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A B S T R A C T

The turbulent wake generated by a horizontal circular cylinder in free-surface flows of increasing shallowness
with submergence-to-diameter ratios between 0.5 and 2.1 are investigated using large-eddy simulation. At
Froude number (𝐹𝑟) = 0.26, the free-surface deformation is small with little influence on the wake, whereas
at 𝐹𝑟 = 0.53 there is a drop in the free-surface downstream of the cylinder that impacts the coherence of the
vortex shedding. Irrespective to the relative submergence, the close location of the cylinder to the bottom wall
generates an asymmetric von-Kármán vortex street. Proper Orthogonal Decomposition (POD) is used to analyse
the spatio-temporal coherence of the turbulent structures shed in the cylinder wake. The spatial patterns of
the first two POD modes, those containing the most energy, depict the von-Kármán vortices. As 𝐹𝑟 increases,
the energy content of the first pair of POD modes decreases from 56% at 𝐹𝑟 = 0.26 to 26.8% at 𝐹𝑟 = 0.53,
as large-scale vortices lose coherence more rapidly with shallower conditions. This energy redistribution leads
to the smaller flow structures to contain a relatively higher energy when 𝐹𝑟 is larger. The frequency of the
dominating vortex shedding determined from the spectra of the POD temporal coefficients unveils that the
first two coefficients feature a dominant peak at the von-Kármán vortex shedding frequency. At 𝐹𝑟 < 0.45, the
reconstructed flow field using the first 20 POD modes agrees well with the instantaneous velocities from LES,
whereas free-surface effects on the wake dynamics at increasing 𝐹𝑟 requires more POD modes to reconstruct
the flow field with reduced error.
1. Introduction

The flow around a circular cylinder has been a classical and well-
studied fundamental problem in fluid mechanics, which has been of
interest to various areas of engineering and fundamental research due
to its practical applications, such as offshore structures, pipelines or
hydraulic structures. Recently in applications in more complex envi-
ronments and cylinder arrangements relate the construction of woody
debris dams for natural flood management [1], whose goal is to allevi-
ate flood peaks. Problems with flow-induced vibration are prevalent in
many of these engineering applications due to the periodic shedding of
Kármán vortices [2,3]. In the construction and maintenance of sub-sea
cables is critical to avoid any large vibration that can lead to a struc-
tural failure or even to long-term fatigue issues. Pipelines placed on
erodible beds can induce a change in the flow dynamics that eventually
causes sediment erosion that eventually leads to scour underneath the
pipe, causing the pipeline to become a free-spanning structure likely to
suffer from flow-induced loadings [4]. The understanding of the effects
of cylinders in the surrounding environment remains a key topic.
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Recent studies in the flow around circular cylinder cylinders have
extended to incorporate the impact of asymmetric boundary conditions,
i.e. near free or fixed surfaces [5]. The complex interaction of the
cylinder wake and the distortion of the free surface leads to a more
unsteady flow, altering the intrinsic properties and large-scale wake
patterns associated with traditional isolated cylinder flows [6]. Whilst
the flow past a circular cylinder in unbounded conditions has been
extensively investigated for a wide range of Reynolds numbers [7,8],
the modifications in the shear-layers and vortex shedding that can occur
when the cylinder is positioned near a deformable free surface has
received limited attention to date. In addition to the Reynolds number
(𝑅𝑒 = 𝑈0𝐷∕𝜈, where 𝑈0 the inflow velocity, 𝐷 the cylinder diameter,
and 𝜈 the kinematic viscosity of the fluid) that accounts for the tur-
bulence regime; the effects of the free surface leads to the addition of
three dimensionless parameters, namely the bulk Froude number (𝐹𝑟 =
𝑈0∕

√

𝑔𝐻 with 𝑔 the gravitational acceleration and 𝐻 the total water
depth), the local Froude number (𝐹𝑟ℎ = 𝑈𝑡∕

√

𝑔ℎ with ℎ and 𝑈𝑡 denote
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the free-surface elevation overtopping the cylinder from its top side
and velocity at this location, respectively), and the submergence ratio
(ℎ∕𝐷). The local Froude number is suitable to characterise the effect
of the free-surface impact on the flow dynamics shortly downstream of
the submerged cylinder [9].

Sheridan et al. [9] conducted one of the first experimental studies on
cylinders near a free surface using Particle Image Velocimetry (PIV) for
𝐹𝑟 = 0.47–0.72, ℎ∕𝐷 = 0–0.75 and 𝑅𝑒 = 5,990–9,120. They found that
the unsteady interaction of the three separated high-vorticity regions
from the free surface, and top and bottom ends of the cylinder, resulted
in a jet-like flow with three different states including: attachment to
the free surface, to the cylinder, and an intermediate state in between
these. Reichl et al. [5] numerically investigated the flow past a single
cylinder close to a free surface in laminar flow (𝑅𝑒 = 180) over a
wide range of submergence ratios from 0.1 to 5.0. For low 𝐹𝑟, the
surface deformations were small, becoming more noticeable when 𝐹𝑟
exceeded 0.3. They showed that the 𝐹𝑟ℎ was critical to account for
free-surface undulations and wave breaking. At large 𝐹𝑟ℎ, the free-
surface distortion is larger and leads to a diffusive flux of vorticity
from the induced surface curvature, resulting in a substantially more
asymmetric wake downstream of the cylinder. Kahraman et al. [10]
studied instantaneous and time-averaged flow patterns around a hori-
zontal circular cylinder in shallow flows at 𝐹𝑟 = 0.41–0.71 and 𝑅𝑒 =
1,124–3,374 using PIV. 𝐹𝑟 was found to be a driving parameter linked
to the reattachment position to the free surface from the separated
shear layers of the cylinder. Bouscasse et al. [11] used Smoothed
Particle Hydrodynamic (SPH) to perform single-phase simulations that
extended the range of global 𝐹𝑟 up to 2.0 and provided an extensive
flow taxonomy from the evaluation of the vorticity fields and free-
surface distortions. They found a new wake state at 𝐹𝑟 ≈ 1, and the
von-Kármán vortex shedding was observed to be recovered at high
Froude numbers (𝐹𝑟 ≈ 2). Further, Moballa et al. [12] observed the
transition of the deformed free surface from regular waves to breaking
waves, suggesting the close link between the hydrodynamic forces on
the cylinder and submergence ratio. Zhao et al. [13] conducted large-
eddy simulations for a submerged circular cylinder in a shallow channel
flow for 𝐹𝑟 = 0.2 and 0.6 based on the cylinder’s diameter and 𝑅𝑒
= 7,550 to investigate the effects of the free surface distortion on the
flow fields and hydrodynamics. While no obvious distortion of the free
surface was found at 𝐹𝑟 = 0.2, they classified the intense free-surface
distortion occurring at 𝐹𝑟 = 0.6 in three categories: a hydraulic jump in
the overtopping region, wave generation region near the free surface,
and a water level recovery further downstream.

Adequate quantification of how the unsteady turbulent wake dy-
namics changes requires the use of advanced techniques such as Proper
Orthogonal Decomposition (POD) which is a reliable and explicit statis-
tical methodology for identifying coherent patterns in transient flows.
POD identifies the modes with the highest energy content and allows
to represent the flow dynamics in a low-dimensional manner [14]. The
use of reduced-order modelling via POD can provide new insights into
the turbulent structures and also save computational time to enhance
the efficiency of numerical models in fluid mechanics [15–17]. The
adoption of POD to identify the largest scales of motion in cylinder
flows has been successfully done in previous studies. For instance, Re-
himi et al. [18] conducted an experimental study of the impact of wall
confinement on the wake formation behind a circular cylinder at 𝑅𝑒
below 277 using PIV, and employed POD for a filtering purpose and
to extract the energetic contribution of different modes. Sen et al. [19]
conducted a numerical simulation of two-dimensional laminar flow past
a circular cylinder at 𝑅𝑒 = 100 using a co-counter flow with various
fluids to try to suppress vortex shedding by jet injection. They used POD
to identify the dominant modes and their respective enstrophy distri-
bution for the vorticity field. Wang et al. [20] investigated the near
wake of a wall-mounted finite-length square cylinder applying POD
to the PIV data, with the main focus on the correlation between flow
2

structures and POD coefficients. Mishra and De [21] investigated the o
suppression of vortex shedding using a passive flow control technique
at 𝑅𝑒 = 100–500, and employed POD to quantify its effectiveness and
also to investigate the dominant vortical structures.

