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ABSTRACT 

Modern processes will increasingly have a digital counterpart which is an 

interactive representation of the physical system integrated into a digital 

environment. At the heart of this digital counterpart are simulators that use raw 

data and calculation models to automate supervision tasks and increase process 

autonomy. As such, simulators have become a critical part of process digitalisation. 

But, despite the exponential increase of digitalisation related research simulators 

have not evolved to fully utilise the latest practices for data value extraction. 

This research work examines the current role of simulation within digitalised 

systems, identifies state-of-the-art simulator structural components and proposes 

a design architecture for next generation simulators. The proposed architecture 

provides a structured way to develop next generation simulation systems. At the 

same time, it embeds the latest data science related technologies into the simulator 

and enables the integration of the simulator with modern edge or cloud systems. To 

achieve that, the simulator is broken down into five elements and the function of 

each element is specified based on system performance, digital environment 

compatibility and development ease. 

To demonstrate the effectiveness of the architecture, the author developed a 

vertical machining centre simulator that uses a mesh-based method to represent 

the process and the latest automated machine learning techniques to generate 

knowledge from the information extracted by the monitoring data. To verify the 

capabilities of the simulator a series of experiments were performed on a vertical 

machining system with a focus on spindle load measurement. The results show that 

the developed simulator estimates spindle load accurately despite input data noise 

and within the time restrictions occurring in real-time applications. All generated 

knowledge is stored and accessible for future simulator runs and finally, the 

system demonstrates its ability to extract value from all available data while 

reducing the raw data storage needs. 
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1 INTRODUCTION 

During the last decades, the amount of data collected from manufacturing systems 

has increased exponentially. This has enabled a detailed digital representation and 

analysis of the production-related activities and has created a new virtual 

ecosystem in which each machine (and every other resource) operates with 

enhanced abilities. Simulation tools play a vital role in the creation of this 

ecosystem. However, their traditional way of operation is not enough to support 

current and future virtual ecosystems. This work proposes a new architecture and 

functionality of manufacturing simulation systems that can drive manufacturing 

digitalisation, take data utilisation to much higher levels and become the enabler 

for further developments in manufacturing operations and management. 

1.1  RESEARCH MOTIVATION 

This work is inspired by the concept of a virtual world where data is the raw 

material (Carriere-Swallow and Haksar 2019) and simulators can be the equivalent 

of machines that use this data to produce a higher value output (virtual product or 

service). Taking this approach makes it easier to point out bad data usage practices 

whose impact until recently was widely ignored (Data Utilization: Facts, Stats & IO 

Research.). The current practice of generating and storing Big Data without 

knowing which parts of it are useful or how it should be used, in the physical world 

would be the equivalent of using massive warehouses to store raw materials 

irrelevant to the manufacturing process or relevant to a process that adds low 

value and/or consumes the materials at low rates (in proportion to the available 

amount).  

Industry 4.0, being or not being a revolution, has increased awareness around data 

and digitalisation and it has opened new routes towards improving manufacturing 

(Tamás and Illés 2016). This includes tackling the data-related issues identified 

above. However, taking new routes requires the development of new tools. 

Expanding on the data as raw material concept, to increase its utilisation rate, 

better, more efficient simulators (virtual machines) are needed. Although the core 
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meaning of simulation is still relevant, many current simulators are based on the 

logic of a previous era that makes them capable of only a narrow range of tasks. 

One could argue that similar to mass production machines, such simulators are 

fixed to specific input data that after a predefined calculation produce a predefined 

type of output with a focus on calculation speed and accuracy. However, modern 

manufacturing resources, in addition to updating their operators, must provide 

statistics to the managers, maintenance requirements to the relevant engineers, 

failure prognosis etc. It would be natural to have these tasks completed by the 

simulator, but the current simulation technology follows the aforementioned mass 

production logic. Digital twins filled the technology gap by employing a simulator 

for each need or requirement (Boschert and Rosen 2016)(Tao et al. 2019). This 

could be described as packing multiple machines to do one job which is not ideal in 

terms of efficiency. Moreover, data utilisation rates have improved at a very high 

computational cost and finally, the developed systems lack the flexibility required 

to embed them into the virtual ecosystem. 

A redesign of the simulator architecture and the enhancement of its capabilities 

towards better data utilisation rate, simulator multitasking, and efficient usage of 

resources would boost the performance of digital twins. This will ultimately enable 

the virtual ecosystem to be more effective in the supervision and management of 

the physical one. The development of this new generation simulator must overcome 

the following challenges: 

1. The simulator should be of a generic nature which allows for flexibility in 

implementation and should be modular when embedded into a digital twin to 

allow for both simulation of different machines performing a specific 

process and application of the same logic to a wide range of processes. 

2. The simulator should operate in a mass personalisation way, meaning 

adapting the way it processes input data and producing different types of 

output depending on the requirements of the digital twin.  

3. The simulation speed should be high enough to be in synch with the physical 

process. 
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4. Simulation accuracy and precision should satisfy process requirements 

(tolerances). 

5. Ideally, all collected data should be utilised/processed at least once (high 

data utilisation) and only once (high processing efficiency). 

6. Requirements for computing power and physical resources should be 

aligned with edge computing or ideally integrated computing capacity. 

7. Knowledge generated by the simulator should be available and shareable. 

A system that meets the above requirements would facilitate value extraction from 

collected data regardless of the source of it and enable the manufacturers to 

capitalise on the new technologies and practices that Industry 4.0 has generated. 

The next generation characterisation refers to the need for changing the current 

monolithic structure of simulators and the embedment of new data processing 

technologies as an essential part of their operation.  

1.2 OBJECTIVE 

This research aims to develop a new generation simulator architecture that can 

then be prototyped and tested. This architecture mitigates data management and 

utilisation issues that manufacturers currently face and contributes to a structured 

development of digital twins. This will then reduce the effort needed to digitalise 

productions and is an answer to the challenges presented in 1.1. More specifically 

the aim is to propose and report: 

1. The elements of a next generation simulator architecture 

2. The way these elements are integrated to develop the simulator. 

3. The application of this architecture on a manufacturing process (prototype). 

4. The advantages of using this architecture in a modern manufacturing 

process. 

To support these aims the performance of the proposed architecture is 

demonstrated using a vertical machining centre as an example application. 

1.3 THESIS STRUCTURE 

The research work and results are presented using the following structure. 



4 
 

Chapter 1: Introduction to the current problems that industry faces and the field 

that this work will contribute to. Also, presentation of the thesis structure. 

Chapter 2: A literature review of digitalised manufacturing technologies, modern 

manufacturing simulation tools and manufacturing Big Data processing and usage. 

Chapter 3: Presentation of the next generation simulator architecture. Each 

element of the simulator is presented in detail along with its implementation 

guidance. 

Chapter 4: Application of architecture in milling. The elements presented in Chapter 

3 will be built around vertical milling process and verified in a 3-axis vertical 

machining centre (VMC) machine. 

Chapter 5: Benchmarking of milling simulator. Reliability, accuracy, real-time 

proximity, data utilisation and other performance indicators are included in the 

assessment. 

Chapter 6: Discussion of work results and suggestions for future work. 

Chapter 7: Conclusions and sum up of work outcomes. 

Appendices: Detailed technical information about the software and methods 

developed in the previous chapters.  



5 
 

2 LITERATURE REVIEW 

To set the background of this research work this review begins with a brief 

description of the evolution and current state of digitalisation in manufacturing. Key 

technologies are identified, and further details are provided about relevant 

previous work. This includes a review of the current trends in digital twins which 

are the backbone of modern digitalisation, a more detailed study on simulation 

technologies and methods and how these are part of digital twins and finally a brief 

review of manufacturing data processing and management. Since simulation is a 

very broad field the review aims to indicate the current state of manufacturing 

simulation and the needs in this field. Where appropriate, descriptions and 

literature references for specific methods or technologies required to build the 

proposed simulator are provided where they are utilised in the relevant chapter.  

2.1 DIGITAL MANUFACTURING 

There are numerous definitions of the term ‘manufacturing’ or ‘manufacture’ 

including: 

Manufacturing is the business of producing goods in large numbers (Cambridge 

English Dictionary. 2020).  

Manufacturing is the business of making goods in large quantities in a factory 

(Macmillan Dictionary. 2020).  

Manufacture is to make from raw materials by hand or by machinery (Merriam-

Webster. 2020).  

These definitions each imply that manufacturing is something that happens in the 

physical world and has a physical output. It therefore seems counterintuitive to use 

the term ‘digital manufacturing’ as digital is not normally physical. However, this 

term has evolved over many decades to reach its current meaning. 

2.1.1 Definition and history 

Computers have been part of manufacturing since the 1950s (Sanders 2012). 

During the second half of the 20th century, new applications for computers were 
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discovered with concepts such as Computer Aided Design (CAD) (Sutherland 1963), 

Computer Aided Process Planning (CAPP)(Niebel 1965) and simulation 

programming (Gordon 1961) taking advantage of the increasing computing power 

and accessibility. Between 2000 and 2009, the term digital manufacturing became 

more popular and was used to describe a highly promising set of computer-based 

technologies. Reductions in product development times and costs, mass 

customization capability, increased product quality, and faster response to the 

market were identified as core benefits of using digital manufacturing 

(Chryssolouris et al. 2009). Already during that decade, the vision of a digital 

factory had been proposed. The idea, depicted in Figure 1, was that all of the 

computer-based tools supporting the planning and operation of a facility would be 

connected to a central database. This would allow for a better overview, 

coordination and control of the manufacturing process (Bracht and Masurat 2005) 

 

 

Figure 1 Early vision of the digital factory (Bracht and Masurat 2005) 

At the beginning of the 2010 decade digital manufacturing development started to 

accelerate as the potential of web-based applications assisted by simulation tools 

able to perform complex tasks was being realised (Abdul Kadir et al. 2011). One of 

the most critical points in digital manufacturing history was in Hanover Messe 2011 

when the Industrie 4.0 initiative began (Kagermann et al. 2011). It was not by luck 

that the initiative started in Germany. Manufacturing has been contributing more 



7 
 

than 20% to the German GDP (The World Bank 2021) and manufacturing activity at 

that time was steadily moving to lower-wage countries. High-wage countries had 

to become more efficient which required finding a new balance between economy 

of scale and economy of scope, planning for mass customisation with the usage of 

multidisciplinary skills and networking of the manufacturing resources (Brettel et 

al. 2014). The potential for growth in manufacturing and other sectors of the 

economy triggered further initiatives in Europe and around the World. Examples of 

these are Society 5.0, Smart Industry, Industrie du Futur, Industria Conectada 4.0, 

Manufacturing USA and Made in China 2025 (Proctor and Wilkins 2019). 

Digitalisation became part of national strategies with funding and new policies that 

accelerated developments in related technologies (Klitou et al. 2017). 

A key element of digital manufacturing is the Internet of Things (IoT) and services 

which have been at the heart of Industry 4.0 since its initiation. The term IoT was 

introduced in 1999 (Rose et al. 2015) and was initially used for supply chain 

tracking (Ashton 2009). It gained popularity a decade later when innovations in 

cloud computing, datacentres, wireless communications and Machine to Machine 

(M2M) technologies formed the basis of IoT as we currently know it (Intel 2015). 

Networking everything became the enabler for technologies that have been 

disrupting business. This brought with it benefits such as: meeting individual 

customer requirements; business process flexibility; optimised decision taking; 

higher productivity and efficiency of resources; creation of opportunities in the 

service sector; response to an ageing workforce; better work-life balance (Henning 

et al. 2013).  

In this new environment, the digital factory and the data that it was made of began 

to take shape. As centralized databases became more common in the early 2000s 

and because of the high volume of processed data they held, large organizations 

started placing portions of the data at local facilities (Harrington 2016). At the 

same time, ideas for the distribution of knowledge among the resources were also 

explored (Yan and Xue 2007). With the continuous exponential increase of data, this 

practice gained popularity and led to the adoption of distributed database 

architectures (Harrington 2016). The early vision of a digitalised factory with one 
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high-performance data server changed to the modern digitalised factory where the 

centralised database is hosted by cloud services and portions of this data are kept 

locally for faster processing. As a result, the distributed storage grew together with 

distributed processing which is referred as edge computing (Satyanarayanan 2017). 

Information and Communication Technology (ICT) developments over the same 

period made it possible to make process-related information available at any 

networked location and therefore enabled the connection of the physical 

production to the cloud (Adamson et al. 2017). This concept is shown in Figure 2. 

 

Figure 2 The Cloud Manufacturing concept (Adamson et al. 2017) 

Connecting physical resources to the cloud led to the complete concept of cloud 

manufacturing, which was introduced in 2010 (Li and Mehnen 2013). Similar to the 

resource-sharing architecture of cloud computing (Mell et al. 2011) cloud 

manufacturing provides an application layer. This is where the user submits the 

task to execute or sends the design of the part to be produced. The cloud then 

searches in a pool of shared physical resources to find the most suitable ones to 

run the required processes (Li and Mehnen 2013). The user is not involved in tasks 

such as process design or line balancing as this is done by lower layers of the cloud 

that work with the cyber part of the physical machine (Wu et al. 2015). Since any 

pooled resource that could do the job is a candidate for being the suitable one, 

direct digital manufacturing evolved substituting the traditional manufacturing 

processes with additive layer manufacturing. This addition in cloud capabilities 
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further closes the gap between the customer needs and the manufacturing product 

and reduces the effort for process design for one-off products (Chen et al. 2015). 

 

Due to technological advances in digital manufacturing, the mass customisation 

trend that began during the 1980s (Davis 1989) became a viable strategy with 

benefits for both product and service consumers (Fogliatto et al. 2012). The idea of 

product-centric control can be realised (Kärkkäinen et al. 2003) by allowing for 

per-product customisation controlled by highly flexible digital counterparts of the 

physical resources (Lyly-Yrjänäinen et al. 2016). Finally, the current digitalisation 

movement is marking a major turning point in history (Colombo et al. 2015) and will 

continue shaping the future as it is a critical part of today’s competition (Sneader 

and Sternfels 2020). 

2.1.2 Current trends – Digital twins 

Industry 4.0 as defined by (Kagermann et al. 2011) generated new trends in 

manufacturing and accelerated developments in a range of technologies that have 

a direct impact on the value a company can generate (Baur and Wee 2015). 

Business models have evolved and higher levels of monitoring and control have 

improved resource management and therefore contributed to sustainable 

manufacturing (Carvalho et al. 2018). Figure 3 maps Industry 4.0 technologies with 

business value drivers. 
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Figure 3 The digital compass (Baur and Wee 2015) 

Modern production systems have to cope with short product life cycles, mass 

customisation requirements and increasing competition in supply chain efficiency 

(Cohen et al. 2019). These needs have driven the evolution of digital manufacturing 

which in turn has produced three main areas of extensive research and 

development; product life cycle, smart factories, and value chain management (TWI 

2020). This review will focus on the smart factory aspects of digital manufacturing 

as this is the area where the proposed simulator will be applied. 

In a recent review of smart factory research, Strozzi et al. (2017) identified clusters 

of keywords by following the Systematic Literature Network Analysis approach. 

Each keyword represents a research subject and each cluster represents a group 

of closely related technologies. They found that smart manufacturing is directly 

connected to cloud technologies and production optimisation clusters. In other 

words, smart manufacturing is closely connected to decision-making (optimisation) 

and information sharing (cloud services). Figure 4 is an extract from a co-

occurrence network. The node size corresponds to the number of occurrences of 

the keyword found in the literature examined by the authors. The links represent 

the most frequent literature references (link weights are not depicted). 
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Figure 4 Network of smart manufacturing keyword in literature - adapted from (Strozzi et al. 2017) 
 

As observed by Lu et al. (2020) digital twins connect any level of a physical entity 

(machine, person, factory etc.) with the cloud and allow for large gains in terms of 

operation efficiency and resource optimisation. Therefore, digital twins are systems 

that link the technologies of the smart manufacturing network in Figure 4.  

From their first application as a concept in manufacturing in 2003 (Grieves 2015), 

through the NASA introduction almost a decade later (Glaessgen and Stargel 

2012), and the exponential growth that followed (Tao et al. 2019) (Jones et al. 2020) 

and their strong presence within industrial internet of things projects (Costello and 

Omale 2019), digital twins have been closely related to smart processes and 

manufacturing digitalisation. In this context a digital twin can be an integration of 

the digital twins of subsystems (Kunath and Winkler 2018), it can be a simple virtual 

representation of a physical system that converts raw data to information, also 

called a digital shadow (Kritzinger et al. 2018), or a holistic solution that simulates 

a process, calculates optimum process parameters and controls the resources 

performing the process (Zheng et al. 2019). In a recent review, Jones et al. (2020) 

generated a list of digital twin characteristics to summarise current trends in digital 

twins. Table 1 shows this list of characteristics with a short description. 
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Table 1 Characteristics of digital twins. Adapted from (Jones et al. 2020) 

 

In the same paper, it was found that 36% of the reviewed publications were related 

to simulation, modelling, and optimisation (the most popular theme) and 33% were 

related to data management (the second most popular theme). These percentages 

are indicative of the fields that are most critical to digital twin related technologies 

and are the two main areas the current work contributes to. 

2.1.3 Digital twin simulation aspect 

Clearly associated with the services dimension, the simulations are enacted within 

and/or upon the virtual entity but must properly represent the physical entity if 

they are to be meaningful and robust. In this context, digital twins have been 

described as the modern form of simulation (Boschert and Rosen 2016). But this 

claim has been challenged since digital twins can control the process, interact with 

other systems, and their activity is bidirectionally connected with the activities in 

the physical world (Shao et al. 2019). A multidimensional approach is more suitable 

for describing the nature of such systems and the technologies involved. At the 

shop floor level, Tao and Zhang (2017) suggested a 4 dimension model which 

consists of: the physical shop floor, the virtual shop floor, the service system 

supporting both physical and virtual floors and the data generated and processed. 

The same authors in a later work added a fifth dimension, the connection between 

the physical and virtual worlds (Tao et al. 2019).  

Simulation lies mostly in the service sub-system of the digital twin. Each digital 

twin depends on one or more simulators that must operate in a synchronous way to 

process the live data received from the physical system and supply other systems 

with real-time results (Brandstetter and Wehrstedt 2018). Since many services are 

involved in the operation of the digital twin and since a digital twin may be the 
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integration of multiple digital twins, the final system can reach very high levels of 

complexity (Kunath and Winkler 2018). Ciavotta et al. (2020) proposed a 

decomposition of manufacturing digital services into microservices to allow for 

lower-cost development and management of distributed systems. A microservice is 

an independently deployed, scaled and tested application with a single easily 

understood responsibility (Thönes 2015). Ciavotta et al. (2020) also pointed out the 

importance of low- and high-level communications among the microservices 

because of their role in updating the simulation models with real-time data and 

therefore maintaining the reliability of the digital twin. 

The simulators of digital twin implementations that are reported in the literature 

are typically bespoke systems with lots of hardcoded elements. These are very 

much application specific and there are certainly thousands of implementations. 

This review section will therefore be restricted to some indicative recent examples 

from CNC-related digitalisation. In these examples, a brief description of the 

simulation model is provided along with necessary notes about the system it is 

embedded in and/or deployed data processing techniques. 

Starting at the product design stage Zhou et al. (2021) show that the alignment 

between product design and manufacture can be improved using a digital twin 

enabled optimisation. They focus on the enhancement of product performance 

achieved by improved manufacturing. The developed tool supports the offline 

optimisation of cutting processes before actual machining. The data from machining 

trials is then used to train a reinforcement learning model. The trained model can 

then be used to provide feedback to improve the milling of future products, which 

in this example were centrifugal impellers. 

Balderas et al. (2021) reported an approach intended to enable enhanced product 

design for manufacture of printed circuit boards (PCB) using digital twin based 

optimisations. This uses process setup data as inputs into a simulator that applies 

metaheuristics to calculate the optimum way to drill the PCB. The results consider 

the relationship between tool changes, tool path length and machining time in 

setting up the optimum path. Although relatively simple in nature there is a clear 
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benefit in better managing the drilling process. The intention is that future products 

can be better manufactured using the knowledge embedded within this digital twin. 

At the start of the CNC-based manufacturing process, Zhu et al. (2021) 

demonstrated the potential for enhancing workpiece setup and orientation of thin-

walled parts. They used deployed sensors, including an operator-mounted head 

camera, to generate machine tool coordinates and machined part positioning as 

inputs. The machining process is simulated both with geometrical calculations and 

using the ANSYS FE simulation package. This combination calculates thin wall part 

deformation, and the results can be used by the operator to optimise the initial 

toolpath and enhance the process for subsequent parts. 

In a mostly theoretical study, the performance and health of a generic machine tool 

are examined based on its predicted and calculated stiffness (Zhao and Sun 2021). 

The approach deploys a method using accelerometer samples to determine 

machine tool stiffness, which is seen as an indication of its overall state. They use 

theoretical FEA models for predicting machine tool stiffness and Auto Regressive 

Moving Average (ARMA) model analysis of the measured vibrations to establish its 

current health and predict the future condition of the machine. The work does not 

investigate cutting-related phenomena and requires further development if it is to 

be practically applied. 

Moving forward Akintseva et al. (2021) considered an approach to the 

representation of a machining process within a digital twin. They examined the 

enactment of a cylindrical grinding operation using data associated with the 

machine setup and parameters. Then they used the NC program together with 

process equations to calculate the expected theoretical behaviour of the machine 

throughout the process. The information is intended to support the reliable and 

predictable manufacture of future parts. 

Aiming to demonstrate how machining processes could be improved Zhao et al. 

(2021) presented an approach aimed at the optimisation of CNC milling. This was 

developed using ontologies to model critical process parameters and configure 

simulations. The simulator fused cutting process data acquired from a spindle load 

sensor and acquired machine parameters to produce results based on a heuristics 
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algorithm that minimises the carbon footprint of the process. It was based upon a 

very limited milling operation and relates mainly to the optimisation of a process 

enacted on a virtual machine tool. The researchers correctly identify that the link to 

the actual machine tool needs a great deal more attention if the approach is to 

function in real life. 

In a similar vein, Heo and Yoo (2021) applied the concept of a digital twin to 

optimise CNC machining in a repetitive mass production environment. This work 

utilised an application of the generic Manufacturing Digital Twin for Dedicated 

Equipment (MDT4DE) framework. The technique again required the capture of 

spindle loads, using an installed sensor, during the machining cycle. This was then 

synchronised with data collected from previous cycles, within a simulator that 

post-processes it with fixed and per-case mathematical methods. The result of the 

simulation provided updated settings for the cutting parameters for every step of 

an NC program. The focus of this work was on machining cycle times, and the 

authors noted the need for more research if the part features and cutting tool 

management are to be considered. 

An indication of the process improvement and management potential of a digital 

twin application is provided in the context of addressing the issues of chatter within 

a CNC milling operation (Afazov and Scrimieri 2020). The stated aim of the paper is 

to detail a chatter model that can be integrated into a digital twin. The model is 

developed to use measured cutting forces applied to the cutting tool. A simulator 

then uses Fast Fourier Transform to calculate if chatter is likely. If chatter is 

confirmed, then the cutting parameters are altered to mitigate the problem. 

Although the paper suggests that this model could be integrated into a digital twin 

based approach this is not achieved in this work. 

In the work of Liu et al. (2021) the application of a digital twin to enable real-time 

monitoring of a machining process by an operator has been considered. They 

compare physical machine data with ideal theoretical data representing the steps 

required to manufacture the product to visually present a machining operation. The 

developed digital twin does not use any simulation engine, so it is actually a state-

of-the-art example of a digital shadow. The results of the comparison are displayed 
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in an enhanced form through augmented reality. The methodology provides real-

time representations of a machining process but does not attempt to consider how 

it can be used to improve or control the process. 

To complete the simulation in digital twin trends section of this review, the work of 

Friederich et al. (2022) should be mentioned. Their work is one of the first that 

attempts to identify the elements of the simulation within a digital twin. They 

recognise that this is needed in order to manage the increasingly complex system 

development. In addition, they talk about the knowledge extraction part which 

should reflect the developments in machine learning fields. The work however is an 

adaptation of modern data processing into a lab-based production scenario and 

lacks the depth and breadth required to embed engineering knowledge into the 

system and assist in the development of scalable production digital systems.    

To understand the evolution of the data acquisition, sharing and simulation aspects 

of the digital twin, literature examples from earlier years of the technology are now 

presented. These are included as an indication of the progression towards the 

current state of digital twin technology and ambition. This review again starts at the 

product design stage and moves through the configuration and operation of the 

manufacturing system. 

Schroeder et al. (2016) investigated digital twin based product optimisation. They 

proposed a system that could be used to capture and share the data from a 

physical device (in this case an industrial valve) during its use. This data was then 

fed into an Automation Modelling Language (AML) model to further develop the 

product and so demonstrate the potential of the digital twin to assist in product 

improvements. It should be noted that this valve was a relatively simple product 

with few parts. 

The benefits of applying a digital twin approach to the development of an enhanced 

product design and monitoring process was also reported in the context of an 

element of a jet (Iglesias et al. 2017). The application of CAD and analysis to the 

development of a diverter tile was combined with experimental and installed 

performance data. The digital twin was then used to merge the information from 

three different numerical models to assess the installed system’s state, 
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performance, and safety. This is an important stage in the development of the use 

of a digital twin in the ongoing development of improved products. 

In the context of the deployment of a CNC-based manufacturing operation Lee and 

Wu (2015) proposed a methodology to create a virtual machine tool that can be 

adapted for multiple applications. The focus was on the acquisition of machining 

process information from the CNC controller data. They connect the virtual with the 

physical machine to create a flexible modular design. The data obtained from the 

connection with the controller is used to visually represent the process. 

As an example of the complexity of the data-related challenges faced in the 

context of CNC milling, Stavropoulos et al. (2016) investigated the development and 

application of a tool wear model, based upon established theoretical 

representations of tool wear. Tool wear is investigated using experimental data and 

associated analytics together with offline experimental measurements to predict 

tool wear. The very limited single-tool basis of this model demonstrates the huge 

challenge faced in this arena and suggests that a more suitable approach may be 

needed if this is to be applied in real time. 

In a similar context Soori et al. (2016) in one of a series of papers developed a 

virtual machine environment to calculate tool deflection and milling machining 

forces with available theoretical methods. The simulation results are used to 

optimise the programmed G-Codes to compensate for tool deflection to produce a 

better surface finish and better tool utilisation. This work is not about digital twins 

but suggests that the optimisation methodology could be applied to live cyber-

physical systems. However, it should be noted that the “cost” of these 

improvements is a potentially unacceptable increase in cycle time, which suggests 

that real-life implementations requiring multi-factor optimisation will be much 

more challenging. 

Lechevalier et al. (2015) developed a virtual milling machine that uses theoretical 

equations to simulate a milling process and calculate tool position and cutting 

forces. The machine is used to create monitoring data which is however not fused 

or adapted to the live data produced by the physical system. It does however 
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explore the important concept of data sharing and standardisation, in an early 

application of the MT Connect standard. 

In a more practical application, Cai et al. (2017) recorded spindle power 

consumption and tool acceleration from a milling machine performing various cuts. 

The data from multiple cutting operations (using the same cutter) was then fused 

and fed to a linear model that estimates surface roughness. The model was 

constantly updated but in the limited context of the cutting operations being 

performed. The authors recognise the challenges arising from developing this 

approach for deployment upon different machine tools performing numerous 

different operations. 

The final set of papers reviewed here relates to the wider potential for plant and 

factory management offered by the deployment of digital twins and the role of 

simulation in these early stages. Fysikopoulos et al. (2015) developed a tool 

consisting of multiple simulators using physical machine data and theoretical 

formulas to initialise a virtual copy of the machine. Then the virtual machine adapts 

(offline) to data produced by the physical system and the simulation model is used 

to tune the production setup in a more energy, cost, and waste-efficient way. This 

raises the interesting possibility of the use of data acquired to monitor tool 

condition (for example spindle load) in the wider context of the energy utilised in 

the process. However, the case study in this paper relates to the machining of a 

single hole, which is very far from a realistic machining problem.  

With similar objectives, Choi et al. (2017) addressed the challenges associated with 

the connection of manufacturing functions to enable the control of production 

processes in real time. The basis of this approach was the definition of a unified 

environment of so called cyber-physical systems that were able to gather all data 

from shop floor sensors and share it using the cloud. The resulting smart 

manufacturing system allowed operators and managers to view the state of the 

production. 

Schluse and Rossmann (2016) presented the concept of a so-called 

“experimentable” digital twin and considered how the information developed within 

a simulation model could enhance the subsequent operation of the plant. Based on 
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the modelling of advanced robotic systems a virtual test bed was proposed, 

enabling robots to be inserted into different applications, under the guidance of 

experts. Once deployed as a physical system the data is fed into the model and 

manipulated, and the result is communicated to the physical system. This is one of 

the early publications that identify the potential of integrating simulators as 

independent modules in the virtual world. 

Weyer et al. (2016) proposed the integration of different simulation models using a 

database within the cyber-physical model of the shop floor. The aim was to make 

all information and tools available to all stages of production including the virtual 

commissioning of manufacturing lines. They explored the mitigation of production 

issues in the context of part of an automotive assembly plant. 

Finally, from an integration point of view, Gabor et al. (2016) proposed that the 

simulator should not be an inseparable part of a cognitive system but an 

independent system that provides input to the system. Their work is a clear 

indication of how the shift from traditional simulation systems to digital twin 

technologies has introduced new needs that cannot be covered with traditional 

system designs. 

From the above examples, it can be concluded that in earlier stages digital twins 

were primarily used to group and present sensor data produced in an identified 

process by the physical system. The simulation aspect was either a theoretical 

capability or a simple model triggering a reaction of the virtual system which could 

potentially be used to moderate the physical accordingly. On the other hand, the 

latest digital twin implementations have a more sophisticated simulation aspect. 

The highly bespoke nature of early implementations is still there but modularity in 

the digital twin subsystems is more frequent as external simulation packages are 

embedded.  

This short review shows the need to standardise a simulator’s architecture based 

on the modern needs of digital environments. As newer digital twin 

implementations tend to have a similar general architecture the next step is to 

specify the corresponding architecture of a simulator that is portable to multiple 
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systems and compatible with the design and the nature of the system that it is 

meant to be embedded to.  

2.1.4 Digital twin data management aspect 

The current understanding of digital twins is based on the new opportunities for 

data gathering from the physical world and the technologies allowing for the 

exchange of data between the physical and digital worlds (Schleich et al. 2017). In 

2.1.3 the examples presented use one or more simulation modules to process big 

amounts of raw data and provide the desired output. However, apart from cases 

like Zhou et al. (2021) where the model is trained (and therefore retains training 

results) or Fysikopoulos et al. (2015) where the developed simulators have internal 

memory to store adaptation parameters, generally, there is no focus on what 

information is retained and/or reused. These issues are addressed in this section. 

The concept of digital twin self-evolution has been applied since 2011 (Tuegel et al. 

2011) and is presented as an important part of digital twins by Tao et al. (2018a). 

The latter however refers specifically to deep learning neural networks, and it only 

presents the challenges that the simulation models must overcome to enable a 

self-adaptation process. 

Rathore et al. (2021) go a step further in their review and consider that simulation 

model evolution is a digital twin characteristic. The literature they base their report 

upon however is only related to neural networks. Their extended reporting of the 

work of Xu et al. (2019) as an example of self-evolution actually relates to a deep 

learning model which falls into the Tao et al. (2018a) perception of digital twin self-

evolution. 

Kong et al. (2021) reported a gap in digital twin internal data management and 

considered the potential for improvement in the overall digital twin performance. 

They proposed an ontology-based model to represent the data hierarchically. This 

represented a cycle starting with pre-processing, then transforming to the needed 

format and finally passing to top-level modules. Although the application is on a 

neural network-based model, it is one of the few works that report internal data 

management. Focusing on digital twin internal data management should not be 

confused with works such as Zhuang et al. (2021) that process physical system data 
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to update the virtual but do not report usage and retention for self-evolution or 

other internal processes. 

2.2 MANUFACTURING SIMULATION  

In the previous sections simulation was described as a module of a digital twin that 

processes inputs and passes outputs to system visualisation modules. However, 

simulation has a much wider meaning and application and has been an essential 

part of manufacturing for several decades. Regardless of model types and 

methods, production simulation on a computing system can be cost-effective and 

allow for quick assessment of production configurations. The evolution of 

simulation software will continue driving manufacturing efficiency (Mourtzis et al. 

2014). The breadth of simulation technology by far exceeds the field of 

manufacturing, however, the context of this thesis restricts this review to within the 

manufacturing field unless there are specific reasons for considering a wider basis. 

In this context, Mourtzis (2019) continued the review undertaken earlier (Mourtzis 

et al. 2014) and analysed 12 categories of simulation tools (shown in Table 2).  

Table 2 Product and production line simulation tool categories, adapted from Mourtzis (2019) 

Computer Aided Design 

Computer Aided Manufacturing 

Computer Aided Process Planning 

Digital Mock Up 

Material Flow Simulation 

Process Simulation 

Layout Planning Simulation 

Ergonomics Simulation 

Manufacturing Execution Systems 

Supervisory Control and Data Acquisition 

Supply Chain Simulation 

Design and Planning of Manufacturing Networks 

 

Digitalisation in manufacturing has created a trend in the ways that systems are 

being simulated. William (2020) in a review identifies ten dominant simulation 

approaches since 2014. Figure 5 shows these approaches which are complimentary 

to each other and can be integrated into a simulation system of the Industry 4.0 era.  
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Figure 5 Simulation-based approaches in the context of Industry 4.0. Adapted from William (2020). 

This research project focuses on developing a simulator architecture for 

manufacturing process simulation (see Table 2) that uses discrete event simulation 

and artificial intelligence in digital twins (see Figure 5). A review of common 

elements among simulators follows and describes the foundation of the developed 

architecture.  

2.2.1 Common elements of simulators 

Further to the top-level categorisations, simulation systems throughout their 

evolution have been sharing common elements, regardless of the application. 

Starting from the simulation model (which is how the simulation engine runs) there 

are two main types, discrete event and continuous (Law 2015). Roberts and Pegden 

(2017) refer to a third type, activity-based simulation, which has many similarities 

to event-based but is examining the activities taking place after every time step. 

