fig. 7. We propose (bottom) three error metrics to evaluate seam-

lessness and buildability of shell structures where (top) the original

elements are replaced with a small set of templates.

• Overlap error is caused by a mismatch between the two side

faces of two adjacent elements, resulting in one element passing

through or penetrating the other; see Figure 7 (right). We measure

the error by computing the overlap volume and normalize it by

the average volume of all the elements in the structure M′.

It is worth noting that either an overlap or gap error can occur at

each contact, depending on whether two elements penetrate each

other at the contact or not. To evaluate these errors, we compute the

above three types of errors for each contact in the structureM′, and

calculate the average and maximum for each error. We consider a

shell structureM′ is seamless and buildable only when the following

conditions are satisfied:
𝐶avg < 𝑡c_avg, 𝐶max < 𝑡c_max

𝐺avg < 𝑡g_avg, 𝐺max < 𝑡g_max (3)

𝑂avg < 𝑡o_avg, 𝑂max < 𝑡o_max

where 𝐶avg and 𝐶max are the contact errors, 𝐺avg and 𝐺max are the

gap errors, and 𝑂avg and 𝑂max are the overlap errors, 𝑡c_avg, 𝑡c_max,

𝑡g_avg, 𝑡g_max, 𝑡o_avg, and 𝑡o_max are user specified thresholds (set

as 2◦, 10◦, 0.005, 0.05, 0.005, and 0.05 in all our experiments).

In Section 5, we optimize vertices of the base mesh T as well as

the augmented angles {𝜃𝑖 𝑗 } (subject to Equations 1 and 2) consecu-

tively to generate a small set of template elements for producing a

shell structureM′ that satisfies the conditions in Equation 3; see Fig-

ure 3(c&d). We show that our modeled shell structureM′ is buildable

by making a physical prototype; see Figure 3(e).

4 CLUSTERING SHELL ELEMENTS

In this section, our goal is to partition the 𝑁 shell elements {𝑆𝑖 } in

the structure M into 𝐾𝑆 clusters according to their shape similarity.

A typical approach to clustering shell elements is to define a metric

that measures similarity between the shell elements and then to

cluster the shell elements based on the metric. We introduce this

typical approach, point out its limitations for addressing our prob-

lem, and then present a new hierarchical approach to clustering

shell elements.

Typical approach and its limitations. Given two shell elements

𝑆𝑖 and 𝑆𝑖 , we denote their base polygons as 𝐹𝑖 and 𝐹𝑖 , respectively.

We assume that the two base polygons 𝐹𝑖 and 𝐹𝑖 are planar and

have the same number of vertices, denoted as 𝐿. We measure the

similarity of two shell elements 𝑆𝑖 and 𝑆𝑖 by generalizing the metric

ACM Trans. Graph., Vol. 42, No. 4, Article xxx. Publication date: August 2023.
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Fig. 8. Our hierarchical approach to clustering shell elements. Left: the

geometry of each shell element is represented by edge lengths (𝑙1, .., 𝑙𝐿),

diagonal lengths (𝑑1, .., 𝑑𝐿−3), and augmented angles (𝜃1, .., 𝜃𝐿).

Right: a three-level hierarchy of clusters computed by our approach,

where the leaf nodes represent final clusters of shell elements.

of measuring similarity of polygons in [Fu et al. 2010; Singh and

Schaefer 2010]:

𝑠 (𝑆𝑖 , 𝑆𝑖 ) = min
𝑘

2𝐿
∑︁

𝑙=1

∥v𝑙 −𝑇𝑘 (ṽ𝑙 )∥
2, (4)

where v𝑙 and ṽ𝑙 are vertices on shell elements 𝑆𝑖 and 𝑆𝑖 , respectively,

and 𝑇𝑘 represents a rigid transformation. 𝑠 (𝑆𝑖 , 𝑆𝑖 ) = 0 indicates that

the two shell elements have exactly the same shape. We search for

the best possible registration between the two shell elements among

the 𝐿 different ways to correspond vertices from the two elements.

Note that we do not allow the transformation that flips the top and

bottom faces of one element to correspond to the other element

since a shell element’s top and bottom faces usually have different

appearance in practice. We find the best rigid transformation 𝑇𝑘 in

Equation 4 using the method of [Arun et al. 1987].