To date most studies investigating free-surface cylinder flows con-
sidered mostly laminar flow regimes at low Reynolds numbers. Thus,
the impact of free-surface proximity on the wake structures behind
a cylinder in turbulent flow conditions has not been fully addressed,
which is challenging as the vortical structures lose coherence faster at
higher Reynolds number flows as viscosity forces diminish. The present
study aims at evaluating the influence of free-surface effects on the
wake downstream of a horizontal cylinder at 𝑅𝑒 = 13,333 with five
submergence ratios ranging from ℎ∕𝐷 = 2.1 to 0.5 and resolved with
Large-Eddy Simulation (LES). A detailed quantification of the devel-
oped wake dynamics is performed using POD, necessary to understand
how the governing flow mechanisms vary with submergence depth.

The paper is structured as follows: the governing equations for
LES are discussed in Section 2 together with the POD methodology.
Section 3 presents the results including the instantaneous and the
turbulent flow field obtained from LES at the different submergence
depths considered, and then reports a detailed description of the flow
structures based on their POD spatial modes, temporal coefficients,
and energy distribution. The reconstructed velocity field using different
numbers of POD modes is also discussed. Finally, the main findings of
this study are discussed in Section 4.

2. Numerical framework

2.1. Computational model

The in-house code Hydro3D is used to perform large-eddy sim-
ulations [22], which is based on the finite differences method with
a staggered storage of velocities in rectangular Cartesian grids and
was shown to be computationally very efficient [23]. The code has
been well validated in a series of challenging hydro-environmental
engineering problems, such as tidal steam turbines [24], flow over
bridge abutments [25], solitary waves [26], free-surface flow over
square bars [27,28] and in pipes [29], or rough beds [30–32], among
others. Hydro3D is based on the LES approach in which the energetic
portion of the flow is explicitly resolved and the small-scale turbulence
is modelled using a sub-grid scale model [33]. The Wall-Adapting
Local Eddy-viscosity (WALE) sub-grid scale model from Nicoud and
Ducros [34] is employed to compute the effects of the unresolved small-
scale turbulence. Hydro3D solves the spatially-filtered Navier–Stokes
equations for incompressible flow, that read:
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (1)

𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

= −1
𝜌
𝜕𝑝
𝜕𝑥𝑖

+ 𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
−

𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+ 𝑓𝑖 + 𝐹𝑠𝑓+𝑔𝑖 (2)

here 𝑢𝑖 and 𝑢𝑗 are the resolved velocity vectors (𝑖 or 𝑗 = 1, 2, and 3
epresent 𝑥-, 𝑦- and 𝑧-direction, respectively; and similarly, 𝑥𝑖, 𝑥𝑗 repre-
ent the spatial location vectors in the three spatial directions; 𝜌 is the
ensity of the fluid, 𝑝 is the resolved pressure, 𝜈 is the fluid kinematic
iscosity, 𝜏𝑖𝑗 is the subgrid-scale stresses, 𝑓𝑖 represents external forces
alculated using the direct forcing method proposed by Uhlmann [35]
hich is a diffused interface method that enforces a no-slip condition at

he immersed boundary points comprising the geometry of the circular
ylinder, 𝐹𝑠𝑓 is the surface tension force, and 𝑔𝑖 is the gravitational
cceleration. A fractional step method is employed to advance the
imulation in time using a three-step low-storage Runge–Kutta scheme
ith a multi-grid method for the resolution of the Poisson’s equation

or pressure. The diffusive terms in the Navier–Stokes equations are
pproximated by second-order central differences, while convective ve-
ocity fluxes in the momentum conservation equation and the advection
quation from the level-set method are approximated using a 5𝑡ℎ-

rder weighted essentially non-oscillatory (WENO) scheme. The main
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advantage of the WENO scheme is its capability to achieve the nec-
essary compromise between numerical stability and physical accuracy
when simulating two-phase flows [23]. Hydro3D is parallelised via a
Message Passing Interface (MPI) and employs a domain decomposition
technique to divide the computational domain into rectangular units
that run on multiple CPUs.

The level set method (LSM) developed by Osher and Sethian [36] is
adopted to resolve the free-surface between the air and water phases.
The LSM employs a level-set signed distance function, 𝜙, with values of
𝜙 > 0 denoting water (liquid fraction) whilst 𝜙 < 0 corresponds to the
ir (gas fraction) and has zero value at the air–water interface. The 𝜙

function is tracked over time by solving a pure advection equation in
addition to the mass and momentum conservation equations:
𝜕𝜙
𝜕𝑡

+ 𝑢𝑖
𝜕𝜙
𝜕𝑥𝑖

= 0 (3)

Due to the inherent nature of the advection equation, the mass con-
servation is not ensured, as the required numerical stability criterion
of |∇𝜙| = 1 is not directly satisfied. Therefore, LSM is re-initialised to
ensure that this stability criterion is accomplished at every time step,
which is essential to maintain mass conservation in the computational
domain [37].

A Heaviside function, 𝐻(𝜙), is employed at the air–water transition
to allow a smooth transition and avoid numerical instabilities due to
any sudden change in density (𝜌) and viscosity (𝜇) between the two
immiscible fluids [23,26]. The smoothed Heaviside function is defined
as:

𝐻(𝜙) =

⎧

⎪

⎨

⎪

⎩

0 if 𝜙 < −𝜀
1
2 + 1

2

[

𝜙
𝜀 + 1

𝜋 sin
(

𝜋𝜙
𝜀

)]

if |𝜙| ⩽ 𝜀

1 if 𝜙 > 𝜀

(4)

where 𝜀 is equal to 2.0 ⋅ 𝛥xi, and as defined in Kang and Sotiropoulos
[38] it is an adjustable parameter that sets the thickness of the numeri-
cal smearing at the interface. Finally, the density and dynamic viscosity
fields are calculated as:
𝜌(𝜙) = 𝜌𝑎 +

(

𝜌𝑤 − 𝜌𝑎
)

𝐻(𝜙)

𝜇(𝜙) = 𝜇𝑎 +
(

𝜇𝑤 − 𝜇𝑎
)

𝐻(𝜙)
(5)

where the subscripts 𝑤 and 𝑎 represent water and air, respectively. A
ontinuum Surface Force (CSF) model [39] is implemented as a surface
ension model, which is required to maintain the accuracy of the free-
urface simulation when there is a significant surface breaking and
ir trapping the bulk of fluid forming small droplets and bubbles. The
urface tension force 𝐹𝑠𝑓 is defined as follow:

𝑠𝑓 = 𝜎𝑘𝛿(𝜙)𝑛𝑖 (6)

here 𝜎 is the coefficient of the surface tension equal to 0.728, 𝑘 is the
curvature of the interface and 𝑛𝑖 is the unit vector normal to the liquid
interface, which are computed as:

𝑘 = −∇𝑛𝑖 (7)

𝑛𝑖 =
∇𝜙
|∇𝜙|

(8)

The smoothed delta function, 𝛿(𝜙), in Eq. (6) corresponds to the
patial derivative of the Heaviside function in Eq. (4) and reads:

(𝜙) =

⎧

⎪

⎨

⎪

⎩

1
2

(

1 + cos 𝜋𝜙
𝜀

)

, if |𝜙| < 𝜀

0, otherwise
(9)

2.2. Computational setup

The experimental setup of the horizontal circular cylinder in an
open-channel flow presented in Muhawenimana et al. [40] is adopted.
The cylinder has a diameter (𝐷) equal to 0.05 m and is located at
a vertical gap (𝐺) of 0.025 m measured from the lower side of the
3

Table 1
Details of the cases studied including mean water depth (𝐻),
submergence depth (ℎ), submergence ratio (ℎ∕𝐷), Froude number
(𝐹𝑟) and local Froude number

(

𝐹𝑟ℎ
)

.

