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Abstract: Physical inactivity is becoming an important threat to public health in today’s society. The
COVID-19 pandemic has also reduced physical activity (PA) levels given all the restrictions imposed
worldwide. In this work, physical activity interventions supported by mobile devices and relying
on control engineering principles were proposed. The model was constructed relying on previous
studies that consider a fluid analogy of Social Cognitive Theory (SCT), which is a psychological
theory that describes how people acquire and maintain certain behaviors, including health-promoting
behaviors, through the interplay of personal, environmental, and behavioral factors. The obtained
model was validated using secondary data (collected earlier) from a real intervention with a group of
male subjects in Great Britain. The present model was extended with new technology for a better
understanding of behavior change interventions. This involved the use of applications, such as phone-
based ecological momentary assessments, to collect behavioral data and the inclusion of simulations
with logical reward conditions for reaching the behavioral threshold. A goal of 10,000 steps per day
is recommended due to the significant link observed between higher daily step counts and lower
mortality risk. The intervention was designed using a Model Predictive Control (MPC) algorithm
configured to obtain a desired performance. The system was tested and validated using simulation
scenarios that resemble different situations that may occur in a real setting.

Keywords: behavior intervention; physical inactivity; modeling; SCT; MPC

1. Introduction

According to the World Health Organization (WHO), physical inactivity is becoming
a serious problem worldwide. Sedentary people tend to develop major health issues, most
needing long-term treatments or continuous medication. In some countries, people without
private insurance rely on local government health providers to be treated. Consequently,
governments are held responsible for the health, treatment, and medical care of millions
of citizens which causes a huge economic impact. On the other hand, physical activity
(PA) decreases emotional stress and improves physical and psychological health [1]. The
COVID-19 pandemic has had unprecedented health, economic, and social consequences
worldwide causing a decrease in physical activity and a deterioration in physical and
psychological health [2–4].

Different organizations (i.e., National Institutes of Health (NIH) or American Council
on Exercise (ACE)) are trying to encourage people to engage more in physical activity and
are involved in research on how to do this effectively [5,6]. As part of the aforementioned
research, Behavioral Intervention models were developed based on Bandura’s Social Cogni-
tive Theory (SCT) [7–9]. Fortunately, to mitigate the problem of sedentary behavior, recent
technologies have opened new ways for intervening upon behavior via mobile applications
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to improve and test models with data that can be collected easily, using “patient-friendly”
ideas [10].

For some years now, control system engineering principles have been proposed to
address problems in behavioral medicine [11,12]. In this work, a control strategy was
proposed that relies on an SCT model obtained from secondary data (information that
was collected and analyzed by someone else for a different purpose but can be reused
for a new research project) and tested on a different model obtained from primary data
(information that is original and has not been collected or analyzed by anyone else for a
different purpose) to address the physical inactivity issue.

In summary, this paper presents a model approach to simulating and managing
dynamic multivariable systems using Model Predictive Control (MPC), which has gained
significant traction in the biomedical engineering and control systems field. It involves
creating a model of the system being controlled and using that model to predict future
behavior and optimize control inputs accordingly [13,14].

The paper is organized as follows. Section 2 presents a modeling procedure obtained
from previous research regarding Behavioral Intervention problems and the challenges
that arose. Section 3 describes the proposed control strategy for Behavioral Intervention.
Section 4 provides the details of the results of the analysis obtained from a simulation using
the proposed controller. Section 5 gives a summary of conclusions and future work.

2. Modeling Procedure

Bandura’s Social Cognitive Theory (SCT) is a widely used framework for behavior
change strategies, providing a basis for understanding behavior and its relationships.
SCT emphasizes reciprocal determinism, where personal factors, environmental factors,
and behavior interact and mutually affect each other; in other words, that both personal
and environmental factors contribute to shaping behavior and, in turn, behavior also
influences personal and environmental factors [7]. Using a fluid analogy can help to create
a structured framework and mathematical model of behavioral performance in a simple
way, representing Bandura’s SCT constructs and their interrelationships. The outputs are
treated as levels of tanks (constructs), while the other signals are treated as inputs to those
inventories. Behavior is represented as a fluid inventory that changes over time (t) based on
various SCT factors. The model was developed on a daily time frame and could be adapted
for different behaviors and time frames of interest [15]. The levels of tanks are represented
by the variables ηi and exogenous inputs are represented in the diagram by variables ξi.
The inflow resistances are denoted by γi and outflow resistances are represented by βi.
These resistances can be interpreted as the fraction of each inventory or input that flows
from one instance to the next. Other parameters represent the physical characteristics of
each inventory and flow, including time constants τi and time delays θi. Unmeasured
disturbances are considered as ζi.

By means of a fluid analogy of SCT, computational approaches can be used to model
and test these relationships, while mobile and wireless technologies can help measure
them in real-time. SCT has proven successful in mobile health interventions for biomed-
ical engineering and applications such as smoking cessation, weight management, and
management of physical inactivity [8].

A procedure for identifying a dynamic model of a Social Norm Physical Activity
Intervention was proposed using a semi-physical system and data from a randomized
controlled trial [9,16]. However, the secondary data model needs to be improved in order
to meet the necessary conditions for the proposed behavior change intervention.

2.1. Secondary Data Modeling

A model was created through secondary data analysis of a randomized controlled
trial conducted in the United Kingdom, which suggested that smartphones are effective at
motivating individuals with limited intrinsic motivation for exercise to engage in physical
activity [16]. There were three groups of 55 male adult participants each. Data from
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participant number 115 were used for the semi-physical identification because he had the
most reliable set of data for the study period with the least amount of missing information.

The structure of the intervention is based on a simplified version of the dynamical
systems model of the Social Cognitive Theory (SCT) presented by Martín et al. [15], which
is illustrated as a fluid analogy in Figure 1. The only output considered is the behavior
(η4), which is measured through the number of daily steps taken by the individual. This
“subsystem” is used to describe the algorithm of physical activity intervention related to
social norms to encourage physical activity behavior.

Figure 1. Fluid analogy for the simplified version of the SCT model [9].

The simplified model included inputs (ξ1), (ξ2), (ξ5) and (ξ7), while ignoring inputs
(ξ3) (Persuasion), (ξ4) (Internal Cues), and (ξ6) (Intrapersonal States) as they were irrelevant
to the study. These inputs will be assumed to be equal to zero. The meaning of some
inputs is:

• Skills training (ξ1). These activities help to increase (or decrease) the self-management
skills of the individual.