Both of these papers recognise that discrete event simulation is the technique used 

in most cases. It should be mentioned that the categorisation assists in 
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understanding simulation methods but in practice, there are many hybrid models 

such as the ones described in Onggo et al. (2019). In discrete event simulation, the 

model depends on system state variables that are updated by the input data. This is 

the basic interface used by the model to receive data from other systems or 

directly from the user. The variables are then processed and output variables 

(results) are calculated for the corresponding timestep (Banks et al. 2005; Law 

2015). 

From a simulator architecture perspective, early works consider the graphical 

interface of a simulation system as an essential part of its architecture (Iwata et al. 

1995; Rohrer 2000). A graphical interface speeds up model development, makes 

debugging of logical errors easier, communicates the assumptions and results in an 

easy-to-understand way and finally builds confidence that the model behaves as 

expected. Roberts and Pegden (2017) explain that before animation was used in 

simulation systems the results were in the form of textual reports. Finding model 

faults and establishing a basic level of reliability took much longer and was 

considerably more complicated.  

With the advent of digital twins, data interfaces became a key element of a 

simulation system. The need for communication between multiple simulation 

models internally (Boschert and Rosen 2016) or external machine-to-machine 

communications (Chen and Lien 2014; Bao et al. 2019) put pressure on the 

developers to standardise the way data is communicated. OPC UA (OPC Foundation. 

2021) and MTConnect (MTConnect. 2018) are two main examples of the effort to 

standardise communications at a machine-to-machine level.  

Internal data management of modern simulation systems is discussed in section 

2.1.4 and data outside the simulation system in section 2.3 of this thesis. However, it 

is worth mentioning that from a simulation evolution perspective, well before 

Industry 4.0, researchers and system developers realised the importance of 

structured and automated data management (Robertson and Perera 2002). The 

authors predict that simulators are meant to be integrated into the systems being 

simulated and therefore the way that data is provided should allow for automatic 

input, processing, and output from the simulation model. Almost a decade later a 
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database connected to the simulator was proposed as an architecture to mitigate 

the simulation integration and data exchange issues (Boulonne et al. 2010).  

Nowadays, data modelling is essential in complex systems to deal with the wide 

range of inputs-outputs and the number of subsystems communicating. Kim et al. 

(2017; 2019) in a series of publications, demonstrate how the data model is 

different from the simulation model and in the latter work propose the steps to 

develop both models in parallel and integrate them into the simulation system.  

Figure 6 summarises the elements that a typical simulation system is made of. 

 

Figure 6 Common elements of simulation systems 

2.2.2 Simulation model types 

The simulation model is the core structure of a simulation system and typically the 

element that makes it unique. As a first step in developing a simulation system one 

needs to specify the boundaries and the scale of simulation (Banks et al. 2005; Law 

2015). There are three levels of simulation that are covered by different simulation 

tools.  

1. At the factory or supply chain level, tools like: 

Simio (Simulation, Production Planning and Scheduling Software | Simio. 

2022), Plant Simulation (Plant Simulation and Throughput Optimization | 

Siemens Digital Industries Software. 2021) and  

WITNESS (WITNESS Simulation Modeling Software | Lanner. 2021)  

can be used to create a factory level model that simulates material flows 

and assists in production management and in assessing the risks if material 

supply is disrupted or a critical resource fails.  

2. At the machine level, tools like:  

Process Simulate (Robotics and Automation Simulation | Siemens Digital 
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Industries Software. 2021),  

RobotDK (Simulator for industrial robots and offline programming - 

RoboDK. 2021) and  

PowerMill (PowerMill | 5-Axis CAM Software | 5-Axis Machining | Autodesk. 

2021)  

can simulate the process with different parameters, program the relevant 

machine or sub-systems, provide various levels of detail about the final 

product characteristics and predict machine behaviour or risks during the 

process.  

3. At the process level, it is typical that the simulation software companies 

have suites with a wide range of tools to cover every aspect of designing a 

system and simulating it at a high level of detail. Some good company 

examples are:  

ANSYS (Engineering Simulation Software | Ansys Products. 2021), Dassault 

Systèmes (Simulation software - SIMULIA by Dassault Systèmes®. 2022) and 

Mathworks (MATLAB. 2022). 

As research evolves there are always new bespoke tools being developed that are 

using dedicated libraries. Examples are:  

- SystemC for C++ (SystemC Community. 2021),  

- Desmo-J for Java (DESMO-J. 2017), and  

- SimPy for Python (Overview — SimPy 4.0.2.dev1+g2973dbe documentation. 

2021).   

It is also frequent, especially for higher TRL level projects, to integrate custom 

programs with existing tools such as Java classes with AnyLogic libraries and 

interfaces (Advanced Modeling with Java | AnyLogic Help. 2021). 

Looking into machining process simulation, Lorong et al. (2006) demonstrate the 

benefits of combining simulation models representing geometrical characteristics 

and simulation models representing physical properties. The former identify 

whether and how the cutting tool is removing material and the latter solves the 

physics-related equations that provide information about forces, heat or other 

physical phenomena. Zhang et al. (2011) extended this work by adding more 
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geometrical simulation model types as illustrated in Figure 7. Figure 7 is a 

hierarchical graph showing geometrical simulation categories and subcategories.  

 

Figure 7 Geometrical simulation model categories and subcategories. Based on the work of Zhang et 
al. (2011) 

During the last 30 years, all of the model types shown in Figure 7 have gone 

through periods of popularity or are used in new applications. This includes dexel 

models, which are one of the most consistently used until today. Dexels were 

introduced by Van Hook (1986) for computer 3D graphics as a low computing cost 

solution for creating virtual multicolour volumes. A dexel is a rectangular cuboid 

that is specified by its X and Y coordinate, the minimum Z coordinate (near Z), the 

maximum Z coordinate (far Z), a scalar representing its colour, and a pointer 

describing the Z axis distance until the next dexel. The versatility of this method, 

suitability for volume subtraction processes and ability to run efficiently on parallel 

processing systems made them popular in CNC machining simulations. Some 

application examples are: 

- in milling (Joy and Feng 2017; Evgenii et al. 2018; Cao et al. 2020; Inui et al. 

2020; Wang et al. 2020; Denkena et al. 2021; Röck 2021), 

- in drilling (Meyer et al. 2021), 
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- in grinding (Siebrecht et al. 2014), 

- in turning (Toubhans et al. 2021), 

- in additive manufacturing (He et al. 2017; Böß et al. 2021) and 

- in hybrid additive-subtractive processes (Sun et al. 2018).  

In the same 30-year period, a key method in physics-related simulation has been 

the finite element method (FEM), especially in materials-related engineering 

(Belytschko et al. 2009). A search in Scopus database for finite element simulation 

(exact query: “TITLE-ABS-KEY(finite element simulation) AND ( LIMIT-TO ( 

SUBJAREA,"ENGI" ) )” returned 160k results while only the word simulation returns 

2 million (exact query: “TITLE-ABS-KEY(simulation) AND ( LIMIT-TO ( 

SUBJAREA,"ENGI" ) )” meaning that 8% of all simulation models have some relation 

with finite elements, a significant percentage considering the wide range of 

simulation models and applications.  

Finite elements analysis typically follows 4 steps (Chandrupatla and Tirupathi 2006; 

FEM. 2013; Bathe 2014). 

1. Domain discretization or subdivision 

2. Interpolation functions selection 

3. System of equations formation 

4. Solution 

Finite element analysis can be used to develop very accurate simulations, but high 

resolution comes at a cost of high computing power requirements. In practice, finite 

element analysis is too slow for real-time applications since a typical solver needs 

to invert the stiffness matrix which in terms of computing has a quadratic or higher 

time complexity growth (Zhang and Gu 2020). As a result, compromises have to be 

made in order to develop a typical finite-element-based model that can run in real 

time (Marinkovic and Zehn 2019).  

A representative example of a real-time application for the finite element analysis 

is the technique presented by Knezevic (2018) where a coarse model is used to 

catch up with sensor data. Since high accuracy is desirable in the majority of 

simulation applications, a few models have been proposed to bridge the gap 
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between offline and real time, avoiding the computation time problem. Hinchy et al. 

(2020) generated a finite-element-based model of bending process that runs every 

time the machine is about to process a batch of new parts. The model predicts the 

results, then the process begins and the operator can compare the simulation 

results with the actual part. 

Other authors use finite element analysis to train a neural-network-based model 

initially offline (Zhang and Gu 2020; Seventekidis and Giagopoulos 2021). Then the 

neural-network-based model is used in parallel to the physical system to provide 

quick and accurate results for the physical system. The slow finite element analysis 

model may either stop running after initialisation or continue running in the 

background improving further the neural network. In the case of offline machining 

models, there have been numerous studies using the finite elements method in both 

2- and 3-dimension problems. It is worth mentioning that the common modelling 

approach is to analyse orthogonal machining configurations since this simplifies 

the analysis and at the same time, it applies to a range of processes such as 

turning, milling, drilling etc. (Sadeghifar et al. 2018). Overall, simulation based on 

finite elements, despite the accuracy in results and the valuable information it can 

provide, it is not suited to the aims of this research project since it cannot support 

the real-time, flexible nature of a digital twin. 

2.3 MANUFACTURING DATA 

Manufacturing has historically been evolving in parallel with the increase in data 

variety, volume and complexity (Tao et al. 2018b). In a typical manufacturing data 

lifecycle the following steps are followed (Siddiqa et al. 2016; Tao et al. 2018b; Ren 

et al. 2019; Choudhary et al. 2022) 

1. Raw data is collected from the data sources. This can be from a machine, a 

sensor, a human observation etc. 

2. Raw data is transferred to a local or cloud-based storage system. 

3. Raw data is pre-processed, by removing or repairing problematic samples 

and reducing its volume by removing duplicates or deleting non-usable 

samples (e.g., machine standby values). 
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4. Clean data is processed to extract its value. This could be extracting useful 

information, producing metadata to feed other systems, applying data 

analytics etc. 

5. Analysis results are communicated (operationalisation). 

a. Data processing results are converted to forms that can be visualised 

through human-machine interfaces (e.g., graphs or performance 

indicators). 

b. Data processing results are fed to other higher-level systems through 

machine-to-machine interfaces (e.g., statistical data feeding process 

or production management systems) 

6. Analysis results are maintained. 

a. The models that were developed to process the raw data are verified 

with newly generated datasets 

b. Steps 1-5 are retaken to improve models that don’t perform well or to 

develop new ones.  

Regarding the end of life of data, literature is mostly concerned about the 

destruction methods that follow legislations such as General Data Protection 

Regulation (General Data Protection Regulation. 2018) and there is no standard on 

when manufacturing data can be characterised as non-useful and be deleted. 

Despite being practically weightless (Edwin Cartlidge 2010) data requires storage 

hardware, managing software, and continuous maintenance in order to create 

value. The average yearly cost range of a data centre is between $10 million and 

$25 million (How Much Does Running A Private Data Center Cost Per Year. 2020). It 

is also estimated that the cost for on-premises storage per TB per month is roughly 

$32  (Donovan 2018) This is for hardware, software, disaster recovery, continuous 

power supplies, networking, ongoing maintenance of applications and 

infrastructure, air conditioning, property and sales tax, and labour costs. Although 

data storage costs drop over time the rate of cost reduction is slowing down 

leading to minimal if any benefits for the end user (Rosenthal et al. 2012). On the 

environmental side, data centres have high energy consumption (Yao et al. 2014), 

which in turn induces a high CO2 footprint (Avgerinou et al. 2017). It is indicative 
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that since the IT sector accounts for 2% of total CO2 emissions, the EU has created a 

policy to improve sector energy efficiency with a particular focus on data centres 

(EU Code of Conduct on Data Centre Energy Efficiency 2016). Therefore, collecting 

and storing data that is not being used has both an economic cost and a significant 

environmental impact. 

Due to the different data storage needs of each application, there is a wide variety 

of Database Management Systems (DBMS). However, two main database 

technologies dominate the data storage market. Figure 8 shows the list of the most 

popular DBMS. The ranking score is a measure of website mentions, search 

frequency, technical discussion frequency, current job offers, professional network 

profiles and social network relevance. Statista (2022) considers this score as 

representative of the popularity of each database system. 

 

Figure 8 Ranking of DBMS systems (Statista 2022) 
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From Figure 8 it becomes clear that relational database management systems 

(RDBMS) dominate the market since only MongoDB and Redis are of a different 

type. It is also clear that there is no one system that fits all. Taking as an example 

SQLite which is used for the development of the simulator in section 4.3 it is a good 

solution for edge applications without database administration and for cases where 

the database can be copied and shared as a file (SQLite Home Page. 2022). At the 

same time, the syntax is very similar to MySQL making a migration to MySQL 

easier. MySQL however does not have the portability benefits of SQLite and it 

requires administration. In a more systematic approach, the work of Sahatqija et al. 

(2018) compares the various types of DBMS systems and provides some useful 

insight. RDBMS are very efficient in accessing structured information and data 

tables can be of gigabyte size without significant performance issues. The database 

schema requirement ‘forces’ the developers to follow specific rules and therefore 

extra safety is provided in terms of data integrity. A key benefit of RDBMS is data 

consistency when multiple users (or simulator elements) access the same field at 

the same time. Finally, generating reports from a RDBMS is straightforward since 

simple structured query language (SQL) queries can quickly aggregate, and report 

stored data. The second category is non-relational database management systems 

(NoSQL) which is an umbrella term for different types of database technologies. 

NoSQL systems do not require the definition of a schema and therefore they are 

more flexible in the way that the data is stored. Depending on the application they 

offer great scalability abilities, high speeds, and they can store unformatted 

complex data without the need for pre-processing. 

In practice, there is no comparison between RDBMS and NoSQL. RDBMS is the first 

consideration for an application and if there are unique characteristics such as Big 

Data unstructured datasets or high-speed, multiuser access that require different 

technologies then a solution in the NoSQL list of databases would be sought. 

Cloud storage offers reliability by keeping data fault free and available, is high-

performance for large datasets and has a lower cost per terabyte because of 

resource sharing and balancing (Mansouri et al. 2017; Gajjam and Gunasekhar 

2021). Cloud, however, is best for long-cycle, high-quality data analysis to support 
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decisions, and assist maintenance and other non-time-critical processes. Cyber-

physical systems require real-time, low-latency processed data and autonomy 

which is where edge computing and storage excels (Chen et al. 2018). To avoid 

storing non-useful data in edge computing systems, Deng et al. (2018) propose a 

method to remove noise from monitoring system data and fix it immediately after 

acquisition. They also propose task planning to achieve an overall energy-efficient 

process that supplies the virtual part of a cyber-physical system with high-quality 

data. Noise removal techniques at early stages have also been proposed (Liu et al. 

2020; Oleghe 2020). However, these are aimed at data collection quality. Signal 

noise reduction is a widely researched field related to signal processing; Despite 

the relevance with some of data reduction methods, it is outside the scope of this 

review. 

In general, the removal of noise and data cleaning are data reduction methods. 

Data reduction reduces the complexity and size of data which subsequently reduces 

the computing power and storage capacity required to process it (Habib ur Rehman 

et al. 2016). Data reduction methods also result in the reduction of the velocity of 

data that enters the processing systems which is key in digital twins that have a 

direct connection to the data source. However, real-time velocity reduction on a 

data stream requires programming effort and computational resources to succeed 

(Habib ur Rehman et al. 2016). Pandey and Shukla (2020) use stratified sampling to 

reduce the amount of data per time unit that is processed from a data source. 

Barika et al. (2021) propose a dynamic scheduling technique that deals with 

variation in the velocity of data that a stream-workflow-based system produces 

and Alzyadat et al. (Alzyadat et al. 2019) use a fuzzy map approach to condense the 

data before processing.  

The complexity and resource capacity required to identify useful data and extract 

value from it has led companies to store all collected data without capitalising on 

its value (Kusiak 2017). Data-related costs are highly dependent on the volume, 

however, there are studies that show that only 10% is used (Waterston 2021). In the 

review of (Kusiak 2017), it is identified that the main areas in which the 

manufacturing sector develops data solutions are monitoring, prediction, data 



33 
 

analytics and information and communication technologies. These are areas where 

data is fed to digital twins (Tao et al. 2019) which shows that in a modern 

manufacturing environment extracting value from data is closely related to 

developing digital twins. 

2.4 LITERATURE REVIEW DISCUSSION 

Digitalisation has been a long-term evolutionary process of manufacturing that 

integrates computer science, simulation and data science related technologies into 

production resources and facilities. Digital twins have become the latest vehicle for 

this integration but as more technologies are being introduced digital twins grow in 

terms of size and complexity. Since there are many new applications for digital 

twins to be explored, the research has been focused on the application field. This 

also explains the exponential increase of the digital twin and digitalisation-related 

publications. However, the structural limitations of the current common practice 

make every digital twin solution unique while many functional characteristics of the 

implemented systems are the same. 

At the core of every digital twin are one or more simulators that process the 

supplied data. It is that exact place where the lack of a common structure and 

development methodology leads to redeveloping big parts of the system whenever 

a simulation model doesn’t perform as expected, when new data streams become 

available or when new parameters need to be calculated. At the same time, this 

becomes a barrier to research since there is scope for improving the digital twins 

themselves, but this is not possible or not efficient to do at the moment since the 

results would refer only to a specific implementation. 

To attract research in any field, there needs to be potential for benefits from the 

research outcomes. In the case of digital twins, a trigger would be to show  

- how a simulator architecture facilitates the improvement of system 

performance and application flexibility, 

- how this architecture enables the easy integration of new data processing 

techniques to increase the computational capabilities of the system and to 

improve the estimation of manufacturing process parameters.  
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In response to these research gaps and at the same time the research opportunities 

arising from the above, this work proposes a new simulator architecture. It then 

presents step by step how this generic architecture can be applied in CNC 

processes and uses vertical milling as a case study to demonstrate the benefits of 

its application.   
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3 ARCHITECTURE OF THE SIMULATOR 

Modern process design should take into consideration the digital environment that 

coexists with the physical one to achieve business goals in the most efficient way. 

This is due to the level of autonomy that the business process can achieve if digital 

assets supervise the physical ones and leave only high-level or high-impact 

decisions to be taken by humans. From the material reviewed in the previous 

chapter, it is becoming clear that a key building element of the digital environment 

and its ability to control physical entities is the simulator replicating the physical 

assets of the business and/or the business asset interactions. The simulator is the 

tool that quantifies and predicts asset behaviours and therefore it is the foundation 

for introducing logic and autonomy into business systems. This leads to the core of 

this research work which is the next generation simulation system architecture that 

can support in a systematic way the design of modern processes and open new 

horizons in the way that processes are run. This chapter describes the elements of 

the simulator that were designed and implemented by the author for this research. 

It also explains how these elements interact and provides a guide with critical 

details for the implementation of the architecture. The description of the 

architecture is focused on manufacturing processes with more detailed examples 

related to CNC processes. Its applications are not restricted to manufacturing as 

the simulation principles remain the same in a wide range of digitalised systems. 

The engineering of a simulator with the potential for much wider application was 

the intention of the author in completing this research. 

3.1 SIMULATOR BOUNDARIES 

When talking about digitalisation technologies there is an overlap between the 

terms of digital twins and simulators. Before setting the boundaries of the 

simulator, it is important to distinguish the two terms. As explained in 2.1.3 a digital 

twin is a wrapper system (Definition of wrapper | PCMag. 2022) containing one or 

more simulators. As its name implies a ‘digital twin’ mirrors every element of a 

physical system which it can monitor and potentially control. The digital twin 

requires interfaces to communicate with its environment including the physical 
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system it represents, other production management systems and shop floor 

technical or managerial staff with various levels of expertise. On the other hand, a 

simulator is focused on a specific process (not on a specific physical system) and 

its purpose is to provide an accurate estimation of output parameters based on the 

given set of input parameters and the accumulated knowledge from previous usage 

and training. A simulator requires interfaces to exchange data with the system it is 

embedded within. This includes the Graphical User Interface (GUI) typically used by 

process experts who test scenarios, developers who test or integrate the simulator 

and users who require direct access to the simulator.  

The above clarification isolates a simulator from the physical environment since its 

role is not to directly interact. A simulator receives data (for example from a user 

data input file or from a monitoring system data adapter), it reports simulation 

results, but it is not responsible for actively seeking input data nor for forcing other 

systems to change their behaviour. Therefore, the simulator lives purely in the 

digital world, it provides communication channels for input/output but requires a 

wrapper system to connect it with the rest of the digital or any part of the physical 

world. The GUI that was mentioned before is a wrapper module that connects the 

simulator with the user. Despite being essential in the simulator’s development, 

upgrade, or integration into other systems it is not a core part. 

The simulator as a whole is passive in nature. Its operation relies on the availability 

of input data that comes with a trigger or acts as a trigger itself. External systems 

should view the simulator as a tool to convert input data into output results and use 

it as such to bridge the gap between raw data and usable information. The external 

systems should not need to interfere with the simulator’s internal operations but 

should only expect to get the results. From the simulator perspective, everything 

required to convert input data to results should be contained within the simulator. 

This also means that problems in internal data flow should be handled internally 

and not require the intervention of the external system. Under the same logic, the 

simulator should handle all processes that improve its performance including 

learning from actual data and storing internally required information by itself. 

Finally, the simulator architecture should contribute to minimising the resources 
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needed to calculate all process-related parameters. The final statement ensures 

that a digital twin will require the minimum amount of simulation modules to 

deliver its functionality. 

In addition to the above specification of simulator boundaries, the scope of the 

architecture itself must be set. The Chapter 2 review is focused on manufacturing 

and therefore the proposed architecture primarily targets simulation systems used 

in manufacturing. This is by no means a restriction since the same architecture can 

be applied to IoT-based systems or other data-based simulations. Generic 

descriptions are used where possible to enable the reader to consider the 

architecture as the base for any relevant application. 

On the other hand, the field that this work focuses on is the simulation of CNC 

processes where process monitoring systems exist. These systems would typically 

generate data at a rate between 0.1 and 100Hz which is accompanied by the 

process setup data. Much lower data generation rates are restricting the usage of 

machine learning and much higher rates would introduce hardware limitations that 

are not covered by simple speed and computational capacity considerations. It 

should be noted that the typical CNC controller has a computational capacity 

similar to a personal computer. Finally, the type of data expected by the monitoring 

system is data typically generated by sensors. There is no restriction set by the 

architecture on the data type and format but for the need of this PhD work sensor-

generated data was considered as the base case. 

3.2 PROPOSED SIMULATOR ARCHITECTURE 

Similarities in structure and behaviours among simulators (regardless of the 

application) have been presented in section 2.2.1. Figure 6, is an attempt to 

summarise these similarities but there are two main issues with this simplified 

representation of the common architecture. The first is that the elements of Figure 

6 do not describe the actual architecture of the simulator implementation. This can 

be demonstrated with two examples from the reviewed simulation systems that use 

machine learning to calculate results. Zhou et al. (2021) use a reinforcement 

learning model which is the core part of the simulation model. The simulation 
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engine is not separable from the machine learning model but there is a database 

retaining the artificial neural network parameters. In contrast, Zhao and Sun (2021) 

base the simulation model on theoretical FEA simulation models and use ARMA 

models to calculate results. The process simulation model is clearly based on 

theory and the machine learning functionality is an independent module 

complementing the simulation model. However, there is no requirement for a 

database to retain information between runs.  

The second issue with Figure 6 is that it is not enough to assist in the simplification 

of a simulator implementation. Looking again at the examples of Zhou et al. (2021) 

and Zhao and Sun (2021) the development process is complicated because in the 

first case simulation and learning tasks are combined and in the second case 

knowledge is separated from the theoretical model and ultimately it is not retained. 

This lack of consistency in development would also have an impact on new 

simulator implementations and on the ability of another researcher to extend an 

existing work since there is no path to follow and every simulation system 

architecture is unique.  

This work proposes an architecture in line with Figure 9. The intention is to: 

standardise and systematise the development of simulators, change the monolithic 

view of a simulator to a modular distributed computing entity, embed machine 

learning to simulation core operations, clarify the way this new generation 

simulator should operate, and finally ensure that the operation of the simulator is 

compatible with modern digitalisation needs. Figure 9 presents the idea of this 

work and serves as a reference point for the rest of this chapter.  
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Figure 9 Next Generation Simulator Architecture 

As an introduction, the proposed architecture is briefly described using a static and 

a dynamic approach before the details for each element are further discussed. 

At the ‘heart’ of the architecture is the simulation engine. This is the implementation 

of the process simulation model together with the models that calculate derivative 

data. The simulation engine’s objective is to replicate the physical process and 

accurately calculate the output parameters of interest. The element making the 

simulator smart is the learning module which uses supervised learning to update 

the simulation engine’s parameters. Since modern systems have access to real-

time process data the simulator can be adaptive so that it uses ‘experience’ to 

accurately estimate results. Then, the backbone of the architecture is the database 

where simulation engine parameters and all data relevant to the simulator and its 

operation are exchanged and/or stored. There is no intelligence without memory 

and the database is the link between past run analysis and current or future run 

estimation. Finally, the input and output interfaces are the means to receive data 

and communicate results. The input interface is responsible for providing a way to 

supply the simulator with raw data and for preparing this data based on the 

simulator's requirements. The output interface is responsible for publishing the 

results to other systems through a variety of communication technologies. 
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The dynamics of the architecture are better understood by following the data flows. 

The simulator consumes raw data and through flexibly defined steps it produces 

information and then knowledge. Data flows from the input interface that receives 

raw data, then cleans, fuses, and transforms it according to the simulation engine 

and learning module common standards and finally passes the pre-processed data 

to the simulation engine and the learning module so they can perform their 

respective tasks. The simulation engine uses the data prepared by the input 

interface to estimate the output parameters. To do this it first retrieves the latest 

learning model parameters from the database. It then uses the engine algorithms 

to calculate the results and passes the raw results to the output interface. In 

parallel to the simulation engine, the learning module receives the same pre-

processed input data together with process monitoring data. By using supervised 

learning, it updates the learning model parameters stored in the database so the 

simulation engine can instantly run with the most updated information. Finally, the 

simulation results are sent to the output interface and published to external 

systems. In real-time applications, input and output interfaces are implemented in a 

server so the raw data is supplied through a connection with the data source and 

the results are immediately published to the wrapper system or other external 

systems (clients). 

The above architecture is fairly generic but it cannot cover every type of simulation. 

As a minimum, it assumes three things: 

• The field of application is computer simulation. Also, visual simulations whose 

aim is only to generate a virtual environment and navigate the user through it 

are not relevant. 

• It is meaningful that implementations of the architecture evolve over time and 

that they use empirical data to surpass the performance of pure theoretical 

models. 

• There is a way to measure and supply in a digitalised format the values that the 

simulator is meant to estimate. 
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This is the outline and the core limitations of the proposed next generation 

simulator architecture. In the following sections, each element of the architecture 

is described in detail and guidance for implementation is provided. To demonstrate 

the application and benefits of the architecture a significant part of this research 

work focuses on digital twins for CNC machining processes. However, the 

architecture has a much wider scope and it can potentially support all applications 

where digital twins supervise physical assets or any digitalisation project where the 

simulator is part of a dynamic digital ecosystem.  

3.3 INPUT INTERFACE 

Although the management of Big Data is not required to run a digital twin’s 

simulator it must be the case that a modern architecture should be able to cope 

with raw data that is ‘big’. Previous work (Kitchin and McArdle 2016) presents a 

wide range of Big Data characteristics which leads to the conclusion that there is 

not one approach in pre-processing raw data suitable for all cases. The input 

interfaces of the architecture must provide a flexible way to deal with any 

characteristic of the supplied data. This flexibility is achieved by combining 

algorithms following the logic of Figure 10 process model. 
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Figure 10 Input interface data processing steps 

Except 1 and 6, all other steps of Figure 10 are neither mandatory for every 

implementation nor strictly ordered that way. Numerous possible combinations of 

input data characteristics could invalidate a strict interpretation. These steps are 

rather a guide written by the author to ensure that all data pre-processing is done 

by the input interface module. This means that the necessary actions can be taken 

at this stage and won’t be confused with simulation engine tasks. 

Having established the framework of tasks that the input interface is responsible 

for allows for a further explanation of the implementation and role of each step. 

Step 1: Receive data 

In a digitalised production the simulator will typically run as a service supporting 

the system it is embedded with. The input interface will be the part of the simulator 

waiting for input data to become available. This could be done with a webserver 

that waits for a client request containing data, a service that constantly checks a 

memory space, accessing a permanent storage media or any other way that data 

can be passed from one system to another. Passing data from the wrapper system 

or other external systems to the simulator may look like a trivial task in laboratory 

experiments tailored to a specific piece of equipment but in real industrial 

scenarios, it can be a complex task especially if bespoke data transfer software and 

hardware are used. The biggest challenge in complex scenarios is not data 

transmission itself but the risk of damaging the datasets or streams due to the 

multiple systems the data has to go through to reach its destination. Therefore, 

creating a simulator input interface that is ‘design friendly’ to the data source 

reduces the need for data processing by external systems and can potentially 

reduce the computing power needs of the digital ecosystem it belongs to. 

To sum up, the aim of Step 1 is to ‘bring inside the simulator’ the data as produced 

by its source. This means all available data should be transferred without any 

alterations, omissions, or changes in its characteristics. 

Step 2: Manage invalid values 
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To make data readable a first pass through it is required to ensure that each value 

conforms to a set of rules. As an example, the simulator may accept only integer 

values such as 8. Values like; eight, 8.0, ‘8’, and +8, are easily understood by humans 

but may not be readable by a data parser. Further common issues are gaps 

(meaning no value), errors that may be indicated by ‘N/A’ or ‘error’ and zeros 

(which can be value 0 or interpretation of ‘no value’ from the data transmission 

software). In live transmissions this can mean, error stack traces, different size 

batch transmissions etc. It is up to the developer of the simulator to decide which 

values should be accepted. The suggested technique to ensure conformity is to 

create search patterns based on Regular Expressions (regex). The values that do 

not conform may be discarded (if the impact is minimal) or the data parser may be 

improved to recognise a wider range of formats or identify logical sequences that 

substitute the invalid values with valid ones. Since data input interfaces are 

developed at an early stage when the impact of data alterations cannot be 

measured it is suggested that any assumptions at this stage are recorded and 

reviewed during simulator verification. It should also be noted that where errors in 

data are produced because of an abnormal behaviour of the data source or errors 

in the transmission there is always the possibility that all neighbouring values are 

affected despite being valid. 

To summarise, the management of invalid data overall ensures that only values in 

readable format are reaching the simulation engine and it is the first ‘opportunity’ 

to fix errors in the dataset. At the same time, this is the initial point of raw data 

processing meaning that decisions at this point do affect the simulator results. 

Step 3: Manage outliers 

There is a wide range of techniques to identify outliers. In smaller datasets, simple 

data plots can quickly show the region within which ‘normal’ data lies. In larger 

datasets box plots or statistical methods such as standard deviation distributions 

can be used to bring data in an easy-to-observe form and to systematically study 

anomalies. If a more sophisticated analysis is required due to data size or 

complexity, there are more advanced clustering techniques often using 

unsupervised learning. These however can only be used if processing power or 
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processing time are not restricted, otherwise, the simulator won’t be able to cope 

with real-time processing requirements.  

The challenging part of outlier management is the interpretation of the anomaly. An 

anomaly could be noise or a system’s error, could be an incident where process 

parameters reached extreme values, could be one of a series of extreme values the 

frequency of which is important or other cases where the anomaly may or may not 

be a key part of the simulated process. The interpretation is another decision taken 

at an early stage that should be reviewed during the simulator’s verification so the 

exclusion of real events is avoided.  

Adding to the interpretation challenges, simulation modules that run with real-time 

data streams need suitable outlier management techniques since the data cannot 

be examined by a human operator with offline tools. In these cases, smoothing 

techniques are preferred which can also be combined with filters. In this way, any 

value that can be safely attributed to error(s) is filtered out and any anomaly will 

blend with ‘normal’ values to produce a more realistic simulator input. The suitable 

technique and the level of smoothing are to be determined by the developer. If the 

risks of altering the data are higher compared to false alarms caused by the 

simulation results, then outlier management could be omitted altogether. In this 

case, the simulation engine should have provisions for input data anomalies. 

Summing up, outlier management aims at developing a systematic way to deal with 

data anomalies. There are many tools and techniques available to perform this task 

but altering values of the dataset will inevitably introduce a bias. Whether the bias 

assists or hinders simulation accuracy is to be decided by the simulator developers.  

Step 4: Reduce data 

The accuracy or completeness of the simulation results is not always directly 

related to the amount of supplied data. The same result could be achieved by 

reducing the size of input data. This could involve the removal of duplicates and/or 

the use of regression. It may also be achieved by reducing the number of data 

dimensions by merging related parameters or features and/or removing 

insignificant impact parameters. Outside the field of data science, data reduction 
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has been associated with the reduction in storage space requirements. However, 

data reduction methods have a wider range of applications and can supply the 

simulator with high-value data that is just enough to ‘do the job’ as opposed to lots 

of data that may or may not contain useful information. Especially in cases where 

Industrial Internet of Things (IIoT) technologies monitor the physical system, data 

comes from heterogenous sources that operate autonomously (Wang 2017). In 

these cases, data synchronisation and merging are required to generate the input 

for the simulator.  

As with previous steps, there is no set list of methods or techniques to follow. Both 

numerosity reduction and dimensionality reduction methods can be used and 

should always be considered since this can lead to lower system complexity and 

the reduction of computing capacity needs. For the same reason, it should be 

assessed by the developer whether applying data reduction improved the simulator 

as a system in terms of calculation speed, accuracy, system simplicity or any other 

performance indicator that is important for the implementation. Any additional 

process adds complexity and requires processing power. In addition, data reduction 

methods should be used with caution if data is compressed and then the simulation 

engine has to decompress it. These processes are internal to the simulator and 

there is no storage involved (except systems running on the cloud where processes 

are geographically spread and compression could accelerate transmission speed). 

To summarise, the core idea of Step 4 is to improve data by concentrating its value. 

There is a wide range of methods typically borrowed by data science that can 

merge and reduce the size of supplied data, but this step should be omitted if there 

are no significant gains in the performance or the design clarity of the simulator.  

Step 5: Transform data. 