A typical approach to clustering the shell elements is to minimize

intra-cluster variances measured using the above metric, e.g., by

using 𝑘-means clustering. However, this typical approach is not suit-

able for our problem since it clusters shell elements in the explicit

geometry space (i.e., polyhedron) instead of the parameter space

(i.e., base polygon with augmented angles). We prefer to cluster shell

elements and optimize their geometry in the parameter space due

to its low dimension as well as independence among the parameters.

In detail, a base polygon’s shape can be defined by 2𝐿−3 parameters

where 2𝐿 parameters define positions of the 𝐿 vertices of a planar

polygon and −3 is due to the three degrees of freedom (1 for rota-

tion and 2 for translation) to transform the planar polygon. Hence,

the dimension of the parameter space is 3𝐿 − 3, including 2𝐿 − 3

parameters that define the base polygon’s shape and 𝐿 augmented

angles. In particular, the 2𝐿 − 3 parameters of a base polygon are

independent from the 𝐿 augmented angles. In contrast, the dimen-

sion of the explicit geometry space is 6𝐿 since the polyhedral shape

has 2𝐿 3D vertices. These 6𝐿 variables are highly correlated due to

planarity of the polyhedron’s faces as well parallelism between the

polyhedron’s top and bottom faces.

Our hierarchical approach. We propose a hierarchical approach

to clustering shell elements in the parameter space, which does not

rely on the similarity metric in Equation 4. Our insight is that shell

elements in the same cluster should have the same or similar base

Fig. 9. Our hierarchical approach to clustering planar polygons in a

base mesh (i.e., the first two hierarchies of clustering). (Left) We cluster

all the edges in the mesh according to their length. (Right) We first

cluster polygons accordingly to the assigned edge cluster IDs and then

further partition each cluster of polygons into sub-clusters based on

the length of the diagonal(s) (in red color).

polygons (i.e., base polygons are in the same cluster). We represent

the 2𝐿 − 3 parameters of each base polygon using the lengths of 𝐿

edges and 𝐿−3 diagonals shooting from the same vertex; see Figure 8

(left). Similarly, for base polygons in the same cluster, the lengths

of their corresponding edges are the same or similar. Inspired by

this insight, we propose to cluster shell elements using a three-

level hierarchy based on edge lengths (𝑙1, ..., 𝑙𝐿), diagonal lengths

(𝑑1, ..., 𝑑𝐿−3), and augmented angles (𝜃1, ..., 𝜃𝐿), respectively; see

Figure 8 (right).

For the first hierarchy, instead of directly clustering shell elements

based on edge lengths (𝑙1, ..., 𝑙𝐿), we propose to first cluster all the

edges in the base mesh T based on their lengths and then to cluster

shell elements according to the clustered edges. By this, we can

perform clustering in a space of dimension 1 instead of dimension

𝐿. One necessary condition for this approach to work well is that all

the edges in the base mesh T are well clustered, which is indicated

by a small value of the function

𝐸edge =
∑︁

𝑘

∑︁

𝑖

∥𝑒𝑖
𝑘

− 𝑒𝑘 ∥
2, 1 ≤ 𝑘 ≤ 𝐾𝐸 (5)

where 𝑒𝑖
𝑘
is the length of 𝑖-th edge in the 𝑘-th cluster, 𝑒𝑘 is the

length of the centroid edge of the 𝑘-th cluster, and 𝐾𝐸 is the number

of clusters of edges. To satisfy this condition, we penalize 𝐸edge
when optimizing the base mesh T; see Equation 8. Moreover, we try

different 𝐾𝐸 ’s, starting from a small value such as 1, to find a 𝐾𝐸
that leads to a sufficiently small 𝐸edge.

For the third hierarchy, the challenge of clustering shell elements

based on the ordered list of augmented angles (𝜃1, ..., 𝜃𝐿) is that

these angles are not independent but subject to Equations 1 and 2.