• Observed behavior of others (ξ2). This input refers to vicarious learning or social
learning. This is a type of learning that occurs when an individual can acquire
knowledge and skills by observing others and learning from the outcomes of their
actions.

• Perceived barriers (ξ5). This input refers to external conditions that affect behavior.
For instance, unfavorable weather conditions, limited availability of exercise facilities,
or insufficiently secure walking paths can all hinder physical activity levels. This input
refers to conditions that are perceived by the participants.

• Environmental context (ξ7). This input refers to situational factors which directly influ-
ence the behavioral outcomes. This study takes into account the date of measurement,
which is identified as either a weekend or a weekday.

This approach used principles from semi-physical system identification and relied on
the widely-accepted prediction–error identification methods (PEM) [17]. Semi-physical
identification combines physical knowledge and experimental data to create a mathematical
model of a physical system (which was created based on the data obtained from male
subjects in Great Britain and was previously presented in an earlier study published in
2016) [16]. It involves using simplified physical models or analogies to represent a complex
system (human behavior can be considered a complex system, composed of interconnected
components that interact nonlinearly) and then fitting experimental data to these models to
estimate system parameters. This approach can be used to predict the system’s behavior
under different conditions.

The estimation process was carried out in MATLAB® using the idgrey and greyest
commands from the System Identification Toolbox [18]. The idgrey model is used to
represent a system as a state-space model with identifiable coefficients. The greyest function
is employed to estimate the unknown parameters of the idgrey model. Results obtained
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are depicted in Figure 2. By comparing the estimated behavior (η4) based on the number
of steps obtained from semi-physical identification using simulated data with the real
experimental data from male adult participant number 115, a fitting of 30.5% was achieved
with nine iterations, which serves as a good starting point.

Additionally, a validation procedure relying on correlation analysis was performed
for a semi-physical identification method resulting in residual errors within confidence
bounds. The autocorrelation for behavior and cross-correlation for different lags between
behavior and each of the following variables are shown in Figure 3, where:

• “Co-usage”⇔“skills training” corresponds to the daily number of glances at the application.
• “Sumusa” is “sum of application usage”⇔“observed behavior” is the total length of

time (in seconds) per day the application was glanced at.
• “Weather”⇔“perceived barriers” means the environmental condition in which the

subject is influenced to engage in physical activity or not.
• “Weekend”⇔“environmental context” indicates whether the date of measurement

falls or does not fall during the weekend.

Lag refers to a time delay or temporal shift between two variables. Therefore, when
calculating correlation with lag, the relationship between the two variables was analyzed
with a certain time delay to see if there was any significant correlation between them at
that specific moment.

Figure 2. Comparison between estimated behavior (i.e., η4) (number of steps) using semi−physical
identification (simulated data) vs. real experimental data (male adult participant number 115) [9].

Figure 3. Model validation via correlation analysis for the semi−physical identification procedure.
The areas highlighted in blue represent the confidence bounds [9].
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Correlation analysis is a statistical method that measures the strength and direction
of the relationship between two variables. It uses the correlation coefficient, with the
amplitude ranging from −1 to 1, where −1 indicates a perfect negative correlation, 0
indicates no correlation, and 1 indicates a perfect positive correlation. To confirm the
predictive ability of the model [9], it was expected that the amplitude of autocorrelation
would be equal to 1 at zero lag and would take any value within the confidence interval
for other lags, if the model is reliable. Moreover, the values within the confidence bounds
depicted in Figure 3 in the cross-correlation plots validate the reliability of the model [19].

Although the percentage fit was relatively low, the model developed in [9] is able to
follow some of the dynamic characteristics of the system (i.e., amplitude and frequency
variations of the signal η4 over time), even though it was derived from secondary data.
Nevertheless, the model has limited applicability for the required purpose since it does not
support the implementation of behavioral interventions using external cues or reinforce-
ment through outcome expectancy.

As a result of the previous analysis, internal parameters for the secondary data SCT
model were obtained [9]. For the intervention design, this SCT model needs to be expanded
to include additional input variables directly associated with the required behavior change
intervention. Thus, the secondary data model was expanded with parameters obtained
from different experiments where preliminary validated models were obtained using
primary data [11,20].

2.2. Hypothetical Model

A second extended model is now considered including additional parameters and
intervention inputs. For this purpose, an SCT model enhanced with individualized self-
regulation via internalized cues is shown in Figure 4. In the case of this model, too, the
daily number of steps was used as a measure of behavior (η4). The primary aim of the
intervention proposal is to promote physical activity among inactive individuals, with
the specific target of achieving an average of 10,000 daily steps per week in light of the
observed significant negative correlation between daily step counts and mortality risk [21].
To motivate participants, the intervention’s conceptual diagram incorporates a reward
system. The model includes the following inputs and outputs:

• Environmental context (ξ7), social and physical factors that affect behavior.
• External cues (ξ8), triggers to engage in the behavior.
• Expected points (ξ9), the expected daily reward points that will be exchanged for

specific rewards.
• Granted points (ξ10), which are fed to the behavioral outcomes (η5) inventory only if

the performed behavior (η4) meets or exceeds the specified goal (u8).
• Goal attainment (ξ11), a new input signal that indicates the amount of attainment of

the established goals.
• Outcome expectancy (η2), the perceived probability that performing a given behavior

will result in specific outcomes.
• Self-efficacy (η3), the self-perceived capability to perform the required behavior.
• Behavior (η4), the behavior of interest, e.g., daily performed steps.
• Behavioral outcomes (η5), positive or negative outcomes resulting from the behavior,

e.g., lost weight, physical pain.

The simplified SCT model upon which the physical activity intervention design with
goal setting is based is illustrated in Figure 5, where:

• Daily goals (u8), to quantitatively establish the desired behavior, e.g., 10,000 steps
per day.

• Expected points (u9), the daily reward points announced that will be given to individ-
uals if they achieve the daily goal.

• Granted points (u10), given every day if individuals meet the established goal; this
feature is represented by the “if/then” block. The points can be redeemed later for
tangible rewards, such as gift cards.
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• Goal attainment (u11) = ξ11 = y4 − u8, a signal that represents the gap between the
actual behavior and daily goals. It can be used as an input for the self-efficacy inventory
and as an output to evaluate the effectiveness of the intervention.