𝐻 [m] ℎ [m] ℎ∕𝐷 [-] 𝐹𝑟 [-] 𝐹𝑟ℎ [-]

0.18 0.105 2.1 0.26 0.36
0.15 0.075 1.5 0.31 0.46
0.12 0.045 0.9 0.40 0.59
0.11 0.035 0.7 0.45 0.73
0.10 0.025 0.5 0.53 0.89

cylinder and bottom wall, which corresponds to a gap ratio (𝐺∕𝐷) of
0.5. The computational domain presented in Fig. 1 measures 1.5 m,
0.24 m and 0.01 m in the streamwise (𝑥), vertical (𝑧) and spanwise (𝑦)
directions, respectively. The origin of the 𝑥 coordinates is chosen as
the downstream end of a horizontal cylinder, which is placed 10.5𝐷
rom the upstream inlet. The grid is uniform in the whole domain
ith a resolution of 𝛥𝑥∕𝐷 = 𝛥𝑧∕𝐷 = 0.01 in 𝑥 and 𝑧 direction

respectively, while it is doubled in the spanwise direction. Therefore,
the whole numerical mesh consists of 14.4 million grid cells, namely,
𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 = 3000 × 10 × 480, where 𝑁𝑥𝑖 indicates the number of
grid nodes for each spatial direction.

The bulk velocity
(

𝑈0
)

is equal to 0.2667 m/s, resulting in a
Reynolds number

(

𝑅𝑒 = 𝑈0𝐷∕𝜈
)

equal to 13,333. In order to inves-
tigate the free-surface effect on the wake structure of the cylinder,
the mean water depth (𝐻) is varied, resulting in different submer-
gence depths (ℎ), calculated from the upper side of the cylinder to
the free-surface elevation obtained a posteriori in the simulation (see
Fig. 1). The submergence depth varies with the adopted water depth
in the range of ℎ = 0.025–0.105 m, resulting in Froude numbers
(

𝐹𝑟 = 𝑈0∕
√

𝑔ℎ
)

ranging from 0.26 to 0.53. Table 1 provides details of
he water depth, submergence ratio, Froude number, and local Froude
umber for the five cases proposed.

In the current LES, a mean logarithmic velocity profile is prescribed
t the domain inlet according to a smooth log-law distribution with fric-
ion velocity

(

𝑢∗
)

equal to 0.033 m/s obtained from the experimental
velocity measurements [40], which is defined as:
𝑢(𝑧)
𝑢∗

= 1
𝜅
ln
( 𝑧𝑢∗

𝑣

)

(10)

Here 𝜅 = 0.41 is the von-Kármán constant. A convective boundary
condition is used at the outflow. A no-slip boundary condition is
imposed at the bottom boundary and periodic boundary conditions are
used in the spanwise direction. The water surface deformation is calcu-
lated by the level-set method and the top of the domain is treated with
a slip condition. The time step is variable with a Courant–Friedrichs–
Lewy (CFL) condition of 0.2 in order to maintain a stable simulation.
All simulations are executed on 200 CPUs and averaging of the flow
statistics begins after about four flow-through periods (𝑇𝑓 = 𝐿𝑥∕𝑈0,
where 𝐿𝑥 is the length of the domain) after the initial flow transients
have vanished and then continued for about 30–40 flow-through peri-
ods to compute mean flow statistics once the flow is fully develop. The
simulations are then restarted to generate transverse planes at equal
time intervals between successive snapshots. Numerical results from the
LES were validated in a previous LES study in Ouro et al. [6] using
a rigid-lid (RL) approach that represented an undeformed air–water
interface at 𝐹𝑟 = 0.31 in comparison to the laboratory experiments
from Muhawenimana et al. [40].

2.3. Proper orthogonal decomposition

Proper orthogonal decomposition (POD), also known as principal
component analysis (PCA) or Karhunen–Loève decomposition, was first
introduced in the context of turbulence by Lumley [41]. The POD
method is a statistical methodology that can be used to study events
that are expected to exhibit certain dominant recurrent patterns [42],
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Fig. 1. Schematic of the computational domain adopted for the large-eddy simulation with the horizontal cylinder of diameter (𝐷) located at a height 𝐺 from the bottom surface.
The total water depth is denoted by 𝐻 whilst that free-surface elevation overtopping the cylinder is ℎ. The inflow boundary condition with a logarithmic velocity distribution is
also indicated.
with both the direct and snapshots methods have proven effective to
obtain the dominant modes in turbulent flows [43]. Here, the snapshot
POD method proposed by Sirovich [44] is used as it allows to reduce
the number of data required during the POD procedure. The POD
analysis is performed using the LES data obtained at 𝑥𝑧-plane at the
centre of the computational domain in the transverse 𝑦-direction (see
Fig. 1). POD was initially applied to both streamwise and vertical
velocities fluctuations obtained from the wake of the circular cylinder
but the results obtained using the vertical velocity fluctuation

(

𝑤′)

appeared more efficient for characterising the energetically dominant
modes [45]. Therefore, only the latter one is used in the present
POD analysis. The following is a brief description of the snapshot
POD method and more details about the POD method can be found
in [19,20].

A given spatio-temporal velocity field 𝑤
(

𝑥𝑖, 𝑡
)

can be decomposed
into the mean velocity field and a fluctuating component, such that:

𝑤
(

𝑥𝑖, 𝑡
)

= 𝑊 (𝑥𝑖) +𝑤′ (𝑥𝑖, 𝑡
)

(11)

where 𝑊 (𝑥𝑖) is the mean flow field, and 𝑤′ (𝑥𝑖, 𝑡
)

is the fluctuating
component. The values of the quantity 𝑤 are obtained at 𝑀 different
spatial locations (𝑥𝑖) for 𝑁 temporal snapshots with equal time interval
between them. The time-averaged velocity 𝑊 is calculated and then
subtracted from each of the instantaneous velocity 𝑤 values to build
the snapshot matrix 𝑊 of order 𝑀 ×𝑁 from the resulting fluctuating
velocity component, which reads:

𝑊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑤′(1, 1) 𝑤′(1, 2) … 𝑤′(1, N)
𝑤′(2, 1) 𝑤′(2, 2) … 𝑤′(2, 𝑁)

⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

𝑤′(𝑀, 1) 𝑤′(𝑀, 2) … 𝑤′(𝑀,𝑁)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(12)

The autocovariance matrix 𝐶 is calculated as 𝐶 = 𝑊 𝑇𝑊 . A set of
𝑁 eigenvalues (𝜆𝑖) and associated eigenvectors (𝐴𝑖) of the matrix 𝐶
which satisfy 𝐶𝐴𝑖 = 𝜆𝑖𝐴𝑖 are evaluated. The eigenvalues are arranged
in descending order, i.e. starting from the most energetic, and each
denotes the mode’s energy

(

𝜆1 > 𝜆2 > ⋯ > 𝜆𝑁 > 0
)

, with the sum of all
eigenvalues reflecting the total energy. Alternatively, one can employ
the singular value decomposition (SVD) of the matrix 𝑊 [42]. In the
present work, the SVD approach is employed to decompose the total
snapshots into POD eigenmodes (up to 200 modes are selected here).
The real 𝑀 × 𝑁 matrix 𝑊 upon SVD is given by 𝑊 = 𝑈𝛴𝑉 𝑇 where
𝑈 is an orthogonal matrix with range 𝑀 × 𝑀 whose columns are
the eigenvectors of 𝑊𝑊 𝑇 , 𝑉 is an 𝑁 × 𝑁 orthogonal matrix whose
columns are the eigenvectors of 𝑊 𝑇𝑊 (which is the autocovariance
matrix 𝐶 of the snapshot POD method). 𝛴 is an 𝑀 ×𝑁 diagonal matrix
with non-negative real numbers in the diagonal, which are called the
singular values of the matrix 𝑊 , whose entries are the square root
4

of the eigenvalues of 𝑊 𝑇𝑊 or 𝐶. The spatial eigenvectors of 𝐶 are
represented by the columns of 𝑉 , whilst the temporal eigenvectors are
represented by the columns of 𝑈 , i.e. the 𝑖th-column of 𝑉 is 𝐴𝑖, 𝑖 =
1, 2,… , 𝑁 . The POD spatial modes 𝜑𝑖 are then constructed from the
projection of the eigenvector 𝐴𝑖 corresponding to the eigenvalue 𝜆𝑖 as:

𝜑𝑖 =
∑𝑁

𝑛=1 𝐴
𝑖
𝑛𝑤

′𝑛

‖

‖

‖

∑𝑁
𝑛=1 𝐴𝑖

𝑛𝑤′𝑛‖
‖

‖

(13)

The notation ‖ ⋅ ‖ is described as ‖𝑅‖ =
√

𝑅2
1 + 𝑅2

2 +⋯ + 𝑅2
𝑀 . The

temporal coefficients 𝑎𝑖, also known as POD coefficients, are calculated
by projecting the fluctuating component onto the POD modes, i.e. 𝑎𝑛𝑖 =
𝛹𝑇𝑤′𝑛, where 𝛹 =

[

𝜑1 𝜑2 ⋯ 𝜑𝑁 ]

. The individual energy
coefficients 𝜁 𝑖 and cumulative energy coefficients 𝜂𝑖, are defined as:

𝜁 𝑖 = 𝜆𝑖
∑𝑁

𝑖=1 𝜆𝑖
(14)

𝜂𝑖 =
∑𝑟

𝑖=1 𝜆
𝑖

∑𝑁
𝑖=1 𝜆𝑖

𝑟 ≤ 𝑁 (15)

where 𝜁 𝑖 denotes the fraction of total energy contained in the 𝑖th mode
and 𝜂𝑖 denotes the proportion of the total energy contained in the first
𝑖 modes.

Following the snapshot POD method, if the first 𝑟 modes contain
the bulk of the total energy of the flow, then a Reduced Order Model
(ROM) of the flow can be effectively used to reconstruct the spatial
distribution at any selected time step. The reconstructed field

(

𝑊𝑅
)

can
then be given by using the time-averaged velocity 𝑊 plus the truncated
POD expansion with 𝑟 number of modes, as follows:

𝑊𝑅(𝑥𝑖, 𝑡) = 𝑊 (𝑥𝑖) +
𝑟
∑

𝑖=1
𝑎𝑖(𝑡)𝜑𝑖(𝑥𝑖) (16)

According to Sirovich [44], the selective POD modes (or 𝑟-POD
modes) must satisfy at least 𝜂𝑖 ⩾ 90%.

3. Results

3.1. Instantaneous flow field

The vortical structures developed behind the horizontal cylinder
for the all submergence cases simulated are shown in Figs. 2 and 3
with contours of normalised spanwise vorticity

(

𝜔𝑦 = 𝜕𝑢∕𝜕𝑧 − 𝜕𝑤∕𝜕𝑥
)

over the 𝑥𝑧-plane. In the deepest submergence (𝐹𝑟 = 0.26), the free
surface is found well-above the cylinder without causing any noticeable
disturbance which allows the von-Kármán vortex street to develop and
be convected downstream as shown in Ouro et al. [6]. Due to the
considered gap ratio of 𝐺∕𝐷 = 0.5, the bottom ground limits the gener-
ation of the lower shear layer off the cylinder and vortical structures,
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Fig. 2. Contours of normalised vorticity over a vertical plane at the middle of the spanwise domain length comparing the simulated cases with 𝐹𝑟 = 0.26, 0.31, 0.40 and 0.45.
The free surface is depicted as a solid black line.
Fig. 3. Contours of normalised vorticity behind the cylinder for the case: 𝐹𝑟 = 0.31, at four instants normalised by the peak frequency 𝑡∗ = 2.9, 3.2, 3.5, and 3.8. The free surface
is depicted as a solid black line.
Fig. 4. Contours of normalised vorticity behind the cylinder for the shallowest case: 𝐹𝑟 = 0.53, at four instants normalised by the peak frequency 𝑡∗ = 2.9, 3.2, 3.5, and 3.8. The
free surface is depicted as a solid black line.
suppressing the symmetry in the vortex shedding mechanism leading
to a different von-Kármán street compared to unbounded cylinder
flows [46]. Decreasing the water depth to ℎ∕𝐷 = 1.5 (𝐹𝑟 = 0.31) leads
to a slight influence of the water depth reflected from small free-surface
variations whilst the von-Kármán vortices follow similar trajectories to
those at 𝐹𝑟 = 0.26.

As the submergence ratio decreases further to ℎ∕𝐷 = 0.9 (𝐹𝑟 = 0.40),
the free-surface starts to drop shortly downstream of the cylinder and
its close location to the cylinder’s lee side affects the vortices shed.
This can be observed from the vorticity contours for this case in which
the vortices reach a vertical height of 𝑧∕𝐷 ≈ 2.4 shortly after being
shed. This interaction induces a quicker loss of coherence of the von-
Kármán vortices. Moving to a higher Froude number of 0.45 (ℎ∕𝐷 =
5

0.7), the interaction between the free surface and the wake’s vorticity
becomes stronger, and at 𝑥∕𝐷 = 1 a hydraulic jump occurs due to
the very shallow water conditions of the overtopping flow. For this
case, the wake dynamics behind the cylinder exhibit irregular flow
patterns. The upper large-scale vortices are distorted when interacting
the free surface, which then break up into small eddies near the air–
water interface, whilst those vortices moving at the bottom of the water
column, e.g. ground vortex (GV), dissipate further downstream (Fig. 2).

Fig. 3 shows the vorticity field for the case simulated at 𝐹𝑟 =
0.31(ℎ∕𝐷 = 1.5) during four time instants covering the time range of
𝑡 ⋅ 𝑓𝑝 ∈ [2.9, 3.8], with 𝑡 denoting time and 𝑓𝑝 is the vortex-shedding
frequency. At the normalised instant time of 𝑡∗ = 𝑡 ⋅ 𝑓𝑝 = 2.9, the von-
Kármán vortices first move upwards due to the effect of the interaction
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of the GV and the vortical structure generated behind the cylinder, and
subsequently convected downstream by the mean flow in the direction
parallel to the free surface, as seen at 𝑡∗ = 3.2. Advancing in time,
at 𝑡∗ = 3.5, the developing vortices reach a maximum vertical height
of 𝑧∕𝐷 ≈ 3 at about seven diameters downstream of the cylinder.
Their proximity to the upper boundary of the free-surface can lead
to alterations in the wake dynamics when compared to unbounded or
lower Froude number scenarios. At 𝑡∗ = 3.8, the vortical structures shed
over at the lower shear layer are merged with the GV.

Fig. 4 shows the vorticity field for the shallowest case simulated
at 𝐹𝑟 = 0.53 (ℎ∕𝐷 = 0.5) during the four time instants. At the
normalised instant time of 𝑡∗ = 2.9, the surface deformation is quite
substantial and the flow acceleration between the cylinder and free-
surface layer has a direct impact on vortex formation downstream of
the cylinder. The vorticity contours show that the vortical structures
lose coherence shortly after being shed, with a hydraulic jump formed
due to the very shallow flow over the cylinder leading to a marked
water-depth drop behind the cylinder compared to its upstream value.
Advancing in time at 𝑡∗ = 3.2, the vortices shed in the cylinder wake
are seen to merge with the ground vortices before they get diverted
upwards approaching the free surface, triggering significant variations
in water depth downstream of the cylinder, i.e. 𝑥∕𝐷 ≈ 3 (Fig. 4).
As a consequence of this interaction, the turbulent mixing increases
resulting from a higher interaction of the free-surface effects with the
bulk flow. At 𝑡∗ = 3.5, the significant depression in the water surface
behind the cylinder is recovered, allowing the vortices shed from the
upper side of the cylinder to extend further downstream with a lower
interaction with the free surface which, in consequence, led to an
increasingly complex flow dynamics far downstream of the cylinder.
Moreover, the top shear-layer vortices are not only affected by the
vicinity of the free surface, but they are also amalgamated with the
ground vortices. These structures dissipate at a faster rate than those
found in deeper flow conditions, making the turbulent wake to become
more irregular (𝑡∗ = 3.8, Fig. 3).