Before passing the input data to the simulation engine the data is typically 

transformed to comply with the requirements of the simulation engine. As 

mentioned earlier, the input interface is responsible for all pre-processing so the 

responsibilities of each element of the proposed architecture are clear and distinct. 

Therefore, the simulation engine should receive data as specified by the simulation 

model and should not do any further pre-processing.  
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Data transformation tasks are mainly reformatting, restructuring or value changing 

such as data normalisation or data mapping. These tasks may also be undertaken at 

an earlier stage since restructuring raw data before any check on the actual values 

may speed up all of the pre-processing processes. It may also be beneficial to 

combine data restructuring with other cleaning tasks although this could add 

complexity to the system without significant gains in performance. As with the 

previous step, there should always be a focus on the overall system performance 

so that any additional computing or development effort is justified. 

Data transformation serves multiple purposes; the most important one is to make 

the data ready to be used as the input for the simulation engine. At the same time, 

better-structured data or suitably formatted data is also easier to comprehend by 

humans. Understanding data characteristics is critical in all data-related 

processing and it can shorten development times since dataset-related issues can 

be quickly spotted. In some cases, preliminary data transformation can be 

separated from the simulator to accommodate the needs of other applications. On 

the other hand, data transformation has less potential in adding value to data since 

it only changes the representation (unless direct access to data is by itself 

valuable). Large datasets or voluminous data streams may significantly increase 

the computing burden which could otherwise be lifted with minor modifications in 

the simulation model. Finally, any manipulation of data increases the risk of 

introducing errors therefore the developer needs to ensure that the benefits of 

transformation tasks outweigh the impact on the overall development process. 

To summarise, data transformation is aimed at bringing data to the exact form 

required by the simulation engine or to one that assists pre-processing. It can be 

performed at various stages of data pre-processing, but its use should be justified 

otherwise it will unnecessarily increase the computational burden and complexity. 

Step 6: Push data 

After pre-processing is finished, the data is passed to the simulation engine (and if 

appropriate to the learning module). The simulation engine is triggered by the input 

interface and this is why the term ‘push’ is used. Step 6 is relatively straightforward 

since the data at this point always has the expected characteristics and the data 
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transmission is an internal system process therefore the risk of interferences is 

minimal. For the developers, a good balance between performance and design 

simplicity should be found. The input interface is a distinct module within the 

simulator and a clear distinction from other modules should be maintained to 

ensure design clarity. On the other hand, since the data is ready to be processed by 

the simulation engine any delay in data transfer has a direct impact on 

performance. It is therefore imperative that no data manipulation takes place at 

this point. As a general development guide, the transaction should take place using 

the Random Access Memory (RAM) of the computing system or a lower-level type 

of memory if possible. Any writes to persistent memory, possibly to a hard drive or 

to a cloud service, should be done asynchronously and in parallel to the main 

process. Finally, an efficient way to trigger the simulation engine should be used to 

avoid delays until the simulation engine loads. Typically, this would be achieved if 

the simulation engine runs as a service that waits for new data to become available. 

Push data is the last step of raw data pre-processing and after this step the data 

should exit the input interface containing more concentrated value and with 

characteristics that enable processing by other modules. 

The above steps aim at cases where sensors generate the real-time data supplied 

to the simulator. Although modern simulators run within digital twins where the 

real-time element is dominant, a simulator is not restricted to real-time 

operations. Digital twins are also used during process planning where the simulator 

runs with offline datasets, generated to replicate the case under investigation. A 

typical example is using G-Code language commands (part program) as input to a 

CNC machine simulator or providing just the design of the part to be manufactured 

without any details about the machine. Such cases don’t require all steps of Figure 

10 because the data supplied to the simulation engine is generated within the input 

interface. This data generation falls under one or more data transformation steps 

which for example transform a G0 command to a mathematical representation of a 

3D line and then transform this line to a series of points that represent the 

toolpath. A more detailed description of an application is presented in section 4.2.3. 
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To conclude, raw data that is fed through the input interface is not necessarily a 

stream of values. Historically, the opposite is true since only in the last decade 

have simulators run in such a manner. Therefore, the input interface should be 

capable of coping with the real-time processing of a raw data stream but also offer 

offline processing capabilities to support planning or to simply provide backward 

compatibility for digital twins that are connected to legacy systems.  

3.4  SIMULATION ENGINE 

When thinking about a simulation model the first thing that comes to mind is the 

simulation engine. All other simulator modules, despite being part of the simulation 

model seem secondary as they exist to support the seamless engine operation. It is 

difficult to specify an ideal structure of a simulation engine since there are 

thousands of different simulation models that have been developed over the years 

with a very wide range of applications as described in section 2.2.2. It is also 

common in commercial software to provide a list of different models that the user 

can choose from when running a simulation. To provide the required flexibility, this 

section is split into two parts, one generic that can be used as a guide for the 

majority of simulation applications and a second one which focuses on the 

characteristics of a simulation engine for CNC processes. The second part can also 

be considered as an introduction to chapter 4 where the implementation 

demonstrating the suggested architecture is based on the principles presented 

here. 

3.4.1 Simulation engine general characteristics 

The simulation model is a combination of mathematical calculation formulas and 

logical workflows that emulate the behaviour of real-world systems. The simulation 

engine, shown in Figure 11, is the implementation of these formulas and workflows. 

It receives input data, feeds the mathematical formulas in a sequence defined by 

the model workflow and produces the results which are a description of one or 

more properties of the real-world system.  
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Figure 11 Simulation engine data flows 

The mathematical formulas and the workflows are predefined, regardless of the 

number of cases that the engine can simulate. It therefore lacks the flexibility a 

real-world system has since the latter changes its behaviour depending on its 

usage, environment and numerous other parameters that affect its operation over 

time. To work around this limitation, the mathematical formulas primarily but also 

the parameters that the workflow depends on, are variables whose values are 

obtained by a database that is constantly updated.  

Inside the simulation engine, there is a looping process taking place (illustrated in 

Figure 12):  input - decision – calculation – output. The logic of this micro-process 

is that the simulation engine works as a multilevel data converter that receives 

input data which it converts step by step to produce the simulation results. This way 

the simulation model ‘size’ may increase but it becomes less complex and easier to 

test since each loop can be isolated and tested separately. This is an important part 

of the author’s architecture since complex simulation models have long been 

identified as non-efficient. The discussion in Chwif et al. (2000) is a very good 

starting point for one to understand the history and reasons to avoid high levels of 

complexity. The article is still relevant because as the authors suggest, high 

computing capacity does not offset the impact of high complexity. 
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Figure 12 Simulation engine internal operation loop 

Focusing back on the architecture of the simulation engine, Figure 12 elements are 

the highest level of detail that can be provided without taking into consideration the 

specifics of each application. The way each cycle runs is as follows: 

1. The results from the previous loop or, if this is the first loop, the data from the 

input interface are available and ready to be used as the input data. It is 

recommended that no data transformation is required between loops (although 

this is not always possible). 

2. The latest values for the decision algorithm parameters are updated. These 

values have been calculated by the learning module and are retrieved from the 

simulator database. It is very inefficient to read them from the database every 

time a new loop begins therefore it is recommended that value retrieval from 

the database is either done in parallel to simulation engine operation 

(multithreading) or it is done at longer intervals therefore without significant 

impact on the total simulation time. 

3. Previous cycle results are loaded into the updated decision algorithm and the 

calculation formula for this loop is specified. From a programming point of view, 

the decision algorithms are typically one or more simple ‘if’ statements that 

select the appropriate calculation model. Simplicity is critical for every element 
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because a sophisticated decision algorithm (that requires multiple computer 

operations) has a high computational impact. The decision algorithm can also be 

used to break a complex calculation formula into many simple formulas (each 

one for a very specific case) but this should be done if development time and 

testing are not significantly affected.  

4. The selected calculation formula parameters are updated (similar rules to step 

2 apply). 

5. Previous cycle results are loaded into the calculation formula and the new 

results are calculated. The new results are loaded into the memory, so they are 

ready to be used by the next cycle. During development, the formulas must be 

tested separately with purpose-built datasets so each formula can be verified. 

Should issues occur in the future, the testing datasets should be updated along 

with the formulas (e.g. in cases of division by zero or null value exceptions). 

Real-time-data-based simulation is naturally discrete event-based since each data 

sample that arrives at the simulator is a new event changing the state of the 

simulation model. Not receiving an input sample (no time passing included) means 

that there is no input data to feed the calculation formulas that are responsible for 

updating the parameters of the model. For this reason, discrete event simulation 

modelling is the go-to method for simulators supporting digital twins, although 

lately there are efforts to use agent-based models to model real-time systems 

(Malleson et al. 2020). For the same reason, the presented architecture is built 

around and tested with discrete event models.  

The above approach sets the foundation for the simulator development undertaken 

by the author, but it is too generic to explain how the new generation simulator 

engineered for this research is different from traditional approaches or even from 

simple decision support applications. Before delving deeper into the differences 

some more background knowledge should be provided. Current simulation model 

development falls under three categories: white box, grey box, and black box. White 

box models have a very transparent design typically based on theoretical formulas 

that describe the physical phenomena of the system and the results are always 

predictable. At the other end of the spectrum, black box models use historical data 
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to predict the output of the system based on the input without considering the 

internal structure and dynamics of the system. The formulas these models are 

made of are not related to physical phenomena but only to statistical or machine 

learning methods and therefore the output cannot be predicted in advance since it 

depends on the model’s training dataset. 

Big Data and machine learning have been very topical fields since 2010 and as a 

result, black box models have evolved in terms of reliability and efficiency. 

However, key drawbacks of such models are the low accuracy if input data is 

outside the range of the training dataset, the inability to deal with data heavily 

distorted by noise and ultimately the fact that black box models do not use the 

available knowledge around the physical phenomena of the system.  

Grey box models are simply any combination of white and black box modelling. 

Grey box modelling is very demanding in terms of knowledge since it combines the 

system’s physical phenomena theory, statistics and machine learning. For example, 

a current grey box development project involves 5 departments of Fraunhofer 

Institute (Grey Box Model – Integrating Application Knowledge in the Learning 

Process - Fraunhofer ITWM. 2021). On the positive side, this is the most flexible way 

to develop a simulation engine which will ensure that the model results will be 

valid even in cases not predicted during the simulator development phase. This 

means that effort will be saved in the long term when black box models require 

further training to deal with out-of-range cases. This research work has found that 

the approach of Yang et al. (2017) is a forward-looking way to model simulation 

engines. After presenting different combinations of white and black box models, 

they propose that model building should start with a computationally light, white 

model that is further enhanced by black models to deliver the overall model 

requirements. Their work is based on additive manufacturing, so the idea is not as 

refined for wider use, and it is open to interpretation regarding the exact 

characteristics of the developed model.  

The adaptation of the idea of two models (white and black) lead to the architecture 

of the simulation engine engineered by the author in this research. The simulation 

engine is formed by two parts: the process digital replication part, and the process 
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data analysis part. The two parts are depicted in Figure 13 which also provides a 

more detailed view of the generic model of Figure 11.  

 

Figure 13 Detailed architecture of simulation engine 

The process digital replication part is the digitalisation of the physical process that 

is being simulated. There, all knowledge related to ‘how the process works’ is 

applied, and the model estimates the characteristics of the simulated system while 

the process is running. For example, in a material removal process, the digital 

replication part starts with a digital part and a digital material removal tool. Then it 

brings the tool into contact with the digital part (as it happens in the physical 

process) and removes the affected part volume. Finally, it finishes with a 

representation of a finished part and (if applicable) a worn tool. These steps are 

done in parallel to the physical process, so the simulation model generates real-

time results. The reason behind replicating the physical process is to create a space 

in the architecture where all of the theoretical knowledge about the process can be 

used. Developing a model very close to the physical process ensures that all 

available theory is relevant and applicable in the same way that it is applied in the 

physical world. 

As soon as results from the digital replication become available the simulation 

engine uses any type of model to further analyse these results. This step typically 

produces the final simulation results which are based on the process digital 

replication but are not restricted by the limitations of theoretical models nor by the 

availability of training data. Furthermore, deployed black box models can be 

trained by the digital replica, so an initial, theory-based state of the model is 



54 
 

achieved even before the simulator receives data from the physical world. Both 

parts of the simulation engine will evolve with the enactment of the physical 

process since the theoretical calculations will change as new parameter values are 

received by the database. The way that empirical data is integrated into theoretical 

formulas is up to the developer although the straightforward way would be to 

modify parameters whose value is specified in empirical tables (for example in 

machining these can be material machinability, specific cutting force etc.). Finally, 

the simulation engine must be able to run without actual monitoring data being 

available. The architecture is developed to cover the real-time needs of modern 

simulators but at the same time, it should maintain its capability to run as an offline 

simulator that can be used for planning before running the process for the first 

time. In this case, the simulation engine will be fed with synthetic data or 

completely artificial process data, and it will run based on initial values set in the 

database. Learning from these datasets should be avoided unless the intention is to 

initialise the simulator (where high-quality synthetic data must be used).  

3.4.2 CNC process simulation engine 

To better demonstrate the architecture and to offer more ideas for CNC process 

implementations, a simulation model development methodology is presented. This 

method was developed initially with subtractive processes in mind, but it could be 

equally effective in additive processes. Usage in joining or forming processes would 

be limited and more importantly not aligned with the philosophy of the method. In 

addition, since this work did not apply the method on material displacement 

phenomena, the issues that the developer may face in implementations such as 

laser cutting where melt material moves away from the part or machining of thin 

walls where the billet elements move have not been investigated. 

Differences between simulation models have an impact on what the elements of the 

simulation engine represent (as shown in Figure 12) as well as the number of 

iterations required to convert the input data into results. The proposed method 

engineered by the author aims at developing a mesh-based CNC simulation model. 

The core idea behind the model is that the machined material is represented by a 

mesh of cubes and if a cube’s volume intersects with the volume of the cutting tool, 
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then the cube is flagged as ‘machined’. At the same time, the part of the cutting tool 

whose volume intersects with the cube adds the event to its counter. All other 

calculations are based on this volume intersection check process. This is a 

simplified (if not simplistic) view of the model which will be analysed later in this 

chapter. Before getting into details about the simulation model, a breakdown of its 

main parts is presented (Figure 14). 

 

Figure 14 CNC model development breakdown 

The order followed to develop each part of the model is not fixed since precision 

selection requires knowledge about the mesh generation mechanism and derived 

data is based on the outputs of the Virtual CNC processing. In the following 

sections, each part of the development process is described separately with details 

on the development purpose, application examples and the contribution of each 

part to the simulation engine operation. As with other elements of the simulator 

architecture, the final implementation characteristics depend on the objectives of 

the implemented system and the strategy that the developer decides to follow. The 

following, therefore, describes the work undertaken by the author in completing 

this research. 

3.4.2.1 Precision Selection 

Taking out model verification and model training that are both done during the 

development phase, the predictive capability (Oberkampf 2019) of an implemented 

simulation model depends on the application and on the calibration of the selected 

model. As soon as a model has been implemented and set to run autonomously the 

number of available calibration options is reduced and calibration is restricted to 
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decisions during the simulation engine run (as the decision is defined in Figure 12). 

Since the aim of the approach being considered herein is to support real-time 

applications performance speed is a critical part of the simulation model. The time 

that the simulator needs to process input data and calculate results is determined 

by the model’s computational needs and the hosting system’s computing power (as 

represented by the operations per second and size/speed of the random-access 

memory). Computing technologies that support real-time applications operate at 

the ‘edge’ meaning close to the data sources and therefore there is limited 

utilisation of cloud computing resources. Consequently, a ‘straightforward’ way to 

calibrate the model and achieve the optimum precision is to initialise the simulation 

based on two indicators.  

1. The memory requirement of the mesh. If processing the mesh requires more 

Random Access Memory (RAM) than the available one then the results 

calculation speed will decrease dramatically or the system will run into an error 

and stop.  

2. The time that is needed to do the calculations for one sample should be shorter 

than the mean time between sample arrivals. Data reduction in the simulator’s 

input interface will assist in reducing the speed that samples arrive at the 

engine but then, if the engine cannot cope with the load, either the hardware has 

to be upgraded or the data reduction algorithm should be of a lossy/irreversible 

type meaning that part of the contained information will be lost. 

Both indicators are related to the specific hardware that the simulator runs on and 

all specifications of hardware are (typically) known at the initialisation of the 

simulation engine. To ensure a smooth process the hardware resources should be 

reserved if this is not already done by the design/operating system of the physical 

host. The exact calculation of the mesh can be done during initialisation (e.g. mesh 

should require 50% of available memory) but thorough verification for multiple 

scenarios is needed during development. The simulator developed for this research 

work and presented in Chapter 4 calculates available memory and system 

capabilities during start-up (Figure 15) to prevent “out of memory” errors. 
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Figure 15 Simulator checking memory availability at start-up 

3.4.2.2 Mesh Generation 

Mesh-based simulation models typically begin the process by converting the 

examined physical entity to a structure of 3-dimensional shapes. The properties of 

each element are not necessarily the same. For example, if the part is made of 

stainless steel, then all elements have the same properties but if the part is a 

composite material (e.g. fibreglass and carbon) element properties change 

depending on the material that the represented element volume is made of. The 

most basic element property for every implementation is whether the element has 

been machined or not. This can be represented as a Boolean value in the majority 

of programming languages, and it is probably the fastest way to manage a CNC 

virtual process data. Should more element properties be examined, then each 

element becomes an entity with multiple parameters/characteristics. A final 

addition to the element properties is interactions with neighbouring elements which 

are defined through functions also attached to each element. Although in theory 

one could add ‘everything’ of interest to each element, in practice it is highly 

unlikely that the model will run faster than the real-time physical process. The 

computing burden will be significantly higher and comparable to running offline 

finite element method (FEM) models. 

Mesh generation is a well-studied field and there are plenty of resources about 

element shape selection. These are however focused on the characteristics of the 

system they aim to represent and on the way that the elements are connected. This 

is not necessarily the case for a digital twin simulation model that aims at providing 

adequate details to safely manage the physical CNC machine in real time. This 
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research work found that for the representation of machined parts regular 

hexahedron (cube) shaped elements are very efficient. The reasons supporting the 

use of cubic elements are:  

• A 3-dimensional matrix containing Boolean (true, false) values is enough to 

show which elements have been machined. 

• The same matrix retains the physical position of each element simply by storing 

it in the respective position of the matrix (e.g. the element with indexes x=1, y=1, 

z=1 is the element at the corner closest to the origin of the global cartesian 

system the CNC machine uses). 

• It allows for calculations based on element size as a unit instead of using actual 

cartesian units which turns most calculations with real numbers to calculations 

with integers. 

• It simplifies the translation of physical part tolerances to mesh size 

requirements 

• Engine verification and debugging are also simpler since cubic shapes make it 

easier to spot the state and position of each element without the need for 

visualisation tools (required to generate 3-dimensional scatter charts). 

If the simulated process is subtractive then the cutting tools should also be 

simulated since their state has a high impact on process precision and reliability. 

Because of the wide variety of cutting tool shapes and technologies, any shape that 

keeps computation burden at a minimum may be used. A key difference compared 

to the machined part mesh is that only the cutting tool’s surface is in contact with 

the part so it may be possible to use a 2-dimension mesh to represent only the 

contact surface. A good example is presented in Chapter 4 where the mesh for the 

cutting tool of a milling machine consists of rings (Figure 41). Another example 

would be the representation of a Wire Electro Discharge Machining (WEDM) cable 

that can be represented by a one-dimension mesh (a line with the length of the 

working part of the wire). 

Regarding element size selection, the trade-off between precision and calculation 

speed has been discussed in the precision selection section 3.4.2.1 above. However, 

the simulator is only useful if it provides enough precision for the specific process 
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requirements and not only a rough prediction. The following list is an attempt to 

present all factors for element size specification assuming that there is no further 

manipulation of data or change in data representation when higher resolution mesh 

is needed which would be the case if variable mesh would be used or hybrid mesh 

using regression formulas instead of points would be created. 

1. The first specification is the precision of the data samples arriving at the 

simulator. The element size should match the precision of the data samples so 

that the simulation engine calculations are on par with the quality of the 

provided data. To describe the idea through examples, if the coordinates of the 

cutting tool are provided with a ±1mm precision, then the mesh should not be 

finer than 1mm since any result will have the precision of the input data. On the 

other hand, any mesh with an element size over 1mm will inevitably prevent the 

engine from extracting all value contained in the supplied data. 

2. The tolerances for the part design are also a guide for mesh size requirements. 

Although the data and the simulation engine may be able to provide a very fine 

analysis, a digital twin that uses the simulator is focused on process 

requirements and is not a scientific tool pushing the boundaries of precision. It 

is therefore a waste of resources to provide a higher level of detail if this is not 

required by the part design. 

3. Similar to the previous point, the tolerances of the machine/cutting tool 

processing the part are also an indicator of the highest level of mesh detail 

requirement. Using an example to explain the idea, if the precision of the 

machine is ±0.1mm then even if the data produced by the machine has a 

precision of ±0.001mm the data itself is flawed since it accurately captures the 

inaccuracies of the machine itself. Expanding further, such detailed calculations 

won’t add value to the control precision of the digital twin supervising the 

process unless the aim is to monitor the deviation of the machine from the 

intended parameter values. 

4. In most cases, the element size of the cutting tool should be matched to the 

element size of the mesh representing the machined part. This is better 

demonstrated through a graphical example. Figure 16 shows a comparison 



60 
 

between a cutting tool with a lower mesh resolution and one that has a 

matching resolution to the mesh of the part. 

 

Figure 16 Matching vs non-matching cutting tool mesh. 

The part that is machined by the low-resolution cutting tool has different 

elements machined compared to the one with the matching resolution. 

Ultimately, the resolution of the virtual process matches the resolution of the 

tool and not the one of the machined part. Apart from the poor results, this 

means that the simulation engine uses computing resources for a high-

resolution part mesh but produces results of a lower-resolution model. 

Moreover, a mismatch in element size may lead to the false perception that the 

simulation is of high resolution. The same issues would exist if the machined 

part would be of lower resolution. In this case, the calculated properties of the 

cutting tool would be of lower accuracy. 

To be in line with what a mesh element is, the 2-dimension mesh depicted in Figure 

16 is showing squares for demonstration purposes. The mathematical model of the 

mesh is formed by points and each point represents a square area. As a result, the 

properties of the area are the properties of the specific point representing the area. 

Figure 17 clarifies the difference and a practical application of this critical detail is 

presented in chapter 4. 

Part

Low resolution 
tool mesh

High resolution 
tool mesh

Cutting Tool

Intersection



61 
 

 

Figure 17 Left: Representation of a mesh with cubic shape elements. Right: Actual model of the 
mesh 

Mesh generation is done at the beginning of the simulation, but it is a step that does 

not consume any input data (except meta-data that describes the part and cutting 

tool properties). If the part is pre-machined however, a lag may be introduced due 

to the time needed to initialise the elements of the mesh. It is therefore necessary 

to account for that extra time so the simulator and consecutively the digital twin 

can stay synchronised with the physical process. Another case to be considered is 

the concurrent processing of more than one part. This occurs when machining a 

batch of the same component using a multi-workpiece machining setup. If there is 

one tool doing the machining, then each machined part should have a separate 

mesh. Otherwise, a parallel running instance of the simulation engine should be 

considered. 

After the mesh is generated, the physical parts of interest have a presence in the 

digital environment although they do so without any ability to interact with the 

environment. If the simulator is part of a digital shadow that simply replicates what 

is happening in the physical world, then the digitalisation of the asset may be the 

generation of the mesh and the direct projection of input data on its elements. An 

example would be an additive process where material deposition input data is 

received by the simulator as a set of cartesian coordinates and the only action 

required is to change the matrix value containing the element state from false to 

true to indicate that the element is added to the part. However, a full-scale CNC 

simulator should be able to support a digital twin which includes the calculation of 

interactions and future projections to support autonomous management of the 

asset. 
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3.4.2.3 Virtual CNC Processing 

As briefly discussed in the beginning of section 3.4 the proposed simulation model 

engineered in this research for CNC processes aims at virtually replicating the 

process and then extracting from the virtual process the parameters of interest. 

Replication of the process means that virtual material is subtracted (or added) and 

every process parameter is recorded. To recreate the process virtually, first, the 

physical parts have to be digitalised and then the interactions between these parts 

should be mathematically modelled. The digitalisation of the materials is done by 

generating the mesh in the virtual space as described in the mesh generation 

section. In this section, the digitalisation of interactions is presented as well as the 

mechanism through which process parameters are monitored. 

A distinction should be made between processes that do not have a tool coming 

into contact with the part (laser cutting, electro discharge machining etc) and 

processes with cutting tools (milling, turning etc.). The approach is different 

because in the first case, there is no physical interaction between the part and the 

cutting tool while in the second case, the physical interaction is a critical part of the 

material subtraction. In the first case, element temperature modelling may be used 

as the key part of the simulation while in the second case, element mechanical 

removal is important. It has to be noted that it is not within the scope of this 

research work to provide examples for every manufacturing process type. Many 

processes follow similar principles and are covered by the examples, but for 

everything else, the generic architecture should be used as a guide. 

In no contact processes (subtractive or additive) only the mesh of the part exists in 

the digital space and therefore the results of the process are captured only from 

the properties of this mesh. This does not exclude the recording of statistics related 

to the physical machine itself or the calculation of the machine’s position in the 

virtual space. The typical way that each mesh element is subtracted (or 

extruded/melted in additive processes) is by heating it to its melting point. Process 

quality and production rate can depend on numerous parameters but for this 

illustration, it is assumed that these are represented by the temperature that the 

element reaches. To follow the progress of the process along with the matrix 
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showing which elements have been machined (true/false) a second matrix is 

required to hold the element temperature property. If the element's temperature 

exceeds its melting point, then it is ready to be considered as machined and further 

checks can be done to verify that the element is indeed removed. It is apparent that 

representing this category of processes relies on heat transfer analysis. Heat 

transfer analysis increases the computation burden and there are problems such as 

plasma formation in laser cutting whose solution is still under investigation. The 

effectiveness of the suggested approach is that the theoretical equations can be 

simplified by using empirical data received from the machine’s monitoring system. 

The temperature calculation algorithm may be completely replaced by an 

algorithm that models the connection between the supplied power and the result 

on the part. A methodology to create the required algorithms/models and thus 

mitigate the issues arising from theoretical-only models has been developed by the 

author and is presented in section 3.5. 

Similar to element temperature-related calculations, other parameters may be 

calculated, as long as the ability of the engine to run faster than the physical 

process is maintained. The parameter which is always a requirement is whether the 

element has been machined (or printed). This is required so the digital twin knows 

both the state and the status of the process. For every iteration initiated by the 

arrival of a new input data sample, the affected elements are found by calculating 

the intersection of the part volume and the volume that is affected by an adequate 

amount of heat. In Figure 18 two examples are shown to demonstrate the model for 

material removal and material addition. Both the left and right figures are a 

snapshot of the process. A process snapshot is the state of the virtual system after 

all calculations related to a data sample have been done and model parameters are 

updated.  
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Figure 18 Left: WEDM machined volume calculation. Right: 3D printing extruded volume calculation 

On the left, the red elements (cubes) are the ones being removed during the 

current snapshot of the Wire Electro Discharge Machining (WEDM) process. These 

cubes are intersected by the wire and therefore the mathematical matrix keeping 

the machining information will have the respective values updated from false to 

true. At the same time, it will be recorded that the removed volume is the volume 

of 12 elements (process waste) and that the material removal rate (process speed) 

is the volume of 12 elements divided by the time elapsed since the previous system 

snapshot (time between 2 data input samples). From a cutting tool perspective, it 

will be recorded that the wire’s active part removed 12 elements in the elapsed 

time and that it is feasible to machine 12 elements without the wire breaking (for 

future comparison). It becomes clear that there are unlimited ways to use basic 

machining information if this is combined with relevant theory or additional 

monitoring data. 

On the right part of Figure 18 an additive process is depicted. In this case, the red 

cubes represent the material that has been extruded and placed on the printer’s 

table. The simulator then ‘knows’ at any point what is the expected shape of the 

printed part. If significant differences with the physical part are spotted (for 

example by comparing the digital part with a picture taken by the 3D printer) an 

error signal could be sent to the digital twin. Then the specific point of failure 

together with the snapshot’s printing parameters could be added to a process 

failure report. In that case, it could also be recorded that printing elements with a 
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specific printing speed or alternatively, printing elements at a specific temperature 

is an indicator of over-extrusion which leads to rejected parts. The digital twin can 

then be used to suggest that steps are taken to reduce the temperature of the 

filament and slow down the process in any future attempt to print another 

(different) part with these settings. 

The same idea would apply to other processes. Although not every process has 

been examined, the strength of the method presented by the author is that it 

performs the actual process in the digital world and all calculations are based on 

the process itself and not on some model that connects input data to output data or 

that describes the process based on relevant physical phenomena observations. 

Moreover, since the simulator receives updated model data, other simulation 

models may run in parallel and through the simulator’s learning module provide 

their own estimation that can be inserted as an extra parameter into the 

calculations. 

3.4.2.4 Calculating derived data 

From the moment that raw data arrives at the simulator until it exits the simulator 

as process information there are different stages that it goes through. Initially, it is 

pre-processed within the input interface where data is converted from unusable 

(for the simulation engine) raw data to ready-to-use input data. Then by running 

the virtual CNC process the input data is converted to results that provide valuable 

information about the process. This information however is not necessarily the 

information required by the digital twin. derived data is the stage where the gap 

between the virtual process results and the digital twin requirements is bridged. 

This is done by using theoretical or empirical formulas that calculate the exact 

parameters that the simulator should estimate. It could be argued that the 

calculation of derived data is part of the CNC virtual processing stage but the key 

difference is that the virtual process is generating process information while the 

derived data stage is moving the simulation information further up the data, 

information, knowledge, wisdom (DIKW) pyramid.  

There are numerous ways to use the CNC virtual process results but in general, 

there are two main categories:  
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- n-sample-based methods  

- 1-sample-based methods 

n-sample-based methods focus on data trends and the overall characteristics of a 

series of samples that are ordered and as the name implies they require more than 

one sample as input. These samples can be generated during part of a process run, 

a full run or from multiple runs. On the other hand, 1-sample-based methods 

analyse the characteristics of each sample independently and calculate a new 

result for each sample without considering trends or overall process trends or 

performance. n-sample-based methods are mostly statistical in nature since they 

rely on process data aggregation and comparison with other runs of the same 

process (for similar or different parts). n-sample-based methods provide an 

overview of the process and are very useful in highlighting differences between 

machines or production lines. This is key for production management and planning 

and is often a requirement of external systems that support operations at the 

facility level. Examples of n-sample-based data models are: process time and 

accuracy deviation; cutting tool wear effects; the comparison of historical usage 

between resources; the estimation of process reliability. n-sample-based methods 

are also very effective when the precision of the simulation engine is low but good 

enough to provide a process overview. For example, in a CNC milling process, the 

simulation engine may use a rough mesh to estimate the usage of a cutting tool and 

the real-time shape of the part. This may not be accurate enough for the useful 

estimation of the spindle load, but it is enough to provide a history of cutting tool 

usage and support cutting tool inventory management.  

Figure 19 shows an example of data processing during the production of a part. 1-

sample-based calculations are done every time a new sample is generated by the 

monitoring system while the n-sample-based are done at the end which is when 

enough samples are available to feed the relevant models. 
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Figure 19 1-sample-based vs n-sample-based derived data 

1-sample-based models are essential for results that are required interactively. 

The simulation engine runs in an event-based manner therefore the results come in 

the form of samples which are produced every time an input sample is converted 

by the virtual CNC process. The range of applications for these models is very wide. 

They can be simple data transformation formulas doing value conversion to 

appropriate units, calculations of removed material weights and volumes or 

estimation of the remaining quantity of consumables. 1-sample-based models may 

be theoretical formulas connecting results with other process parameters, such as 

the forces on the cutting tool or power consumption. They may utilise advanced 

statistical or machine learning models to provide average kerf estimations in a 

cutting process or surface finish quality or even be the interface between two other 

models typically one from process replication and one from derivative data 

calculation.  

Regardless of the application, derived data parameters that are calculated by 1-

sample-based models are more technical and therefore mostly directed towards 

machine operators and towards digital twin modules related to process control. 

This is due to the key difference between the time that the results become available 

in 1-sample-based and in n-sample-based approaches. The former produces real-

time results and can tackle issues as soon as they occur while the latter can spot 

problems at the end of the process which may be ‘too late’ for autonomous 

systems. On the other hand, 1-sample-based models are sensitive to noise and 
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therefore can be less reliable, especially in cases of input data generated by 

sensors.  

A way to mitigate this issue is a hybrid solution where samples are merged so that 

the aggregated sample is less affected by noise. In cases of high sampling rates, it 

is often appropriate to apply a smoothing technique, such as moving averages, 

filters, or regression algorithms, which will aggregate the samples over a short 

period of time. This may typically be the last second/minute so as to not affect 

significantly the performance of control-related tasks. These methods can also be 

applied by the input interface to reduce the number of samples that have to go 

through the virtual CNC process (lossy data reduction), improve the quality of each 

sample and finally increase the reliability of the results. Last but not least, from a 

programming point of view, derived data can be run as a separate service in a 

different computing system. This will free up resources in the system of CNC virtual 

processing and enable a more detailed replication of the physical process. 

To sum up, virtual CNC processing has been created by the author to provide a way 

for the simulation engine to run a physical process in the digital world, but it is not 

producing enough information to support decision making. The derived data 

element fills the gap and extracts all information that is needed to make simulator 

results complete and appropriate for the application. At the same time, the 

approach gives a high level of flexibility and can therefore be used in a wide range 

of applications with different data/information requirements.  

3.5 LEARNING MODULE 

Machine operators go through training before running a process on a new machine. 

Training is required to learn relevant theory, learn the machine’s controls and 

finally learn how to combine theory and controls to produce a part. Experienced 

machine operators may have run the process for different parts many times and 

over time they will have observed the differences between the theoretically 

estimated result and the actual result. The differences can be related to the way 

that the specific machine runs, the wear and maintenance of a specific machine, the 

workpiece material properties and the reliability of the process. Ultimately, an 
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experienced operator when compared to an inexperienced one has accumulated 

much more knowledge through an iterative process where the differences between 

process estimations and process results have been observed and can then be taken 

into consideration for the next runs. Nowadays, the wide range of available sensors 

can translate and/or capture human observations to data that is instantly available 

for processing. Experienced operators do check process monitoring values, such as 

the percentage spindle load, because a sensor measurement although being a very 

small part of the big picture is nevertheless a trustworthy quantifiable indication of 

the process state. 