Figure 4. Enhanced model SCT with individualized self-regulation via internalized cues [22].

Figure 5. Low physical activity intervention based on the simplified SCT model [22].

The fluid analogy allows the use of the conservation of mass principle to calculate the
accumulation of each inventory based on the net difference between mass inflows and out-
flows over time domain t. It relates to how a system or signal changes over time. Variables
ξi represent external excitations (i.e., inputs), ηi are the inventory levels (i.e., outputs), γ1
and β1 are factors that represent interactions among the different constructs, ζi are external
disturbances, and θi are delay times. The fluid analogy can be represented by the following
system of first-order differential equations: Equations (1)–(5).

τ2
dη2

dt
= γ29ξ9(t− θ21) + β25η5(t− θ14)− η2(t) + ζ2(t) (1)

τ3
dη3

dt
= γ311ξ11(t− θ22) + β34η4(t− θ13)− η3(t) + ζ3(t) (2)
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τ4
dη4

dt
= β42η2(t− θ6)+ β43η3(t− θ8)+ β46η6(t− θ17)+ β45η5(t− θ19)− η4(t)+ ζ4(t) (3)

τ5
dη5

dt
= γ57ξ7(t− θ15) + γ510ξ10(t− θ20) + β54η4(t− θ12)− η5(t) + ζ5(t) (4)

τ6
dη6

dt
= γ64ξ4(t− θ11) + γ68ξ8(t− θ18)− η6(t) + ζ6(t). (5)

The extended model includes two additional components. The first one is incorporat-
ing an optimal range for step goals. This was accomplished by adding a goal attainment
signal that affects self-efficacy based on the effectiveness of the required behavior. Secondly,
a self-regulation loop was established by using internal cues and is represented by the
Csr block. The idea behind this block is derived from internal model control (IMC) [23])
and is mathematically defined in the equation outlined in [11]. The self-regulation process
is represented through a controller that adjusts action cues based on the discrepancies
between the set goal (u8) and the measured outcome (y4). The controller needs to allow
for a partial set point tracking to permit other intervention components (such as points) to
influence changes in the output. According to the IMC formulation, the self-regulator is a
classical feedback controller. See Equation (6).

csr =
Ksr

γ64β46

τ4s + 1
λs− Ksr + 1

. (6)

The performance of the self-regulator is determined by two parameters: λ, which indi-
cates the closed-loop speed of response, and Ksr, which ranges between 0 and 1 and repre-
sents the level of integral action, with 1 indicating perfect integral action. Equations (1)–(5),
without disturbances or delays (ζi = 0, θi = 0, ∀i), and self-regulator Csr, with state η7, were
considered. Assuming that the dominant effect on the output is obtained from the time
constant of the behavior inventory (η4), the state matrices are shown in Equations (7)–(9).

A =



−1
τ2

0 0 β25
τ2

0 0

0 −1
τ3

β34+γ311
τ3

0 0 0
β42
τ4

β43
τ4

−1
τ4

β45
τ4

β46
τ4

0

0 0 β54
τ5

−1
τ5

0 0

0 0 −γ64 Msrτ4
τ6

0 −1
τ6

−γ64 Msr(1−Nsrτ4)τ4
τ6

0 0 −1 0 0 −Nsr


(7)

B =



0 0 γ29
τ2

0 0
0 −γ311

τ3
0 0 γ34

τ3
0 0 0 0 0

γ57
τ5

0 0 γ510
τ5

0
0 γ64 Msrτ4

τ6
0 0 0

0 1 0 0 0


(8)

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 (9)

where:
Msr =

Ksr

γ64β46λ
(10)
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Nsr =
1− Ksr

λ
. (11)

A stimulus in the form of a reward mechanism was employed to encourage the
desired behavior in the intervention, whereby users receive a specified number of points
(ξ9) upon reaching their daily step goals (u8). These points can later be exchanged for
tangible rewards. This is represented by an if/then block that is considered external to the
simplified SCT model due to its non-linear nature, as depicted in Figure 4.

The obtained model can be described by means of the parameters shown in Table 1,
which were partially obtained through Secondary Data Modeling in Section 2.1, using a
semi-physical estimation procedure (combining physical knowledge and experimental data
to create a mathematical model).

Table 1. Parameters of the hypothetical model (i.e., the secondary data model, which was extended
with parameters obtained from different experiments using primary data [11,20].

Parameter Value Parameter Value

τ1 0.01 γ68 1.5

τ2 0.1236 γ311 0.4

τ3 0.01 γ510 0.6

τ4 0.8 β14 0.01

τ5 2 β21 0.0513

τ6 0.5 β25 0.5

γ11 4.55 β31 0.0198

γ22 15 β34 0.2

γ29 2.5 β42 1.8437

γ32 10.7036 β43 0.9

γ33 0.5 β45 0.5

γ35 1 β46 1.8755

γ36 1 β54 0.6

γ57 1 K f 0.8

γ64 1 λ 1

3. Control Strategy

The control strategy for the intervention must incorporate the defined requirements
and constraints for physical activity behavioral intervention. Model Predictive Control
(MPC) is a controller formulation whereby the current values of the manipulated variables
are determined in real-time as the solution of an optimal control problem over a horizon
of a given length [14]. In MPC, “move horizon” refers to the number of future control
moves computed by the controller at each time step. These future moves are then used to
optimize the control actions over a finite time horizon. The “move horizon” length is a
key design parameter in MPC, as it affects the trade-off between computational complexity
and control performance. A more extended move horizon allows for better prediction and
optimization of future behavior but requires more computation time. The optimization
problem is solved for a move horizon using a “hypothetical model”, from where a new set
of control moves are obtained [22]. Therefore the success of MPC depends on the degree of
precision of the model. Only the first calculated move is applied at each instant; the whole
process is repeated and new control moves are obtained.
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3.1. Open-Loop Behavioral Interventions Analysis: Tuning of MPC

The proper selection of controller parameters (tuning) can be estimated by analyzing
the open-loop step response of the proposed behavioral interventions. The choice of suitable
values for these parameters is important because they affect not only the controller’s
performance but also the computational complexity of the MPC algorithm, which solves
an optimization problem online at each time step. Analyzing an open-loop step response
is important because it provides information about the dynamic behavior of a system. It
allows us to observe the system’s response to a sudden change in its input and measure
its performance in terms of characteristics such as rise time, settling time, overshoot, and
steady-state error. This information is crucial for obtaining specifications of the system
(human behavior) and tuning the controller parameters to achieve desired performance.
By analyzing the open-loop step response, we can gain insights into the system’s stability,
transient response, and steady-state behavior, which are all essential for designing and
implementing control systems. Given the aim of reaching 10,000 steps daily, our approach
to conducting the open-loop test involves setting a target of 1500 steps per day for the
model and observing the point at which the system attains stability, as indicated in Figure 6.
Based on the system’s stabilization from day 20 onwards, calculations are made for the
dynamic specifications of the performed step response.