3.2. Turbulent momentum exchange

Fig. 5 shows the distribution of the vertical Reynolds shear stress
(

− ⟨𝑢′𝑤′
⟩

)

contours for the different submergence cases to showcase the
turbulent momentum exchange in the cylinder’s wake. At 𝐹𝑟 ≤ 0.40,
the vertical Reynolds shear stress at the lower side of the cylinder in
the near wake region is shifted downstream due to the flow acceleration
coming from the bottom gap. In contrast, the upper side of the cylinder
in the near wake region appears unchanged for 𝐹𝑟 ≤ 0.40, which can
be attributed to limited effect of the free-surface to alter the vortex
shedding dynamics at this location. As the 𝐹𝑟 increases, the free-surface
proximity is shown to limit the longitudinal expansion of regions of
high − ⟨𝑢′𝑤′

⟩ and their vertical location being pushed to towards the
bottom wall. For the highest 𝐹𝑟 cases the standing wave shown in
the mean free-surface profile introduced an additional contribution to
momentum exchange, especially for the highest Froude number case.
Overall, contours of − ⟨𝑢′𝑤′

⟩ indicate that until 𝑥∕𝐷 = 2 the turbulent
momentum exchange in the wake is large for all submergence levels.

Vertical profiles of − ⟨𝑢′𝑤′
⟩ at four downstream locations along

the water depth are presented in Fig. 6 for the five simulated cases
Fig. 6 shows that in the near wake region, i.e. at 𝑥∕𝐷 = 0.5, all
cases compute similar turbulent momentum exchange values in the
bottom half blow the cylinder’s centre (𝑧∕𝐷 ≤ 1.0) while the values
along the top shear layer at approx. 𝑧∕𝐷 = 0.85 peak at 𝐹𝑟 0.40. This
upper shear-layer maxima of − ⟨𝑢′𝑤′

⟩ significantly drops at 𝑥∕𝐷 = 1.5,
with the vertical location of the largest value at 𝐹𝑟 = 0.53 decreases
to 𝑧∕𝐷 = 1 due to the influence of the free-surface in the turbulent
momentum exchange region. Maximum values of − ⟨𝑢′𝑤′

⟩ in the lower
shear layer at the latter location is again observed at 𝐹𝑟 = 0.40. Further
downstream of the cylinder at 𝑥∕𝐷 = 2.5, the vertical Reynolds shear
stress distribution varies with the submergence level, with a notable
turbulence level decay seen for 𝐹𝑟 ≥ 0.31. At 𝑥∕𝐷 = 3.5 and 4.5
show that the largest momentum exchange at cylinder height is for the
6

shallowest submergence.
Fig. 5. Contours of normalised vertical Reynolds shear stress (− ⟨𝑢′𝑤′
⟩ ∕𝑈 2

0 ) comparing
the cases at 𝐹𝑟 = 0.26, 0.31, 0.40, 0.45 and 0.53. The free-surface is depicted as a
solid black line.

3.3. Proper-Orthogonal Decomposition (POD) analysis

Details about how the instantaneous wake characteristics vary with
increasing submergence ratios are analysed in this section using the
POD methodology.

3.3.1. Snapshots dependence validation
The sensitivity of POD to the temporal duration of the LES velocity

dataset is studied comparing the energy contribution of the eigenvalues
as a function of the number of snapshots. Fig. 7a shows the energy
content of the first 100 modes when using 200, 400, 800 and 900 snap-
shots, for the case at 𝐹𝑟 = 0.26, at a fixed time step of 0.006 s between
two successive snapshots, which is equivalent to approximately two,
four, seven and eight vortex shedding cycles, respectively. The energy
contribution of the four datasets show minor variations in the first
six POD modes, while differences become more evident after the POD
mode 15. As the energy variation is small when increasing the sampling
time from 800 to 900 snapshots, thus a total of 900 snapshots are
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Fig. 6. Vertical profiles of normalised vertical Reynolds shear stress
(

− ⟨𝑢′𝑤′
⟩

)

∕𝑈 2
0 at different locations downstream of the cylinder for the different simulated cases. The cylinder

position is depicted as horizontal dot–dash lines.
Fig. 7. Sensitivity analysis of the energy contribution when adopting (a) different number of snapshots based on 100 POD modes and (b) increasing POD modes with 900 snapshots.
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adopted in the following analysis. For this selected number of snapshots
100 POD modes are originally used. However, sensitivity to the number
of POD modes used in the snapshot POD decomposition is examined in
Fig. 7b, showing the variation of the energy contribution of the first
10 POD modes when increasing the total number of POD modes from
30 to 200 in the SVD decomposition. Only significant differences in the
energy contribution are observed in the first 10 modes with a slightly
larger energy prediction when using 30 POD modes compared to when
more modes are used, whilst almost no significant variations in the
relative energy are seen adopting 100 or 200 POD modes. Hence, 100
POD modes based on 900 snapshots (eight vortex shedding cycles) are
deemed adequate to perform the POD analysis for the present study.

3.3.2. Energy contribution of POD modes
The relative energy of each POD mode and consequent cumulative

energy for the simulations with different Froude numbers is shown in
Fig. 8. The contribution of POD modes to the total energy seems to fol-
low a similar distribution among all 𝐹𝑟 cases. The first two POD modes
have similar relative energy with the largest overall contribution, as
these correspond to the energetic large-scale von-Kármán vortices shed
by the cylinder (as shown later in the following section). The energy
contained in higher POD modes progressively decreases as they repre-
sent the contribution from small-scale turbulent structures [47,48]. As
seen in Fig. 8 a, the first two modes account for 56.0%, 52.59%, 54.24%
and 42.78% of the total energy for those cases at 𝐹𝑟 = 0.26, 0.31,
0.40 and 0.45 respectively, whist this notably decreases to 26.8% at
𝐹𝑟 = 0.53. Such result variation reflects that free-surface effects under
shallower flow conditions leads to a loss of coherence, or energy, from
the dominant von-Kármán-like vortices, directly reducing the energy of
the eigenvalues of modes 1 and 2. In all submergence cases, mode 1 has
an energy contribution of about 1% larger than mode 2.
7

Fig. 8b compares the cumulative energy for the different 𝐹𝑟 cases,
which is similar for the deepest conditions at 𝐹𝑟 = 0.26, 0.31 and
0.40. Conversely, there are large differences between the shallower
conditions at 𝐹𝑟 = 0.45 and 0.53 with a noticeable deviation from
the other deeper cases as modes 1 and 2 have a lower energy when
shallowness increases. Specifically, the first 25 POD modes contain
around 80% and 75% of the total energy for the cases at 𝐹𝑟 = 0.45
nd 0.53 respectively, compared to an average value of 90% found
or the deeper cases. This implies that for shallower conditions more
OD modes are required to account for the same amount of energy,
ndicating that free-surface effects notably impact the vortex shedding
ature behind the cylinder when 𝐹𝑟 is larger than 0.4 at the present
ap-to-diameter ratio of 0.5 (as shown in Figs. 2 and 4).

.3.3. POD spatial modes
To further quantify the impact of relative submergence on the wake

ynamics, the POD spatial modes and corresponding temporal coeffi-
ients are analysed. The most energetic POD modes are often paired,
.e. consecutive modes have a similar energy contribution, spatial and
emporal modes, only differing by a phase shift [49]. This is observed
n Figs. 9 and 10 with the first six POD spatial modes in which modes

and 2 are denoted as the pair 1, while pair 2 corresponds to modes
and 4, and pair 3 to modes 5 and 6. Irrespective to the submergence

evel, i.e. Froude number, the coherent regions in the first two modes
ave similar spatial structure that capture large-scale flow structures.
or the deeper submergence cases, the observed spatial modes retain a
imilar distribution to other POD studies for flow behind cylinders [50,
1] despite the close proximity to the bottom surface affecting the wake
ynamics [6]. Transitioning to shallower flow conditions impacts the
oherence of the most-energetic wake structures, as with increasing
𝑟 the turbulent structures from the first pair of modes decreased in
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Fig. 8. Comparison of the (a) energy contribution and (b) cumulative value for the 100 first POD modes for the different submergence cases.