Concerning Equation 1, a necessary condition to achieve a good

clustering performance is that there is a small number of clusters of

dihedral angles {𝛼𝑖 𝑗 } in the base mesh T and the dihedral angles in

each cluster are very close to one another. This condition is indicated

by a small value of the function

𝐸dihed =

∑︁

𝑘

∑︁

𝑖

∥𝛼𝑖
𝑘

− 𝛼𝑘 ∥
2, 1 ≤ 𝑘 ≤ 𝐾𝐷 , (6)

where 𝛼𝑖
𝑘
is the 𝑖-th dihedral angle in the 𝑘-th cluster, 𝛼𝑘 is the

centroid dihedral angle of the 𝑘-th cluster, and 𝐾𝐷 is the number
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of clusters of dihedral angles. To satisfy this condition, we penalize

𝐸dihed when optimizing the base mesh T; see Equation 8. Similarly,

we also try different 𝐾𝐷 ’s to find a 𝐾𝐷 that leads to a sufficiently

small 𝐸dihed. Concerning Equation 2, we limit the possible values of

augmented angles to a small set of discrete values {𝛼𝑖 −𝛼𝑘/2} where

1 ≤ 𝑖, 𝑘 ≤ 𝐾𝐷 , thanks to the clustering of dihedral angles {𝛼𝑖 𝑗 }.

By this, we significantly reduce the space of augmented angles,

enabling a discrete optimization on these angles in Section 5.2.

Our hierarchical approach to clustering shell elements is per-

formed as follows:

(1) Clustering edge lengths (𝑙1, ..., 𝑙𝐿). Since all the edges in the base

mesh T have been partitioned into 𝐾𝐸 clusters, we assign a

cluster ID ∈ {1, ..., 𝐾𝐸 } for each edge of a polygon 𝐹𝑖 , and then

cluster all the polygons based on the assigned edge cluster IDs;

see Figure 9. Two polygons are put in the same cluster if they

have exactly the same edge cluster IDs up to the 𝐿 different

ways to correspond vertices from the two polygons. Ambiguity

occurs when we try to correspond the vertices of two symmetric

polygons; see cluster #3 in Figure 9. In this case, we resolve

the ambiguity by finding the right correspondence between the

vertices via minimizing a similarity metric [Fu et al. 2010; Singh

and Schaefer 2010] of the two polygons 𝐹𝑖 and 𝐹𝑖 .

(2) Clustering diagonal lengths (𝑑1, ..., 𝑑𝐿−3). For polygons in each

cluster of the first hierarchy, we compute their similarity based

on the lengths of 𝐿−3 diagonals, where the diagonals have to be

shot from a pair of corresponding vertices in the two polygons.

Our similarity metric of diagonal lengths is defined as

𝑠 (𝐹𝑖 , 𝐹𝑖 ) = ∥d − d̃∥2, (7)

where d and d̃ are vectors concatenating 𝐿 − 3 diagonal lengths

of polygons 𝐹𝑖 and 𝐹𝑖 , respectively. We partition each cluster in

the first hierarchy into multiple clusters in the second hierarchy

using k-means and the similarity metric. Note that we cannot

cluster diagonal lengths in the same way as clustering edge

lengths in the first hierarchy sincewe rely on the correspondence

of edges between two polygons to choose diagonals for the

clustering. Nodes in the second hierarchy in Figure 8 (right)

represent clusters of polygons in the base mesh T. We denote

the number of clusters of polygons as 𝐾𝐹 .

(3) Clustering augmented angles (𝜃1, ..., 𝜃𝐿). Sincewe have discretized

the possible values of augmented angles, we put shell elements in

the same cluster only when they have exactly the same ordered

list of augmented angles (𝜃1, ..., 𝜃𝐿).

Thanks to the hierarchical strategy, our clustering approach is

scalable and can deal with thousands of elements in a few seconds;

see Figure 16. Moreover, our clustering approach is able to cluster

elements with various shapes such as triangles, quads, n-gons, and

a mix of them; see Figure 12.

Modeling template shell elements. We model a template shell ele-

ment for each cluster of elements, resulting in 𝐾𝑆 templates with

distinct shapes. We compute the template as the centroid of each

cluster in the explicit geometry space instead of the parameter space

since alignment of the shell elements has to be performed in the

former space. In detail, we align all the elements in a cluster using

Fig. 10. Optimizing a base mesh T for 𝐾𝐸 = 3 and 𝐾𝐷 = 7, resulting

in 𝐾𝐹 = 7 clusters of polygons. Box plots of clustered edge lengths,

dihedral angles, and base polygons (represented as similarity metrics

to the cluster centroid) are provided at the bottom. (a) Input base mesh.