Figure 6. “Step response” refers to the response of a system to a step input of the Social Cognitive
Theory (SCT) model in an open loop configuration. On the other hand, “steps” refers to the number
of steps in the output signal (η4). It is a measure of the output of the system.

From this, some specifications and parameters of the system are calculated: percent
overshoot (%OS), damping ratio (ζ), natural frequency (ωn), and rise time (Tr). Rise time
is the time required for the system output to reach and maintain a percentage of its final
value, typically 90%. It is an important characteristic of a system’s response because it
indicates how quickly the system can respond to changes in its input. A shorter rise time
indicates a faster response and better performance. See Equations (12)–(15).

%OS =
2763− 2276
2276− 776.1

× 100 = 32.46%, (12)

ζ =
−ln(%OS/100)√

π2 + (ln(%OS/100))2
= 0.337, (13)

ωn =
π

Tp
√

1− ζ2
= 0.67 (rad/day), (14)
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Tr =
π − cos−1(ζ)

ωn
√

1− ζ2
= 1.99 (days). (15)

The sampling time parameter (Ts) is the rate at which data are sampled. This time
is determined based on two considerations: limiting the number of samples to 20 during
the rise time to avoid computational overload, and following Nyquist’s theorem, which
requires sampling a periodic signal at more than twice the highest frequency component of
the signal [24]. See Equations (16) and (17).

Ts >
Tr

20

Ts >
1.99
20

Ts > 0.099 (days),

(16)

ωs > 2ωn

2π

Ts
> 2ωn

Ts <
π

ωn

Ts < 4.69 (days).

(17)

Thus, given 0.099 < Ts < 4.69, a value of Ts = 1 is recommended.
Selecting a prediction horizon that covers its significant dynamics is crucial to pre-

dicting a system’s future behavior accurately. A recommended approach is to choose a
value that is high enough to capture the relevant dynamics but not too high to introduce
unnecessary delay [13]. Based on the calculation of the sampling time, it is recommended
to use a prediction horizon of 20 to 40 samples in order to cover the transient response of
the open-loop system. A prediction horizon parameter value of 30 was selected. Choosing
a very large control horizon only increases computational complexity. The control horizon
was chosen to be less than (or equal to) the prediction horizon [25]. Thus, the value of the
control horizon parameter was selected to be equal to 10.

Finally, the parameters shown in Table 2 were selected, and a maximum number
of 15,000 steps as the daily goal was chosen. Additionally, considering that 10 points
correspond to one cent of a US dollar , a maximum daily limit of 5000 points, corresponding
to USD 5 as a reward, was established.

Table 2. Tuning of model predictive control. Sample time is set equal to 1 to limit samples to 20 during
rise time and to follow Nyquist’s theorem. A prediction horizon of 20 to 40 samples is recommended.
Therefore, a value of 30 is chosen. A control horizon equal to 10 is selected, as this value is typically
less than (or equal to) the prediction horizon [25].

Parameter Value

Sample time 1
Prediction Horizon 30

Control horizon 10

3.2. MPC Close Loop Structure

MPC uses a system model to predict behavior (e.g., the number of steps). It handles
MIMO systems (Multiple-Input Multiple-Output) with interactions between inputs and
outputs. The goal is to find the optimal control action that minimizes a cost function subject
to constraints. Quadratic Programming (QP) is a mathematical optimization technique
that aims to find the optimal solution to a given problem by minimizing or maximizing
an objective function subject to certain constraints. QP involves the use of mathematical
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models and algorithms to optimize a specific objective function while satisfying a set of
constraints. Thus, QP was used to determine the best control input at each time step, to
achieve optimal performance while adhering to the system’s constraints. The strategy is
known as a receding horizon control strategy, where only the first calculated moves are
applied at each instant and the process is repeated to obtain new control moves. This
strategy is shown in Figure 7. The MPC structure used in this project is shown in Figure 8.
The layout of the project ecosystem implemented in MATLAB ® is shown in Figure 9. Some
abbreviations used in this figure are explained in Table 3.

Table 3. Bandura’s simplified SCT model inputs and outputs.

Symbols Inputs Acronym

ξ7 Environmental context EC

ξ8 External Cues C

ξ9 Expected points EP

ξ10 Granted points GP

ξ11 Goal attainment GA

Symbol Outputs Acronym

η2 Outcome expectancies OE

η3 Self-efficacy SE

η4 Behavior B

η5 Behavioral outcomes BO

Figure 7. Conceptual application of the receding horizon control strategy to the physical activity
behavioral problem [22].
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Figure 8. MPC structure. Goals (u8) and expected points (u9) are the manipulated variables. Envi-
ronmental context (u7), granted points (u10), and goal attainment (u11) are measured disturbances.
Actual steps-behavior is the controlled variable. All the other outputs are also measured but not
controlled.

Figure 9. Closed-loop Model Predictive Control project ecosystem in Simulink block (graphical
programming environment in MATLAB®). These blocks represent the various components such as
the plant (simplified SCT), controller (MPC), and other supporting functions.

At each time instant (t), the controller uses previous system information and its
states, current demands, and control actions to forecast the system outcome for the pre-
diction horizon. Based on this, it calculates a sequence of future control actions for the
control or move horizon by solving an optimization problem using cost functions from
Equations (18) and (19).

J(zk) = Jy(zk) + Ju(zk) + J∆u(zk) + Jε(zk) (18)

zT
k =

[
u(k|k)T u(k + 1|k)T ... u(k + p− 1|k)T εk

]
, (19)

where Ji(zk) are the partial cost functions, zk is the quadratic programming (QP) decision,
and slack variable εk (dimensionless) represents the deviation of system state variables
from their setpoints at each control interval in control systems.