Fig. 9. First six POD spatial modes obtained for cases with 𝐹𝑟 = 0.26, 0.31, 0.40, and 0.45.

Fig. 10. Six POD spatial modes obtained for the shallowest case: 𝐹𝑟 = 0.53.
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Fig. 11. Temporal coefficients of the first six POD modes obtained for the cases with 𝐹𝑟 = 0.26, 0.31, 0.45 and 0.53.
longitudinal and vertical size as there is a limited vertical expansion
due to the free-surface proximity.

The second pair of POD modes captures smaller scale flow structures
whose contribution to the overall energy is lower than the first pair
(Fig. 8). Modes 3 and 4 at 𝐹𝑟 = 0.26, 0.31 and 0.40 are almost
identical, suggesting that the vortex shedding has a negligible impact
from the free-surface. Conversely, in the cases at 𝐹𝑟 = 0.45 and 0.53,
this pair of modes losses its spatial coherence with smaller scales in
the region closer to the lee-side of the cylinder whilst larger structures
are observed in the far-wake. The third pair at 𝐹𝑟 = 0.26, 0.31, 0.40
and 0.45 exhibits a less clear spatial distribution capturing a range
of flow structures, especially for the deepest flow conditions, which
is attributed to the energy content of these modes. Alternatively, for
the 𝐹𝑟 = 0.53 case the energy contribution of pairs 1 and 2 is similar
and so are the coherent regions of velocity fluctuations in their POD
modes (Fig. 10). It appears that pair 1 shows coherent structures until
a downstream location of 𝑥∕𝐷 = 4 after which these vanish, whilst in
pair 2 this pattern is reversed, i.e. coherent regions are seen after 𝑥∕𝐷
= 4. The third pair exhibits a rather well-defined distribution compared
to the other cases. These results suggest that the large-scale von-
Kármán vortices developed in cases with high Froude numbers, i.e. at
low submergence, lose coherence more rapidly due to the free-surface
impact.

3.3.4. POD temporal coefficients and associated Strouhal number
The temporal coefficients of the six POD modes whose spatial

distribution is presented in Figs. 9 and 10 are now presented in Fig. 11
with the exception of the case at 𝐹𝑟 = 0.40 (For brevity, presented
in Appendix B), which outline the phase difference in the temporal
oscillation of the modes within the same modal pair. The temporal
coefficients of the first pair exhibit the highest amplitudes compared
to the other two pairs (modes 3 to 6) due to their higher energy con-
tribution and spatial coherence, linked to the large-scale von-Kármán
vortices. For cases at 𝐹𝑟 = 0.45 and 0.53, the first pair features
a periodic oscillation of the temporal POD coefficients but with an
irregular amplitude, especially for the shallowest submergence case,
9

suggesting that the periodic shedding of von-Kármán vortices is most
impacted by the free-surface for this case. Modes 1 and 2 are out of
phase by less than a quarter wavelength for cases with 𝐹𝑟 = 0.26,
0.31 and 0.40, representing shifted structures in the advection direction
by a distance corresponding to their phase difference. However, for
higher 𝐹𝑟, modes 1 and 2 exhibit a smaller phase difference and
a reversed temporal behaviour compared to lower 𝐹𝑟, which agrees
with their corresponding spatial structures (Figs. 9 and 10). This again
reflects how the free-surface drives the motion of vortical structures
downstream of the cylinder.

The second pair of modes also exhibits a sinusoidal shape with
a lower, less regular amplitude that is twice that of the first pair at
𝐹𝑟 = 0.26, 0.31 and 0.40, reflecting harmonics of the von-Kármán
vortex shedding. Conversely, for higher Froude numbers, the oscilla-
tions exhibit a more irregular variation. Irrespective of the submergence
level, the temporal coefficients from the third pair of modes show an
uneven signal with drastic changes in amplitude, linked to non-periodic
flow motions depicted by the uneven spatial correlation of their spatial
modes seen in Figs. 9 and 10. For the shallowest case, the third pair of
modes retains some degree of correlation in its frequency to pairs one
and two, which is linked to their closer energy content (Fig. 8).

Further identification of the relationship between the POD eigen-
modes and flow structures is provided with the Power Spectral Density
(PSD) computed from the first six POD temporal coefficients (Fig. 11),
which are presented in Fig. 12 (see Appendix B for 𝐹𝑟 = 0.40) together
with the corresponding Strouhal number for each case. The latter
is calculated as 𝑆𝑡 = 𝑓𝑝𝐷∕𝑈0, with 𝑓𝑝 corresponding to the vortex
shedding frequency calculated from the time series of vertical velocities
at 𝑥∕𝐷 = 2.1, 𝑧∕𝐷 = 1.5. The Strouhal number associated to cases at
𝐹𝑟 = 0.26, 0.31, 0.40, 0.45 and 0.53 are 0.29, 0.31, 0.32, 0.41 and
0.48, respectively. The first harmonic at a frequency of twice 𝑆𝑡 is also
included in Fig. 12. Irrespective of the submergence case, the spectra
of the temporal coefficients from the first two modes show a dominant
peak that corresponds to the vortex shedding frequency, indicating
that these POD modes represent to the dominant von-Kármán vortex
shedding. In all cases, the two modes corresponding to the same pair
feature an energy peak at a given frequency as they are associated to

the same flow structures.
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Fig. 12. Power spectral density (PSD) of the temporal coefficients from the first six POD modes obtained for the four submergence cases. The dot-dashed line indicates the Strouhal
number (𝑆𝑡) frequency associated to the periodic vortex shedding and the dashed line indicates its first harmonic (2𝑆𝑡).
The amplitude of the spectral energy peak at the dominant 𝑆𝑡
frequency reduces for higher POD modes as their energy content is also
smaller, with their pattern changing with the submergence level. At
𝐹𝑟 = 0.26, the pair one peaks at 𝑆𝑡, pair two at 2𝑆𝑡 but pair three
does not have a marked peak with its maximum at a frequency slightly
lower than 𝑆𝑡. Conversely, at 𝐹𝑟 = 0.31, the pair one again peaks at
𝑆𝑡 and pair two at 2𝑆𝑡 but modes 5 and 6 have an increased energy
content at lower frequencies which is almost analogous to the spectral
distribution from pair three. The second pair still peaks at 2𝑆𝑡 for 𝐹𝑟 =
0.40, whereas the third pair has a similar feature of its counterpart at
𝐹𝑟 = 0.26. Decreasing the submergence depth at 𝐹𝑟 = 0.45, the pairs
two and three have a reversed PSD distribution as that at lower 𝐹𝑟
cases due to the close energy content of modes in these pairs shown in
Fig. 8. Finally, for the lowest submergence at 𝐹𝑟 = 0.53, the pairs one
and two peak at 𝑆𝑡 whilst pair three does at 2𝑆𝑡 but without a defined
band of the frequencies.

3.3.5. Lissajous curves
The link between POD modes is provided in Fig. 13 with the

correlation between the temporal coefficient from the first mode (𝑎1)
with those from modes two to six (𝑎𝑖). These Lissajous plots depict
the phase difference between modes. The first two modes clearly show
that the correlation trajectory of 𝑎1 − 𝑎2 exhibit circular shape, which
indicates these modes have a close amplitude and frequency. Such
almost linear correlation between coefficients 𝑎1 − 𝑎2 allows to fit a
representative circle, e.g. using the least squares method, depicted by
a solid line in Fig. 13.