(b) Reduce intra-cluster variances for edge lengths and dihedral angles

by minimizing 𝐸1. (c) Reduce intra-cluster variances for base polygons

by minimizing 𝐸2.

rigid transformations computed with Equation 4 and average cor-

responding vertices of all the transformed elements to obtain the

template’s geometry. In case the template contains some non-planar

faces, we fit a plane for each of these non-planar faces and intersect

the fitted planes as well as the planes of the remaining planar faces

to obtain the final geometry of the template.

5 OPTIMIZING SHELL ELEMENTS

A shell structure M′ with discrete equivalence classes usually re-

quires a large number (𝐾𝑆 ) of template shell elements to ensure that

the structure is seamless and buildable by satisfying the conditions in

Equation 3. In this section, our goal is to find an as-small-as-possible

number (𝐾𝑆 ) of template shell elements such that the resulting shell

structureM′ still satisfies the conditions in Equation 3, aiming to

maximize reusability of the shell elements.

We achieve the goal by optimizing the geometry of shell elements

in the structureM′. Directly optimizing the geometry of the shell

elements is challenging due to the large search space. Thanks to our

hierarchical approach to clustering shell elements in Section 4, we

are able to optimize the shell elements hierarchically. Our idea is to

minimize the number (𝐾𝑆 ) of clusters of shell elements by minimiz-

ing the nodes in each level of the hierarchy tree; see again Figure 8

(right). In our optimization, we first optimize the base mesh T to

minimize the number (𝐾𝐸 ) of clusters of edges as well as the number

(𝐾𝐷 ) of clusters of dihedral angles. Then, we optimize the base mesh

T to minimize the number (𝐾𝐹 ) of clusters of base polygons. Lastly,

we optimize the augmented angles {𝜃𝑖 𝑗 } to minimize the number

(𝐾𝑆 ) of clusters of shell elements. We introduce the first two steps

of our optimization in Section 5.1 and the final step in Section 5.2.
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5.1 Optimizing Base Mesh

In Section 4, we assume that edges in the base mesh T are well

clustered for clustering base polygons. We also assume dihedral

angles in the base mesh T are well clustered in order to cluster shell

elements based on the augmented angles. To this end, we partition

the edges and dihedral angles in the mesh T into 𝐾𝐸 and 𝐾𝐷 clusters

respectively, and then optimize vertices of the mesh T to improve

the clustering performance. We start running this optimization with

small values of 𝐾𝐸 and 𝐾𝐷 , gradually increase them, and repeat

the optimization until it converges. The objective function of our

optimization is a weighted sum of different target terms:

𝐸1 = 𝜆1𝐸edge + 𝜆2𝐸dihed + 𝜆3𝐸planar + 𝜆4𝐸surf + 𝜆5𝐸smth . (8)

Here the terms 𝐸edge and 𝐸dihed are defined in Equations 5 and 6

and measure the clustering performance of the edges and dihedral

angles, respectively. The other terms [Bouaziz et al. 2012] are defined

as

𝐸planar =

∑︁

𝑖

𝑃 (𝐹𝑖 ),

𝐸surf =

∑︁

𝑖

∥v𝑖 − c(v𝑖 )∥
2,

𝐸smth =

∑︁

𝑖

∥
∑︁

{𝑖, 𝑗 }∈E

𝜔𝑖 𝑗 (v𝑗 − v𝑖 )∥
2,

where 𝑃 (𝐹𝑖 ) measures the planarity of face 𝐹𝑖 as the sum of squared

distance from the vertices of 𝐹𝑖 to their best fitting plane, {v𝑖 }

denotes the vertices of the mesh T, c(v𝑖 ) is the closest point on the

original base mesh to the vertex v𝑖 , and E denotes the set of mesh

edges. We empirically set the weights as 𝜆1 = 1, 𝜆2 = 2, 𝜆3 = 1,

𝜆4 = 1, and 𝜆5 = 1 in our experiments to balance the impact of

different target terms.

After the optimization, we cluster the polygons in the mesh T

based on the lengths of their edges and diagonals using the approach

in Section 4. For each of the 𝐾𝐹 clusters of polygons, we generate a

template polygon using an approach similar to generating a template

element. To improve the performance of clustering the polygons, we

run another optimization on the mesh T with the objective function:

𝐸2 = 𝐸1 + 𝜆6𝐸polygon (9)

with

𝐸polygon =

∑︁

𝑘

∑︁

𝑖

𝑠 (𝐹 𝑖
𝑘
, 𝐹𝑘 ), 1 ≤ 𝑘 ≤ 𝐾𝐹 ,

where 𝑠 (·) is a function defined in Equation 7, 𝐹 𝑖
𝑘
is the 𝑖-th polygon

in the 𝑘-th cluster, and 𝐹𝑘 is the template polygon of the 𝑘-th cluster.