Jy(zk) =
ny

∑
j=1

p

∑
i=1

{
wy

i,j

sy
j

[
rj(k + i|k)− yj(k + i|k)

]}2

, (20)

where:
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• k is the current control interval;
• p is the prediction horizon (number of intervals);
• ny is the number of plant output variables;
• yj(k + i|k) is the predicted value of the jth plant output at the i−th prediction horizon

step;
• rj(k + i|k) is the reference value for the jth plant output at the ith prediction horizon

step;
• sy

j is the scale factor for the jth plant output;

• wy
i,j is the tuning weight for the jth plant output at the ith prediction horizon step

(dimensionless).

The values ny, p, sy
j , and wy

i,j are constant controller specifications. The controller
receives rj(k + i|k) for the entire prediction horizon and uses the state observer to predict
the plant outputs, yj(k + i|k), which depend on manipulated variables (MV) adjustments
(uk) (goals (u8) and expected points (u9)), measured disturbances (MD), and state estimates.
At interval k, the state estimates and MD values are available. Therefore, Jy is a function of
zk only.

The second cost function is:

Ju(zk) =
nu

∑
j=1

p−1

∑
i=0

{
wu

i,j

su
j

[
uj(k + i|k)− uj,target(k + i|k)

]}2

, (21)

where:

• nu is the number of MV;
• uj,target(k + i|k) is the target value for jth MV at the ith prediction horizon step;
• su

j is the scale factor for the jth MV;

• wu
i,j is the tuning weight for the jth MV at the ith prediction horizon step (dimension-

less).

The values nu, p, su
j and wu

i,j are constant controller specifications. The controller re-
ceives uj,target(k + i|k)—values for the entire horizon. The controller uses the state observer
to predict the plant outputs. Thus, Ju is a function of zk only.

An MPC controller uses the subsequent scalar performance metric to suppress the
movement of manipulated variables (see Equation (22)),

J∆u(zk) =
nu

∑
j=1

p−1

∑
i=0

{
w∆u

i,j

su
j

[
uj(k + i|k)− uj(k + i− 1|k)

]}2

(22)

and the partial cost function for the slack variable εk (see Equation (23)). In practical
applications, constraint violations can sometimes be inevitable. Soft constraints ensure
a feasible QP solution even under such conditions. An MPC controller utilizes a slack
variable, εk, which is non-negative (greater than or equal to zero) and dimensionless, to
measure the worst-case constraint violation.

Jε(zk) = ρεε
2
k, (23)

where:

• εk is the slack variable at control interval k (dimensionless);
• ρε is the constraint violation penalty weight (dimensionless).

The slack variable εk represents the amount by which the system state variables can
deviate from their setpoints at each control interval. The value of εk is used to ensure
that the constraints are satisfied within the given tolerance levels. On the other hand, the
weight assigned to the constraint violation penalty, ρε, is a scalar value that determines the
trade-off between achieving a lower cost function and satisfying the constraints. A higher
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value of ρε indicates a greater penalty for violating the constraints, which can lead to a
more conservative controller.

MPC constraints are limited as shown below.

ymin ≤
yj(k + i|k)

sy
j

≤ ymax, i = 1 : p, j = 1 : ny

umin ≤
uj(k + i− 1|k)

su
j

≤ umax, i = 1 : p, j = 1 : nu

∆umin ≤
∆uj(k + i− 1|k)

su
j

≤, ∆umax i = 1 : p, j = 1 : nu,

(24)

where:

ymin =
yj,min(i)

sy
j
− εkVy

j,min(i)

ymax =
yj,max(i)

sy
j

+ εkVy
j,max(i)

umin =
uj,min(i)

su
j

− εkVu
j,min(i)

umax =
uj,max(i)

su
j

+ εkVu
j,max(i)

∆umin =
∆uj,min(i)

su
j

− εkV∆u
j,min(i)

∆umax =
∆uj,max(i)

su
j

+ εkV∆u
j,max(i).

(25)

Here, Vj parameters correspond to the Equal Concern for Relaxation parameter (ECR),
which specifies the relative importance of satisfying constraints versus achieving perfor-
mance goals in a control problem. They are dimensionless controller constants analogous to
the cost function weights and used for constraint softening (zero implies a hard constraint).
A more significant positive ECR value means that the controller is willing to compromise
the satisfaction of the constraint to achieve the goals.

• εk is a scalar QP slack variable (dimensionless) used for constraint softening;
• sy

j is a scale factor for the jth plant output;

• su
j is a scale factor for the jth MV;

• yj,min(i), yj,max(i) are the lower and upper bounds for the jth plant output at the ith
prediction horizon step;

• uj,min(i), uj,max(i) are the lower and upper bounds for the jth MV at the ith prediction
horizon step;

• ∆uj,min(j), ∆uj,max(i) are the lower and upper bounds for the jth MV increment at the
ith prediction horizon step.

Due to the substantial correlation between higher daily step counts and lower mortality
risk, a recommended target of 10,000 steps per day has been established [26].

As mentioned before, a maximum number of 15,000 steps as the daily goal was chosen.
Furthermore, a daily cap of 5000 points was set, which equates to a reward of USD 5, given
that 10 points are equivalent to one cent. These constraints are indicated in Table 4.

In an MPC controller design, the selection of the weights must be chosen to favor
or disfavor the variability of the MVs, their rate, and the variability of the outputs. The
selected weights for the MPC are shown in Table 5.
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Table 4. MPC constraints. Goals (u8) and expected points (u9) are the manipulated variables (MV).
∆ui refers to the change in the signal i between two consecutive time instances.

Parameter Min Max Unit

u8 0 15,000 (steps/day)
u9 0 5000 (points/day)

∆u8 unconstrained (steps/day)
∆u9 unconstrained (points/day)

Table 5. MPC weights. Taking into account the economic factor which is critical for the project, the
controller will try to penalize abrupt values of offered reward points (u9) for which the weight of 1 is
assigned. The weight of the daily step goal (u8) was set to zero. The weights assigned to ∆u8 and
∆u9 are both 0.1 , indicating that those variables are not considered significant. The weight of the
output variable η4 is also equal to 1 since that variable, which corresponds to the behavior, is the one
to be regulated, leaving the other outputs to vary freely (other output weight = 0).