The linear correlation between the first two modes has the lowest
errors for cases at 𝐹𝑟 = 0.26 and 0.31 when the shedding of vortical
structures are more coherent in space at time. As submergence de-
creases at 𝐹𝑟 = 0.45, the 𝑎1 − 𝑎2 data points become more scattered
and deviated from the fitting circle. For the smallest submergence case,
the data exhibit a substantial error from the solid circle as the vortex
shedding dynamics are highly altered due to the very shallow flow
conditions, which would render difficult to the flow field reconstruction
if only the first two POD modes were used. The scatter plots of 𝑎1 −
𝑎4 at 𝐹𝑟 = 0.26 and 𝑎1 − 𝑎3 at 𝐹𝑟 = 0.31 (Fig. 13), indicate that
modes 3 and 4 have half the amplitude, twice the dominant frequency
compared to mode 1 [52]. All the other trajectories do not exhibit a
clear temporal correlation with a dominant frequency. These results
can be seen in Fig. 12 in which low-energy modes comprise different
peaks with lower magnitudes that may cause some modulations in these
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frequencies [53,54].
3.4. Velocity field reconstruction

A reduced-order model (ROM) based on the POD spatial modes
and temporal coefficients can be built to represent the velocity field
in a cost-effective way [45,55]. As the ROM accuracy depends on the
number of POD modes adopted, the normalised instantaneous velocity
(𝑤) and its fluctuation component

(

𝑤′) obtained from the LES (deemed
as the true solution) at a given time step and that predicted from the
ROM (Eq. (16)) are shown in Figs. 14 and 15, adopting the first 2, 10,
20, and 100 POD modes for four submergence cases. The associated
absolute error from the ROM-predicted velocity fluctuation compared
to the LES value (error = 𝑊𝐿𝐸𝑆 −𝑊𝑅𝑂𝑀 ) is also included.

The ROM based on the first two modes accounts for the two most
energetic modes associated to the von-Kármán vortices, which repre-
sent a total energy content in the range of 42%–56% for cases with
𝐹𝑟 < 0.53 while about 27% for the shallowest submergence case
(Fig. 8). Figs. 14 and 15 show that adopting two POD modes in the
ROM leads to large errors, especially at 𝐹𝑟 = 0.53 in which the first
pair of POD modes provide the lowest energy contribution. Increasing
the number of POD modes in the ROM allows to account for flow
structures that are less energetic but whose overall energy contribution
is not negligible (Fig. 8a). When using 20 modes for the ROM, the
reconstructed velocity field is close to the LES field for cases with
𝐹𝑟 < 0.45 as these account for almost 90% of the total cumulative
energy contribution (Fig. 8b) and less than 80% and 70% for 𝐹𝑟 =
0.45 and 0.53, respectively. Consequently, the latter cases exhibit larger
errors from the 20-mode-based ROM. Adopting 100 modes provides
an increased accuracy from the ROM capturing flow structures both
in the near- and far-wakes, leading to a 1% error at 𝐹𝑟 ≤ 0.45, while
an spatially average error of 2% is found for cases at 𝐹𝑟 = 0.45 and
0.53. This deviation from the ROM accuracy suggests that the impact
of the free-surface on the cylinder wake dynamics can be quantified in
the POD analysis by the number of modes that would contribute to, at
least, 90% of the energy content [56]. For instance, in the present cases,
the reconstruction of the velocity field at 𝐹𝑟 = 0.26 requires around
20 modes for a cumulative 90% of the total turbulent kinetic energy,
while to capture the same amount of energy at 𝐹𝑟 = 0.53, about 50
POD modes are required. Overall, a ROM based on 100 POD modes
provides an excellent agreement with the LES for all cases.

To evaluate the ability of the ROM in reproducing instantaneous
velocities over time, Fig. 16 shows the instantaneous vertical velocity

(𝑤) time-series at 𝑥∕𝐷 = 3.5, 𝑧∕𝐷 = 1.2, i.e. in the upper shear
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Fig. 13. The Lissajous plots of the first six POD coefficients for cases with 𝐹𝑟 = 0.26, 0.31, 0.45 and 0.53. The linear fit with a circular curve is shown in the first row.
Fig. 14. Comparison between the LES (first row of figures) velocity data with those reconstructed with the ROM based on an increasing number of POD modes for 𝐹𝑟 = 0.26
(left) and 0.31 (right).
layer of the cylinder in which von-Kármán vortices pass through when
shed [6], from the LES and those reconstructed using the ROMs with
increasing number of POD modes for four submergence levels. Overall,
convergence of the ROM predictions is observed when increasing the
11
number of POD modes, requiring almost 100 modes in all submer-
gence cases to capture the low- and high-frequency oscillations of
the velocity. Adopting less than 10 modes in the ROM does capture
the low-frequency oscillations but without an appropriate amplitude,
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Fig. 15. Comparison between the LES (first row of figures) velocity data with those reconstructed with the ROM based on an increasing number of POD modes for 𝐹𝑟 = 0.45
(left) and 0.53 (right).
Fig. 16. A comparison between the instantaneous velocity obtained from the LES and the ROMs over the time history adopted for the POD analysis for the different Froude
numbers.
indicating that the contribution from higher POD modes is still required
to effectively capture the flow dynamics.

The sensitivity of the ROM to the number of POD modes adopted
is presented in Fig. 17 with the root-mean-square (rms) error of the
reconstructed vertical velocity field at a single time step over the 𝑥𝑧-
plane (Fig. 15) or at a point over time (Fig. 16). Results shown in
Fig. 15a indicate that at 𝐹𝑟 ≤ 0.45 an appropriate velocity recon-
struction can be obtained adopting a small number of POD modes,
while a large number of POD modes is required for shallower cases to
achieve lower ROM errors. Thus, the wake dynamics at higher 𝐹𝑟 are
driven by a wider range of flow structures needed to be included in the
flow reconstruction. Fig. 17b shows the rms of the velocity time series
reconstruction at the selected point. For the shallowest case at 𝐹𝑟 =
0.53, the minimum reconstruction error obtained with 100 POD modes
is over 2.5%, whilst this error value can be attained with approx. 60,
50 and 27 POD modes at 𝐹𝑟 = 0.45, 0.31 and 0.26, respectively. Note
that this point is close to the free-surface in the shallowest submergence
(Fig. 4) and thus its impact challenges the ability of the ROM to fully
12
capture the instantaneous velocity field. Nevertheless, an error of 1%
allows for a very precise reconstruction solution, while an error of less
than 3% can be deemed adequate for a low-dimensional ROM [57].

3.5. Analysis of the spectral energy decay

Fig. 18 presents an analysis of the Power Spectral Density (PSD)
computed from vertical velocity fluctuations at a point located at 𝑥∕𝐷
= 1.1 and 𝑧∕𝐷 = 1.5, which is in the cylinder’s wake and close to the
free-surface, for 𝐹𝑟 of 0.31, 0.45, and 0.53. The first set of PSD plots
(a–c) is obtained from 48 vortex-shedding cycles computed from the
full LES, whereas the second sub-set (d–f) is obtained over a shorter
time series of eight vortex-shedding cycles used to construct the ROM
based on the first 2, 10, 20, and 100 modes. The spectral analysis in
Fig. 18a–c exhibits a clear energetic region in the production range
corresponding to the energetic eddies emanating periodically from the
cylinder over a frequency band close to the shedding frequency. This
is most prominent at 𝐹𝑟 = 0.31 (Fig. 3), while less pronounced peaks
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Fig. 17. The mean error plot of the reconstructed velocity (a) over a vertical plane at a single snapshot and (b) at 𝑥∕𝐷 = 3.5, 𝑧∕𝐷 = 1.2 for all snapshots as a function of the
number of POD modes.
Fig. 18. Power spectral density (PSD) of the vertical velocity fluctuation
(

𝑤′) obtained at a point (𝑥∕𝐷 = 1.1 and 𝑧∕𝐷 = 1.5) from LES long time series (a–c) and truncated time
series from LES and POD-based ROM at 𝐹𝑟 = 0.31, 0.45, and 0.53.
are observed at higher 𝐹𝑟, suggesting more irregular vortex shedding
patterns (see Fig. 4). At high submergence rates, the inertial sub-range
follows the classical −5∕3 Kolmogorov’s slope over a frequency decade
up to approx. 20 Hz, after which the decay rate increases with a
steeper decay law of −5∕2. This acceleration in energy decay can be
due to excessive dissipation resulting from the distorted free-surface
and cylinder proximity to the bottom wall [58] or even turbulence
anisotropy [59]. Similar findings have been provided by Zhao et al.
[60] for flow past a cylinder close to a free-surface. At 𝐹𝑟 = 0.53, this
−5∕2 slope provides a closer fit to the energy decay over most of the
inertial sub-range and the production range has less energy near the
shedding frequency than at 𝐹𝑟 = 0.31 or 0.45 as the vortices shed have
less coherence due to free-surface effects (Fig. 4).