We set 𝜆6 = 1 in our experiments.

We solve the two optimizations using the ShapeOp library [Bouaziz

et al. 2012, 2014]. In the supplementary material, we explain how the

target terms, 𝐸edge, 𝐸dihed, 𝐸planar, and 𝐸polygon, are represented us-

ing vertices {v𝑖 } of the base mesh T. Figure 10 shows an example of

running our two-stage optimization on the base mesh with fixed 𝐾𝐸
and 𝐾𝐷 , showing that the performance of clustering edges, dihedral

angles, and polygons is significantly improved by our optimization

on the base mesh.

Fig. 11. Optimizing augmented angles. (a) Clustering of polygons

in the optimized mesh T, i.e., two templates 𝑎 and 𝑏. (b) Partition

each polygon cluster into multiple element clusters by initializing

the augmented angles. (c) Build a contact sharing graph to guide the

modification of augmented angles to reduce 𝐾𝑆 . To simplify under-

standing of the graph, we assume instances of each template in (b)

have the same orientation in the structure. (d&e) An example valid

cluster merge operation, where we modify the augmented angle of 𝑎4’s

right face from 80◦ to 85◦ such that 𝑎4’s geometry is exactly the same

as that of 𝑎1. We also modify the left face of 𝑏1 to satisfy Equation 1.

5.2 Optimizing Augmented Angles

In this step, our task is to maximize reusability of the shell elements

in the structureM′ by optimizing the augmented angles {𝜃𝑖 𝑗 } while

fixing the base mesh T. The search space of each augmented angle

is the set of discrete values {𝛼𝑖 − 𝛼𝑘/2} where 1 ≤ 𝑖, 𝑘 ≤ 𝐾𝐷 ; see

again Section 4. We initialize each augmented angle 𝜃𝑖 𝑗 = 𝛼𝑘/2 by

choosing the partitioning plane as the plane bisecting the dihedral

angle 𝛼𝑘 , in order to satisfy Equations 1 and 2. Note that here we

assume 𝛼𝑖 𝑗 ≈ 𝛼𝑘 since all the dihedral angles {𝛼𝑖 𝑗 } have been well

clustered. For the side face of an element that does not contact

any other element in the structure, the initial partitioning plane is

chosen as the plane perpendicular to the element’s base polygon.

Next, we cluster these initial shell elements using the approach in

Section 4 and perform element replacement. Although the initial

result is likely to satisfy all the conditions in Equation 3, it may form

too many clusters which lead to poor reusability of the elements; see

Figure 11(a&b). Hence, we attempt to merge the clusters of elements

to reduce the number (𝐾𝑆 ) of template elements.

Our cluster merge operation is performed as follows. We choose

a cluster 𝐶md to modify and a target cluster 𝐶tg, whose template

element is denoted as 𝑇md and 𝑇tg, respectively. The two clusters,

𝐶md and𝐶tg, have to share the same parent node (i.e., base polygons

from the same cluster) in the hierarchy tree in Figure 8. We modify

the geometry (i.e., some augmented angles) of the template 𝑇md

such that the modified geometry is exactly the same as that of

𝑇tg. By this, we can merge the two clusters 𝐶md and 𝐶tg, reducing

the number (𝐾𝑆 ) of template elements by one; see Figure 11(d&e).
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Fig. 12. Our approach allows generating results with a variety of patterns of a Dome surface, where the corresponding 2D tessellation is shown in

the boxed image. The 2D tessellations in the top, middle, and bottom rows are monohedral, dihedral, trihedral tilings, respectively. For each result,

shell elements falling in the same discrete equivalence class are rendered with the same color.

This modification operation is valid only when it satisfies three

requirements. First, each modified augmented angle is still within

the range defined by Equation 2. Second, modifying a template

element 𝑇md decreases the total number of template elements. This

is because modifying augmented angles of a template element 𝑇md

will immediately change the geometry of the template’s instances.