Parameter Weights Unit

u8 0
dimensionlessu9 1

∆ u8 ∆u9 0.1

Output Variables η2 = 0 η3 = 0 η4 = 1 η5 = 0 dimensionless

4. Results Analysis

It is essential to use accurate system parameters when designing and testing a control
system to ensure that it performs as expected and achieves the desired control objectives.
Thus, an identification procedure with the data from the “hypothetical model” was per-
formed to obtain a linear state-space variable model. This discrete model was then used
to design an MPC controller that considers the actual system dynamics. However, to
test the controller the “hypothetical model” was used. This led to a difference between
the identified parameters used for the MPC design and the system’s parameters used for
simulation, similar to what may occur in a real scenario.

The proposed controller was tested and the following results were obtained (Figure 10).
The results from day 30 to day 120 are shown. During the first month, an initial desired
behavior of 1000 daily steps was set.

0 20 40 60 80 100 120

Time[days]

0

2,000

4,000

6,000

8,000

10,000

12,000

S
te

p
s

Behavior (
4
)

Desired behavior

Original response

Figure 10. Step tracking. This figure describes the ability of a controller to track or follow a step input
signal. A step input signal is a signal that abruptly changes from one constant value to another, often
used to represent a change in the desired setpoint of a controlled system. In this case, the desired
behavior or setpoint was a change in daily steps from 1000 to 10,000. The figure shows that the control
system was able to achieve this desired behavior in less than 20 days. The settling time for this test
was 10 days and the percentage overshoot was 17%.
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The response of the manipulated variables (i.e., goals (u8) and expected points (u9)) is
shown in Figure 11, demonstrating the successful achievement of the constraints considered
in the MPC design. Since the weight of the expected points was set to 1 (the highest level of
importance), the signal tends to decrease over time. On the other hand, the weight of the
goals was set to 0, resulting in an increase and stabilization of the signal at a steady-state
value of around 10,000 steps.
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Figure 11. Manipulated variables: goals (u8) and expected points (u9).

In Figures 12 and 13, the other input variables (granted points (u10) and goal attainment
(u11)) are shown. It is noticeable that the number of granted points in Figure 12 was lower
than the number of expected points in Figure 11. Meanwhile, the goal attainment signal in
Figure 13 shows that, for the majority of the experiment, the number of daily steps taken
surpassed the proposed goal.

In Figure 14, the steady state of the goal attainment signal is shown. It can be observed
that most of the time this signal has positive values, which indicates that the number of
daily steps is greater than the set goal. Goal attainment positively affects behavior through
the auto-efficacy inventory as demonstrated through the fluid analogy of the SCT model.

The designed controller achieves the desired behavior even though there is a mismatch
between the model used for the MPC design and the model used for the simulation. Thanks
to the robust control ideas of this type of controller, the difference between those models
does not affect the system’s performance. Only a few points were needed as rewards to
achieve the desired behavior. A ramp test was also performed to examine the dynamic
performance of a system by evaluating how it reacts to a gradually varying input signal.
The results of this progressive approach can be observed in Figure 15. It can be observed
that the output tracks the reference input, achieving zero steady-state error. This input type
is suggested for the experiment to avoid abrupt changes in the output with the step input.
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Rewards: Granted points (u
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)

Figure 12. Granted points (u10), given every day if individuals meet the established goal.
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Figure 13. Goal attainment (u11) represents a signal that indicates the difference between the actual
behavior and the daily goals. This signal can serve as an input for the self-efficacy inventory, helping
to assess an individual’s belief in their ability to achieve the goals.
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Figure 14. Goal attainment (u11): steady state.

0 20 40 60 80 100 120

Time[days]

0

2,000

4,000

6,000

8,000

10,000

12,000

S
te

p
s

Behavior (
4
)

Desired behavior

Original response

Figure 15. Steps tracking: progressive approach. In a ramp test, the dynamic performance of a system
is evaluated by observing its response to a slowly changing input signal.

To further demonstrate the performance of the designed controller, two parameters
that directly affect behavior were modified; the values were arbitrarily selected. In the
first scenario, the time constant τ4 was modified from 0.8 to 0.65 days. Figure 16 shows
the original and modified responses. In the second scenario, the input coefficient from the
behavior inventory β45 was modified from 0.5 to 0.8; the obtained results are shown in
Figure 17. In both scenarios, it can be observed that the obtained responses do not suffer any
significant change compared to the system response without the parameter modification.
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Figure 16. Steps tracking: the first scenario. In order to provide additional evidence of the efficiency
of the controller , the time constant τ4 was arbitrarily adjusted from 0.8 (original response) to 0.65
days (new response).
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Figure 17. Steps tracking: the second scenario. The input coefficient from the behavior inventory β45

was arbitrarily varied during a test. This parameter value was modified from 0.5 (original response)
to 0.8 (new response).

The results obtained from varying both τ4 and β45 simultaneously are shown in
Figure 18. In the three scenarios, it can be observed that the steps tracking is maintained,
thus zero steady-state error is achieved even though there is a mismatch between the
identified model, which was used for the MPC design, and the hypothetical model used
for the simulation, which also had some of its parameters modified.
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Figure 18. The third scenario involves tracking steps in a situation in which both the time constant τ4

and the input coefficient β45 were varied simultaneously. The original response had τ4 = 0.8 and
β45 = 0.5, while the new response had τ4 = 0.65 and β45 = 0.8.

The effect of the time constant parameter τ4 is significant for the system’s performance.
A time-constant sweep was performed via simulation. The results obtained from the
simulation for the minimum and maximum tested values, as well as for the original value
(τ4 = 0.8) are shown in Figure 19. It should be noted that the controller responds better
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when the time constant is increased from its original value than when it is decreased. When
the time constant decreases, the system tends to become unstable.
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Figure 19. Effects of the time constant parameter τ on the number of steps. The controller’s response
shows a significant improvement when the time constant is increased from its original value, as
opposed to the situation in which it is decreased. It is worth noting that a decrease in the time
constant may cause the system to become unstable.

A sweep was conducted for the parameter value of β, with the limitation that it
can only take values between 0 and 1. The results obtained from the simulation with all
arbitrarily considered values are shown in Figure 20. The settling time is approximately the
same in the three scenarios. However, the percentage overshoot is affected by the parameter
variation but the zero steady-state error is still achieved. The time constant parameter τ4
is more sensitive (meaning it has a greater impact on the stability of the system) than the
input coefficient β45.
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Figure 20. Effects of modifications of the input coefficient β45 parameter on the number of steps.