The anticipated function of a next generation simulator should follow the same 

evolutionary process as machine operators. It runs initially with the theoretical 

estimations and as it receives actual process data it gains experience and therefore 

adapts its estimations accordingly. In addition, like a human operator with 

knowledge gaps that are filled in the long term by observations and experience, the 

simulator starts its operation with an adequate theoretical background that is 

enhanced by monitoring data analysis. A key difference however is that a human 

operator may need weeks or months to accumulate the necessary experience while 

a simulator can gain the necessary experience with data generated within minutes 

of running the process. Overall, the examples of managing this introduction point to 

constantly running supervised learning models that aim to support a simulator 

teaching process. The architecture designed by the author relies on this process, 

and it is one of the key characteristics of this approach that distinguishes it from 

traditional simulator developments. 

3.5.1 Learning module operation and characteristics 

Figure 9 (the architecture diagram) shows that through the database, the learning 

module is responsible for providing the updated parameter values to the simulation 

engine. The architecture uses the simulation engine to embed process-related 

theory into the simulator and the learning module to embed empirical knowledge 

acquired by analysing process monitoring data. This is therefore the mechanism 

through which theoretical and empirical knowledge are merged. A consequence of 

using this mechanism is that the learning module becomes responsible for the 
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accuracy of the simulation engine results and as it will be explained in the following 

paragraphs, it can dominate the simulation process by completely changing the 

calculation model that the simulation engine should run.  

There are more than one calculation formulas whose parameters are updated by 

the learning module so in practice the learning module is a group of submodules, 

each one responsible for updating a specific formula of the simulation model. 

Figure 20 shows the typical data flow within one of these submodules.  

 

Figure 20 Learning submodule data flows 

Learning submodules have one aim; to minimise the error between simulation 

engine’s predictions and actual values. This is a typical machine learning (ML) 

problem and there is no restriction set by the architecture on the type of models or 

methods to use. The submodules only have to comply with design restrictions that 

ensure their seamless integration into the simulator. 

Learning submodules use supervised learning because the goal is to predict values 

using historical datasets containing input and target data samples. In a 

straightforward development scenario, the submodule has to find the relationship 

between the process setup (input) and the output produced by this setup (target). It 

is outside the scope of this work to propose specific ML models or techniques but 

from an architecture point of view, the selected models should comply with the 

reliability, accuracy, and computing power requirement of the simulator. Nowadays, 

there is a long list of implemented ML models in a wide range of programming 

languages which reduces the need and effort of developing ML models from 
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scratch. This enables the developer to create a testing bed where different models 

are assessed through automated routines instead of selecting them manually. 

A concept for submodule development is to add a data transformation layer to the 

submodule where the dataset is formatted according to the programming needs of 

available ML model libraries. In the majority of cases, the required format is arrays 

of values which is also the format of the datasets being kept in the computer’s 

memory (meaning no transformation is needed at all). Then, through an automated 

iterative process, all available ML models are tested and the best one is selected 

for the specific submodule. The same process is repeated for every parameter that 

the learning module has to update and ideally, the process should be repeated for 

the submodules that do not perform well with new datasets. Selection and model 

assessment can be an independent software module, developed separately and 

used for all learning submodules. This distinction however facilitates development 

and does not suggest an alteration in the architecture. The ML model selection 

module is not an independent structural element but only an independent software 

part belonging to the learning module.  

The input-target scenario described above is a simplification that assists in the 

explanation of the architecture but is not enough to cover simulator needs. Figure 

20 depicts model parameters entering the learning submodule which can be briefly 

explained as the parameters of the submodule’s model. To better understand the 

context within which the submodule and its ML model runs a big-picture analysis is 

needed. The idea adopted in this research of a next generation simulator is based 

on the concept that the simulator is a data consumer. Consuming data means that 

the data entering the simulator is not stored in a database as raw data after it is 

processed. Going back to the human operator example, the operators observe the 

process, translate observations to information and in combination with the process 

result they create a new experience which is the knowledge stored in their 

memory/brain and there is no need to re-watch the process or go through 

monitoring data to produce the next part. Every time they choose a machine setup, 

they recall the best parameters from memory (experience) and run the process 

with a better-tuned machine. The simulator does the same but instead of storing 
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the information in a brain, it stores it in the database in the form of process 

parameters. Then these parameters contain all knowledge derived from previous 

process runs so there is no need to store the raw data used to run the simulation 

and generate this knowledge. This is what ‘model parameters’ represents in Figure 

20. In the idealised example shown in Figure 21 a mechanism of knowledge storage 

is presented. 

 

Figure 21 Example of parameter update (equal weights) 

The knowledge from the first dataset of the above example is that parameter C has 

the value 10 and this has been derived from the experience of 5 observations. Then 

another dataset arrives with a different value for C. The new observation is also 

integrated into the parameter value with equal weight to previous observations. 

Finally, in the database, value 11 is the knowledge of the simulator after processing 

6 observations. Therefore, instead of keeping 6 observations that need processing 

every time the submodule runs, the simulator keeps the parameter value and the 

number of observations. The same would apply if the parameters stored in the 

database would be the weights of a neural network that has been trained with 

hundreds of thousands of observations. The neural network would contain all 

knowledge extracted and therefore the need for storage resources to keep the 

initial raw data would be minimised. 

After the model parameters, the last input data type entering the submodule is the 

estimated results. It is the least obvious requirement since the ML model is trained 

by input and target values and it can maintain its capabilities by retrieving every 

time the last known parameters. The problem is that in many cases, the setup 

parameters (input) and the actual results (target) are not directly related. Modern 

Parameter Value Observations

C 10 5

ML Model DatabaseParameter Update

Parameter Value Observations

C 11 6

No previous data
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machines monitor dozens of key process parameters, but it is not guaranteed that 

these parameters are enough to estimate all output parameters requested by the 

digital twin. For example, based upon the continuous monitoring of the loading on 

the spindle motor the internal control of a milling machine may slow down the 

process if the cutting tool is worn. A learning module that does not have data 

related to the cutting tool protection mechanisms would identify this slowing down 

as a cause of increased cycle times and may propose to increase the feed rate 

since the spindle load has been managed so it is within acceptable values. Such an 

increase would eventually lead to a catastrophic failure of the cutting tool which is 

a result of the inability of the simulator-based supervision system to fully 

‘understand’ the operation of the machine. 

To prevent such issues, the learning submodule should test its accuracy against the 

full process and not only the narrow-scoped training datasets. This is done by using 

an objective function in the machine learning process that minimises the difference 

between simulator estimated results and actual results instead of focusing only on 

the actual results without ‘knowing’ the behaviour of simulator estimations. This is a 

relatively long process (compared to simple input-target relation), but it is 

necessary for an accurate and reliable simulator.  

A second more obvious reason for supplying the learning submodules with 

estimated results is related to the separation of the simulation engine into two 

parts (Figure 13). The process' digital replication results are the input for process 

data analysis. The latter is also using parameters that are updated by the learning 

module therefore the replication results are the input for the learning submodule.  

As a last note, because of the nature of the ML models, it is frequently the case that 

the whole model is supplied by the learning module and the process data analysis 

simply runs the supplied model (in contrast to having only one model parameter 

updated). This is accepted by the architecture but introduces the need for balancing 

between the learning module and the simulation engine. 

3.5.2 Learning module and simulation engine collaboration 

The last point in the previous paragraph leads to a plausible argument; if the 

learning module can build the full calculation model for parts of the simulation 
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engine, then why is there a separation between the two and why is learning not part 

of the simulation engine? The answer is found after examining the purpose of each 

simulator element. The simulation engine without the learning module would 

always receive the same parameters from the database and therefore would be a 

static system. A static system doesn’t have memory and therefore it cannot adapt 

to changes. Even if the perfect simulator existed this would be accurate only for a 

static deterministic physical system. All physical systems evolve, and their 

performance typically deteriorates as they reach the end of their life so a static 

simulation system would only work for a very short time. The learning module on 

the other hand is only focusing on improving ML models. There is no direct 

engagement with the simulation engine operation and there are no results 

produced by the learning module itself. The only way that the learning module 

could become an active part of the simulation engine would be to merge them into 

one simulator element. 

Merging the learning module with the simulation engine is the current state of the 

art for simulators used in Digital Twins. The issue that arises is that the simulation 

engine must run in real time and its calculation models need to have fixed 

parameter values for the time that they are used. The learning activities must be 

done either in advance of the process with (at best) synthetic data or after the 

simulation engine’s operation completion. In both cases the latest datasets are 

processed, the ML models are updated and then the new ML models become 

available for the next machine run. It quickly becomes apparent that the approach 

although significantly better than traditional offline simulation is still inefficient, 

and the learning process unnecessarily blocks the simulation engine.  

Overall, the architecture produced by the author in this research separates the two 

elements to allow them to work independently. The simulation engine needs to be 

fast while the learning module can run asynchronously and update the parameters 

at its own pace even by running on a different computer. In extreme cases, this 

could allow the complete substitution of the learning module by another one that 

has been developed and trained in a different environment. This type of flexibility 

becomes very relevant in cases where part production is moved to a new location 
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with different machines. The learning module captures all knowledge from the 

initial production site so an accurate production replication means that the 

calculation models of the simulator have similar values. If the values are not the 

same this means that the machines run the process differently and the difference 

can be spotted easily by checking each parameter value separately. The same 

scenario would apply when a company runs multiple machines and they would like 

to compare them. The latter is typically done by machine operators that know the 

specific characteristics of each machine, but it is a critical capability when a 

production runs autonomously. 

Despite the effort of the architecture to provide independence to the learning 

module, this is not always possible since the simulation engine runs the ML models 

that the learning module ‘builds’. If the model is a formula that has only a 

parameter value updated, then the simulation engine will always need the same 

time to calculate the formula results. If instead of the simple formula a deep neural 

network is used then updating the neural network structure will drastically change 

the time that the simulation engine needs to calculate the network outputs. These 

issues occur because the simulation engine focuses on calculation speed and the 

learning module on accuracy. A restriction is therefore required to ensure that the 

learning module will not impact overall simulator performance. This restriction can 

be a developer’s convention that is implemented either by running verification tests 

on the learning submodules or by allowing only a fixed number/structure of 

parameters to be stored in the database. To sum up, the learning module can have 

an impact on a simulator’s performance and the developers should be aware of it 

during the simulator’s design phase. 

3.5.3 1-sample-based learning 

The learning module provides support for all calculation models of the simulation 

engine that need updating and therefore it supports both 1-sample-based 

calculation models and n-sample-based models. 1-sample-based learning is 

straightforward as a process because the data received is already pre-processed 

and the learning submodule only needs to test which ML model is the best fit. To 

clarify why the learning module contains only ML models the simulation engine 



76 
 

calculation formulas should be examined. If a simulation result is calculated using 

equation 3-1 then the simulation engine requires the sample data coming from the 

monitoring system of the physical system (input1…N) and the value of the learning 

parameter (Plearn) that is retrieved from the database. 

𝑅 =  𝑓(𝑖𝑛𝑝𝑢𝑡1, 𝑖𝑛𝑝𝑢𝑡2, … , 𝑖𝑛𝑝𝑢𝑡𝑁, 𝑃𝑙𝑒𝑎𝑟𝑛)
 3-1 

Where: 

R: 

f: 

inputN: 

Plearn: 

 

 

Result 

Calculation formula 

The input data variables received from the monitoring 

system 

The parameter that is updated by the learning module 

To simplify the example, it is assumed that the corresponding learning submodule 

receives a dataset for the first time (so there is no need to consider the previous 

value of Plearn). The submodule will need to provide a Plearn that minimises the cost 

function 3-2.  

𝑀𝑆𝐸 =  
1

𝑠
∑(𝑅𝑖 − 𝑓𝑖(𝑃𝑙𝑒𝑎𝑟𝑛))2

𝑠

𝑖=1
 3-2 

Where: 

MSE: 

s: 

Ri: 

 

fi: 

Plearn: 

 

 

Mean Square Error 

Number of samples in the dataset 

The (actual) result of sample i as received from the monitoring 

system 

Simulation engine’s calculation formula (inputs are constants) 

Learning submodule target parameter 

It is noted that in 3-2 there is f(Plearn) instead of f(input1…N, Plearn) because each 

sample contains the inputs that feed the formula (known values). When input values 

of a sample are inserted into the formula then each sample creates 1 unique 

formula with only one variable Plearn. The usage of the term ‘variable’ for Plearn is not 

accurate for all cases. If Plearn was just a variable, then the learning submodule 

would simply find the value that minimises the MSE. That would be true if the result 

R has a linear relationship with the inputs (therefore P would be a constant 
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parameter in the formula). In most cases, however, P is also a function of the 

inputs.  

𝑃𝑙𝑒𝑎𝑟𝑛 =  g(input1, input2, … , inputN)
 3-3 

Where: 

Plearn: 

g: 

inputN 

 

Learning submodule target parameter 

Submodule’s calculation formula 

The input data variables received from the monitoring 

system 

 

And combining 3-2 with 3-3 

𝑀𝑆𝐸 =  
1

𝑠
∑(𝑅𝑖 − 𝑓𝑖(g(input1, input2, … , inputN)))2

𝑠

𝑖=1
 3-4 

So finally, the learning submodule has to minimise MSE by finding the best model 

for Plearn calculation. Minimisation of MSE should consider all samples that the 

simulator has received from the beginning of its life. Finding the best model for 

Plearn means that the submodule has extracted all knowledge contained in the 

information extracted by the physical system which generated the data. The above 

explanation does not intend to provide a technical solution, but it aims at clarifying 

the role of the submodules in 1-sample-based simulation formulas. 

It becomes apparent that submodules are a key part of the architecture and at the 

same time, they are contributing factors to the complexity of the simulator. A key 

challenge for the submodule development is the selection of the relevant (directly 

or indirectly) input parameters to Plearn. Using all available inputs would have a 

significant impact on the computing resources the simulation engine needs to run 

the calculation model. As explained in 3.5.2 a neural network with fewer input 

parameters has fewer nodes per layer and therefore it requires fewer calculations 

to produce results. Especially in cases of deep learning models, an extra input 

parameter means thousands of additional calculations because of the extra nodes. 

This is also the case in linear regression although the extra number of calculations 

is typically insignificant.  
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Finding the relevant parameters for a dataset is a frequent problem in data science. 

The two most common approaches are based on Garson’s algorithm or on 

sensitivity analysis. A brief comparison of key algorithms can be found (Olden and 

Jackson 2002). Garson’s algorithm is based on the idea that if an input parameter is 

irrelevant then the absolute value of the weight of this parameter will be close to 

zero. This happens because neural network training nullifies the weights of 

parameters that have no impact. The same applies to linear regression algorithms 

which to some extent have similar characteristics to the formulas connecting the 

nodes of a neural network. Sensitivity analysis is applied by varying each input 

variable across its entire range while keeping all other input parameters constant. 

Then the individual contributions of each variable are assessed and the parameters 

that cause little to no variation are marked as non-contributing. 

Both methods require a dataset to test the parameters and then to modify the way 

that the ML model is stored in the database. Another issue arising is how can the 

quality of the dataset be verified since it can be the result of a specific machine 

setup that is not affected by an otherwise important parameter. For example, a 

milling machine may generate a dataset while machining with a cutting tool that 

doesn’t need coolant. The generated dataset will not be representative of the 

machine but only of the specific setup since it will not contain any information 

about parts that are cut using coolant. In addition to specific cases, this type of 

testing goes against the idea of a continuously evolving simulator because if a ML 

model is based on a specific dataset, then future changes will not be embedded in 

the simulation calculations. From an architecture point of view, these issues point 

out the importance of separating the simulation engine from the learning module. 

The solution is that in the future maintenance of the system, the developer may use 

any of the aforementioned methods on models that have been trained with all 

process data. Then, relevant modifications in the learning module and database can 

be made without affecting the simulation engine which will continue running 

without disruption by calculation model changes. This could be done through a 

learning module embedded process that checks each learning submodule for 

redundant input parameters. 
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A very common problem for the learning module is the noise in monitoring data. 

Many methods identify and remove noise but no method can ensure that no actual 

data is being lost during the denoising process. The golden rule for dealing with 

noisy data is to collect more data. The architecture is based on collecting and 

consuming all available data so in the long term it naturally filters the noise from 

the simulator itself. For further reading into the issue, paragraph 3.4.2.4 lists 

methods to tackle derived data noise sensitivity. These could also be applied to the 

learning module input data but overall, identifying the best method to deal with a 

noisy data source is not directly related to the simulator architecture and therefore 

it is outside the scope of this work. 

With the 1-sample-based learning, a simulator which is a data consumer with a 

knowledge extraction and knowledge storage mechanism has been fully described. 

A macro-view of the architecture shows an additional benefit which is the 

distribution of development tasks. Although the simulator is complex, the 

development of each element can be done independently with specific targets. This 

simplifies the development process and enables collaboration between experts in 

different fields. In the end, just as the physical machine with separate subsystems 

transforms low-value raw materials into a high-value product so the simulator 

transforms the low-value raw process data into virtual process information and 

then into high-value knowledge stored in the database.   

3.5.4 n-sample-based learning 

From a learning point of view, n-sample-based learning does not have significant 

differences from the 1-sample-based one. The search for the best ML model is the 

same but with different factors affecting the type of model. This section is about 

learning submodules that receive samples reflecting a full process run or at least 

the result of a process stage (therefore excluding cases of simple data 

aggregation).  

n-sample learning means that at least a few samples are available for ML model 

training something that is not the case with 1-sample-based learning. Most neural 

network-based models require at least hundreds of samples for training, so it is 

typical in n-sample-based learning (at least in the initial stages) that multiple 
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linear regression or general statistical methods are used. This is not necessarily a 

problem since n-sample-based learning is related to simulation engine results that 

reflect performance or show characteristics of a full run (typically to produce a full 

part). These results are frequently used to compare the manufacturing of two 

different parts and are very useful for production planning. Examples of 

parameters that the n-sample-based learning submodules focus on are the 

average part production time difference, finished quality (compared to other parts 

or machines), consumables and consumption per part or per operating hour, and 

average difference from theoretical values. The latter example will be further 

analysed since this type of analysis goes much deeper into the process 

characteristics. 

n-sample-based learning parameters are in general not process-critical so the 

learning process may have offline characteristics. Database stored values for 

learning parameters are retrieved at the beginning of the process when the digital 

twin gets an estimation of the process performance/characteristics. They are also 

acquired at the end when the latest data is compared and the model parameters 

are updated. A delay of minutes or, depending on the process, hours does not affect 

the performance of the simulator. If the type of process run is new (for example 

new part or alternative machine) then theoretical values are used. The architecture 

promotes again the same pattern as in 1-sample-based learning which replicates 

the human operator learning process (starting with theory, evolving with 

experience). 

The unique characteristic of n-sample-based learning is its capability to see the big 

picture of data analysis. Values of single samples are viewed within the context of 

the dataset they belong to and not as an isolated training sample of an ML model. 

For example, a parameter showing that the performance of a cutting tool is 

decreasing as the cutting tool wears. For demonstration purposes, it is assumed 

that there is no input showing the hours that the cutting tool has been used. The 1-

sample-based learning will update the parameter with a value close to the average 

value describing the process. n-sample-based learning will process all samples at 

once and will therefore produce a ML model that describes a trend and not an 
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average value. It is a key ability of the simulator to identify these trends because 

digital twins are not only used to supervise and support process control but they 

are also used for prediction. Predictive maintenance, cutting tool management, and 

production scheduling are common activities that depend on an accurate prediction 

of the physical machine’s behaviour. 

Before considering the details of the n-sample-based learning mechanism a 

clarification is needed on whether data is consumed immediately (as implied in 1-

sample-based learning) or if it is stored until it is ensured that there are enough 

samples for the n-sample-based learning submodules. The architecture promotes 

the immediate consumption of data, but it does not ban or block temporary or 

long-term storage. The drawbacks of storing long-term have been discussed in 2.3. 

For completeness, it should be added that until the simulator has reached maturity, 

meaning it is deployed and its performance targets are achieved, all data should be 

kept for further development, improvement and testing of the learning submodules. 

A compromise to storage is temporary storage. It offers more value extraction 

opportunities compared to immediate data consumption without the negative 

aspects of long-term storage. A simulator may keep all samples from a process 

run and feed with these samples an n-sample-based learning submodule. In 

addition, if specific data characteristics are repeatedly observed the simulator can 

store relevant information for the developers to assess whether new ML models 

are required. Simulator maintenance is ensuring seamless operation and at the 

same time, it is an opportunity to identify structural improvements based on the 

operation of the physical system since previous maintenance. 

Learning is based on the comparison of estimated values with actual values. In 1-

sample-based learning, the estimated value is calculated after the input data of a 

sample is available. The estimation, the actual value and the inputs are strictly 

mapped to each other. In n-sample learning the estimation of the process 

behaviour is done before the process starts. Based on the process setup, the 

simulator then calculates both inputs and results of the process in the form of 

samples. When the actual process runs, it produces samples that are not equal in 

number nor synchronised with the estimated ones. When the learning submodule 
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compares the differences between estimated process values and actual ones it 

must ensure that the machine did indeed run the process that it was expected to 

run. If for example the machine breaks down in the middle of the process or if 

manual intervention dramatically changes the way the physical system runs then 

the learning submodule must be able to realise that the data should not be used for 

learning since it is representing a different process. After verification of suitability, 

the submodule should synchronise the values to make them comparable. Finally, 

based on the differences between estimated and actual values the learning 

submodule will train its corresponding ML model. 

Finding the level of similarity between estimated and actual values can be done 

with methods from the field of signal processing. The series of values of an input 

parameter or result shows the behaviour of a system or describes a phenomenon. 

This makes the value series a signal (Priemer 1990). Signal processing 

methodologies can trim, synchronise and normalise the signal so the learning 

submodule is able to use the supplied data for training purposes. The architecture 

of the simulator is not compatible with a specific method. Any method that can 

quantify similarity and synchronise the signals is acceptable for simulator 

development. Due to the wide range of available signal processing methods 

produced during the last 70 years, it is outside the scope of this work to review the 

literature of the field. However, for completeness, an example method will be 

discussed below. 

Dynamic Time Warping (DTW) was in its basic form proposed by (Bellman and 

Kalaba (1958) and began gaining popularity after its application in speech 

recognition (Sakoe and Chiba 1978). A recent review lists a high number of DTW 

variations and extensions (Yadav and Alam 2018) and discusses its popularity due 

to its efficiency in measuring time series similarity (Senin 2008). DTW method is 

mentioned here because it quantifies the difference between 2 signals that consist 

of discrete samples and at the same time it connects the samples of the 2 signals 

so a sample-to-sample comparison can be done.  
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Figure 22 Mapping of samples of 2 signals with DTW 

DTW is suitable for the needs of the architecture since with one pass it can prepare 

the n-sample data for the learning submodule. If the distance value (value showing 

how different the 2 signals are) is above a threshold defined by the developer, then 

the estimated values and the actual values are considered irrelevant and the 

submodule does not use the data for training. Otherwise, a sample-to-sample 

comparison can be done enabling all sorts of n-sample processing which can 

reveal discrepancy trends, consistent errors or even identify the manual changes to 

the process. An example of the latter is if the operator pauses the process for 10 

seconds then one sample of the estimated process will be connected to a group of 

actual samples filling 10 seconds in time. An application of the method is 

demonstrated in section 4.5.3. 

At the beginning of this research work, in addition to the learning module, a Data 

Synchronisation Module was designed by the author as an independent element of 

the architecture. This was because of the high potential for value extraction that n-

sample-based learning has (if combined with signal processing methods). However, 

a strict definition of simulator elements makes data synchronisation part of the 

learning module. Therefore, the proposed design for the learning module is 

depicted in Figure 23. 
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Figure 23 Learning Module Architecture 

3.6 DATABASE 

The simulation engine and the learning module are the two main actors of the 

simulator architecture, but they need support in order to communicate with 

external systems and with each other. The database is the main internal 

communication channel through which process information, simulation results and 

calculation models’ parameters are made available to all architecture elements. 

The database is ‘an organized collection of structured information, or data, typically 

stored electronically in a computer system’(What Is a Database | Oracle. 2021). This 

element is typically associated with the database management software system but 

any type of organised storage is acceptable for the functionality of the architecture. 

It may seem efficient to establish direct connections between internal modules due 

to the reduction of communication lag and the minimisation of the programming 

required. However, direct connections bring a number of issues that hinder 

scalability and violate principles that the architecture is based on. The parameters 

that are exchanged between the simulation engine and the learning module could 

be measured in thousands even in simple simulation scenarios where neural-

network-based models are used. Regardless of the exact number, for every model 

and probably every parameter there should be a separate connection between the 

simulator elements. This means that each element should have receptors 

programmed specifically for the parameter to be exchanged. If a learning 

submodule model changes (which is a key part of the simulator evolution) then the 

receptors would need reprogramming for all elements that are supplying or 
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reading data from this submodule. Another consequence of direct communication is 

that the simulator elements cannot be developed and run independently. Since the 

simulation engine must run parallel to the physical system then the learning 

module would also have to catch up with real-time which would inevitably 

introduce mechanisms to separate the data exchange from the actual learning 

process. Last but not least, the simulator would operate less transparently because 

the information exchanged among the modules would not pass through a layer that 

can monitor or even filter internal operations and if required inform the developer 

about data exchange issues. 

Introducing a database to the architecture adds a high level of flexibility to the 

simulator by making the development and operation of each element independent. 

The latest data/parameter values are always available either for the elements that 

request to read the specific value or for the elements that request to update the 

value. From a development point of view, a database can reduce the development 

effort because Database Management Systems (DBMS) provide ready solutions for 

storage and data-access speed and security. As mentioned earlier, the operation of 

the simulator is more transparent because all data exchanges can be viewed by 

monitoring the database. DBMS come with interfaces that are essential tools for 

verification and offer a way to check the ‘internals’ of the simulator without the 

need for modifications that expose data streams. 

Regarding DBMS type selection, Relational Database Management Systems 

(RDBMS) are a good choice because the simulator’s data is formatted and 

structured. Since the intention is to consume and not store all data the tables are 

relatively small thus allowing for fast data access. On the other hand, NoSQL would 

benefit cases where raw data is stored by multiple machines and the learning 

module operates offline or in the cloud to train its ML models. It should be noted 

that if the simulator is running locally and the raw data is dumped by the 

monitoring system in large files then there is rarely a need to change the format of 

the files or store them in a database. For example, the implementation in Milling 

presented in Chapter 4 keeps only the location of the raw data file in the relevant 

database tables and leaves the file intact. 
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Going back to architecture-specific storage requirements four simulator elements 

are interacting with the database (Figure 24). Although no element is restricted to 

only reading or writing, there are some typical data flows deriving from the role 

that each element has. 

 

Figure 24 Typical data flows to and from the database 

The input interface is the first element receiving and distributing data inside the 

simulator (after pre-processing). According to Figure 9, data flows are towards the 

simulation engine, the learning module and the database. Beginning from the latter, 

the typical information stored in it is about the process setup, logging information, 

and as far as it is required monitoring data. The database should keep metadata 

describing the process that the physical system is running. Metadata provides 

context to the raw data received and it assists in separating the runs for different 

parts, part types, tools or in the generic form different modes and processes of the 

physical system. This is later used to group learning model data and results. In a 

typical simulation scenario, the input interface will register a new process run type 

which is identified by specific (setup) parameters. Then the learning module will be 

updating a specific set of values that are related to a simulation with the specific 

setup. When the input interface registers a new setup then the learning module will 

begin to train a fresh set of parameters specific for this setup. There are of course 

cases of global parameters that are always being updated however there should be 

a mechanism deciding the range of setups that a parameter is valid for. 

A clarification is needed at this point regarding data going from the input interface 

to the simulation engine and the learning module without being stored in the 

database. The database element is the memory of the simulator which provides 
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flexibility in communications among the modules. Data that is consumed 

immediately and especially data that does not change in format or structure over 

time does not have to be stored in the database. The input interface is a service that 

triggers the simulation engine and supplies it with sample data in a ready-to-

consume form. Contrary to the exchange of data between the learning module and 

the simulation engine in this case, there is no need for receptors, nor does it make 

sense to write and immediately read a value that will disappear. In special cases 

where the sample flow must be temporarily stored a system of dual databases may 

be appropriate. The additional database may only store data in the computer’s 

Random Access Memory (RAM) and therefore provide data flow transparency while 

being fast and with zero impact on the system’s persistent storage capacity. 

Overall, the usage of a database should improve the operation of the simulator and 

in regard to the input interface, the developer should select which data is worth 

keeping and which data should be directed for immediate consumption. 

The element that is fully dependent on the database is the learning module. That is 

due to the submodule operations that read parameter values and metadata from 

the database and after model training, they write the updated values back. It could 

be said that the learning module is constantly modifying the database with its 

results and the database is the agent that publishes the learning module’s results. 

In RDBMS, developing the schema for ML models that may change in the future can 

be complex since relational databases work well with predefined structures. A 

solution is to serialise the model or to store it in JavaScript Object Notation (JSON. 

2017). This way, a table as in Figure 25 could hold the learning module updated 

models.  

 

Figure 25 RDBMS table storing model data 



88 
 

In the above table, id is an identification number given so the model can be 

retrieved from the database, name is either a name or description for the model, 

type is the type of ML model so the learning module and simulation engine know 

how to read the value and value is the JSON object containing all model data. For 

example, if the model is a linear regression one where: 𝑦 = 5𝑥 + 32 then the type 

will indicate linear regression and the value would be {"a": "1", "c": "32"}. If new data 

shows that a neural-network-based model produces more accurate results then 

the model type in the database would change and all values for neural network 

weights, number of layers, activation functions etc. would be stored in a (much 

longer) JSON object. JSON objects is one among many solutions which offer 

flexibility on par with a NoSQL database, but its performance is not the same as if 

the model formulas were split into separate table columns. 

The unidirectional flow of data towards the simulation engine represents the 

update of calculation model parameters. The simulation engine reads the latest 

information from the database and as demonstrated in the previous example it can 

even build the calculation model on the fly. This is the same for decision-making or 

result calculation (Figure 12). Traditional simulators would not require a database 

to run because the calculation models are fixed. This can also be achieved with the 

proposed simulation engine if the default values for the calculation formulas are 

used instead of the values retrieved from the database. This of course would be 

done for compatibility reasons if older simulators are replicated or compared with 

a next generation one. Another exception to the typical data flow direction is if the 

results of the simulation engine are stored in the database before being processed 

by the learning module. This highly depends on whether the two elements run 

synchronously, or if the learning module runs offline. In the latter case, a buffer is 

needed to keep the engine results until they are processed. This is not the case 

however with results directed to the output interface. The output interface 

immediately forwards the results outside of the simulator and therefore there is no 

need for a data buffer. In any case, data buffers are used for temporarily stored 

data and they are not part of the architecture’s database because they miss the 
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element of persistence which is required if for whatever reason the physical 

process is interrupted. 

The last element that the database supplies with data is the output interface. This 

interface does not run any models but since it reports simulation results, all 

process information stored in the database is retrieved as part of the report. The 

database holds setup information, logging information and metadata which if 

combined provide the full picture of the physical system. Due to the wide range of 

potential implementations and reports required by a digital twin, there is no 

database specification for this element of the architecture. More information is 

provided in paragraph 3.7. 

Up until now, the database is analysed as an internal interface which adds a high 

level of flexibility to the architecture. In addition, it has been mentioned that the 

database, due to its interfacing role, provides access to internal data transactions 

facilitating simulator verification. Another important role of the database is holding 

and transferring the captured knowledge. The learning module updates the ML 

models, but all data is kept in the database. A shared database among many 

machines can ensure a standardised management of the machines or it can expose 

the differences among these machines. The key difference compared to a human 

operator is that the database can be accessed over the internet from any system 

around the world. For example, if a product is designed in the UK but due to supply 

chain requirements the product is manufactured in several locations around the 

world, the machines running in the UK can have the same process supervision as 

the machines abroad. This will ensure that the same standards apply to the whole 

network directly by the machine. On the other hand, the network stores captured 

knowledge to a UK or cloud-based database. This means that the R&D department 

based in the UK can receive immediate feedback from the process and amend its 
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control without exposing process control details and algorithms to the local 

subcontractor. 

 

Figure 26 Knowledge sharing and capturing among physical resources 

The portability characteristic of the database makes it a separate product sold by 

the manufacturer of the physical system. It is also a product that can be duplicated 

or that can be initialised and further developed for the intended application. The 

physical system has value because it can run the requested process, but the 

database can be sold separately as the know-how for running the process. This can 

be done through the digital twin that supervises the process and is capable of 

granting (or refusing) access to the physical asset user. If technologies from cloud 

manufacturing are considered many more cases of modern simulation technology 

exploitation can be developed. Reference to future applications however is done to 

demonstrate that the proposed architecture is future-proof and can open new 

horizons in data value extraction. 

3.7 OUTPUT INTERFACE  

Data that flows through the simulator is consumed by converting it step by step to 

information and finally to knowledge that is permanently stored in the database. At 

the same time, the simulator uses this knowledge in combination with the process 

setup and monitoring data to generate the results requested by the system it is 

embedded into. The element of the architecture that is responsible for publishing 

the results in the form of reports is the output interface. The output interface would 

typically run as a server that makes a live report available to the wrapper system. 
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However, the details highly depend on the specifications that the simulator must 

comply with.  

Results coming out of the simulation engine are in a raw form making them non-

usable by other systems that have not been specifically adapted. The most basic 

task of the output interface is to format these results according to what is expected 

by the wrapper system. Formatting could be anything from values’ precision, and 

measurement units, to completely different representations such as reporting a 

process error when the result value is ‘x’. In an ideal case, the simulation engine 

results would be publishable but since the majority of calculations are done in the 

simulation engine and the learning module it is more important to choose an 

efficient data format for the simulator’s internal processes than using the 

publishing format.  