Fig. 18d–f presents the PSD associated with the truncated time
series obtained from the full LES and reconstructed POD modes. As the
number of modes increases, the associate energy of the PSD increases,
with the ROM using 100 modes collapsing with the LES spectrum over
the production range up to a frequency of 20 Hz, when the energy
13
decay starts to accelerate in the full LES (Fig. 18a–c). The truncated
time series provides valuable insights into the relationship between
the increased amplitude in the PSD and number of POD modes to be
adopted for flow field reconstruction, as a criterion to decide how many
modes in a ROM shall be adopted.

4. Discussion and conclusions

In this paper, the turbulent flow past a horizontal circular cylinder
is resolved using large-eddy simulation to quantify the effect of the
proximity to free surface on wake dynamics. Five different relative
submergences were considered yielding Froude numbers in the range
of 0.26–0.53 for a constant cylinder Reynolds number 13,333 and a
bottom gap ratio of 0.5. The instantaneous flow field revealed that
the proximity of the cylinder to the bottom wall and free surface
significantly influenced the vortex-shedding dynamics with a notable
impact on the coherent structures with increasing Froude number. At
a low Froude number (𝐹𝑟) of 0.26, the impact from the free surface
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Fig. A.19. Contours of normalised vorticity behind the cylinder for the case: 𝐹𝑟 = 0.26, at four instants normalised by the peak frequency 𝑡∗ = 2.9, 3.2, 3.5, and 3.8. The free
surface is depicted as a solid black line.
Fig. A.20. Contours of normalised vorticity behind the cylinder for the case: 𝐹𝑟 = 0.40, at four instants normalised by the peak frequency 𝑡∗ = 2.9, 3.2, 3.5, and 3.8. The free
surface is depicted as a solid black line.
Fig. A.21. Contours of normalised vorticity behind the cylinder for the case: 𝐹𝑟 = 0.45, at four instants normalised by the peak frequency 𝑡∗ = 2.9, 3.2, 3.5, and 3.8. The free
surface is depicted as a solid black line.
on the cylinder wake is deemed negligible as no obvious distortion
in the free surface was observed, while the ground proximity affected
the symmetry in the vortex shedding mechanism leading to a different
von-Kármán street compared to unbounded cylinder flows. As Froude
number increased beyond 0.4, substantial free-surface deformations oc-
curred, which significantly suppressed the development of the periodic
vortex structures and induced a quicker loss in their spatial coherence.

Proper-Orthogonal Decomposition (POD) was performed based on
the vertical velocity fluctuations for all the flow configurations studied.
In all cases, POD modes were paired, as the two consecutive odd–even
modes had a similar energy contribution and POD spatial mode and
14
temporal coefficient patterns. The first two modes contributed with
more than 42% of the total energy for cases with 𝐹𝑟 ≤ 0.45, whilst at 𝐹𝑟
= 0.53 these eigenvalues reduced their contribution to almost half due
to the influence of the free-surface proximity on the coherent structures.
The distribution of POD spatial modes revealed that the first two
modes feature the same spatial structure corresponding to large flow
structures irrespective to the Froude number. However, their coherence
was altered when transitioning to shallower flow conditions, which led
to a loss in coherence of the vortices. The POD temporal coefficients for
these first two modes exhibited higher amplitudes compared to higher
POD modes as a result of their larger energy contribution, although the
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amplitude of the former became more irregular with increasing 𝐹𝑟. This
indicates that the free-surface proximity directly impacts the periodic
shedding of von-Kármán vortices.

The spectra of the POD temporal coefficients of the first pair of
modes featured peaks at frequencies corresponding to the dominant
structures represented by the Strouhal number (𝑆𝑡), namely at 0.29,
0.31, 0.32, 0.41 and 0.48 for cases with 𝐹𝑟 = 0.26, 0.31, 0.40, 0.45 and
0.53 respectively. This revealed that the frequency of the flow struc-
tures represented by these modes agreed with the von-Kármán vortices
shed by the cylinder. Correlation between the temporal coefficient of
mode 1 against modes 2 to 6 showed that only the first two modes had
a linear correlation. As the Froude number increased, such correlation
became more scattered, linked to free-surface effects on the vortex
shedding. The velocity fluctuation reconstructed by a Reduced Order
Model (ROM) using the first 20 POD modes was deemed enough for
obtaining similar vortical structures to those observed from the original
large-eddy simulations. For the cases at 𝐹𝑟 ≥ 0.45, the ROM based on
the first 20 modes still exhibited a relatively large error, and required
a larger number of modes to take into account small scale structures
that improved accuracy.

The spectra of the vertical velocity fluctuations from a point in
the cylinder’s wake exhibit a clear production range with an inertial
sub-range following Kolmogorov’s −5/3 slope at low Froude numbers,
whilst a steeper −5/2 decay scale is observed for shallower condi-
tions. The spectra from the reduced-order models show that 100 POD
modes effectively reproduces the LES spectrum up to a frequency of
20 Hz, whilst adopting less modes only captures the energy at the peak
shedding frequency.

The presented results quantified the impact of the free-surface
proximity on horizontal cylinder wake dynamics, especially in the
coherence of the turbulent structures identified through an extensive
POD analysis compared to LES data. Our study also revealed the com-
plexity in modelling shallow turbulent flows, which requires advanced
simulation techniques to account for free-surface deformations.
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Fig. B.22. Temporal coefficients of the first six POD modes obtained for the case with
𝐹𝑟 = 0.40.

Appendix A. Contours of normalised vorticity behind the cylinder
for the cases: 𝑭𝒓 = 0.26, 0.40 and 0.45

The instantaneous flow generated behind the horizontal cylinder
at four instants in time covering one vortex shedding cycle for the
cases at 𝐹𝑟 = 0.26, 0.40 and 0.45 are shown in Figs. A.19, A.20, and
A.21 respectively. At 𝐹𝑟 = 0.26, the von-Karman vortices are able to
preserve their coherence because the free surface is located sufficiently
above the cylinder to prevent any relevant free-surface effect. The
von-Karman vortices lose their coherence more quickly at higher 𝐹𝑟
whilst increasing the small-scale turbulence near the air–water inter-
face due to interactions between the cylinder’s vortical structures and
the free-surface layer.

Appendix B. Temporal coefficients and power spectral density
from the first six POD modes for the case 𝑭𝒓 = 0.40

At 𝐹𝑟 = 0.40, Fig. B.22 shows the time variation of the POD tempo-
ral coefficients corresponding to each of the first six modes shown in 9.
The temporal coefficients for the first two modes fluctuate sinusoidally,
resembling natural von-Karman vortex shedding. Moreover, the first
pair’s temporal coefficients exhibit a higher magnitude than the other
pairs due to their higher energy contribution and coherence. Fig. B.23
shows the Power Spectral Density (PSD) distributions corresponding
to the POD coefficients of the first six modes at 𝐹𝑟 = 0.40, which
can be employed to further determine the relationship between the
POD eigenmodes and flow structures. The black dotted lines correspond
to reference Strouhal numbers (𝑆𝑡 = 𝑓𝑝𝐷∕𝑈0) of 0.32 and its first
harmonic (2𝑆𝑡).
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Fig. B.23. Power spectral density (PSD) of the temporal coefficients from the first six
POD modes obtained for the case with 𝐹𝑟 = 0.40. The dot-dashed line indicates the
Strouhal number (𝑆𝑡) frequency associated to the periodic vortex shedding and the
dashed line indicates its first harmonic (2𝑆𝑡).
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