An analysis of the obtained results is presented below, along with relevant comments
and requisite considerations, while acknowledging that this is an approximation of a
complex system such as human behavior.

Despite the limitations of the mathematical modeling of human behavior, initial
estimates of the MPC controller’s parameters were made based on the model obtained.
Open-loop tests were conducted to establish the natural and uncontrolled response of the
model, followed by closed-loop tests to evaluate the system’s response to gradual and
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continuous changes in input. The controller successfully regulated both step and ramp
signals, although the step response showed a relatively high overshoot. Implementing
saturation-limiting elements could address this issue.

Finally, closed-loop tests were conducted for different scenarios and the controller was
effective in absorbing variations in sensitivity levels depending on the parameter being
varied. We should note that the time constant parameter τ4 appears to have a considerably
more significant impact on the stability of the system compared to the input coefficient
β45. This suggests that it exhibits a higher level of sensitivity concerning the stability of
the system.

5. Conclusions and Future Work

In previous work co-authored by some of the present study’s authors, a model was
obtained relying on secondary data focused on interventions for physical inactivity prob-
lems [9]. However, the earlier model did not take into consideration some critical aspects
needed for the proposed behavioral interventions. In the present study, a new hypotheti-
cal model was proposed including information obtained from the initial secondary data
modeling, supplemented with additional parameters obtained from previous experiments
and personal experiences to include all the inputs and outputs needed for the proposed
behavioral intervention.

This hypothetical model was simulated under realistic conditions to provide data for
system identification; the model obtained as a result of this process was used for the MPC
design. As frequently seen in practical control scenarios, some of the parameters of the
hypothetical model differ from the parameters of the identified linear model causing a
model mismatch. Another factor contributing to model mismatch is the non-linearity of
the hypothetical system and the fact that each person’s state represents a different set of
those parameters.

Because this model represents human behavior using Bandura’s Social Cognitive
Theory and fluid analogy, a mismatch will exist between the person’s behavior, the model
output, and the identified system output. This leads to the need for a model-based con-
troller that is able to absorb the model mismatches. The MPC control strategy meets these
requirements and was demonstrated to be suitable for the non-linear behavioral interven-
tion model. This work presented the results from the proposed adaptive MPC Control
Design applied to a non-linear behavioral intervention model.

Simulations demonstrated that the MPC controller could maintain zero steady-state
error and similar settling times even if a critical parameter of the behavior inventory was
modified. Additionally, because it is possible to set weights and constraints using this
control strategy, the number of points granted as a reward was low, which is important
for the economic aspect of this kind of intervention. A settling time of approximately 10
days was achieved. However, this value is not feasible in a real-life situation because other
aspects need to be taken into account that the model does not. For example, in this case,
if someone is able to achieve the goal within 10 days, he/she is probably able to succeed
without the need for additional rewards. This is a case of someone who is likely a young
athlete, and therefore is outside the target group of interest.

As future work, a validation test for the mathematical models created through system
identification, which is the process of building mathematical models of dynamic systems
based on observed data, should be performed. A reliable model is needed for a good
MPC performance, hence system identification is a fundamental undertaking prior to
the MPC design. The duration of the experiment is critical if it is performed in real-time
and not simulated, so a test monitoring procedure should also be performed during the
online identification of the parameter values carried out to improve the reliability of the
obtained model.

Due to the nature of the system, each person represents a different set of parameters.
Additionally, for a given person, this set of parameters can change as a function of that
person’s state (mental, physical, or environmental). Therefore, a multiple MPC design is
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highly recommended. This controller could include different models that represent different
states of a given person and switch the controller parameters, weights, and constraints
used depending on their current and past states.

Author Contributions: Conceptualization, C.S., C.M., V.A. and P.E.; Investigation, C.S. and A.A.;
Methodology, C.S., C.M. and V.A.; Project administration, C.S. and C.M.; Software, A.A. and V.A.;
Validation, A.A.; Writing—original draft, C.S. and A.A.; Writing—review & editing, C.S., C.M. and
P.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available from the authors
upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stults-Kolehmainen, M.; Sinha, R. The effects of stress on physical activity and exercise. Sport. Med. 2014, 444, 81–121. [CrossRef]

[PubMed]
2. Navarro-Jiménez E, Moreno-Luna L, C.S.V. The Impact of the COVID-19 Pandemic on Social, Health, and Economy. Sustainability

2021, 13, 6314. [CrossRef]
3. Budayová, Z.; Pavliková, M.; Samed Al-Adwan, A.; Klasnja, K. The Impact of Modern Technologies on Life in a Pandemic

Situation. J. Educ. Cult. Soc. 2022, 13, 213–224. [CrossRef]
4. Stockwell, S.; Trott, M.; Tully, M.; Shin, J.; Barnett, Y.; Butler, L.; McDermott, D.; Schuch, F.; Smith, L. Changes in physical activity

and sedentary behaviours from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open Sport Exerc.
Med. 2021, 7, e000960. [CrossRef] [PubMed]

5. Mandili, I.M.; Balobaid, A.N.; Alzahrani, H.H.; Almalki, M.A.; Alghamdi, A.A.; Alaradi, R.R.; Fallatah, H.B.; Alzahrani, W.H.;
Alamri, H.Z.; Eid, S.S. Types of chronic diseases associated with sedentary behaviour and physical inactivity. Int. J. Community
Med. Public Health 2022, 9, 3965–3970. [CrossRef]

6. González, K.; Fuentes, J.; Márquez, J.L. Physical Inactivity, Sedentary Behavior and Chronic Diseases. Korean J. Fam. Med. 2017,
38, 111–115. [CrossRef] [PubMed]

7. Bandura, A. Human agency in social cognitive theory. Am. Psychol. 1989, 44, 1174–1184. [CrossRef] [PubMed]
8. Martín, C.; Rivera, D.; Hekler, E.; Riley, W.; Buman, M.; Adams, M.; Magann, A. Development of a Control-Oriented Model of

Social Cognitive Theory for Optimized mHealth Behavioral Interventions. IEEE Trans. Control. Syst. Technol. 2018, 28, 1–16.
[CrossRef] [PubMed]

9. Asanza, V.; Martín, C.; Eslambolchilar, P.; van Woerden, H.; Cajo, R.; Salazar, C. Finding a Dynamical Model of a Social Norm
Physical Activity Intervention. In Proceedings of the 2nd IEEE Ecuador Technical Chapters Meeting, Salinas, Ecuador, 16–20
October 2017.