In more advanced technology applications, the output interface acts both as a 

results post-processor and results publisher. Typical post-processing smooths, 

aggregates, or further enhances results. Beginning with smoothing, noise that 

passes the pre-processing stage will generate noise in the results. This becomes 

apparent in cases where outliers are not removed from input data to prevent losing 

valuable information. The results in these cases will be affected by the extreme 

values and if not handled properly (filtered or smoothed) they could propagate and 

lead to false instructions to the physical system’s controller. Relevant techniques 

for smoothing have been discussed in paragraph 3.3. 

Another characteristic of the simulation engine results is the speed that they are 

produced. High-speed input data will ‘push’ the simulation engine to produce 

results at a high rate. Not all parameters are real-time critical for the physical 

system supervision nor do all parameter values change at a high rate. In these 

cases, aggregating the values removes some of the computing burden of 

generating new reports and it does not add unnecessary computing burden to the 

systems that read the reports. Another aspect of aggregation is the combination of 

various sources of information into one report. Apart from combining data from all 

parameters the report may contain process setup information, accepted value 
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ranges or other present and historical information that is relevant to the operation 

of the physical system.  

Combining various sources of information may introduce data synchronisation 

issues. Although in the majority of cases the simulation engine will provide the 

estimations and the database will provide non-time-dependent information, there 

are cases where the report compares historical with current estimated and/or 

actual values. Real-time data synchronisation is commonly based on matching 

timestamps of each data sample. If there is no reference point the problem 

becomes much more complex and there is a lag between the real-time and the 

synchronised data since a wide enough time window is needed to validate the 

synchronisation. From an architecture point of view, the output interface may 

perform such tasks, but it is recommended that these tasks are assigned to the 

simulation engine if the report supports a critical to the physical system operation. 

From a user’s perspective, the reports should be in a comprehensible format. If the 

user is another system, then the system should be able to import reported 

information. If the user is a human operator of the physical system, then the 

information should be more graphical. It is a key responsibility of the output 

interface to ensure that all results are communicated in the most efficient and 

complete way. This maximises the contribution of the simulator to the wrapping 

system and therefore to the end-user. Depending on the way that the simulator is 

deployed example reports may be XML files whose values are updated (such as in 

OPC or MTConnect server format), a JSON server providing JSON objects with the 

latest data, vectors parsed by a graphical user interface to generate graphs for 

human operators or even alert messages that are sent as an SMS or via email to 

remote systems or stakeholders. There are no restrictions regarding the means 

that the results are communicated however if the output interface runs on the same 

hardware as the rest of the simulator, computing load balancing should be taken 

into consideration.  

Expanding further into the information communication channels there are three 

categories of ways to publish process reports. Firstly, traditional simulators 

typically create a results file on the hard drive of the computing system they run 
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on. As said earlier the file may have any format that is appropriate for the target 

user. Popular formats are EXtensible Markup Language (XML) and Comma 

Separated Values (CSV). In modern simulation systems, this method is still valid if 

the results are processed by other non-real-time systems. For example, in 

production planning it may be required that all systems are simulated and the 

results are used to find the best schedule. Alternatively, the results may be used to 

feed the elements of a production macro-model. This method is also suitable when 

the results are distributed to systems that are not connected to the simulator. This 

can be described as an export/import functionality where the simulator exports the 

results and any other software system that gains access to them can import the 

ones that are of interest and access them without any time or speed restrictions. 

A second way to publish reports, which is suitable for scenarios closer to  real time, 

is to use a broker (data buffer) that contains a certain number of reports (message 

queues) that wait for the receivers to get them. This approach has two main 

benefits. In real-time communications, if one system is slower or in general not 

synchronised with the report source then the broker will hold the reports until the 

other system is ready to read them. In other words, the lag between systems, 

temporary bottlenecks or minor disruptions can be overcome since communication 

is asynchronous. In addition to the flexibility of this method, the broker can act as a 

distributor to many unknown to the simulator systems without the need for the 

client systems to comply with the simulator-specific implementation (but only to 

the typically more standardised broker standards). The broker differs from the 

export/import functionality mentioned earlier since the intention is not to keep data 

permanently but to keep it for as long as it takes until it is used by the client. 

The last means of publishing reports is through a direct connection between the 

systems. This connection is typically the fastest way to communicate the reports, 

and it would probably be the method of choice if the simulator is part of a digital 

twin system without a connection to remote systems. Direct connections can mean 

anything between sending and receiving the data from the source as soon as it is 

available (with limited safety mechanisms) to sharing the same memory resource 

which makes the report transfer instant. A major drawback of this type of 
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connection is the lack of flexibility since errors can disconnect the systems and 

several reports are lost until the connection is re-established. It can be said that 

this is the price to pay in order to have performance as close to real-time as 

possible. 

 

Figure 27 Summary of publishing methods 

Simulator integration is the final step of simulator development. In practice, this is 

the connection of the Input and output interface to the wrapper system. For the 

digital environment a simulator is a black box that listens through the input 

interface and publishes answers through the output interface. Depending on the 

application different technologies could support these tasks although in modern 

digitalised environments usage of a server type is more suitable. For the input 

interface ideas have been presented in the relevant paragraph. For the output 

interface, some examples based on Figure 27 are: 

A File Transfer Protocol (FTP) or other type of file server could be used to make 

the simulation results available. A server log or contents file, folder structure 

and/or files’ metadata would be different ways to provide information so the user 

can locate specific physical system setups, dates of simulation runs, extreme cases 

or other characteristics of interest. This would be a good solution if human users 

access data without specialised software since the files can be downloaded and 

processed through embedded software of popular computer operating systems. 
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Database servers could offer a solution of permanent access that is faster than file 

servers. A database server, regardless of its type (RDBMS or NoSQL) has a 

structure that improves accessibility and can organise information in a way that 

client software can quickly search through the simulation reports and retrieve 

relevant information. The database server is not necessarily part of the output 

interface. The interface may simply write data to the server and then any other 

module or system can access the reports. That would be an example of a digital 

twin’s database or a cloud database for any external application. The drawback of a 

database server is that the database clients need specialised software to access 

and process the reports. 

A web server could be used for more direct connections to the simulator. The 

results are published as soon as they become available and the server clients can 

connect and retrieve the latest reports. Although this type of server could be using 

a database or a file server in the background to retrieve historical information, by 

itself it is suitable for temporary data buffering and flexible availability. If required, 

it can also support more direct connections to clients with technologies such as 

Server Sent Events (SSE) that push the reports to the clients immediately. This 

technology can also be used to host a GUI which makes it ideal when the simulator 

is a standalone solution and the wrapping system is just a GUI providing access to 

results. 

Another solution which is gaining popularity in the last few years is an application 

server that hosts the simulator and provides access to users over the internet. This 

is similar to a web server with the difference that the access is with dedicated 

interfaces, and that the client processes the reports on the server and not locally 

(which frees client resources).  

Finally, the broker solution to distribute data is probably the most popular in 

digitalised environments due to its high level of flexibility and the separation of the 

data generation layer from the message transfer layers. Technologies like Apache 

Kafka (Apache Kafka. 2022) have revolutionised the field and should be considered 

in cases where megabytes of data are generated and transferred per second. 
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The description of the above technologies is rather simplistic, but the intention is to 

provide context for the simulator integration and not to describe a technically 

complete solution. This work provides the architecture that makes the application 

of the above technologies efficient and finally, it is up to the developer to choose 

the most appropriate implementation tools.  

3.8 ARCHITECTURE SUMMARY 

A next generation simulator was designed and built by the author to support real-

time, evolving and geographically spread digital environments. The presented 

architecture is the combination of key elements which deliver the functionality of a 

traditional simulator and at the same time, they create a digital entity with a 

human-like learning behaviour. In brief, the contribution of each of these elements 

is: 

Simulation engine: Fills the simulation model formulas with input data and updated 

calculation model parameters to calculate the results. It does it in two stages; one 

that replicates the physical process using relevant theory and one that uses the 

results of the first stage to calculate any parameter that can be derived using ML 

models. 

Learning module: Uses input data, monitoring data, simulation results and physical 

system setup information to adapt the simulation engine’s calculation formulas. It 

comprises submodules each of which is responsible for the update of one 

parameter or ML model through supervised learning. 

Input interface: Takes raw data and pre-processes it so the data is ready to be 

inserted in the simulation engine’s calculation formulas. 

Output interface: Publishes the simulation results in the format and speed needed 

by the simulator users (systems or humans). 

Database: Keeps the updated parameters and ML models of the learning module 

that feed the simulation engine and form the knowledge that the simulator has 

accumulated during its life. 
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The proposed architecture can be widely applicable, and it is especially 

advantageous for digitalised systems that use digital twins to supervise a physical 

system/process. The simulators that adopt it fully utilise the available data while 

reducing the storage capacity needs. At the same time, they can use and share the 

accumulated knowledge more efficiently than human system operators. 

In the next chapter, an implementation of the architecture is presented to provide 

further understanding of how the elements interact and collaborate to create a 

next generation simulation system. Due to the compromises a specific 

implementation requires, and the amount of work included in merging technologies 

from different fields of engineering it is not possible to demonstrate every aspect 

of the architecture. This limitation however is reflecting the genuine requirement 

for a team of experts to develop a simulator and not the potential of the 

architecture itself. 
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4 APPLICATION IN VERTICAL MILLING 

The next generation simulator architecture engineered by the author in this 

research was presented in Chapter 3. This is laying the foundation for modern 

simulator development. In the same chapter, examples mainly from manufacturing 

were used to explain the nature of the contribution of each element of the 

architecture as well as how the elements work together to achieve the desired 

results. In the fourth chapter of this work, the architecture is applied to CNC 

milling. The application of the architecture and the details of its implementation, 

serve as proof of concept for different aspects of the architecture. Firstly, it shows 

how the elements can work together and can calculate accurately the simulation 

results while meeting the targets set in Chapter 1. Then, it provides an example of 

how the architecture promotes the continuous improvement of the simulator and 

its ability to embed new technologies. Finally, it shows how the architecture can 

contribute to more innovations by splitting development tasks. The intention is that 

this will allow for specialised developers and/or their software to create a state-

of-the-art element without being affected by the rest of the implementation. 

Chapter 4 presents the detailed CNC milling implementation. The discussion of 

results and the wider observations arising from this implementation are presented 

in Chapter 5. The source code of the simulator is split into four projects that can be 

found on GitHub under the following links: 

Front end of simulator including GUI: 

https://github.com/harrycd/milling-vm 

Front end of simulator including web application: 

https://github.com/harrycd/milling-twin 

Backend of simulator including simulation engine and learning module: 

https://github.com/harrycd/milling-utils 

Backend of simulation including interface with the database: 

https://github.com/harrycd/milling-database 

https://github.com/harrycd/milling-vm
https://github.com/harrycd/milling-twin
https://github.com/harrycd/milling-utils
https://github.com/harrycd/milling-database
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4.1 PROCESS SELECTION AND SYSTEM BOUNDARIES 

The proposed work has used a vertical machining centre (VMC) as a testbed. The 

monitoring and management of vertical milling is an extensively studied process 

which is an advantage when assessing the level of information produced, identified 

behaviour and usefulness of the results of the simulator. Results from other studies 

can be used in combination with newly generated simulator outputs to produce 

more accurate estimation of the range and impact of selected process parameters. 

An additional consideration was the integration of this research into an ongoing 

research program within which a VMC with an embedded monitoring system was 

made available. The machine is a Mazak Vertical Centre Smart 430A. The machining 

process data used in this thesis was acquired directly from a Mazatrol Matrix Nexus 

2 CNC controller using an interface engineered within an associated research 

activity (Hill et al. 2019). The previous work (Hill 2020) had utilised spindle load 

variations as an indication of changes to tool condition during the repeated 

manufacture of a component. The effectiveness of the deployed system was 

confirmed by the measurement of the manufactured components using a co-

ordinate measurement machine (CMM). However, this CMM based approach cannot 

be deemed to be realistic as an on-going methodology since such CMM 

measurements are not always possible and are always time consuming and 

therefore expensive. This work indicated that the information required for more 

advanced process management functions could potentially be acquired directly 

from the CNC controller. Making wider use of the information provided by the CNC 

controller was however not attempted in this previous research but was identified 

as being a major challenge. 

Making sense of the CNC controller data means processing the data to extract the 

information it provides and presenting the results of the analysis to aid process 

management functions. It is made even more challenging when contemplating the 

manufacture of different components. It must be stated that the previous research 

on this VMC was confined to the manufacture of carefully selected test pieces that 

allowed the controlled application of the tool management techniques being 

developed. What is required to cope with the machining of a wider range of parts is 

the provision of some form of anticipated performance against which the actual 
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operation may be measured. This is seen as being met by the simulator being 

engineered by the author in this project.  

To support the configuration and operation of the simulator an audit of the signals being 

acquired from the CNC controller was performed. It is important to again stress that these 

signals were identified in consultation with the VMC OEM (Mazak) as being of potential 

interest to on-going research, including this project, at the time of purchase. The OEM 

provided an interface to the information being utilised by the VMC controller to 

manage the milling process that was not normally currently available to the 

machine users. It can be envisaged however that future controllers will provide 

such access or equivalent information directly from the machine as part of the 

wider implementation of IIoT protocols. 

The system currently in place on the VMC collected samples at an average rate of 30Hz (Hill 

et al. 2019). Each sample contains the following data: 

• Time from the beginning of the process (sec) 

• Spindle X axis coordinate (mm) 

• Spindle Y axis coordinate (mm) 

• Spindle Z axis coordinate (mm) 

• Actual spindle speed (rpm) 

• Load on X axis motor (% of max) 

• Load on Y axis motor (% of max) 

• Load on Z axis motor (% of max) 

• Spindle load (% of max) 

• Tool ID (position of the loaded tool in the carousel) 

• Feed rate (mm/min) 

To demonstrate the use of this information a basic milling process example can be 

developed. The simulation engine detailed in section 3.4.2 simulates the interaction 

between the cutting tool and the billet to produce the machined part as machining 

progresses. At this level the simulator is concerned with a tool and the billet upon 

which it is acting; Figure 28 shows the tool-billet system. Everything outside of this 
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part of the system, including the machine spindle, machine table and fixture 

interacts with this system through data interfaces discussed in the next section. 

To initialise the simulator there are two types of information needed.  

Simulation properties: 

• Mesh size; calculated after analysing the available computer memory and 

assessing the computing power versus simulation speed requirements. 

• Data sources; details for connection to the input data stream or path from which 

to read the input files. 

 

Physical system properties: 

• Cutting tool properties; tool dimensions and start position (spindle position 

coordinates). 

• Billet properties; billet dimensions and mounted position. 

  

Figure 28 Simulation tool-billet system and initialisation parameters 

As soon as the simulation begins, only information about the cutting tool (position, 

rotational speed etc.) and the billet is processed. External factors that may affect 

the process are translated to the impact they have on the tool and/or the billet. For 

example, if the milling machine table moves during the process, then this 

movement is translated to a billet movement and therefore the billet is 

repositioned. The relative tool-billet positions are adjusted as the tool moves up or 

down. In this way, the potentially complicated relationship between the cutter and 
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the workpiece can be represented within the simulator. Although this example is 

basic the same principle would apply to heat dissipation, vibrations or other 

parameters that require more complex calculations. 

4.2 INPUT INTERFACE AND DATA SOURCES 

Section 3.3 stated that the input interface should be adapted to the characteristics 

of the data source(s). This reduces the need for data manipulation outside the 

simulator which consequently reduces the risk of data losses or increased 

computational burden. For this application, the data source is the VMC which 

provides real-time monitoring data. For the purposes of this work, the monitoring 

data was transferred to a connected computer’s hard drive in the form of CSV files 

(data dump). The G-Code files (part programs) were provided by the operators of 

the VMC in the same format that they are submitted to the VMC. G-Code is the most 

widely used CNC programming language and therefore for completeness the 

simulator has an embedded interpreter written by the author. Information about 

process setup (e.g. billet position, billet properties, cutting tools in carousel) was 

inserted manually. Manual insertion facilitated simulator verification and testing, 

but with minor modifications, the simulator could use a setup properties file 

instead. Each of these data sources is now considered in more detail. 

4.2.1 CSV files 

This is the main way to receive, and temporarily store process-related monitoring 

data or metadata based on a part program. These files as a minimum have the 

following columns: 

Table 3 Minimum required CSV file columns (basic data sample) 

Time Time elapsed from a reference point in time (typically, process 

start) 

X coordinate The X coordinate of the spindle 

Y coordinate The Y coordinate of the spindle 

Z coordinate The Z coordinate of the spindle 

Spindle 

speed 

The rotational speed of the spindle 
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Tool ID The carousel position of the cutting tool that is being used 

 

Each row of the CSV file is a data sample, and each sample is an instance of the 

process parameters. The simulator is a discrete event one therefore CSV files are 

ideal to record the simulated process along with the calculated parameters for 

each sample (discrete event). There is no specific order for the columns, but the 

name of each parameter is fixed. Table 4 is a non-exhaustive list of the simulator’s 

parameters mapping  

Table 4 CSV file title - parameter mapping 

T Time (sec) 

X X coordinate (mm) 

Y Y coordinate (mm) 

Z Z coordinate (mm) 

SS Spindle Speed (rpm) 

XL X axis load (%) 

YL Y axis load (%) 

ZL Z axis load (%) 

SL Spindle load (%) 

T Tool ID (-) 

MRR Material Removal Rate 

(elements/sec)  

Using CSV files adds a lot of flexibility in data storage as new parameters can be 

added to the same file without affecting the initial data. This is particularly useful 

when a new parameter is calculated from the sample captured by the monitoring 

system and added as a new column in the same file. An example CSV file is shown 

in Table 5. The MRR is calculated by the simulation engine using the coordinates of 

the tool and the value is added in the last column. (MRR requires initialisation of 

the billet size and position). 
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Table 5 Sample part from CSV file 

 

The software interface that has been developed by the author to read and write 

data in CSV files is based on two Java arrays. A Java array is a group of values of 

the same type that can be individually referenced using their unique index. The first 

array is a one-dimensional String array (containing UTF-8 characters) that holds 

all CSV titles. The second is a two-dimensional ‘double’ array (containing double 

precision real numbers) that holds all file values. In general, the recommended way 

to parse CSV files is to use ready solutions such as Apache Commons (Apache 

Commons. 2021). This ensures compatibility with different CSV dialects and 

provides mechanisms to overcome errors in the dataset. However, for the purposes 

of the research project, a customised parser was developed to reduce the 

complexity of calculations and speed up the processing speed of the input 

interface.  

4.2.2 Part program and process setup 

In the physical world, the operator prepares the milling machine before the actual 

machining begins. Similarly, in the digital world, the simulator needs initialisation 

before it can simulate the machining process. More specifically, the simulation 

engine requires the billet position and properties, the list of available cutting tools, 

the size of the simulation mesh (precision) and finally the process data samples 

with each one representing the state of the cutting tool-billet system (Figure 28). 

Running the engine can be considered in respect of each element: 

Billet: A library of billets is created by the user in advance. This forms a working 

source of billets that may be used as is the case in actual machining. New billets 

t X Y Z SS XL YL ZL T MRR

59.54659 1138 1361.5 1251 1027.985 7.105263 0 4.736842 28 0

59.54659 1138 1361.75 1251 1027.985 7.105263 0 4.736842 28 102

59.85125 1138 1362 1251 1027.988 4.95 0 4.65 28 238

59.85125 1138 1362.25 1251 1027.988 4.95 0 4.65 28 272

59.85125 1138 1362.5 1251 1027.988 4.95 0 4.65 28 340

59.85125 1138 1362.75 1251 1027.988 4.95 0 4.65 28 374

60.15595 1138 1363 1251 1027.997 4.684211 0 3.631579 28 0

60.15595 1138 1363.25 1251 1027.997 4.684211 0 3.631579 28 408

60.15595 1138 1363.5 1251 1027.997 4.684211 0 3.631579 28 408

60.15595 1138 1363.75 1251 1027.997 4.684211 0 3.631579 28 476

60.45279 1138 1364 1251 1028.043 5.684211 0 4.263158 28 442

60.45279 1138 1364.25 1251 1028.043 5.684211 0 4.263158 28 510

60.45279 1138 1364.5 1251 1028.043 5.684211 0 4.263158 28 0

60.45279 1138 1364.75 1251 1028.043 5.684211 0 4.263158 28 476

60.74968 1138 1365 1251 1028.007 4.631579 0 5.052632 28 510

60.74968 1138 1365.25 1251 1028.007 4.631579 0 5.052632 28 510

60.74968 1138 1365.5 1251 1028.007 4.631579 0 5.052632 28 510

60.74968 1138 1365.75 1251 1028.007 4.631579 0 5.052632 28 544
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can be added as necessary. During simulator setup, the user must select the billet 

to be machined so data related to billet shape, size and position is retrieved in 

order to place the billet on the virtual milling table with the correct dimensions and 

orientation. This procedure is very similar to the billet selection process used in 

actual machining applications. 

Cutting tools: The user creates a library of cutting tools that are available for the 

physical machine in advance. The actual VMC has a carousel where the operator 

loads the cutting tools into an identified tool pocket and then the machine can pick 

and use the required cutting tool according to the instructions of the part program. 

Similarly, during the simulator’s setup, the virtual carousel is loaded exactly as the 

physical one with the same cutting tool in the same position. Then the simulation 

engine loops through the tool IDs that are loaded into the carousel and retrieves 

data related to tool shape and size. For a typical milling cutter this data will include 

tool type, diameter and length. 

Simulation parameters: Simulation precision, speed and memory size are 

configurable before the simulation engine runs. Simulation precision is determined 

by the mesh element size. Finer meshes for the billet and the cutting tools improve 

calculation precision but as explained in 3.4.2.2 this also depends on the precision 

of the data describing the milling process. Simulation speed can be increased by 

assigning more CPU cores to the simulator. In the current version, the simulator 

uses all available cores and therefore the speed can only change if the simulator 

runs on different hardware. The RAM required to run the program depends on the 

maximum available memory and mesh size. The Java virtual machine ‘xmx’ 

parameter sets the maximum available memory. Although the computer’s operating 

system may use the hard drive when it runs out of RAM the simulator is 

programmed to stop and display an error and therefore prevent slow processing 

that is caused when temporary data is written on the hard drive. The mesh element 

size is the parameter that defines the amount of memory the simulator requires to 

process the mesh. A smaller element size will lead to a mesh with a higher number 

of elements. Each element requires a fixed amount of memory, so the number of 

elements is proportional to the required memory size. Finally, processing speed 
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depends on the element size and the process visualisation settings. If the simulator 

is run without process visualisation only element size affects processing speed, 

with obviously smaller elements resulting in slower processing. If process statistics 

are displayed, additional time is required to report the process and cutting tool-

related data. Again, this means the more cutting tools the slower the process. If 3D 

part visualisation is also requested, then the process is significantly slower and 

slows down exponentially if the element size is reduced.  

Simulation settings persistence: Most of the simulation settings (except for 

maximum memory size) are defined by the user through the GUI before the process 

starts. To store these settings the simulator setup is supported by the database. It 

should be noted that section 3.6 presented the role and functionality of the 

database from an architecture point of view. This does not exclude the usage of the 

same database to support the functional requirements of a specific implementation. 

In this case, critical parameters are stored in the database and are permanent for 

all simulator runs. Simulation settings include the mesh data for the cutting tools 

that are used by the simulator throughout the process which is described in section 

4.4. All elements of a cutting tool are stored to keep a record of cutting tool usage. 

The number of elements depends on the element size and therefore the tool is 

restricted to be reused in simulations that run with the same element size. 

Essentially, the element size is a permanent characteristic, and it cannot be 

changed throughout the life of the simulator’s database. On the other hand, due to 

database portability, the simulator may have multiple databases and its behaviour 

can change according to the setup and learning parameters contained in the 

database. More details about the data kept in the database of the simulator are 

presented in section 4.3. 

Program data: The data source for toolpath and tool state, along with data type and 

characteristics are required in advance. The source can be a G-Code or CSV file for 

offline simulations, a CSV file for simulator learning or a data stream link for online 

process simulation and supervision. The input interface produced to support this 

research accepts standards-compliant G-Code; arcs, circles, and helical motion are 

fully supported, as well as all other primary G-Code commands. Macro functions, 
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variables, and most canned cycles are not supported (GitHub - GRBL. 2016). 

Process data samples in offline running come in the form of CSV files. The CSV file 

for process simulation must have the minimum number of required columns shown 

in Table 3 that conform to the mapping of Table 4. The CSV file for learning must 

have the minimum number of required columns plus a column for each parameter 

that the simulator is taught to estimate. Finally, in real-time simulation scenarios, 

the input data is a stream. The source of the stream is a simple link that the 

simulator can open a WebSocket to and get live data from the machine monitoring 

system in JSON format. The JSON property names should comply with the 

parameter mapping of Table 4. 

4.2.3 Source data pre-processing 

After initialisation with manual user settings and with information already in the 

database the simulator is ready to process the raw data (source data). As described 

in 3.3, raw data is pre-processed to a standard form that the simulation engine can 

use. Depending on the characteristics of the data source an appropriate order of 

steps from Figure 10 is selected which in the milling application is different for G-

Code files, CSV files and live data streams. 

More specifically, if the input data source is a G-Code file, the input interface first 

interprets it to a CSV file and then follows a series of steps until it stores its data in 

Java arrays. If a CSV file is provided, the process is similar to processing the CSV 

file derived from the G-Code. These are both offline simulator use cases and after 

all data is stored in arrays, the simulation engine iterates over the arrays to 

machine the billet mesh. If the cutting tool state samples are received from a live 

stream, then the simulation engine pre-processes and loads every sample to the 

next free position in the array, runs an iteration and waits until the next sample is 

available. Regardless of the way that samples are received the rest of the virtual 

machining process remains the same. 

4.2.3.1 G-Code file pre-processing 

In the physical world, CNC machines need an interpreter to turn G-Code file 

commands into internal controlling commands. Similarly, the Input Interface reads 

the commands and provides the simulation engine with prefilled Java arrays that it 
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requires to run. This uses a 5-step process designed and implemented by the 

author as part of this research. The method, which is detailed herein, uses 

temporary CSV files to store the interpreted data.  

Step 1 is to receive the G-Code file itself. The G-Code files are provided by the VMC 

operators and stored on a hard drive that the simulator has access to. They are 

generally generated using the part CAD models and machine-specific post-

processors. From the GUI that has been developed by the author to manage and 

run the simulator the data source is selected (Figure 29). 

 

Figure 29 Simulator’s GUI: Data source selection 

Step 2 is to transform the G-Code file contents to a format that can be further 

processed which in this case is a CSV file format. To convert G-Code commands to 

CSV file rows, GRBL (GitHub - GRBL. 2016), an open-source external library, for 

controlling the motion of CNC machines has been modified and integrated into the 

input interface. The original library takes a G-Code command and produces a signal 

for the X, Y, Z axis motors of a CNC machine. The modified library analyses the G-

Code command and calculates the coordinates that the cutting tool must pass from, 

the spindle speed and the feed rate. In the modified version, motor signals are not 

generated since the simulator does not control the VMC. Having the trajectory 

points and the feed rate, the time since the program started is calculated for each 

point. Finally, the results of G-Code interpretation are written in a temporary CSV 
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file which contains all essential simulation data as shown in Table 3. Technically, 

the data written in the CSV file is held in Java arrays in the memory of the 

computer. These arrays could be directly used by the simulation engine although 

the results would not be reliable due to the reasons explained in the next 

paragraphs. The temporary CSV file is created for verification and testing purposes 

and it would normally be omitted in a non- experimental version of the simulator. 

The way that the interpretation is done, means each G-Code command generates at 

least 2 rows in the CSV file, one for the starting point one for the ending point and 

other points of the trajectory that the cutting tool must follow. If two consecutive 

commands have the same spindle speed and feed rate, then the ending point of the 

first command generates an identical entry in the CSV file with the starting point of 

the second command. To prevent the simulation engine from processing null 

events, Step 3 ‘cleans’ the generated CSV file. There are two types of checks to do 

that. The duplicates check examines if two rows of the CSV file are identical and 

keeps the first line if duplicates are found. The data validation test checks if each 

row has the correct number of columns and if all values are numbers. If an error is 

found, then the problematic row is removed. The CSV file is then marked as 

cleaned. 

Step 4 begins with a clean CSV file that may contain trajectory points which are far 

from each other compared to the cutting tool size. For example, if the cutting tool 

moves along the x axis and the G-Code command is G1 (linear movement), then the 

GRBL library will produce 2 points, the starting and the ending. With this type of 

input and since the simulation is discrete event, the simulation engine does not 

remove the material between the two points because it does not ‘know’ what has 

happened between the event of starting point and the event of ending point. Figure 

30 left shows the result of a G1 command interpreted by the GRBL library. 



110 
 

 

Figure 30 Left: Non smoothened trajectory. Right: Smooth trajectory (with interpolated points) 

To smooth the movement of the virtual tool, trilinear interpolation is used. If any 

axial distance between 2 trajectory points is longer than the element size, then new 

trajectory points are introduced. To calculate the position of these points, first, the 

longest axial distance between the points is identified. Then, this distance is divided 

by the element size and finally, the result of the division is the number of new 

points introduced to smooth the trajectory. The new points have an axial distance 

smaller or equal to the element size. The element size value is used because the 

mesh of the billet consists of cubes with an edge size equal to the element size. 

With a different element shape the calculations would be different and typically 

more complex. It should be noted that if more points are introduced (for example 

to improve cutting tool movement precision) then the cutting tool movement will be 

too short to reach and machine the next cube.  

  

Figure 31 Cutting tool trajectory smoothening 

Finally, in step 5, the smoothed CSV file is parsed, and pre-processed data is 

loaded into the Java arrays that the simulation engine gets input from. Every 
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column of the CSV file is copied to a separate array keeping the order of the values. 

For example, the values of a column with the title Z (in the CSV file) are copied to 

an array with the same name (Z). The row number of each value is used for indexing 

so the value of the column at the first row of the CSV file is placed at the first 

position of the array. Figure 32 is an example of how indexing is done. 

 

Figure 32 Transferring data from CSV files to Java arrays. 

 

The steps used in the procedures deployed by the author to process a G-Code file 

are summarised in Figure 33. Under every step, the category of operation as 

indicated in Figure 10 is shown. 

 

Figure 33 Processing of G-Code file  

4.2.3.2 CSV file pre-processing 

If the input is a CSV file, then pre-processing is similar to Figure 33 because the 

files are found on a hard drive like the G-Code files. Step 1 is the same, and from a 

user’s perspective it is done through the GUI screen of Figure 29. For completeness, 

it should be noted that the CSV files are created by the system of (Hill et al. 2019) 

that continuously extracts data from the VMC. It will normally be the case that 
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these files will have been generated as a result of the controller enacting a 

programme that was initially input using a G-Code. As such they take a very similar 

overall form to those generated above but may have some content that has been 

produced by the process. The Java arrays that are passed to the simulation engine 

are created in step 2 while reading the data source file through a process shown in 

Figure 34. In this process the file contents that are initially recognised as text are 

split in titles and values. The titles of the CSV file are identified and stored in a Java 

array. Then all following lines are expected to contain numbers which leads to the 

first cleaning operation where all lines that contain non-numerical values are 

removed. The ones that do contain valid numerical values are stored in the Java 

array holding the values. 

 

Figure 34 CSV file reading and first cleaning pass. 

In the case of G-Code source data file, cleaning is speeding up the process by 

removing duplicate samples and by removing null values that would otherwise be 

converted to 0. If however cleaning is skipped the simulation engine will process 

the data without issues. When the source data is a CSV file then cleaning plays a 

critical role which is seen in all systems that process data generated by sensors. 

Monitoring data files are generated by an external system (Hill et al. 2019) so there 

may be errors in content or format. Some examples of errors are:  
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• ‘N/A’, ‘empty’, or ‘null’ values.  

• A stack trace at the end of the file when the monitoring system runs into an 

error.  

• Meta data related text appearing above the CSV file titles.  

CSV cleaning removes the problematic lines and ensures that the remaining data 

can be processed safely by the simulation engine. During system testing, it was 

observed that almost all files had some type of error. The simulation engine sends 

a notification for each error that appears in the user interface, so the user can 

decide if the file contains too many errors to be considered a trustworthy data 

source.  

Steps 3 and 4 are identical to steps 4 and 5 of the G-Code data source file scenario. 

The CSV data source file processing is summarised in Figure 35. 

 

Figure 35 Processing of CSV data source file 

Steps 2-4 are further analysed in 4.2.3.3 and depicted in Figure 36. 

4.2.3.3 Live data pre-processing 

If data arrives directly from the monitoring system, the processing is based on 

steps 2-4 of Figure 35 but with a different step 1. The current system monitoring 

the VMC is built to save data to CSV files. The system would require modifications 

that interfere with other research works and it was therefore decided to run the 

online case study with a virtual monitoring system. This is implemented by reading 

the contents of the CSV files (produced by the actual monitoring system) and 

supplying them to the input interface at the correct timing. The original samples 

have a timestamp so the virtual monitoring system supplies them at the exact same 

intervals. Each sample contains the data of one line of the CSV file. As soon as the 

sample is received the input interface proceeds to step 2. The remaining steps are 

technically similar to the offline scenario but are interpreted differently.  
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In offline processing, all data is processed before moving to the next step while in 

online processing monitoring data is not available in advance. When the simulator 

is running in online (supervisor) mode, the simulation engine runs in parallel with 

the actual machine and therefore, processes each sample as soon as it becomes 

available. From a programming perspective, the same Java classes are involved in 

each step, but the orchestration of actions is different. To demonstrate the online 

pre-processing and illustrate the differences between offline and online Figures 

Figure 36 and Figure 37 show in detail the steps taken to clean, smooth and push 

data to the simulation engine. If both figures are closely observed, it becomes clear 

that the steps are the same. The reason why the flow charts have been designed 

differently is to indicate that in the offline case each step runs once and finishes 

before the input interface proceeds to the next step. In the online case, the input 

interface moves to the next step for each sample or group of samples but as soon 

as the samples are pushed to the engine the cycle runs from the beginning. The 

actual process is identical. When running the simulator offline with a dataset of 

100k samples, steps 2-4 are similar to running an online scenario for a group of 

100k monitoring samples. 