To satisfy the dihedral angle constraint in Equation 1, we also have

to modify the geometry of the instances’ neighboring elements

in the structure M′, making it possible to introduce new clusters

of elements. Third, we require that the shell structure M
′ with

modified augmented angles should still be seamless and buildable

by satisfying the conditions in Equation 3. We undo the cluster

merge operation if the operation is invalid.

Contact sharing graph. The major challenge of choosing a cluster

merge operation is to satisfy the second requirement above since

modification on a template element 𝑇md is likely to propagate in

the structure M′ due to reuse of template elements and contacts be-

tween instance elements in the structure. To address the challenge,

our insight is that modification on a template element𝑇md with less

propagation will have a higher chance to result in a valid cluster

merge operation. To this end, we propose a contact sharing graph to

guide the cluster merge operation. In this graph, each node repre-

sents a side face of a template element, and each edge represents

a contact sharing by instances of one or two template elements in

the structureM′; see Figure 11(b&c). The contact sharing graph is

usually disconnected, and is composed of a number of connected

subgraphs. For example, there are 14 connected subgraphs in Fig-

ure 11(c), among which 5 subgraphs consist of a single node (in

grey color) and the other 9 subgraphs are visualized in different

colors. The cost of modifying a side face (i.e., the augmented angle)

of a template is measured using ℎ − 1, where ℎ is the number of

nodes of the subgraph that the side face is located at. For example,

the cost of modifying the right face of templates 𝑎1, 𝑎2, 𝑎3, and 𝑎4
in Figure 11(c) are 3, 2, 0, 1, respectively. The cost of choosing a

template (i.e., a cluster) to modify is measured by summing the cost

of modifying each of its side faces.

Cluster merge algorithm. To perform a cluster merge operation,

we have to choose two clusters 𝐶md and 𝐶tg. We choose the cluster

𝐶md guided by the contact sharing graph. In detail, we choose𝑚

(𝑚 = 10 in our experiments) candidates of cluster 𝐶md with the

lowest cost computed above. For each candidate of cluster 𝐶md, we

choose 𝑛 (𝑛 = 10 in our experiments) candidates of the target cluster

𝐶tg in a way that a small modification on the template 𝑇md is nec-

essary. To this end, we measure the difference between templates

𝑇md and𝑇tg upon 𝐿 different ways to correspond the base polygons’

edges, where 𝐿 is the number of edges in the base polygon. The

difference between templates𝑇md and𝑇tg is measured by two quanti-

ties: 1) the number of different augmented angles for corresponding

edges and 2) the difference in augmented angles for corresponding

edges. We give the first quantity a higher priority.

For each of the 𝑚 candidates of cluster 𝐶md, we perform the

cluster merge operation with each of the 𝑛 candidates of cluster𝐶tg
and check its validity. This process terminates once a cluster merge

operation succeeds; see Figure 11(d&e) for an example. Our cluster

merge algorithm is performed recursively. At each recursion, we

update the contact sharing graph, select candidates of clusters 𝐶md

and 𝐶tg, and perform the cluster merge operation until success. We

run our algorithm until the number of clusters cannot be reduced.

Please refer to the accompanying video for a running example of

the cluster merge algorithm.

ACM Trans. Graph., Vol. 42, No. 4, Article xxx. Publication date: August 2023.



Masonry Shell Structures with Discrete Equivalence Classes • xxx:9

Fig. 13. Our approach allows generating results from a variety of freeform guiding surfaces. From left to right and then top to bottom: Arcuation,

Curved Surface, Canopy, Monkey Saddle, Roof, Blob, Arch, Snow, Vouga Surface, Botanic Bubble, Pentagon, and Aquadom.

6 RESULTS

Implementation. We implemented our approach in C++ and li-

bigl [Jacobson et al. 2018] on a desktop computer with a 3.7GHz

CPU and 16GB memory. Our approach hierarchically clusters and

optimizes shell elements to reduce the three error metrics in Sec-

tion 3 for a fixed𝐾𝐸 (# cluster of edges) and𝐾𝐷 (# cluster of dihedral

angles). If the optimization does not achieve the specified tolerance

in Equation 3, we simply increase the 𝐾𝐸 and/or 𝐾𝐷 and continue

the optimization. Our optimization terminates when we find 𝐾𝑆
template elements that satisfy conditions in Equation 3.