10. Rivera, D.; Lee, H.; Braun, M.; Mittelmann, H. Plant-friendly system identification: A challenge for the process industries. In
Proceedings of the 13th IFAC Symposium on System Identification (SYSID), Rotterdam, The Netherlands, 27–29 August 2003;
pp. 917–922.

11. Martín, C.A.; Rivera, D.E.; Hekler, E.B. A control engineering approach for optimizing physical activity behavioral interventions.
In Proceedings of the 1st IEEE Ecuador Technical Chapters Meeting, Guayaquil, Ecuador, 12–14 October 2016.

12. Hekler, E.B.; Rivera, D.E.; Martin, C.A.; Phatak, S.S.; Freigoun, M.T.; Korinek, E.; Klasnja, P.; Adams, M.A.; Buman, M.P. Tutorial
for Using Control Systems Engineering to Optimize Adaptive Mobile Health Interventions. J. Med. Internet Res. 2018, 20, e214.
[CrossRef] [PubMed]

13. Rossiter, J.A. Model-Based Predictive Control: A Practical Approach; CRC Press: Boca Raton, FL, USA, 2003.
14. Camacho, E.; Bordons, C. Control Predictivo: Pasado, Presente y Futuro. Rev. Iberoam. Autom. Inform. Ind. 2010, 1, 5–28.

[CrossRef]
15. Martin, C.; Rivera, D.; Riley, W.; Hekler, E.; Buman, M.; Adams, M.; King, A. A Dynamical Systems Model of Social Cognitive

Theory. In Proceedings of the 14th American Control Conference, Portland, OR, USA, 4–6 June 2014. [CrossRef]
16. Harries, T.; Eslambolchilar, P.; Rettie, R.; Stride, C.; Walton, S.; Woerden, H. Effectiveness of a smartphone app in increasing

physical activity amongst male adults: A randomized controlled trial. BMC Public Health 2016, 16, 925. [CrossRef] [PubMed]
17. Ljung, L. Prediction error estimation methods. Circuits Syst. Signal Process. 2002, 21, 11–21. [CrossRef]
18. Ljung, L.; Zhang, Q.; Lindskog, P.; Iouditski, A.; Singh, R. An integrated System Identification toolbox for linear and non-linear

models. In Proceedings of the 14th IFAC Symposium on Identification and System Parameter Estimation, Newcastle, Australia,
29–31 March 2006; Volume 39, pp. 931–936. [CrossRef]

19. Kohn, A.F. Wiley Encyclopedia of Biomedical Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006.

http://doi.org/10.1007/s40279-013-0090-5
http://www.ncbi.nlm.nih.gov/pubmed/24030837
http://dx.doi.org/10.3390/su13116314
http://dx.doi.org/10.15503/jecs2022.1.213.224
http://dx.doi.org/10.1136/bmjsem-2020-000960
http://www.ncbi.nlm.nih.gov/pubmed/34192010
http://dx.doi.org/10.18203/2394-6040.ijcmph20222388
http://dx.doi.org/10.4082/kjfm.2017.38.3.111
http://www.ncbi.nlm.nih.gov/pubmed/28572885
http://dx.doi.org/10.1037/0003-066X.44.9.1175
http://www.ncbi.nlm.nih.gov/pubmed/2782727
http://dx.doi.org/10.1109/TCST.2018.2873538
http://www.ncbi.nlm.nih.gov/pubmed/33746479
http://dx.doi.org/10.2196/jmir.8622
http://www.ncbi.nlm.nih.gov/pubmed/29954725
http://dx.doi.org/10.4995/riai.v1i3.10587
http://dx.doi.org/10.1109/ACC.2014.6859463
http://dx.doi.org/10.1186/s12889-016-3593-9
http://www.ncbi.nlm.nih.gov/pubmed/27590255
http://dx.doi.org/10.1007/BF01211648
http://dx.doi.org/10.3182/20060329-3-AU-2901.00148


Appl. Sci. 2023, 13, 6437 22 of 22

20. Freigoun, M.T.; Martín, C.A.; Magann, A.B.; Rivera, D.E.; Phatak, S.S.; Korinek, E.V.; Hekler, E.B. System identification of
Just Walk: A behavioral mHealth intervention for promoting physical activity. In Proceedings of the 2017 American Control
Conference, Seattle, WA, USA, 24–26 May 2017; pp. 116–121. [CrossRef]

21. Saint-Maurice, P.F.; Troiano, R.P.; Bassett, David R., J.; Graubard, B.I.; Carlson, S.A.; Shiroma, E.J.; Fulton, J.E.; Matthews, C.E.
Association of Daily Step Count and Step Intensity With Mortality Among US Adults. JAMA 2020, 323, 1151–1160. [CrossRef]
[PubMed]

22. Martín, C. A System Identification and Control Engineering Approach for Optimizing mHealth Behavioral Interventions Based
on Social Cognitive Theory. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2016.

23. Morari, M.; Zafiriou, E. Robust Process Control; Prentice Hall: Hoboken, NJ, USA, 1989.
24. Nise, N.S. Control Systems Engineering; Wiley: Hoboken, NJ, USA, 2015.
25. Wang, L. Model Predictive Control System Design and Implementation Using MATLAB®; Springer: Berlin/Heidelberg, Germany, 2009.
26. Morgan, A.L.; Tobar, D.A.; Snyder, L. Walking Toward a New Me: The Impact of Prescribed Walking 10,000 Steps/Day on

Physical and Psychological Well-Being. J. Phys. Act. Health 2010, 7, 299–307. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.23919/ACC.2017.7962940
http://dx.doi.org/10.1001/jama.2020.1382
http://www.ncbi.nlm.nih.gov/pubmed/32207799
http://dx.doi.org/10.1123/jpah.7.3.299
http://www.ncbi.nlm.nih.gov/pubmed/20551485

	Introduction
	Modeling Procedure
	Secondary Data Modeling
	Hypothetical Model

	Control Strategy
	Open-Loop Behavioral Interventions Analysis: Tuning of MPC
	MPC Close Loop Structure

	Results Analysis
	Conclusions and Future Work
	References