 

Figure 36 Offline CSV interpretation steps 
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Figure 37 Online data interpretation steps 

With the online pre-processing, the full capabilities of the input interface 

implementation have been described. The implementation however is flexible and 

with minor modifications in the data input (Step 1) the simulator would be able to 

accept data from other data sources. 

4.3 SIMULATOR DATABASE 

In section 3.6 the function of a simulator’s database was described along with the 

technologies that can support such functionality. The VMC implementation of the 

database has all the described elements and in addition, it accommodates the 

functional needs of the simulator by keeping process-related settings, metadata 

and information that is required to produce enhanced reports. The database system 

developed by the author is a combination of SQLite which is a RDBMS and plain 
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files. A significant part of the simulator is dedicated to interfacing the simulator 

elements with the database which is also described in this section. 

SQLite is a C-language library that implements a small, fast, self-contained, high-

reliability, full-featured, SQL database engine. SQLite database files are commonly 

used as containers to transfer rich content between systems and as a long-term 

archival format for data (SQLite Home Page. 2022). This is the library used by the 

author to implement the simulator’s database as described in Chapter 3. 

Interactions with SQLite are enabled by the corresponding JDBC driver available at 

the SQLite developers’ website. Structured Query Language (SQL) is used to access 

and manipulate the database. 

The database is used internally and there are no third-party systems currently 

interacting with it. For debugging purposes, the database can be accessed with 

external tools such as SQLite Browser (DB Browser for SQLite. 2021) that allow for 

easy monitoring and manipulation of database fields. The simulator cannot operate 

without being connected to a database and therefore a database must be created 

or selected as soon as the simulator graphical user interface is started. SQLite is a 

relational database with a predefined schema and therefore the information is kept 

in tables. Figure 38 shows the full database schema which is the basis of the 

approach to representing the critical parameters associated with the milling of a 

piece of material engineered by the author. The database keeps simulator 

initialisation data, libraries for billets and cutting tools, the simulator’s learning 

memory and a log for the GCode files representing parts that have already been 

processed. To keep the database small part of non-essential data is stored in flat 

files. This corresponds to the following database fields: 

• learning_set > modelFilePath 

• nc > ncPath 

• nc > analysisPath 

• nc > monitoringPath 

Each field along with the Java classes developed to hold data for each entity is 

presented later in this section. 
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Figure 38 Simulator's database schema. 
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To interface the simulator with the database the persistence layer of the simulator 

has been implemented. This layer is based on Java classes whose attributes are 

very similar to the relevant table columns. Each class acts as a data transfer agent. 

For every ‘write’ type of transaction, an instance of the class is created, then loaded 

with data and then, using SQL, the data is passed to the database driver that is 

responsible for writing the data into the database. For ‘read’ type transactions, the 

driver is provided with the unique identifiers of the table rows to retrieve and the 

results are loaded into the corresponding class instances. Then, these instances are 

returned to whichever module requested the data. The flow diagrams for the read-

write processes are shown in Figure 39. 

 

Figure 39 Interface operation. Left: Write to database. Right: Read from database 

 

The Java classes that the author has programmed are presented through their 

Javadocs in Appendix B.  However, some key classes are presented in tables Table 

7 to Table 12. To facilitate the understanding of datatypes for each class Table 6 has 

a brief key of frequently used Java types. 
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Table 6 Java class attribute types 

Type Description Range of values 

int Integer number -2,147,483,648 … 

2,147,483,647 

float Floating point number 1.4 x 10-45 … 

3.40282347 x 1038  

long Integer number  -9223372036854775808 … 

9223372036854775807 

double Floating point number 4.9406564584124654 x 10-324 … 

1.7976931348623157 x 10308 

boolean Representing two truth values of 

computer logic 

True, False 

String A series of characters (any character) Maximum of 2,147,483,647 characters 

in each String 

List An ordered collection of (non-

primitive) objects of any type. 

Maximum of 2,147,483,647 objects in 

each List 

Map A non-ordered collection of key-

value combinations (the value is 

retrieved after providing the 

corresponding key) 

Maximum of 2,147,483,647 objects in 

each Map 

 

In the following paragraphs, a description of each key class is provided, followed by 

a table that presents the class attributes. The first column of the table contains the 

type of the attribute, the second column is the name of the attribute and the third is 

the description of the data that this attribute holds. It should be stated that the 

nature of the attributes and data used in these classes represents the 

understanding of the milling process acquired by the author from personal 

experience in milling, from the reviewed literature and the experimental work 

conducted in this project. 

CuttingTool: The CuttingTool class holds identification information and a description 

of the characteristics of a cutting tool, shown in Table 7. This class is not used 

directly for recording the tool usage parameters, but it holds a reference to a list 

that contains all relevant data. 
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Table 7 CuttingTool class attributes 

int toolId ID of this tool in the database 

String toolName Description of cutting tool 

String toolType Type of tool (endmill, ball nose, etc) 

String toolSeries Series of tool (manufacturer code) 

int toolTeeth Number of teeth 

double toolLength The total length of the tool 

List<CuttingToolProfile> cuttingToolProfiles Details for tool mesh 

   

CuttingToolProfile: Before simulating the vertical milling process, a cutting tool 

mesh is generated (more details in paragraph 4.4.2). This class holds information 

related to the usage of an element of the cutting tool. Typically, all elements that 

form a cutting tool are grouped under a Java List and their reference is stored in 

the CuttingTool instance of the cutting tool that is being used. The attributes of 

CuttingToolProfile are listed in Table 8. 

Table 8 CuttingToolProfile class attributes 

int toolId ID of the tool that this element belongs to 

double distanceFromNose Z-axis distance between the element and the tool’s bottom face  

double distanceFromCentre Distance between element and tool rotating axis. 

int insertionsPerTooth Times the element tooth removed billet material 

double materialRemoved Billet elements removed by this tool element 

boolean axialProfile True if this element is on the side of the tool 

boolean radialProfile True if this element is on the bottom face of the tool 

 

Closely related to the cutting tool classes is the carousel table in the database. 

However, because of the simplicity of the table (each row holds 2 ids) there is no 

need for a separate custom class and information is passed as 2 integers. 

Billet: This class holds information related to billet positioning and properties, 

shown in Table 9. In the current version of the simulator, the billet is constructed 

from scratch every time a simulation runs based on the data stored in the database. 

To simulate pre-machined billets, there is an option for complex billet shapes (a 

merge of simple-shaped billets). 
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Table 9 Billet class attributes 

int billetId Unique ID of the billet 

String billetName Description of the billet 

int billetShape Type of shape indicating the way to generate billet mesh 

int materialId ID of the material that the billet is made of 

double xBilletMin Minimum X coordinate of the billet positioned on milling table 

double xBilletMax Maximum X coordinate of the billet positioned on milling table 

double yBilletMin Minimum Y coordinate of the billet positioned on milling table 

double yBilletMax Maximum Y coordinate of the billet positioned on milling table 

double zBilletMin Minimum Z coordinate of the billet positioned on milling table 

double zBilletMax Maximum Z coordinate of the billet positioned on milling table 

boolean[][][] part A 3D array holding state of each billet element (true=machined) 

 

Complex shape billets do not require a separate class as each row of the database 

table contains the parent billet ID (the complex one) and the ID of one of the 

children. To simulate a parent billet, its children are generated and positioned 

accordingly on the milling table. (More details in paragraph 4.4.3) 

Material: Billet material information is held in a separate class as shown in Table 

10. It is assumed that dimensions together with material type sufficiently describe a 

billet and that two billets with the same dimensions, positioning and material will 

have the same behaviour. 

Table 10 Material class attributes 

int materialId Unique ID of the material 

String materialName Description of the material 

 

NC: The simulator keeps a log of the analysis it does on G-Code files. It therefore 

keeps the original location of the G-Code file, the location of the analysis CSV file 

(after an offline run of the process) and the location for monitoring data produced 

by the G-Code file, shown in Table 11. Although in theory the simulator will gather 

data in real time, for practical reasons (especially for validation) the simulator is 

able to keep a log of available process data that can either be processed offline or 

retrieved if a direct comparison between two runs is required. NC class attributes 

are: 
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Table 11 NC class attributes 

int ncId A unique ID for this G-Code – analysis file connection 

String ncPath Location of G-Code file 

String analysisPath Location of analysis file 

String monitoringPath Location of monitoring data file 

int billetId ID of the billet used for the process 

 

LearningSet: When the Learning Module trains a ML model with monitoring data, 

the model parameters along with model identification information are saved in the 

database. The LearningSet class holds this information and an instance of this class 

is created to retrieve the model from the database when a combination of billet 

material and cutting tool type has already a calculation model trained. The 

attributes of the LearningSet class are shown in Table 12. 

Table 12 LearningSet attributes 

int learningSetId ID of this set of learning parameters 

int materialId ID of billet’s material 

String toolSeries Manufacturer’s series code of cutting tool. 

String targetName Target parameter of the learning model 

String[] Inputs Input parameters for learning model 

long sampleCounter Number of samples used to train the model 

String modelFilePath Location of the file containing the learning 

model  

 

4.4 MILLING SIMULATION ENGINE 

Following the architecture presented in chapter 3, at the core of the simulator lies 

its simulation engine. The simulation engine is following 4 steps to calculate the 

expected results of running a program on the physical milling machine. These steps 

are: 

1. Get simulation initialisation data. 

2. Generate the mesh for cutting tools and billet. 
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3. Run the milling program virtually and calculate the simulation results. 

4. Push the results to other simulator modules and/or store them. 

The simulation engine is designed to be used both offline, to run GCode files, CSV 

files or assist the simulator’s learning, and online to support the physical machine’s 

supervision. The simulation engine requires initialisation data and cutting tool 

related data (position and state) to run. Initialisation data is provided by the user 

and stored in the database. This mirrors the manner in which a VMC will be 

operated, whereby the individual tool information is input before any manufacturing 

is attempted. This data is stored in a tool library within the VMC controller. This is 

then referenced by individual programs to provide tool offsets and related 

information required to enable accurate machining. During the simulation tool 

position and state are provided by either the GCode program or the monitoring 

system (CSV file). For offline running, all data is available before the engine starts. 

For online running, initialisation is provided in advance and tool related data is 

provided in the form of a live stream of samples recorded by the monitoring 

system.  

Table 13 Simulation engine data requirements 

Task Initialisation G-Code Monitoring 

G-Code execution Yes Yes No 

Learning Yes No Yes 

Process supervision Yes No Yes 

 

After the initialisation data is provided, the engine generates the mesh for the billet 

and the cutting tools that are involved in the process. All meshes are generated in 

advance, as detailed later in this section, before the engine begins to process 

cutting tool position data. The machine verifies that the billet mesh, the cutting tool 

meshes, the carousel setup and the cutting tool source of data are setup 

successfully (not null) before flagging process initialisation as successful.  

The machining process is simulated by processing sample by sample the cutting 

tool state data and calculating for each step the simulation model output 
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parameters. The engine is calculating all directly related parameters every time a 

new sample is available but grouping, averaging or other basic statistical processes 

used mainly to inform the user are done by the output interface. The output of the 

simulation could be described as the output of a virtual monitoring system that 

produces raw data which needs to be post-processed to become suitable for the 

results reporting. After the simulation engine processes all available samples, the 

final results are pushed to the output interface for reporting. 1-sample-based 

generated data is saved in CSV files and all other relevant data (logs, statistics, 

etc.) are saved in the simulator’s database (see paragraph 4.2 for the type of data 

being stored). 

In the next sections, the simulation engine operation is described in detail to 

provide a better understanding of the functionality and the way that results are 

generated. 

4.4.1 Simulation engine input data 

Section 4.2 has presented the steps through which raw data is prepared for the 

simulation engine. The simulation engine has to be started manually by the user but 

after that point it runs continuously until all data is processed (offline) or until the 

input data stream is closed (online). In the introduction to this section all 

initialisation activities have been described and it would be redundant to repeat 

these details. However, it is important to repeat that it is not the responsibility of 

the simulation engine to do any data preparation. The engine expects that 

everything it needs to run is available either in the Java arrays that are loaded by 

the input interface or in the database. The simulation Engine will simply access 

these sources and if data is not found or is not in the expected form it will stop 

running and report an error with details on why the error occurred. Therefore, 

apart from the manual preparation of initialisation data and the operation of the 

input interface technically speaking there is no input data task assigned to the 

simulation engine. The actual operation of the engine starts directly with building 

the meshes of the cutting tool and the billet to be machined. 
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4.4.2 Cutting tool mesh 

Simulation engine initialisation data includes the mesh element size value which as 

explained in 3.4.2 it is a critical parameter for the virtual representation of the 

cutting tool and the billet. Element size is defined during the creation of the 

database and remains constant throughout the life of the database. The cutting tool 

mesh is formed by rings whose width is equal to the element size. The dimensions 

of the cutting tool model (virtual) are the same as the actual cutting tool (physical). 

Since the cutting tool is revolving at high speed, the billet material that falls within 

the radius of the tool is removed. Therefore, although the tool has teeth the 

resulting cut takes the form of a cylinder.  

 

Figure 40 Resulting shape of removed material area 

Based on the shape of the removed volume, the tool model is a cylinder with a 

radius equal to the cutting tool’s radius and a height equal to the cutting tool’s 

working height. These are the equivalent of the tool offset data stored for each 

cutter in the VMC tool library. The part of the tool that is used to mount the cutting 

tool in the spindle is not being considered. It is also assumed that only the surface 

of this cylinder can remove material therefore the resulting model resembles a 

hollow cylinder.  

To generate the mesh, the cylinder is sliced into two types of rings. Concentric rings 

which form the mesh of the cutting tool's bottom face and stacked rings which form 

the sides of the tool.  
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Figure 41 Endmill cutting tool mesh 

The centre of all rings lies on the cutting tool’s axis of rotation. Tool periphery 

(side) rings are stacked without gaps in order to form a continuous surface when 

viewed from the side (Figure 42). The thickness of each ring is equal to the element 

size. The external diameter of each ring may vary depending on the shape of the 

cutting tool. Bottom face rings have the same centre. The external minus internal 

diameter equals to the element size. Every ring (except the smallest and largest) 

has a smaller ring osculating internally and a larger ring osculating externally, 

creating that way a continuous surface when viewing the cutting tool from the 

bottom (Figure 42). The smallest ring has zero internal diameter which makes it a 

disk. 

If a ring is visible from both side and bottom views (like the edge ring in Figure 41) 

it complies with restrictions for both bottom face and side rings and machines in 

both directions during simulation.  
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Figure 42 Ball nose cutting tool mesh Left: Side view of the actual tool. Centre: Side view of mesh. 
Right: Bottom view of the mesh  

Each ring is identified by two parameters.  

1. Distance from the tip of the cutting tool. This is the Z axis distance between 

the ring centre and the lowest Z coordinate that the tool can machine 

2. Distance from the centre. This is the external radius of the ring. 

No two rings are permitted to have the same values for both identification 

parameters. 

Cutting tools have to be defined by the user before the simulation begins in order 

to enable the simulator to create the virtual carousel. The simulation engine that 

has been developed for this research project generates the cutting tool meshes 

based on the user inputs and populates the created virtual cutting tool in the 

classes shown in Table 7 and Table 8. Then the virtual cutting tools are stored in 

CuttingTool and CuttingToolProfile database tables that retain cutting tool 

information as well as data for each cutting tool mesh element. The simulator 

reuses the cutting tools and after every use, each tool element is updated 

accordingly. Common cutting tool geometries, such as end mills (Figure 41) and 

ball nose cutters (Figure 42) can be defined using this approach. It can also be 

applied to more complicated face and plane milling tipped cutters and other 

application-specific tools as required. 



128 
 

4.4.3 Billet mesh 

Regardless of the shape of the physical billet, the simulation engine generates all 

billets as cuboids which are aligned with the machine coordinate system. A billet’s 

cuboid is defined by the coordinates of its 2 opposite vertices. For consistency (and 

practicality during calculations) the first vertex is the one defined by the minimum 

values of X,Y,Z coordinates and the second vertex is the one where all coordinates 

have their maximum values. Therefore, the cuboid is defined by 2 3D space points 

(xmin, ymin, zmin) and (xmax, ymax, zmax). If the billet has a cuboid shape itself, then the 

mesh is generated by dividing the cuboid into smaller cubes whose edge length is 

equal to the element size (Figure 43).  

 

Figure 43 Basic billet mesh 

If the billet size in one dimension divided by the element size has a remainder then 

this dimension is shortened until the remainder is zero. For example, if the 

dimensions of a billet are 55.3 x 45.7 x 10mm and the element size is 1mm the 

modelled billet dimensions will be 55mm x 45 x 10mm. In this example, the billet 

mesh will consist of 24750 cubic elements. 

Since the billet may not be a cuboid or it may be pre-machined the simulation 

engine is capable of enacting the following 3 steps to ensure that an accurate billet 

representation is created. 

Step 1: Definition of billet parts. The user must define the billet shape by combining 

billets with basic shapes through the provided GUI. The current version supports 

cuboids and cylinders. The user inputs multiple, simple-shaped billets first and then 

creates a complex billet that is the product of merging the simple ones. It is worth 

stating that in most real-life applications milling billets are usually simple cuboids 

in nature. 
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Figure 44 Specification of a complex-shaped billet (highlighted lines) 

Step 2: Mesh generation for simple shapes. The simulation engine retrieves from 

the database the size and position of every simple-shaped billet and generates the 

mesh for this simple billet. If the billet is not of a cuboid shape, then a cuboid mesh 

is machined to produce the required shape. For example, if the required shape is a 

cylinder, then the simulation engine generates first a cuboid that the cylinder can fit 

in and then marks as machined all elements outside the cylinder boundaries. 

Step 3: Composition of simple shapes. Finally, the container mesh is created. This is 

a cuboid mesh that can contain all simple-shaped meshes. Initially, all elements of 

the container are marked as machined. Then for each simple shape, the simulator 

copies the non-machined elements of the simple shape to the container. For 

example, if a simple shape has an element at position (xs, ys, zs) which is not 

machined then the element of the container mesh at position (xs, ys, zs) is labelled 

as non-machined. If two simple shapes overlap, then the result is the union of their 

non-machined elements. 

Throughout the mesh generation and machining simulation process, every 

cube/element is identified and stored in computer memory by its vertex with the 

minimum axis coordinates (xelement-min, yelement-min, zelement-min). 
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Figure 45 Composition of simple shapes (based on Figure 44 data). Top: Two simple shape billets. 
Bottom: Complex billet 

 

4.4.4 Machining simulation 

In section 3.4 process digital replication followed by data analysis was proposed as 

a means to embed into the simulator available theory as well as knowledge that 

can be extracted after training ML models with the monitoring data (Figure 13). The 

VMC simulator implementation demonstrates this approach by replicating the 

material removal process and then using the results to calculate other directly 

related parameters. Key parameters in this process are material removal rate 

(output of virtual replication) and spindle load (output of derivative data models) 

which have been used by the author to verify the effectiveness of the approach. 

However, the work has expanded to more parameters (mentioned in the following 

section and in Chapter 5) since it is equally important to stress the potential of this 

work and the multiple benefits of applying its outcomes. 

4.4.4.1 VMC process replication 

As soon as the java arrays are loaded with data (all data in the offline scenario, or 

at least one sample in the online scenario) the simulation engine starts. The 

simulator is event based therefore each sample represents a new event described 

by the new state of the cutting tool. For each sample, the simulation engine 
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calculates the effects that the new state of the cutting tool has on itself and the 

billet. Examples of effects are the removal of billet material, change of billet shape 

and cutting tool wear. The process that the simulation engine follows to digitally 

replicate the process and calculate the virtual monitoring parameters is as follows. 

Firstly, the engine checks if the cutting tool ID indicated by the sample matches the 

ID of the cutting tool that is already loaded into the machine. If not, the mesh of the 

new tool is loaded. Secondly, the tool is moved to the position dictated by the 

coordinates of the sample being processed. To optimise the process, a series of 

checks are done to verify whether the cutting tool has touched the billet and which 

part of the cutting tool has done so.  

Check 1: Is the cutting tool’s bottom face below the top surface of the billet? 

𝑍𝑇𝑜𝑜𝑙 < 𝑍𝐵𝑖𝑙𝑙𝑒𝑡𝑀𝑎𝑥 4-1 
Where: 

ZTool: 

ZBilletMax: 

 

 

Z coordinate of the tool’s bottom face 

Z coordinate of billets highest point (top) 

Since this is a vertical milling process, if the cutting tool's bottom face is above the 

top surface of the billet there is no material removal taking place. The virtual 

monitoring system then records a default set of values which represents the no 

machining state (for example zero material removal rate). If the cutting tool is 

within the Z axis range of the billet, then the simulation engine picks a cutting tool 

element and checks if this element can machine part of the billet.  

Check 2: Is the cutting tool element within the billet’s Z axis range? 

𝑍𝐵𝑖𝑙𝑙𝑒𝑡𝑀𝑖𝑛 ≤ 𝑍𝑇𝑜𝑜𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ≤ 𝑍𝐵𝑖𝑙𝑙𝑒𝑡𝑀𝑎𝑥 4-2 
Where: 

ZBilletMin: 

ZToolElement: 

ZBilletMax: 

 

 

Minimum Z coordinate of billet’s elements (lowest point) 

Z coordinate of the examined cutting tool element 

Maximum Z coordinate of billet’s elements (highest point) 
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If the element is out of the billet’s vertical boundaries, then a default set of values 

for non-machining elements is recorded. If the element is within range the checks 

continue.  

Check 3: Is the cutting tool element within the minimum and maximum billet X 

and Y axis coordinates? 

𝑋𝐵𝑖𝑙𝑙𝑒𝑡𝑀𝑖𝑛 ≤ 𝑋𝑇𝑜𝑜𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ≤ 𝑋𝐵𝑖𝑙𝑙𝑒𝑡𝑀𝑎𝑥 
 

𝑌𝐵𝑖𝑙𝑙𝑒𝑡𝑀𝑖𝑛 ≤ 𝑌𝑇𝑜𝑜𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ≤ 𝑌𝐵𝑖𝑙𝑙𝑒𝑡𝑀𝑎𝑥 
 

4-3 

Where: 

XBilletMin: 

XToolElement: 

XBilletMax: 

YBilletMin: 

YToolElement: 

YBilletMax: 

 

 

Minimum X coordinate of billet’s elements 

X coordinate of the examined cutting tool element 

Maximum X coordinate of billet’s elements 

Minimum Y coordinate of billet’s elements 

Y coordinate of the examined cutting tool element 

Maximum Y coordinate of billet’s elements 

 

Like the Z axis element check this one checks that the cutting tool element enters 

the billet X, Y axis boundaries. If not, default (no machining) values are recorded. If 

yes, the checks continue but from a billet’s perspective. Yet, it is not verified 

whether the cutting tool element can machine the billet. Figure 46 demonstrates 

the reason why extra checks are required. 

 

Figure 46 Process top view. Left: Non-machining cutting tool element. Right machining cutting tool 
element. 
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Check 4: Are there billet elements within the range of the cutting tool element? 

The engine iterates over all billet elements that are indicated in red in Figure 46 

and calculates the Euclidean distance between each element and the cutting tool 

element centre. If the distance is longer than the element’s radius then the billet 

element is not machined. If the distance is shorter then this billet element is 

selected for the final check. 

Check 5: Is the billet element machined? 

If the billet element has already been machined, then the default (non-machining) 

values are recorded by the simulation engine for the cutting tool element. If the 

billet element has not been machined, then the simulation engine registers this 

billet element as machined and calculates the virtual monitoring parameters 

affected by the element machining. 

Checks 4 and 5 are done at the same time but are presented as separate steps for a 

more transparent explanation. Checks 1-4 are optional from a theoretical 

perspective as they simply narrow down the elements that need to be checked. The 

theoretical equivalent would be to check all billet elements for every cutting tool 

element. In practice, this would increase the number of calculations by orders of 

magnitude and therefore the computer would be challenged to run the simulation 

engine at an acceptable precision, in parallel with the real process. 

After all machined billet elements have been registered and recorded under the 

cutting tool element that machined them, the simulation engine continues to the 

next sample (if available). In offline mode, the simulation engine continues until all 

samples are processed. If there are no more samples available, it passes the output 

of machining to the derived data calculation models. In online mode, the engine 

output is passed to the derived data calculation models after every sample to allow 

for the immediate publishing of sample results by the output interface, presented 

to the user through the GUI. Finally, when the data stream is closed, the process 

summary is passed to the output interface to generate the final report and to store 

the required logs in the database. 
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The results of VMC process digital replication are a direct product of the material 

removal related calculations more specifically the calculated parameters are: 

• Material removal rate 

• Cutting tool usage (3-dimension profile)  

• Part shape (raw data) 

• CNC machining program status (percentage of program that is completed) 

The Material Removal Rate (MRR) is calculated by counting the number of billet 

elements machined per time unit. This calculation is based on the following 

equation: 

𝑀𝑅𝑅 =
𝐸𝑙𝑅

𝑑𝑡 ∙ 𝐸𝑙𝑆𝑖𝑧𝑒3
 

4-4 

Where: 

MRR: 

ElR: 

dt: 

ElSize: 

 

 

Material Removal Rate (mm3/sec) 

Billet Elements Removed (-) 

Time between processed sample and previous sample (sec) 

Element Size (mm) 

Cutting tool usage is very important for cutting tool life estimation and for cutting 

tool management. The basis of this estimation is much researched and presents a 

real challenge. It can be stated that knowing more about the actual work done by 

each tooth of the cutter can be of great benefit. This was therefore set as an initial 

target for the analysis generated by the simulator.  As a result of the number of 

insertions per tooth a cutting tool that has been used at a spindle speed of 6000rpm 

does not have the same life left compared to a cutting tool that has worked for the 

same time or done the same job at 1000rpm. Therefore, cutting tool usage is 

further broken down to: 

• Insertions per tooth 

• Billet elements machined per cutting tool periphery element (Figure 41). 

• Billet elements machined per cutting tool bottom face element.  

The insertions per tooth calculation formula can be written as: 
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𝐼𝑝𝑇 =
𝑆𝑆 ∙ 𝑡𝑒𝑒𝑡ℎ

60
∙ 𝑑𝑡 

4-5 

Where: 

IpT: 

SS: 

Teeth: 

dt: 

 

 

Insertions per tooth (insertions/sec) 

Spindle Speed (rpm) 

Number of cutting tool teeth 

Time difference between the recording of the processed 

sample and the previous sample (sec) 

The number of insertions of each tooth of the cutting tool is added to previous 

records for the specific cutting tool and stored in the database of the simulator. For 

each cutting tool, a log of total insertions is kept and the information can be used 

by the operator to manage long process runs that may exceed the life of the tool. 

This prevents disruptions, potential damage to the VMC and part rejections. This 

approach matches the one normally adopted in industry where some aggregated 

measure of tool usage is applied to estimate the remaining useful life of a cutter. 

Billet elements machined per cutting tool element (side or bottom face element) is 

a simple count of the number of billet elements that each cutting tool element has 

machined. The counted elements are then stored in the database and similarly to 

insertions per tooth can be used during process planning. Figure 47 shows the 

output provided to the operator regarding cutting tool usage. The X axis shows the 

distance from the bottom face (top) and the distance from the centre (bottom). The 

Y axis shows the number of elements machined.  

 

Figure 47 Cutting tool usage plots. Top: Tool side usage. Bottom: Tool bottom face usage 
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The above diagram is produced by simulating the machining of the cylinders that 

formed part of the previous work (Hill 2020). The diagram shows that the cutting 

tool tip element is being used by both dimensions and therefore is used 

significantly more than other tool elements. This is in accordance with the cutting 

tool tip wear that was observed during the process (Hill 2020). 

4.4.4.2 Digital VMC derived data calculation 

Running the virtual process by generating and machining a mesh of virtual 

elements allows for the studying of every aspect of the interactions between the 

cutting tool and the billet. In the previous section, the way that material removal 

related parameters are calculated was presented. The results of these calculations 

are then used as input for ML models that the learning module builds through a 

best model search and supervised learning process that is described in section 4.5.  

The VMC monitoring system makes available measurements of the spindle load 

(SL). It can be assumed, based on established theory and on-site testing of this 

VMC, that SL is closely related to the condition of the tool, MRR, the spindle speed 

and the type of milling. The simulation engine does not have a hardcoded 

calculation formula as it does for the parameters of section 4.4.4.1, but instead, it 

uses the model that is stored in the database for the SL calculation. SL has been 

selected because the data needed to perform supervised training and to test the 

system is available through the previously deployed system (Hill et al. 2019). In 

general, for every parameter that can be monitored by the physical VMC, the 

simulator can develop a ML-based model to estimate it. The model selection and 

training process are described in section 4.5. It should be stated that the use of this 

data for this purpose in this research is novel and has not formed part of the 

previously conducted work. 

The steps of calculating all derived data parameters are the same for all 

parameters. After the digital replication results have been calculated (all samples 

for offline simulations and at least one sample for online simulations) the 

simulation engine retrieves from the database the calculation models. Weka API 

(Witten et al. 2016) is used to rebuild the model (deserialization). The reconstructed 

model is a Java object with various functions one of which is to calculate the target 



137 
 

parameter from a set of input parameters. Parameter calculation speed depends on 

the calculation model but since the models are already trained calculation time is 

typically short enough to allow for real-time simulation. Figure 48 shows the 

process that the simulation engine follows to calculate the target parameter which 

for the current simulator’s implementation is the SL. 

 

Figure 48 Derived data parameter calculation 

In the case that no model exists the simulator will return zeros for parameter 

values along with an indication that there is no calculation model available. This is 

to prevent results from being pushed to the output interface. In the current 

implementation of the simulator the calculation models are retrieved only once if 

simulating offline and after every sample is processed if the simulator runs in real 

time. 

After all calculations are finished the SE pushes the results to the output interface 

and updates NC table fields shown in Figure 38 in the database that keep 

information for the simulator’s historical runs. The analysis CSV file that is created 

has an extra column added to show the estimated value of SL for each sample. As a 

last note, the process described in section 4.4 can be run with or without pre-

trained models in the database. If no models are available, then this will be a 

traditional simulation process. This is typically the case when the simulator runs for 
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the first time a specific cutting tool – part material combination. The latter shows 

the evolving nature of the simulator that starts with a default, “traditional” 

behaviour and as new data becomes available it has the mechanisms to use the 

generated knowledge embedded in the ML models. In section 4.5 the details about 

how the ML models are selected, built, and stored in the database are provided so 

that the description of the evolving nature of the next generation simulator is 

complete. 

4.5 MILLING LEARNING MODULE 

In section 3.5 the description of the learning module covers a wide range of 

applications. Since it is not practically possible to demonstrate every case that the 

suggested approach can support compared to traditional simulators the VMC 

simulator focuses on three key functionalities: 

1. Best ML model search 

2. 1-sample-based model training and management 

3. n-sample-based data synchronisation 

These three functionalities enable the simulator to generate knowledge from the 

information extracted by the monitoring data in the most efficient way and to use 

this knowledge to evolve. Due to the extensive programming effort required to 

adapt the external libraries that support the Learning module, some processes are 

not fully automated as it would be required for a complete solution. Nevertheless, 

results that prove the concept can still be calculated since the learning module 

operates independently and asynchronously with the simulation engine. Section 

3.5.2  explains how this is achieved. 

4.5.1 ML model selection 

Selecting a suitable model to calculate derivative parameters is a process with a 

very high impact on the performance of the simulator. The model type determines 

key simulation performance indicators including calculation accuracy, the range of 

application, model training speed and results calculation speed. As already 

mentioned, the parameter that has been selected to demonstrate the learning 

module’s operation is SL. SL is measured by the VMC as a percentage of a baseline 
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value and therefore there is data available for supervised training of the selected 

model type. 

Building a ML model requires first specifying the input and target parameters. For 

the datasets that this work used to test the VMC simulator the selection was 

relatively straightforward since there was a strong indication that the MRR 

calculated by the simulator was related to the actual SL. Figure 49 shows part of 

the initial raw data graphs produced during the simulator’s development phase.  

 

Figure 49 Top: Actual spindle load. Bottom: Simulator calculated Material Removal Rate 

Figure 49 shows the first success of this research project since it verifies that the 

simulation engine correctly replicates the process. Full details are discussed in 

Chapter 5. Regarding model selection, the graphs led to further investigation which 

showed that after smoothing the data with a moving average of 40 samples MRR 

can be used as input to a linear regression model that gives a good prediction of 

SL. It should be noted that the actual SL values have relatively low resolution 
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compared to MRR since the monitoring system generates only integer percentage 

values. 

As explained in 3.5 finding the best ML models manually requires a lot of effort and 

a high level of specialisation in machine learning. In addition, multiple models need 

to be built for each parameter of each cutting tool – part material combination. To 

overcome this issue WEKA (Witten et al. 2016) and Auto-WEKA (Kotthoff et al. 

2019) libraries are embedded in the implementation of the learning module which 

together automate the best ML model identification process given appropriate 

setup parameters. Figure 50 shows the model creation process. 

 

Figure 50 Automatic ML model generation 

To create the model, a dataset to base the ML model on must be generated. To 

compile the MRR-SL dataset two sources of data are used. Data generated by the 

VMC monitoring system and published by the system of Hill et al. (2019) is passed 

to the input interface for the typical pre-processing. All target parameter values (in 

this case the SL) are passed directly to the learning module. The simulation engine 

is using the monitoring system data to run the VMC digital replication process and 

calculate the learning model input parameter values (in this case the MRR). Then, 

the results are fed to the learning module which builds a new dataset that contains 

only the input data as received by the simulation engine and the target data as 

provided by the input interface. It should be noted that if a target parameter is not 

related to the digital replication, then the user may select input data to come 

directly from the input interface. Technically, all input, output and temporary 
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system parameters are written in a CSV file. The user may select any combination 

of these parameters to create models. 

After the dataset is compiled, the learning module builds the required Java objects 

and runs the Auto-WEKA model search functions. Searching for the best MRR-SL 

model took 13 hours on a computer with 16GB of RAM and a 2.0GHz dual core CPU 

(Intel® CoreTM i5-4310U Processor. 2014). The performance numbers are provided 

to point out that this implementation of model searching is not currently suitable 

for real-time ML model searching with common embedded computing systems. 