Our approach allows modeling shell structures with discrete

equivalence classes for a variety of patterns. Figure 12 shows 15 dif-

ferent patterns on a Dome surface, which contains triangles, quads,

pentagons, hexagons, octagons, dodecagons, and a mix of them.

In general, reusable shell elements are distributed symmetrically

over the symmetric surface. We tested our modeling approach on

a wide range of surfaces in Figure 13, e.g., Curved Surface with

zero Gaussian curvature, Vouga Surface with both positive and

negative Gaussian curvature, and Aqadom with non-trivial topol-

ogy. Our approach automatically puts elements of the same class

at locations on each surface with the same or similar curvature.

Please refer to the supplementary material for the input surface and

optimized base mesh of each result shown in Figure 13.

Table 1 summarizes statistics of the results presented in the pa-

per, where each input surface model has been normalized such that

the longest edge of the model’s bounding box has length of 2. The

optimized base mesh usually has a few clusters of edges (𝐾𝐸 ) and

dihedral angles (𝐾𝐷 ). In our results, we find that the number of

Fig. 14. Reusability of shell elements becomes worse when the cur-

vature of a guiding surface becomes more complex, e.g., from (left) a

single-curved surface, (middle) a double-curved surface, to (right) a

freeform surface.

template polygons 𝐾𝐹 is much smaller than the number of template

shell elements 𝐾𝑆 , which confirms the difficulty of reusing shell

elements caused by their side faces. All our modeled shell struc-

tures appear to be seamless due to a small tolerance on the error

metrics (𝐶avg, 𝐶max, 𝐺avg, 𝐺max, 𝑂avg, and 𝑂max). Our hierarchical

cluster-and-optimize approach is efficient. The base mesh optimiza-

tion usually takes less than one second while the optimization on

augmented angles can take a fewminutes to an hour. For each result,

we provide 3D models of the input surface, optimized base mesh,

computed template elements, and modeled shell structure in the

supplementary data.

In our experiments, we find that reusability of shell elements

(measured with 𝑁 /𝐾𝑆 ) highly depends on the guiding surface’s
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Fig. 15. Average errors of the three metrics decrease when a larger number of template elements are allowed to model a shell structure with

𝑁 = 328 elements. Few template elements lead to obvious gaps and overlaps in the structure; see the left two sampled results. The horizontal purple

line indicates the thresholds that we set on the error metrics.

Table 1. Statistics and timings. We report the input surface, shell

thickness (𝜏), number of shell elements (𝑁 ), number of clusters of edges

(𝐾𝐸 ), dihedral angles (𝐾𝐷 ), base polygons (𝐾𝐹 ), and shell elements

(𝐾𝑆 ), reusability (𝑁 /𝐾𝑆 ), average and maximum errors to evaluate

the resulting shell structureM′, as well as timings to optimize the base

mesh and augmented angles respectively.

shape. A guiding surface with simple curvature usually leads to

high reusability of shell elements, such as developable surfaces

Arcuation and Curved Surface in Figure 13. A guiding surface

with symmetric shape also improves reusability of shell elements,

such as Canopy, Roof, and Snow in Figure 13. To validate this

observation, we conduct an experiment to model shell structures for

single-curved, double-curved, and freeform surfaces, respectively,

Fig. 16. Reusability of shell elements improves when there are more

shell elements used for approximating an input smooth surface; see

also statistics in Table 1.

using the same pattern; see Figure 14. A single template shell element

can be used to tile the whole shape of the single-curved surface,

which is a half cylinder. However, reusing shell elements becomes

harder when the surface curvature gets more complex. We conduct

one more experiment to study the relation between reusability of

shell elements and the number of elements used to approximate

a guiding surface; see Figure 16. We find that reusability of shell

elements increases when we approximate a smooth surface with a

larger number of elements. One possible reason to explain this is

that a guiding surface can be approximated better by using more

planar elements (i.e., 𝐸surf in Equation 8) and thus there is a higher

tolerance on the clustering errors.

We also study the relation between reusability of shell elements

and tolerance on the errors in seamlessness and buildability of

shell structures. In detail, we change our approach by fixing the

number (𝐾𝑆 ) of template elements and running our optimization

to minimize the errors for a structure with 𝑁 = 328 elements. We

run our optimization for different 𝐾𝑆 ’s and plot average errors
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Fig. 17. 3D printed shell elements and assembled shell structures.