However, modifications to the model search algorithm, the use of state-of-the-art 

computing systems locally or through cloud services and better dataset selection 

and management techniques could produce good enough models within minutes 

after the process started.  

Auto-WEKA returns a model type and the optimum model parameter values. The 

learning module reads the results and uses WEKA functions to build the model as 

suggested by Auto-WEKA. The virgin model is then trained with the available data 

which initially is the dataset used to find the best model. This is a typical supervised 

learning process that is done by WEKA. Since WEKA can be used through its 

standalone graphical user interface the model can be tested there for verification 

or validation purposes. The trained model is then serialised and stored in the 

database by saving a file on the hard drive containing the model and updating the 

learning set table with the new model file path. From there, the simulation engine 

can retrieve the calculation model and use it as described in section 4.4.4.2. 

At the end of the model creation process the learning module has added a 

submodule (see section 3.5) to the list of available submodules which are stored in 

the learning-set and learning-input database tables. The addition of more 

submodules increases the capacity and capabilities of the simulator because every 

submodule enables the simulation engine to calculate a new parameter. In other 

words, the simulator at the beginning of its life can run specific predefined 

parameters but as more submodules are created it can cover more needs of a 

digital twin’s needs. This is a critical part of the implementation and together with 
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the portability of the database that allows for sharing of the submodules are key 

benefits of the suggested simulator architecture. 

4.5.2 Model training and lifetime management 

A major drawback of the submodule creation process is that it is based on a 

specific dataset and therefore the model will inherit the issues of the dataset. For 

example, if the dataset was generated from a problematic VMC process run then 

the model will only represent a problematic run. The simulator does not have an 

internal mechanism for identifying problematic runs but this can be mitigated by 

simply not creating submodules from rejected part data. In the long term, if 

problematic data is only a small part of the overall data, then the model will be less 

biased towards problematic runs. Retraining the models can naturally achieve that. 

The current version of the simulator does not support retraining of an existing ML 

model since this requires additional programming effort to connect the data 

streams from the input interface to the learning module and also to merge WEKA 

and Auto-WEKA with the new libraries. To update an existing model, all historical 

data used to build the model is required so that ‘old’ data is merged with ‘new’ data 

and the model is trained with the combined dataset from scratch. For 

completeness, a logical way to do automatic retraining would be by integrating 

MOA (MOA. 2021) which is based on the work of (Bifet et al. 2010). MOA is used for 

data stream mining and it uses a machine learning model library with the capability 

to incrementally train a ML model. The incompatibilities between the three 

packages are being actively solved by the community supporting MOA but there is 

still work required which lies outside the scope of this research work. 

The lack of a proper retraining mechanism makes the retention of monitoring data 

mandatory. This is clearly incompatible with the logic of the architecture which is to 

retain a minimum amount of data. The operation and results of the VMC simulator 

show that this weakness although significant in theory it does not affect the actual 

performance in all cases. The MRR-SL model required a few hundred of samples to 

calculate accurately the value of SL given the MRR for all runs of the VMC with the 

same cutting tool-part material combination. One VMC run produces tens of 

thousands of samples so either keeping the small part of data that is enough to 
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train the model or completely deleting data (since the model’s accuracy suffices) 

are both reducing massively the amount of data that has to be retained. Chapter 5 

provides a quantification of data storage minimisation. If, finally, the retraining 

issue must be mitigated then the integration of MOA (or similar) library is the 

proposed solution. 

A key factor to consider when using the simulator is VMC hardware wear. The 

cutting tool is a typical example of hardware whose wear potentially changes its 

behaviour even during a single run. Neither the simulation engine nor the learning 

module account for wear if a wear-related input parameter has not been provided 

to the relevant submodule. In the cutting tool's case, the learning submodule 

responsible for SL calculation would require an additional parameter which is 

related to the tool's usage. If the cutting tool is machining the same type of 

material, then the user can add two input parameters to the model creation 

dataset. These two parameters can be: 

- Cutting tool lifetime machined elements count 

- MRR.  

The learning module then creates a suitable ML model that remains accurate 

throughout the cutting tool's life. Since the models rely solely on the data that has 

been provided to build the model every behaviour can be modelled if it has been 

observed. However, there is no guarantee that a behaviour is predicted accurately 

if it is outside the range of the model-building dataset. Overall, the simulator can be 

a strong foundation for many new findings since the connection of a virtual process 

that can be monitored as required with any observation in the actual process which 

can be described with data is possible without the need for separate bespoke 

model implementations. 

4.5.3 Synchronisation for n-sample data models 

In section 3.5.4 n-sample-based learning was presented to complement the types 

of learning a simulator will generally perform. As explained, the model-building 

process remains the same and therefore the implementation of the VMC simulator 

demonstrates it with the MRR-SL model. The difference in n-sample-based 

learning is that if samples from multiple runs are used then the samples need to be 
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synchronised. As an example from the VMC, the cutting tool machines a specific 

point on the billet after 500 seconds from the beginning of the process and after 

the monitoring system has produced 1,500 samples. During a second run for an 

unknown reason the same feature was machined after 501 seconds from the 

beginning of the process and the monitoring system had already generated 1,535 

samples. It is clear that both time from start and sample number are not suitable 

properties to use in order to synchronise the two datasets. 

As a potential solution to the n-sample data synchronisation problem, section 3.5.4 

proposes DTW. The VMC simulator implementation uses DTW as a means to 

compare different datasets, measure their similarity, and align the samples of the 

datasets. To embed DTW into the simulator, a Java library built after the work of 

(Salvador and Chan 2007) has been used as a starting point. Then, ideas that have 

been reported by Shokoohi-Yekta et al. (2015) were used to extend the DTW library 

and finally, the necessary adaptations were done so VMC data requirements 

regarding format and filters were satisfied. 

Data synchronisation is an additional function of the learning module required for 

n-sample data learning. To create the model the learning module needs the 

parameters of reference to be specified. If the ML model calculates a parameter 

which depends on the feature of the part that is being machined then the 

parameters of reference should be the cutting tool coordinates. This is the typical 

setup for the majority of cases because the result is a direct comparison of the 

behaviour of the VMC between two runs. To demonstrate that, Figure 51 shows the 

same two datasets synchronised with different parameters of reference. The output 

is MRR which depends on the feature that the VMC machines. As indicated by the 

difference between the two traces, synchronisation based on tool coordinates 

produces excellent results (top graph) while synchronisation based on sample 

number is producing rather misleading outputs (bottom graph). 
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Figure 51 Examples of synchronised datasets with different reference parameters.  
Top: Cutting tool coordinates. Bottom: sample number  

To build an n-sample-based data model, the simulator runs the whole process and 

calculates the target parameter. The learning module then synchronises the 

simulated process data with the actual VMC process data to make them 

comparable. Finally, the Learning module builds the model as described in section 

4.5.1 using for target value the synchronised dataset from the VMC monitoring 

system. Figure 52 summarises the process. 

 

Figure 52 n-sample data model creation process 

In the current version of the simulator, the full process is not automated but the 

steps of simulation running, data synchronisation and model creation have to be 

manually setup and run by the user. 

With n-sample learning and synchronisation, the full capabilities of the VMC 

simulator have been described. The simulator demonstrates the key elements that 

make the architecture superior to other simulation systems and provides an 

example of how the evolution of the simulation mechanism is achieved. The actual 
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results and performance of the simulation engine – learning module combination 

are presented in Chapter 5. As a last note, there is a very high level of flexibility on 

how the learning module capabilities can be used and the demonstrated examples 

are a small percentage of what could be developed. In addition to the novelty of the 

implementation itself, the expectation is that it can become the foundation for more 

research contributions based on the quick modelling of the milling process 

characteristics and behaviour. 

4.6 OUTPUT INTERFACE 

There is not only one way to implement the output interface since the 

implementation depends on the needs of the simulator users. In its current form 

the VMC simulator has three ways to report the results: 

- CSV files 

- API for local apps (feeding a purpose-built GUI) 

- API for web services 

These reporting methods served different purposes during the simulator’s 

development and are not necessarily needed or relevant to non-research 

applications. Retrospectively, the output interface could be further abstracted using 

more scalable technologies however this implementation covers the needs of the 

case study and since both the output interface and the user applications were 

developed by the author a more sophisticated connection would add complexity 

without any research value. In the following sections each method is explained. 

4.6.1 CSV report files 

From the beginning of the simulator’s development the CSV files retaining available 

and calculated data were key in verifying all functionality and providing a quick way 

to access the simulation results. Applications such as MATLAB (MATLAB. 2022) or 

Microsoft Excel (Microsoft Excel. 2022) can import CSV files which allows for quick 

data plotting or data manipulation testing that was then implemented in Java 

programming language and embedded in the simulator. Similarly, the CSV files 

were used to test different ML models in WEKA software and develop the algorithm 

that handled all actions from data selection to final model creation. The format, 
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contents and naming conventions of the CSV files remain consistent therefore 

details provided in section 4.2.1 apply to the output interface. 

All CSV files are registered in the database and stored as flat files in a predefined 

folder. External applications can access the files if they are granted access to the 

folder that contains them. This is the data file method described in section 3.7. 

Since Java is portable the simulator can run and generate the files regardless of 

the computer operating system that hosts it. The simulator does not perform any 

checks on whether the file is manipulated or completely deleted by another 

application however, unless the user specifically retrieves the file to do further 

analysis, the simulator itself does not re-use the output files therefore its operation 

is not affected. If run in debugging mode, the simulation execution can be paused 

and, in that case, the temporary CSV files can be examined if the simulation process 

needs to be checked. 

A drawback of CSV files is that they contain 2-dimensional data. However, 2-

dimensional representation is not suitable to report all results and therefore 

additional ways of results publishing are required. 

4.6.2 Simulator API for integration 

In the description of simulator boundaries (section 3.1) it is pointed out that the 

simulator is meant to be integrated into another system. To enable integration an 

Application Programming Interface (API) has been developed so that the 

application that integrates the simulator is able to use its functions. The integration 

is very similar to the way that the simulator itself integrates WEKA, DTW and all 

other libraries that are supporting the simulation process. The API provides full 

access to top-level functions that enable the wrapper (Definition of wrapper | 

PCMag. 2022) to run a simulation as well as to more technical functions that can 

manually control the behaviour of each element of the simulator. The 

implementation is split into separate projects that can be integrated into other 

applications using MAVEN (Apache Software Foundation 2022) a Java project 

management tool or simply imported as Java archive (jar) files (JAR File Overview. 

2019).  
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In the current version, the API is used by the GUI that has been developed to create 

a standalone version of the simulator. Although a GUI is essential for development 

verification and for running the simulator as a standalone application, by design it 

is a wrapper that uses the simulator as an internal tool. The GUI is a separate 

project that imports the simulator and maps the graphical elements (buttons, text 

fields etc) to specific simulator functions. This in combination with Microsoft Excel, 

MATLAB and WEKA which were used to process the CSV output files is the full 

range of applications that were used to verify, validate, and run the simulator to 

produce the results that are presented in Chapter 5. Since the GUI is not part of the 

simulator it is presented separately in Appendix A.   

The top-level functions that the API provides access to are for: 

- Creating and managing billets 

- Creating billet materials 

- Creating and managing cutting tools 

- Loading tools to the VMC carousel 

- Running the simulation engine 

- Running the learning module 

As mentioned earlier the API provides access to more technical functions such as 

modifying the output CSV files or using the data pre-processor as a standalone 

function but these are complementary details and not the main functions that a 

wrapper would use. To explain how the API can be utilised, a setup, run and train 

scenario is described in steps. It is assumed that the application that integrates the 

simulator has first imported the relevant MAVEN dependencies or JAR files.  

Step 1. Create a new part material. 

The material of the part is used by the learning module to categorise its models. 

This is because machining two billets with the same geometry but of different 

materials produces different process results and therefore different monitoring 

data outputs. The new material can be added with the following method: 

MaterialUtils.addMaterial(name); 
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Name is used to describe the new material so it is easier for the user to identify it 

and select it. After running this method the material is added to the database and 

therefore becomes available to be assigned to a billet. 

Step 2. Create a new billet 

The second step is to create the billet that the simulator will machine and calculate 

the virtual process outputs. A billet is in general a shape with a material property. 

Billet generation is done by calling: 

 BilletUtils.addBillet( 
   billetName, billetShape, materialId,  
   billetXMin, billetXMax,  
   billetYMin, billetYMax,  
   billetZMin, billetZMax 
   ); 

 

Billet name describes the billet. Billet shape is indicated by an integer, and it is 1 

for billets that are a combination of multiple shapes, 2 for rectangular-shaped 

billets and 3 for cylindrical-shaped billets. Material id is an integer that identifies 

the selected material for this billet. Billet x,y,z minimum and billet x,y,z maximum 

are the two edges of the smallest rectangle that can contain the billet (see Figure 

43). After running this method a new billet is created in the database. 

Step 3. Create a new cutting tool 

To machine the billet a cutting tool must be created. This is done by running: 

 CuttingToolUtils.addCuttingTool( 
   toolName, toolType, toolSeries,  
   toolTeeth, toolLength 
   ); 

 

Tool name describes the tool. Tool type can be end mill, ball nose mill or slot mill. 

Tool series is an identification number given by the manufacturer that is used by the 

learning module to identify cutting tools with identical initial characteristics. Tool 

teeth is the number of teeth that the tool has. The simulation engine uses the 

number to calculate the feed per tooth. Tool length is the distance between the 

tool’s bottom face and the spindle chuck. This measure is specific to the tool as it is 

fixed in the VMC tool holder since the monitoring system records the coordinates of 
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the spindle and not the cutting tool coordinates. This method creates a cutting tool 

in the database which is then available to be loaded into the virtual VMC carousel 

and also to be used by the learning module to create a new calculation model. 

Step 4. Load the cutting tool to the virtual VMC carousel 

The created tool is then loaded into the carousel so the simulation engine can use it 

to machine the virtual billet (billet mesh). 

 CarouselUtils.addCarouselPocket(position, toolId); 
or 

 CarouselUtils.updateCarouselPocket(position, toolId); 
 

The physical carousel uses numbers to identify the available positions to place the 

cutting tool and the virtual carousel follows the same naming/identification 

convention. Tool id is the identification number given by the database for the tool 

that has been created by Step 3. If this is the first time that the simulator is run, 

then the pocket of the carousel should be added. Otherwise, the pocket can be 

updated with the cutting tool that is inserted into it. 

Step 5. Run the simulation 

After all simulation elements have been inserted into the database a simulation 

configuration should be created and then the simulator can run. 

 SimulatorConfig config = new SimulatorConfig(); 
 config.setBillet(billet); 
 config.setInputFilePath(inputFilePath); 
 config.setInputFileType(inputFileType); 
  
 KPIs kpis = new KPIs(); 
  
 SimulatorUtils.simulateAnalysisFile(kpis, config); 
or 

SimulatorUtils.simulateGCodeFileUGS(kpis, config); 
 

The simulation configuration object needs three parameters to be set. The billet 

that the simulation engine will machine, the input file that contains the part 

program and the input file type which can be either a ‘G-Code’ file or a ‘CSV’ file. 

Depending on the input file type the corresponding function should be run. This is 
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simulateAnalysisFile for CSV input files or simulateGCodeFileUGS for G-Code. An 

empty KPIs type object is also created and passed to the simulation engine. This 

object will hold the results of the simulation engine. 

Step 6. Get results 

The methods run in Step 5 load the results to the KPIs object and make it available 

to the application that calls them. A KPIs object holds data including: 

- Mesh element size 

- Minimum time difference between events 

- The machined billet matrix containing true for each machined element and 

false for non-machined elements (see section 4.4.3). 

- A list containing the cutting tools used during the machining process along 

with tool properties and usage information. 

- The calculated parameters which include tool coordinates, material removal 

rate and all other parameters that were provided by the input file or that are 

calculated by the available learning module models. 

- The text of the file that is generated by the virtual monitoring system. The 

text contains everything that is later written in the output CSV file 

The KPIs object contains more information generated during the simulation process 

but the above list is what typically would be retrieved by the application that uses 

the simulator API. 

With the above example, it becomes clearer that the simulator is developed to be 

embedded into another system. In a similar manner to the above example, all 

simulator functionalities could be used and all output data could be retrieved to be 

presented or reused by other systems. With this example, it can also be better 

understood why a CSV file is not adequate to report all of the simulation results. 

Each cutting tool in the list of cutting tools retained by the KPIs object contains a 

list of cutting tool elements. Each element has another list of independent 

parameters regarding element position, element usage and times that the teeth 

attached to the element have machined the billet. If this multilevel information is 
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entered in a CSV file then the output file would have tens of thousands of columns 

and lots of repeated data which makes it non-practical for full results reporting.  

Overall, the API is a requirement for every simulator implementation and in this 

research work it plays a vital role in enabling user-friendly access. The developed 

GUI uses the API to access the simulator functionality and a user can quickly run 

the simulator and view results. The GUI and consequently the API have been used to 

demonstrate the offline simulator capabilities. The same API could be used to run it 

online, but modern manufacturing environments favour remote access and 

therefore it was decided by the author to demonstrate over-the-web access to the 

simulator through a web API. 

4.6.3 Web API 

When the VMC is running the operators of the machine need to access live 

information to ensure that there are no issues requiring their intervention. To spot a 

problem during the process, the simulator runs in parallel with the actual process 

and calculates the expected parameter values. Then these values are compared 

with the actual data and if the difference exceeds a threshold the operator is 

notified. To demonstrate this process a web application has been developed by the 

author. This accesses the simulator’s real-time results and provides a graphical 

interface for the user to monitor the progress of part machining as well as the 

actual and estimated parameter values. This web application can be accessed with 

an internet browser and an internet connection that allows it to connect to the 

hosting web server. 

Giving access to the simulator’s functionality over the web requires a web API. A 

basic web API has been developed and it provides access to a limited set of 

functions that allow the web application to get live simulator results. 

 

Figure 53 Remote access through the webapp 
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The logic behind the web application is the same as the GUI for local access. The 

web application is a wrapper system that integrates the simulator and provides its 

services to the users. It is hosted on an Apache Tomcat (Apache Software 

Foundation 2021) web server and it has been developed with Java programming 

language for the backend system and HTML and JavaScript for the frontend system 

(webpages). 

To connect any application with the simulator over the internet (using Transmission 

Control Protocol/Internet Protocol) there are two steps to be followed. First, the 

input interface should be supplied with the machine setup (billet, cutting tools etc.) 

and the live monitoring data source. The setup information is then passed to the 

simulation engine that initialises the digital replication process. After successful 

initialisation, the input interface is waiting for monitoring data to arrive. Following 

initialisation, a second step is required so that the client application can receive 

simulation results. The client should establish a connection with the output 

interface by using Server Sent Events technology (SSE HTML Standard. 2022). With 

SSE the client connects to the server and waits for the server to send an ‘event’ 

which is in this case a JSON object containing the simulation results. As soon as the 

last sample has been simulated and sent to the client the SSE connection closes. 

Due to the fact that it is not practically possible to keep the simulator constantly 

connected to the VMC monitoring system the above process has been altered in the 

version of the simulator used to produce the results of Chapter 5. The simulator 

uses data from a CSV file as monitoring data that arrives at the simulator at the 

exact time intervals that it would arrive from the actual monitoring system. This is 

achieved by reading the CSV file but submitting the sample to the input interface 

when the time from the virtual process start equals the time from start value of the 

sample. Regardless of the method that is used to get the monitoring data, the aim 

of this section is to explain how the simulator can be controlled remotely and 

produce results accessible by clients over the internet. As mentioned earlier, the 

web API is a basic implementation since full implementation like the API of section 

4.6.2 would replicate the same functionalities and would not demonstrate 

additional capabilities of the simulator. 
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With the web API, the three ways that the VMC simulator can be integrated and/or 

utilised have been presented. This implementation is suitable for the purposes of 

this work and would need alterations in order to be deployed in an industrial 

environment. Section 3.7 is a more complete guide about technologies and methods 

that can be selected. In general, the purpose of both input and output interfaces is 

to connect the simulator with its environment, therefore, their characteristics are 

dictated by the characteristics and the technologies of the environment itself.  

4.7 INTEGRATION INTO THE PHYSICAL WORLD 

Although integration of a simulator is taking place in the digital world it is also 

important to provide an overview of how the described system is connected to the 

physical process. In Figure 54 the typical steps to run a CNC process on the actual 

VMC are depicted. First, the CAD design of the part is generated by the design 

engineer and then, through CAM software, it is translated into a G-Code file. This G-

Code file is run on the machine that machines the part and at the same time 

generates data through its monitoring system. The simulator is simply connected to 

the data connections of the existing system and reads the inputs to the machine and 

also the outputs of the monitoring system. At the initial stage, there is no 

interference with the CNC process.   

 

Figure 54 Simulator integration into a CNC process 
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The results of the simulator are provided to the operator who can spot the 

differences between the actual process and the expected process. Based on the 

observations of the operator, relevant actions are taken to bring the physical 

process parameters to the desired state. Provided that the simulator has been 

trained and gained the trust of the operator, the comparison between the actual 

and the simulated process can be done automatically, and the simulator can be 

connected to a digital twin that has access to the process control. Then, the digital 

twin acts within its control permissions to modify the process parameters and 

notify the operator about its actions or about the suggested actions that the 

operator should take. This way and step by step a traditional CNC process can be 

upgraded with a digital counterpart and then the digital counterpart that 

accumulates knowledge “next to” the operator can take over supervision and 

appropriate control tasks. 

Although the above steps would offer great benefits to a company they have a cost 

both in terms of implementation of the digital counterpart and the time that is 

needed to develop a mature system that can be operated independently. It is 

therefore more appropriate that the above process is followed by OEMs since the 

creation of a digital twin specialised on a specific machine would be applied to 

hundreds or thousands of clients that use that specific machine. Reversely, clients 

generate data from hundreds or thousands of machines which gives the OEMs data 

for a wide range of cases and therefore enables them to bring the digital twin to 

maturity much faster than a manufacturer would do. 

The above integration description is about CNC machines but it can be applied to 

every physical asset with digital counterparts. There are many examples of smart 

appliances where the manufacturer continues to have access to the device after 

product sale but due to obvious privacy and data ownership issues, it is often not 

possible to use the generated data for further development of the digital 

counterpart on a large scale. Ways to overcome such issues are outside the scope 

of this research work but as a final note, both OEMs and their clients have to work 

together in order to develop, apply and improve digitalisation technologies. 
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4.8 DEVELOPMENT TECHNOLOGIES 

The software modules of the simulator have been developed using a combination of 

software development technologies. The project has been split into four sub-

projects each one corresponding to the different application layers. The integrated 

development environment (IDE) used for all layers is Eclipse for Enterprise Java 

Developers (Eclipse IDE 2021-12 | The Eclipse Foundation. 2021) in combination 

with Git (Git. 2022) for source code change tracking and versioning and Apache 

Maven for managing imported packages. The biggest part of the code is written in 

Java programming language. In detail for each layer. 

Persistence (data) layer: This layer is written in Java and Structured Query 

Language (SQL). It contains all classes responsible for accessing the simulator’s 

database and for writing data files on the host computer’s hard drive. The database 

used is SQLite (SQLite Home Page. 2022) and the driver used to access the 

database is the native Java database connectivity driver (sqlite-jdbc). The external 

libraries that this layer uses are: 

SQLite JDBC Driver to access the simulator’s database 

 

Utilities (controller) layer: All layers use utilities to interact with the persistence 

layer or to show information to the user. This layer is written exclusively in Java 

and uses the following list of external libraries. 

Google JSON simple Generates and parses JSON objects 

Jzy3d Generates 2D and 3D graph backend 

FastDTW Performs Dynamic Time Warping 

UGS-core Interprets G-Code 

WEKA ML library collection 

Auto-WEKA Automates WEKA ML model search 

 

View (Graphical User Interface) layer: This package is the simulator’s GUI that can 

be accessed locally. The GUI is developed using both Java’s AWT and Swing 
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graphical interface components. There is one external library that is used for this 

layer: 

JIDE common layer Graphical interface components 

 

Web application layer: The web application offering remote access to the simulator 

and connectivity with other software is built using Java, HTML and JavaScript. This 

layer implementation runs on an Apache Tomcat (Apache Software Foundation 

2021) webserver and uses the following external libraries and scripts: 

Apache Tomcat web server Web server hosting the web application 

Three.js 3D graphics for digital process view 

Highcharts library Interactive JavaScript charts 

Micromodal Generates the interface pop-up modals 

 

The minimum requirements to run the simulator are mainly the requirements to run 

the Java Virtual Machine (JVM) plus the memory needed to build the virtual part 

and cutting tool models. As a starting point, it is recommended to use a system with 

at least 4GB RAM and a CPU with at least 1.6GHz speed per core. More memory 

enables the simulation of larger parts or of the same part with higher resolution. 

Higher CPU speed or more CPU cores reduce simulation time which is critical in 

real-time scenarios.  
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5 BENCHMARKING – RESULTS AND DISCUSSION 

Architecture benchmarking can be done by applying the systems detailed to this 

point to build a simulator for a specific process and/or asset. Then the performance 

of the architecture can be quantified and at the same time, its applicability can be 

verified. The applicability of the architecture has been presented in Chapter 4 so 

this chapter will benchmark the associated VMC implementation. Although this 

single application does not represent the full capabilities of the architecture it 

provides enough evidence to support further developments and applications on 

other processes. 

In this chapter, the performance of the simulator is measured against the values 

that are procured and recorded by the VMC monitoring system. It is ideal when a 

simulator can predict the actual behaviour and responses of the actual process 

during its operation.  As such in the next section, the monitoring system values are 

considered as the target values that should be predicted. For performance 

parameters for which there is no monitoring data the benchmark value is stated 

along with the rationale behind choosing the specific value.  

To demonstrate the efficacy of the approach applied the main indicators that are 

being assessed are: 

• Simulation accuracy: monitoring data versus simulator estimations 

• Knowledge generation: application of acquired knowledge to new parts 

• Simulation speed: milling part program speed versus simulation speed. 

• Data reduction: initial data size versus processed data size 

• Data utilisation: processed data size versus total available data size. 

In addition to the above, outcomes of this research work that are not part of the 

simulator’s benchmarking but are significant findings are presented since these can 

be the starting points for future research. The graphs and figures presenting the 

results are generated through the GUI that has been developed by the author to 

control the simulator further proving the value of the engineered simulator. For all 

benchmarks and testing a laptop with 16GB of RAM running at 1867MHz and a 

2.0GHz dual core CPU (Intel® CoreTM i5-4310U Processor. 2014) was used. 
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5.1 SIMULATION ACCURACY 

Accuracy is a key performance indicator for every simulation system, and it is a 

necessary part of every simulation project to test the accuracy in relation to the 

needs of the project. Due to the importance of this indicator, the first validation 

tests of the simulator were related to its accuracy in reproducing the process and 

calculating the output parameters. In Figure 55 the actual part is shown next to the 

representation of the part generated through the GUI using the local API and 

through the web application that reads information from the web API. This part has 

been used throughout Chapter 5 to demonstrate the results of the simulator. 

 

Figure 55 Actual part. Bottom: Web app representation. Right: GUI representation 

Before comparing the two representations with the actual part the way that the 

graphics are generated should be explained. In the local application GUI, the default 

final part picture is a wireframe showing the edges of the part. Although this is not 

the most realistic representation of the part it has advantages in terms of 

practicality. Testing of the simulator was done on an average specification laptop 

(16GB memory, 2.0GHz dual core processor). Full visual representation of the 

machined part requires high computing power that slows down the simulation 

process and consumes a large amount of memory. Since high-resolution graphical 

representation is not related to simulation performance but only important for 

demonstration purposes, wireframe part representation made testing faster and 
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freed memory for the simulation engine to run. These observations were done after 

initially showing the parts as in Figure 56. 

 

Figure 56 Local GUI alternative representation (showing all non-machined elements) 

A second and more important reason for using a wireframe representation is that it 

provides a clear view of the features of the machined part. In Figure 56 some 

details of the slots are not visible and therefore viewing from specific angles and 

different zooms is required to verify that the simulator is replicating the machining 

of the part correctly and generating the graphics accurately. Regardless of the type 

of part representation the local GUI produces graphics at the maximum available 

resolution meaning that the results can be reliably assessed by viewing the part 

representation. 

Going back to the results, the different methods of machine part graphic generation 

show that the simulator successfully machines the part and is providing the 

required data for various types of user interfaces. It should be noted that the GUI is 

not part of the simulator but it relies on the output interface to get all necessary 

data. Apart from the accurate overview of the part when the details are magnified 

the limitations of the simulator are becoming visible.  

One special point of interest arising from the GUI representation of the part in 

Figure 55 can be explored in more detail using Figure 57.  The two slots milled into 

the surface of the test piece were produced using eight separate machine 

operations, with four cuts forming each slot. These were enacted following the 

machining of each cylinder and were intended to provide a direct method to 

measure tool wear. The method of machining meant that the tool exit and tool entry 

points did not completely overlap resulting in some residual material being left in 
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the slots. Figure 57 shows that the simulator has correctly identified the ‘anomalies’ 

of the slot but it is not entirely accurate in their representation. 

 

Figure 57 Details comparison between actual part (top) and simulated part (bottom). 

During simulator validation, there were two possible causes for this type of 

inaccuracy identified. The most obvious is the mesh element size. If the detail or 

feature of the actual part is of similar size to the mesh element size, then pixelation 

of the detail is observed in the representation.  This causes effects similar to the 

ones shown in Figure 57. If the detail is much smaller than the mesh element size, 

then the detail may not show at all in the simulated part. However, to generate the 

above graphs the simulator is using a 0.3mm mesh element size which should 

theoretically produce better results. 

A deeper investigation showed that the root of the problem is the accuracy of 

cutting tool coordinates that are provided by the monitoring system. The example is 

run based on data generated by the monitoring system and the precision of the 

cutting tool position reported by the monitoring system is 1mm. This is not the 

precision of the machining operation but it is the value reported by the monitoring 

system. The simulator improves the accuracy through the smoothing of the 

monitoring data to ensure that issues like the one depicted in Figure 31 are 

mitigated. However, smoothing cannot improve the accuracy of input data and 

therefore the virtual cutting process of the above example has a maximum 

accuracy of ±0.5mm despite the finer mesh. Such issues can be avoided if the G-

Code file is supplied to the simulator (instead of monitoring data) but the specific 
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VMC uses custom G-Code commands and therefore it is not fully compatible with 

the library that the simulator supports (GitHub - GRBL. 2016). 

A comparison between the web application and the actual part shows that the web 

application provides a good representation of the part which is being virtually 

machined in real time in the user’s internet browser. The strength of the web 

application in terms of real-time access to the live simulation is at the same time 

its weakness in terms of precision. The quality of the graphical representation 

depends on the computing capacity of the client computer and therefore it can be 

much lower compared to the quality of the representation produced by the local 

GUI. In Figure 58 the mesh element size of the virtual part in the user’s browser is 

1mm while the API provided data from a mesh with a 0.3mm element size. 

 

Figure 58 Actual part feature (left) versus the representation of the feature by the web application 
(right). 

After ensuring that the simulator machines the parts as expected its application to 

identify the effects of tool wear on the cutting tool were investigated. The simulator 

calculates the number of billet elements that each cutting tool element removes 

and categorises tool usage in radial and axial directions. The former is given by the 

number of billet elements that the cutting tool’s bottom face mesh removes, and 

the latter is the billet elements removed by the tool’s periphery (shown in Figure 

41). As there is no mechanism to monitor how the cutting tool usage is distributed 

on the actual cutting tool an indirect way of validating the results has been 

selected. Cutting tool usage is related to the tool wear but parameters such as 

spindle speed, feed rate or presence of coolant also affect the cutting tool’s 

lifespan. For the purpose of this work, the examined monitoring data was selected 

from data generated by running the same part program for several sets of tests. 
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These each used a single cutting tool of the same type from a new condition to 

failure. Making use of a number of similar cutting tools under the exact same 

cutting conditions and with the same machining parameters had the effect of 

making tool usage the dominant factor for tool wear. The data has been generated 

during the work of Hill et al. (2019) who machined multiple billets to the shape 

shown in Figure 55.  

 

Figure 59 Axial cutting tool usage simulation results. 

Figure 59 shows the number of billet elements machined by each element of the 

cutting tool periphery. To create the diagram a simulation was run with the 

following setup parameters: 

- Mesh element size: 0.25mm 

- Cutting tool: End mill of 10mm diameter and 20mm working length. 

Each bar is a cutting tool element and the first bar from the left is the tip of the tool 

which is shown in Figure 41. The bar chart shows that only 5mm from the bottom of 

the tool has been used which is consistent with the machining process during which 

it machines the cylinders of Figure 55 by creating stacked cylinders of 5mm depth. 

An exception is the bar after 5mm which is suspected to be material left at the 

bottom of a cylinder and removed as soon as the tool moves ‘deeper’ and can 

therefore reach all elements at the cylinder corners.  
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Figure 60 Radial cutting tool usage, simulation results. 

Radial cutting tool usage has been calculated by the same simulator run that 

generated the axial usage chart. Figure 60 bar chart shows the number of machined 

elements that have been machined by each element of the cutting tool’s bottom 

face. Since the tool’s bottom face is symmetrical, Figure 60 shows only its radius 

starting from the centre (rotational axis) on the left and finishing at the edge/tip of 

the tool on the right. Since the element size is 0.25mm and the tool diameter is 

10mm the above figure contains 20 bars one for each radial element.  

Figure 60 shows that the longer the distance from the tool’s centre the more billet 

elements that the tool element machines. This is verified by the fact that the tool’s 

bottom face is flat and therefore used only when the cutting tool is plunging into 

the billet. When the tool comes into contact with the billet the elements closer to 

its tip machine a significantly larger surface compared to the ones at the centre 

(Figure 61).  

 

Figure 61 Machining area of cutting tool bottom face elements. 

To validate the results the actual cutting tools used for the process where 

inspected. Two tools, one with minor wear and one with excessive wear, were 
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selected to identify both wear areas and wear progression. Figure 62 shows the 

cutting tools that were examined. 

 

Figure 62 Cutting tools: Partially worn (top left and right) and catastrophically failed (bottom left). 