Shell elements in the same class are painted with the same color.

of the three metrics; see Figure 15. When only a single template

is allowed, there exist many gaps and overlaps in the structure

and the structure cannot closely approximate the input surface.

When more templates are allowed, all the three errors decrease

and the structure can approximate the surface better. Undesirable

contacts, gaps, and overlaps become unnoticeable when more than

𝐾𝑆 = 120 templates are used. Note that undesirable contacts, gaps,

and overlaps can be completely removed (i.e., zero errors) by further

increasing 𝐾𝑆 = 𝑁 = 328. In this case, our shell structure with

discrete equivalence classes is degenerated into conventional ones

with no reuse of the elements.

Fabricated prototypes. To validate buildability, we fabricated four

shell structures modeled by our approach using Ultimaker S3 printer

with tough PLA material, including Dome, Arch, Hyperbolic, and

Roof; see Figure 17. In detail, we 3D print the shell elements, paint

elements from the same class using the same color, and assemble

the elements together with a large boundary part to form the final

structure. All the four structures are buildable and the appearance

of each physical prototype is consistent with its virtual counter-

part, showing that our specified tolerance on the gap and overlap

errors are acceptable in practice. Interestingly, we find that three

(i.e., Dome, Arch, Hyperbolic) of the four structures can be self-

supporting without using anymaterial like glue to bind the elements

together. In addition, the Dome structure is not only self-supporting

but also able to bear external load up to 160g without structural

Fig. 18. Optimized shell structures (left) before and (right) after re-

placing each element with a template. Note that the two structures

have very similar geometry.

collapse. Self-supporting of the three shell structures demonstrates

that the small overlap, gap, and contact errors introduced in our

modeling process are possible to be acceptable in practice such that

the contacts among the 3D printed elements are still able to transmit

internal forces within each of the three structures to balance the

external force (e.g., gravity). Please watch the accompanying video

for demos.

Discussion. Existing static analysis methods such as the equilib-

rium method [Kao et al. 2022; Whiting et al. 2009; Yao et al. 2017]

cannot be directly used to analyze structural stability of our mod-

eled shell structures due to the contact, gap, and overlap errors

even though these errors are small in our structures. Currently, we

employ the equilibrium method to analyze structural stability of the

shell structure before the template replacement instead. We assume

the two structures (before and after the template replacement) have

similar structural stability since they have very similar geometry;

see Figure 18. Similarly, we analyze buildability of the shell structure

before the template replacement by finding a collision-free disas-

sembly plan. The shell structure is considered as buildable if we can

find such a disassembly plan. We also assume the two structures

(before and after the template replacement) have similar buildability.

We consider developing computational methods to directly analyze

structural stability and buildability of our modeled shell structures

as an important yet challenging future work.

7 CONCLUSION

This paper studies a challenging problem of modeling masonry shell

structures with discrete equivalence classes that closely approximate

a given freeform surface. We define three error metrics that evaluate

seamlessness and buildability of the shell structures and propose an

approach to find a small number of template elements for modeling

a shell structure whose error metrics are within user-specified toler-

ances. Our modeling approach is based on hierarchically clustering

and optimizing geometric primitives, from edges, dihedral angles,

base polygons, to polyhedrons. Our approach allows modeling shell

structures with discrete equivalence classes that can approximate a

wide variety of freeform surfaces using template elements with dif-

ferent shapes. We demonstrate buildability of our shell structures by

3D printing four prototypes, three of which can be self-supporting.
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Limitations and future work. Our work has several limitations

that open up interesting directions for future research. First, we can-

not guarantee that our modeled shell structures are self-supporting

due to the challenge of analyzing their structural stability. Second,

we assume that the shape of each shell element is a convex polyhe-

dron that contacts one another with planar faces. One interesting

future work is to generalize our modeling approach to support

shell elements with concave shapes and curved contacts, which has

potential to improve stability of the whole structure [Wang et al.

2021a]. Third, our modeling approach optimizes the geometry of

the base mesh as well as the augmented angles while keeping the

surface tessellation fixed. Extending the approach to also optimize

the tessellation as well as the mapping of the tessellation onto the

input surface is an interesting research challenge. Lastly, we are

interested in studying shell structures with discrete equivalence

classes where the elements interlock with one another to form a

stable structure [Song 2022].
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