The simulation results have been overlayed to the above pictures at scale to 

facilitate the comparison. Beginning from the axial wear it can be observed that 

indeed the area that the tool has been used the most and has worn accordingly is 

the first 5mm from the tool’s tip. This validates the results that estimated usage in 

this area. In addition, the excessive wear of the ‘corners’ of the bottom left tool 

validates that the usage around the tip is higher than the wear further away from 

the bottom face. Equally accurate is the estimation that the radial usage is low at 

the centre of the tool’s bottom face and much higher at the edge. Figure 62 radial 

profile picture shows excessive tool wear towards the edges which validates the 

simulator's results. However, close observation of the radial wear shows that the 

wear is not even as one would assume from the simulator results. The reason 

behind this is the modelling of the cutting tool. The simulator cutting tool elements 

have the shape of rings and they don’t have teeth or flutes on them. The actual tool 

removes the billet material with the teeth and extracts the swarf through the flutes 

which consequently introduces points of concentrated forces. It is therefore a 

matter of modelling strategy and simulation targets whether these details are 

meant to be predicted or not. In case these details are important then as part of a 

future research activity the cutting tool’s model would resemble the model of the 

billet meaning a representation with a 3-dimensional mesh of cubes.  
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The importance of this feature to the potential management of tool wear relates to 

the nature of the wear process and how it is currently identified. The tool condition 

of the partially worn tool shown in Figure 62 cannot be easily assessed with the 

cutter in the machine. Indeed, the second cutter has undergone a catastrophic 

failure partly because its condition could not be identified. It can be mentioned that 

this failure occurred despite the spindle load monitoring performed by the VMC 

controller and required the intervention of the operator to prevent further damage 

to both the workpiece and the machine. As more information is acquired and 

embedded within the simulator such events may be identified and thus their effect 

mitigated. This has the potential to be applied to cutting tools being utilised in real-

life applications as opposed to the laboratory-based experiments depicted here. 

The final and most quantified validation of the simulation accuracy is the 

comparison between the calculated results for the metal removal processes and 

the actual monitoring data for the same operations. Spindle load has been selected 

as the parameter to examine accuracy because it has an ideal combination of 

characteristics. It is not directly related to any of the individual parameters that can 

be extracted by the part program, but it is related to the material removal rate. This 

has been shown by the similarity of the curves shown in Figure 49. Although a 

theoretical approach could explain the reasons behind this relationship this work 

focuses on the fact that the simulator is not aware of the relationship but searches 

for models that reliably produce low error results. Spindle load is provided by the 

monitoring system in the form of a percentage of a reference value. It should be 

noted that the simulator calculates spindle load by using the formulas of a ML 

model which means that the units of the parameter do not matter provided that 

they are consistent. Figure 63 shows the initial validation of the simulator-

generated model.  
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Figure 63 Calculation model performance validation against training set. 

The data shown in Figure 63 is a small part of a VMC run depicting the machining of 

one cylinder followed by the machining of a groove. The data from the full run was 

supplied to Auto-WEKA in order to find the best ML model. The simulator’s learning 

module then trained the selected model. The two curves depicted in Figure 63 are 

the actual spindle load (SL) data and the validation of the calculation model by the 

same dataset (SL Model). As it can be observed the prediction is very accurate. The 

mean square error between the prediction of spindle load and the actual values is 

0.061 which can be converted to a mean absolute error of 0.247. It should be noted 

that the precision of the spindle load readings as they come from the VMC 

monitoring system is 1% which is 4 times higher than the mean absolute error. 

Monitoring precision is slightly improved by the simulator’s pre-processing which 

smooths the data. For example, it can introduce a value of 4.5% between two 

samples with SL values of 4% and 5%. However, pre-processing cannot improve the 

accuracy of the data and therefore the simulator is capable of overcoming issues 
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that low-resolution readings introduce. The application of the same calculation 

model to different runs is presented in the following section. 

5.2 KNOWLEDGE GENERATION 

The first run of the simulator starts without any previous data to train the learning 

module models with; this is also the case every time the VMC runs with a new 

cutting tool and billet material combination. To deal with the lack of data the 

simulator performs its initial calculations with models based on linear regression 

which can produce results with only a few samples available. Then, as soon as 

enough data has been generated by the monitoring system, it switches to better 

trained and more accurate models the type of which is determined by running the 

Auto-WEKA model search algorithm. 

For the case of spindle load in the cylinders machining scenario the simple linear 

regression model gave good results, considering the zero experience of the 

learning module. However, as can be observed in Figure 64 these results were not 

reliable. Figure 64 shows a part of the full run where the spindle load has been 

calculated with the simple linear regression model. For demonstration purposes, 

the calculation model has been applied to the full run although the simulator would 

have changed to a different model during the process and substituted all spindle 

load values with more accurate ones. It should also be noted that the figures in this 

section have been produced with Microsoft Excel from the simulator's output CSV 

files since the author has not implemented the zoom functionality in the simulator’s 

GUI.  
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Figure 64 Spindle load calculation by the initial linear regression model 

The simple linear regression model produces a mean square error of 0.139 and a 

mean absolute error of 0.372. The error is still low considering the precision of the 

monitoring system (±0.5) but much higher compared to the mature model selected 

by Auto-WEKA and presented in the previous section (Figure 63). In addition, the 

error is not equally distributed. In Figure 64, it is clear that there are regions where 

spindle load is estimated accurately while there are other regions where the 

difference is in the order of 1%. This last observation is the reason why simple 

linear regression is not considered reliable. 

In general, the accuracy of the simple linear regression model depends on the 

estimated parameter. Similarly, the number of samples needed to identify and train 

a more accurate model also depends on the parameter values, generated data 

noise and above all the strength of the relationship between the output parameter 

and the provided input parameters. In the examined case, the samples depicted in 

Figure 64 (about 2500 samples) were enough to identify a better model that could 
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make accurate estimations outside the dataset that it was trained with. The required 

number of samples was gathered in about 200 seconds from the moment that the 

cutting tool was loaded to the spindle of the VMC. 

For the selection of a better ML model, AutoWEKA is supplied with the dataset 

containing the input and target parameter values. As previously the selected input 

was material removal rate and the target parameter was spindle load. AutoWEKA 

selected a bootstrap aggregation (bagging) algorithm (Breiman 1996) and the 

simulator applied it with the WEKA’s default configuration that uses Reduced Error 

Pruning (Quinlan 1987) to build the decision/regression tree. The details of the 

model are selected automatically and therefore the suitability of the model is not 

examined separately but only through the actual results that the simulator 

produces. In general ML models perform well in specific types of datasets and 

bagging is suitable for the smoothed VMC dataset. This however does not assume 

that the simulator estimations are a priori correct since validation is done in the 

long term by an ongoing process of best model search and continuous model 

retraining every time that new data is generated by the monitoring system. 

The performance of the simulator when the model has been trained with sufficient 

data has already been presented in Figure 63 along with the mean error of the 

estimated values. For process setups that the cutting tool is relatively new and the 

VMC runs with the recommended (by the machine OEM) settings the model’s 

performance is similar to the one already presented. It was however essential to 

test the simulator with data that is generated with different cutting tool states or 

machine setups. Two different cases were therefore examined; process runs with 

variable cutting tool wear and process runs with VMC cutting tool protection turned 

off. 

To test the simulator’s performance versus cutting tool wear state, generated data 

from machining six billets with eight cylinders on each billet with the same cutting 

tool was used. Figure 65 shows how the actual spindle load value deviated from the 

estimated value as the cutting tool was getting worn. 
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Figure 65 Estimated and actual spindle load for multiple runs with the same cutting tool 

The results verify Hill (2020) findings about the relation between spindle load and 

tool wear but the simulator goes a step further. The work by Hill (2020) uses 

monitoring system-generated data of two identical runs and measures the spindle 

load difference when the cutting tool machines at the exact same coordinates. The 

simulator creates a calculation model from a small part of the generated data and 

then it can estimate the spindle load regardless of the cutting tool position or the 

part shape/feature that is being machined. This also enables the quantification of 

cutting tool wear since it can be measured by the difference between the estimated 

spindle load and the actual spindle load. Consequently, the simulator can use tool 

usage as input (this is already recorded) and the difference in spindle load as the 

target to create and train a new model that estimates tool wear in current and 

future runs.   

The above example assumes that the VMC always runs with the same settings that 

create a predictable machine behaviour. However, for various reasons such as 

operator inputs, or the controller-generated modification of settings the VMC may 

change the way it machines the part. To test this case, datasets from running the 

VMC without the tool protection mechanism were obtained. The simulator 

estimation and the actual value of the spindle load are shown in Figure 66. 
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Figure 66 Estimated and actual spindle load for a run without cutting tool protection 

Figure 66 shows the first part of a run where the cutting tool has the same wear as 

the cutting tool of the run that was used to train the spindle load calculation model. 

As expected, the spindle load is estimated correctly but after the second cylinder is 

machined a spike can be observed at a specific point of the actual spindle load 

curve. The difference rapidly increased and the tool broke while machining the 4th 

billet. For comparison, running the process with recommended settings allowed for 

machining six billets without the tool reaching the end of its life. 

Up to this point, the simulator’s knowledge generation has been examined only for 

one-sample-based learning. Although a similar process is followed for n-sample-

based learning the additional requirement in that case is that the datasets need to 

be synchronised. The learning module uses dynamic time warping to synchronise 

the data of two runs and examine the differences and/or the behaviour of all other 

parameters. By default, the synchronisation is based on the coordinates of the 

cutting tool however the developed simulator can use any parameter to base the 

synchronisation on. To demonstrate the usefulness and effectiveness of the 

simulator’s synchronisation capability an example is presented in Figure 67. 
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Figure 67 Process time differences between 2 runs 

Figure 67 shows a comparison of process time between 2 runs with the exact same 

VMC setup. The two runs that generated the data are named A0935 and A1222. The 

red point on the curve of Figure 67 which has sample number: 30000 and process 

time: 5.7, means that the cutting tool of A0935 reached the coordinates indicated in 

sample 30000 5.7 seconds later compared to A1222. To investigate the reasons 

behind the difference between two otherwise identical runs, the user needs to 

check sample 30000 of A0935. It should be noted that the corresponding sample 

number of A1222 is different because the two datasets have a different number of 

samples.  

The author implemented an additional tool in the simulator’s GUI that shows the 

tool path and that can filter out sample ranges to enable the investigation of 

specific samples. Figure 68 shows how from the tool path sample 30000 is 

identified.  

 

Figure 68 Process investigation: From process cutting tool path to a specific sample point 
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For completeness, the colours on the toolpath indicate the process time with blue 

points being the region that was machined first and red points indicating the 

regions machined last. The tool can be used to visualise any parameter whose value 

is shown with colour coding (blue for low value and red for high value) on the tool 

path. 

The investigation shows that after machining the 4th cylinder in this billet the 

process was briefly paused without changes on the programmed cutting tool path. 

Further examination of all parameters would be done but the intention is to show 

the results of synchronisation and how this capability enables process data 

analysis. The example is comparing two process runs but an offline investigation 

could compare simulator estimations and actual run data to show the deviation of 

the actual process from the planned one. 

5.3 SIMULATOR SPEED  

It is critical for a simulator that supports a real-time system to be able to produce 

results ‘in time’. For the purposes of this work it is assumed that ‘in time’ means 

less than the time needed for the actual process to run. The reason behind this 

assumption is that the simulator receives the latest monitoring values, processes 

them, and calculates results that are then used by the machine’s control system to 

evaluate whether the process is running as expected. Therefore, these results need 

to be available before the next sample becomes available and cumulatively, the 

simulator should run the virtual process faster than the physical process.  

Execution speed is directly related to the computing power of the system that the 

simulator runs on. As explained in chapter 3, in order to be practically usable in the 

future, the simulator should ideally be run on the computer embedded into the 

machine itself. The CNC machine embedded computers are typically systems with 

the power of a personal computer. Given a fixed maximum execution time and 

predefined computing power the only parameter that should be examined in 

relation to execution speed is the mesh element size.  
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To test the VMC simulator execution speed a number of tests were run on a 

personal computer with 16GB of RAM and a 2.0GHz dual core CPU. Figure 69 shows 

the execution time results. 

 

Figure 69 Execution time for various mesh element sizes 

It can be observed in Figure 69 that execution time increases exponentially as the 

mesh element size decreases. The diagram also shows the actual process time 

(orange line) which leads to the conclusion that with the specific computing 

resources the smallest element size for real-time results is 0.1mm. 

Due to the way that the virtual machining process is designed to run, execution time 

is not directly proportional to the number of samples produced by the monitoring 

system. To demonstrate this, the time required to process each sample produced by 

the monitoring system was recorded and the cumulative graph presented in Figure 

70 was created. The graph does not show duplicate monitoring samples that the 

simulator’s input interface removes but on the other hand it includes the additional 

samples generated by the simulator in order to smooth the data. 
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Figure 70 Execution time profiling 

Figure 70 shows that it took close to zero time to calculate the results for the first 

17390 samples and then the time needed per sample varies. The reason behind this 

extreme variation between processing times is that it takes close to zero time for 

the simulator to determine if the cutting tool is machining the billet. At the 

beginning of the process, the VMC performs various checks without machining and 

therefore the samples are quickly processed. When the VMC machines the billet 

then the simulator has to calculate the mesh elements that are machined and use 

the results to calculate all derived data that would otherwise get default values. As 

a result, and for the specific dataset, it would be safe to run the simulator with a 

mesh element size of 0.15mm but not 0.10mm. The mesh size setting is normally 

tuned after getting the first set of data and can remain constant for as long as the 

monitoring data capturing rate remains the same. 

A workaround to speed up offline simulations or to decrease mesh size more than 

what the memory of the computer can support is to split the billet into multiple 

pieces that are simulated separately. The simulation then can be run either 

sequentially for each billet piece or in parallel at multiple computers. It took 

171.2sec to run the simulation for a mesh size of 0.15mm and when the billet was 

split into 4 parts of the same mesh size it took between 47.7 and 49.3 sec to 

simulate each part. If the workaround aims to reduce the mesh size then the 



177 
 

equivalent mesh size if the billet is sliced in 4 pieces is 0.0945mm. At the end of the 

process the results of the simulation of each piece need to be combined which for 

the specific simulator means that the number of machined elements from each 

piece should be added to calculate the total material removed. It should be noted 

that this workaround works best for offline simulation. During online simulation, 

the latest sample that arrives at the simulator will typically fall into the volume of 

one piece. Therefore, if four nodes are running the simulation in parallel only one 

node will be machining the virtual part while the other three will be idle. This 

however is a limitation of the specific implementation and more advanced 

parallelisation techniques could be applied. 

All simulation speed tests measured the performance of the simulation engine. The 

learning module models were already in the database and did not consume any 

computing resources or time to be created/trained. As explained in section 4.5 the 

ML model creation and training process is done in parallel to the simulation engine 

operation and it does not need to comply with the real-time restrictions. Contrary 

to the simulation engine calculation time requirements, the time to find an accurate 

calculation model cannot be estimated or predicted. Each dataset may have 

different levels of noise or contain data that is captured during extreme events 

which make the model-finding process more difficult. For completeness but 

without these numbers being indicative of the expected performance, AutoWEKA 

found the first model that was significantly better than the default simple linear 

regression model after 813 seconds. The selected ML model was a random tree 

forest algorithm that had a mean error of 0.127, roughly half the error of the linear 

regression model and double the error of the final bagging algorithm. The selected 

algorithm (bagging) was found after 47,268 seconds. 

Model finding times verify the need to run the learning module asynchronously but 

also point to the direction of using cloud computing resources. For a specific 

cutting tool and billet material combination, the model will normally be sought 

once. Then, the same ML model will be retrained (if needed) and generally be 

reused by the simulator until the actual machine behaves differently than originally 

designed due to wear or due to damage. This enables the usage of external systems 
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that do not have to react in real time and more importantly, do not need to be 

reserved only for one machine. Model finding can be done by a service that always 

seeks for the best ML model regardless of the application.  

In any case, the success of the simulator is that it needed 13 hours to find the best 

model (on the computer that the benchmarks were run) which is significantly less 

time compared to training the operator on the machining of a specific material with 

a specific type of tool. Moreover, since the database can be shared, the model-

finding process has to be done once and then it will be distributed to all machines 

that are of the same type/model by the company or the machine builder 

themselves. The overall model management will be further discussed in chapter 0. 

5.4 DATA REDUCTION 

During the simulation process there are multiple data processing stages where the 

memory size required to store data changes. First, this happens during pre-

processing where the raw data is cleaned and then enhanced until it becomes the 

data input for the simulation engine. To quantify the size changes, the datasets from 

cylinder machining were used to calculate the average data sizes presented in 

Table 14. For reference, the simulator first removes samples from the dataset that 

are not usable, are duplicates or are part of redundant information and the 

resulting dataset is the one referred to as ‘cleaned’. Then new samples are added to 

the dataset to produce a smooth toolpath (see section 4.2.3.1). This is referred to as 

‘smoothed’. 

Table 14 Dataset average size during pre-processing 

Data state Size (kb) Change (%) 

Raw 8,507           - 

Cleaned 579 -93% 

Smoothed 4,867 -43% 

 

Cleaned datasets contain all usable information that can be extracted from raw 

data. This means that for the specific datasets the immediate gains in terms of 

storage space are 93%. This performance cannot be generalised because size 
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reduction purely depends on the dataset. If the raw data is of very high quality, then 

few (if any) samples would be rejected and therefore the change would be minimal. 

On the other hand, smoothed data depends on the resolution of the mesh that is 

built by the simulation engine. For example, if in the raw data the movement of 

1mm along the X axis is represented by 100 samples of 0.01mm step each and the 

simulation engine runs with a mesh size of 0.1mm then the 100 samples of raw data 

will be converted to 10 samples of 0.1mm step in the smoothed dataset. Therefore, 

the size of 4,867 kb is for the specific mesh resolution (0.25mm in this case) and 

would change accordingly if the mesh size would be different. Similarly, the gains 

in space are relative to the mesh size and 43% gains are only representative of the 

specific dataset. 

The second stage where the memory requirements change is when the simulator 

captures the knowledge after processing the dataset and stores it in one or more 

ML models. Due to the way that different learning models work there is a very wide 

range of model storage requirements. To calculate the model size, five datasets 

were used to train three different types of models. The datasets were progressively 

merged so model training was initially done with dataset 1 then with datasets 1 and 

2 until the final training that was done with all five datasets merged into one. Figure 

71 shows the storage space required for the training data and each of the models 

after training. 

 

Figure 71 Memory size comparison of different ML models 
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It is clear from the chart that there are ML models with static requirements and 

others that grow dynamically. A brief explanation of Figure 71 is that both linear 

regression and neural networks have a fixed structure that adapts to the training 

dataset while bagging creates its structure based on the dataset. It should be noted 

that the spindle load prediction model requires only a fraction of the dataset to 

reach an acceptable level of accuracy. The minimum trained model size is 288kb 

and there is no need to retrain it with more data that will increase its size. The 

drawback is that the above size was achieved through manual training of the model 

and the simulator version that has been implemented for this work does not 

support a minimum required training identification algorithm. 

The above experiments quantified the data reduction based on the assumption that 

only one model will be created by the datasets. In practice, multiple models will be 

required since the simulator will have more than one parameter connected to a 

model in the database. Depending on the model type the total memory required to 

store all models may be bigger than the size of the training dataset. In the cylinder 

example that would occur if the bagging algorithm would be used for the prediction 

of at least 5 parameters and if the training process would not be stopped by the 

user at the point where the models produce satisfactory results. 

Overall, in the vast majority of cases, the simulator can be used as a way to convert 

the raw data into a form that is instantly usable through the simulation engine and 

that is occupying much less memory space. 

5.5 DATA UTILISATION 

An important aspect of this work is to ensure that all available data is utilised. Due 

to the way that the simulator works, all raw data is processed and therefore by 

being directly connected to the monitoring system ensures that no data is being 

wasted. Although this objective is achieved the objective itself is based on the 

assumption that data is fully utilised if all of it is processed and used by the 

simulator. In fact, there is no metric showing if all value contained in a dataset is 

extracted or how much value a dataset has. 
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When the value of information is assessed a parameter that is common in business 

management is the usable life of datum. In the case of the developed simulator, the 

initial dataset is relevant to a specific process run and even after pre-processing its 

usability is restricted to the analysis of that one run. The simulator converts the 

data to models that are applicable and valid for as long as the simulated machine 

or asset remains unmodified and reasonably maintained. Specifically for the 

material removal rate and spindle load combination which has been examined, the 

generated models are applicable every time that the same type of cutting tool 

machines the specific billet material. This expands the usable life of datum far 

beyond one run and potentially up to the life of the VMC. 

The majority of metrics when data processing projects are considered aim at 

converting the value of data to profit. There are two hierarchical levels where the 

simulator contributes towards that direction. At a shopfloor level, knowing what the 

expected values of a process parameter should be can prevent part rejections 

(from incorrect machining) or damages from broken tools and/or excessive forces 

applied to the machine. Figure 65 and Figure 66 are indicative of the capability to 

identify long-term trends and spot issues as early as possible. It is important to 

state that this information relates to the actual work done by the cutting tool as 

output by the simulator. This is a better indicator of the condition of the tool than 

the often applied measures such as standard cutting times that are currently used. 

Such measures rely upon empirical conversions of the possible cutting and 

material combinations into a time that represents the time used for an operation 

that can be deducted from the total life of the cutter. At a company level, the 

created calculation models are stored in the database and over time the value of 

the database itself increases because it contains the experience of using a specific 

machine with different setups. Especially in the case of machine OEMs, the 

database becomes an independent product that can be sold as an optional addition 

to the physical machine. Conversely, the user of the machine can sell the database 

to any other user or to the machine builder at a price relevant to the maturity of the 

database on specific tasks. To sum up, the simulator architecture and its specific 

application in Chapter 4 not only extracts value from each dataset but it also 

creates a product on top of the day-to-day uses of the database knowledge itself.   
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6 PROJECT DISCUSSION AND NEXT STEPS 

This work proposes a novel simulator architecture that can be embedded in digital 

twins or more generally in digital systems that supervise or manage physical 

processes or assets. The architecture is designed to fill current technology gaps 

and provide through a proof of concept an example of how to overcome challenges 

of modern digitalisation. It pushes the simulation to a new generation where the 

simulator development is more systematic and the simulation operations are 

distributed to different computing systems by breaking down the simulator into 

independent subsystems with clear responsibilities and contributions. The learning 

aspect of a simulator is treated as an essential part of a modern implementation 

which enables the adaptation of calculation results to each application scenario 

without changing the simulation model. The simulator as a whole although able to 

“live” in a distributed geographical environment and share its knowledge and 

subsystems with other simulators has clear boundaries and its core purpose to 

calculate required results from supplied input data remains the same. The 

development of a VMC simulator based on the proposed architecture is a live 

example of the potential benefits and a measure of performance levels that the 

simulator can achieve. 

Revisiting the title of this report can be a starting point for defining the fields that 

this work contributes to. Process design is traditionally related to the proper 

sequencing of physical resources that at the end create a product or deliver a 

service. Nowadays, physical assets have digital counterparts therefore process 

design also includes the digital ecosystem that supports the process. This is where 

the current work blends with the existing practices since simulators are becoming 

an essential part of the design. One or more simulators run in parallel to the 

physical assets to ensure that the process runs as designed and prevent quality 

discrepancies that would lead to process failures. As a result, supervision is 

another field of contribution. 

The backbone of digitalisation is data, and a simulator is the entity that calculates 

the expected values of key process parameters and can determine in a quantified 
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way how far from ideal is the process running. Supervision is therefore a natural 

field of application for a simulator and moving forward with fully digitalised 

production machines it is clear that the human operator who is now using raw data 

and their senses to supervise the process will simply use the results of the real-

time simulation to check in depth multiple processes at a time. In combination with 

the capacity of digital twins to combine the power of simulation with decision 

algorithms and data visualisation technologies it is possible to see how future 

autonomous systems will gradually take over supervision tasks. 

Like simulation, digitalisation is a very broad field. If the focus is put on current 

trends in manufacturing, the proposed architecture is the foundation for simulation 

systems that can be embedded in a machine. Without changing their digital 

structure, different parts of the system can run on different computers or on the 

cloud. For example, a simulation system can be distributed as follows: 

- A milling machine has embedded in its controller only the simulation engine 

and the input/output interfaces. The setup calculates the expected parameter 

values in real time and assists the machine operator in process supervision. 

In future systems under the actions of the OEM it can be integrated with the 

machine control to provide a level of autonomy. 

- A local high-specification computer is running the learning module. It is 

processing the data that is generated by all physical systems on the shop 

floor and selects and trains the best-performing ML calculation models. The 

same computer can be used for other machine learning tasks and support 

multiple simulators. 

- The database where the ML models are stored is running on a cloud server 

and the milling machines at another manufacturing site have access to the 

same calculation models. This allows all machines, regardless of their 

geographical location to build upon and share the same knowledge and in 

addition to apply this knowledge even if they don’t run the same part 

program. 

Each module of the simulator can be developed independently which allows teams 

from different fields of expertise to collaborate without any interference since the 
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communication protocols are defined by the architecture of the simulator. Provided 

that the communication protocols are respected each team is free to develop any 

solution that is most appropriate to the specific application scenario. 

Regarding CNC processes this work proposes a more specific operation for each of 

the simulator modules. The novelty in the CNC simulation is the introduction of a 

mesh-based method that the simulation engine is using combined with the 

automatic selection of the best-performing calculation models done by the 

learning module. This combination enables an iterative process where the virtual 

machining of a part feeds the automatic creation of calculation models. These 

models are then fed back to the simulation engine to improve its accuracy and 

enhance its results. Enhancement includes the calculation of previously unknown 

parameters for which the physical machine cannot generate data. 

The proof-of-concept demonstrator for vertical milling introduced novelties that 

separate the simulator implementation from other implementations reported in the 

literature. The different approach in building the mesh for the cutting tool and the 

billet makes the simulation process efficient and very flexible in terms of adapting 

to available computational resources and to the required precision. Then, the 2 

stages of process parameter calculation enable a precise digital replication of the 

process and at the same time it facilitates the usage of all existing knowledge 

either from milling process theory or machine learning techniques. Finally, the 

adaptation of DTW to synchronise data from different runs based on tool position is 

another novelty which can work as part of the learning module or even 

independently where 2 runs can be compared regardless of the feed rates. 

All previous points are about novel characteristics of the simulator modules which 

are part of a system that, like other modular systems, receives input data through 

common data transmission protocols and makes the results available through 

common data distribution technologies. As a result, the system can use novel ways 

to operate but it is still easy to embed into parent systems such as digital twins 

without the need for specialised protocols or equipment. A difference with common 

practices is that the simulator does not define the GUI as part of the simulator. The 

development of a GUI is neither restricted nor discouraged and for the purposes of 
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this research work the author developed 2 separate GUIs (web-based and local 

application). The GUI however is intentionally separated from the architecture 

because the simulator is aimed towards machine-to-machine applications while 

GUIs are essential only for humans. 

Overall, the proposed architecture and its applications in CNC machining promote a 

modern digital environment where all available data is processed, and the 

generated knowledge is shared with systems at different locations in real time. The 

architecture goes a step further by enabling the monetisation of the generated 

knowledge since the database is a separate entity that can be ‘plugged in’ to other 

simulators of the same machine type. Knowledge sharing boosts shopfloor 

autonomy and at the same time it quantifies the differences between 2 theoretically 

identical machines. 

The applicability of this research work on a very wide range of cases increases its 

potential impact but at the same time it increases the requirements for further 

research that will apply the architecture in different fields. Since the author 

developed both the methods described in this work and the software that 

demonstrates them it is natural that there are implementation weaknesses and 

missed opportunities to embed additional novel techniques. More specifically, the 

author considers the following list as a starting point for multiple projects that 

would improve the next generation simulator and its applications.  

- Modern mesh-based simulations vary the mesh element shape and size in 

regions of the part that are of higher interest and are generally handling 

computer memory much more efficiently. Due to the differences between CNC 

processes, the mesh characteristics should be explored and separately specified 

for each process and then the new simulation model to be tested against 

currently available systems. 

- The field of automatic identification of the best ML algorithm is rapidly evolving 

and during the time that this research work was undertaken new cloud services 

were introduced that began as simple neural network training tools and are 

currently full ML automation suites. The capacity of the cloud would inevitably 

accelerate the knowledge generation process and above all it would provide 
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better automatic model creation algorithms since the AutoWEKA module is of 

limited model search capacity. 

- It is clear that the simulator is envisaged to be part of a digital environment. To 

understand how future digital ecosystems should be there are three additional 

investigations needed. At the machine level, the simulator should be run with a 

variety of different cutting tool types, part materials and process setups. That 

would be ideally done in collaboration with a machine OEM that will train the 

simulator as part of their testing process. Then at the production line level, the 

simulator copies should be used for the same type of machines from different 

manufacturers and with different ages/histories. After initial training, the 

database would be compared to identify the difference in behaviour that is now 

done only by experienced operators. Finally, at the shop floor level, multiple 

simulators should be developed for different types of machines and embed 

them to a digital twin that will manage the generated knowledge and provide a 

service point for all personnel as well as a contact point for other shop floors 

which want to replicate the production of a product. 

As a final point, every research work has gaps and weaknesses that enable other 

researchers to investigate further and find better solutions. A prerequisite for this 

is that research outputs are usable, and it is the belief of the author that both the 

developed VMC simulator and the proposed architecture can be very useful in 

future projects. The former to any project related to 3-axis milling process and the 

latter to potentially every development of a simulator even if it is outside the 

discussed fields of application. 
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7 CONCLUSION 

Digitalisation has evolved to become an essential part of the supervision and 

management of assets. The digital systems that support digitalisation can become 

highly complex and therefore their development requires a modular approach 

where each element can be studied and developed separately. Simulation is a 

critical part of these systems and especially in the case of digital twins, it is the key 

subsystem that converts raw data to usable information and retainable knowledge. 

The architecture proposed in this work further breaks down the simulator 

development process into modules with specific roles and functionalities. Each 

module has been described in detail both from a theoretical perspective (chapter 3) 

and through a practical application in vertical milling (chapter 4).  

At the beginning of this work, specific goals were set based on the issues that 

current systems face. These goals are presented in section 1.1 as a list of 

challenges which is reasonable to use as a measure of the success of this research 

project. 

Answer to challenge 1 (simulator modularity and applicability range):  

The architecture as presented in Chapter 3 can be the foundation for a wide range 

of manufacturing process simulation systems running both offline and in real time. 

Due to its flexibility in adapting to the needs of each application, there are no set 

limits to its applicability. Both the simulator subsystems and the simulator as a 

whole use common communication interfaces which makes them interact and not 

interfere with their environment. The system design is fully modular, and its parts 

are exchangeable with the same part from other simulation systems. A good 

example is the database that can be copied to another simulator of a similar system 

type. 

Answer to challenge 2 (simulator adaptability and personalisation):  

One of the proposed simulator’s core strengths is its ability to learn from the 

system that it simulates and change its behaviour accordingly. At the same time if 

the physical system generates data for a process parameter, then the simulator can 



188 
 

create a supervised machine learning model that estimates the initially unknown 

parameter. Both attributes turn an initially generic simulator into a fully 

customized one which is unique in terms of what parameters it can calculate and 

what models it uses to do the calculations. 

Answer to challenge 3 (simulation speed):  

In section 5.3 the VMC simulator’s calculation time is measured against the physical 

process time. The results presented in Figure 69 show that with low-specification 

computing hardware (relative to currently available computing systems) the 

simulator could easily reach a 0.15mm precision (and potentially values up to 

0.1mm). It should be noted that this level of precision is close to standard 

tolerances (typically 0.005in – 0.127mm if not otherwise specified). Apart from the 

specific example which highly depends on the characteristics of the simulation 

setup and the computing hardware, due to the decentralised nature of the proposed 

architecture the computing burden can be spread to different systems. It is 

therefore possible to scale up the capacity of the simulation engine to calculate the 

results within given time restrictions. 

Answer to challenge 4 (simulation precision and accuracy):  

It depends on the physical process requirements whether a specific simulator setup 

can produce satisfactory results. In the previous answer, it is explained that the 

experimental setup used throughout Chapter 5 produces results within the typical 

tolerance required for such processes. The accuracy of the simulator is also 

demonstrated in section 5.1 and the results are very close to the actual validation 

values produced by the VMC monitoring system. Moreover, the simulator can split 

the simulation into multiple billet parts which can be used in extreme cases when 

higher resolutions or speeds are required. It is difficult to provide a definite answer 

for every possible simulation scenario but overall, the simulator can produce 

satisfactory results for relatively high precision and accuracy standards. 

Answer to challenge 5 (high data utilisation and processing efficiency): As 

discussed in 5.5 all data that is generated by the monitoring system is processed. 

This is done once, and the extracted information is further processed to generate 
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the knowledge that is stored within the calculation models. Therefore, there is no 

data being wasted and at the same time there is no need to process the same 

dataset twice since the value is extracted in one go and stored in a more usable and 

accessible for the simulator form (the calculation models). It is worth noting that 

the simulator architecture promotes this behaviour by introducing the combination 

of a learning module which extracts the value with the database that stores the 

knowledge for future runs. 

Answer to challenge 6 (reasonable computing power needs):  

This is another case where the physical process requirements define the 

computational needs. If the example of Chapter 5 is used as a benchmark, then a 

low-specification laptop can provide the necessary computing power. CNC machine 

controllers are essentially common desktop computers that run either Windows or 

Linux operating systems. It is therefore feasible to integrate the simulator into the 

CNC controller without the need for specialised equipment. In addition, the 

proposed architecture allows for a distribution of the modules that comprise the 

simulator making it possible to expand the capabilities of a physical machine simply 

by connecting it to external computing systems. 

Answer to challenge 7 (knowledge sharing):  

The database of the simulator can be copied and moved to another system 

independently. Alternatively, a database can be a cloud service that allows all 

physical assets of the same type to store their knowledge (ML models) in it and 

make the generated knowledge accessible to every other system which shares the 

same database. In general, the proposed architecture facilitates module sharing 

because there is a standard way that each simulator module communicates. This 

means that there is no restriction on whether a module is dedicated to a specific 

physical asset or not. 

From the above answers it can be concluded that the research project has been 

successful in delivering solutions to critical issues in the field of digitalisation. 
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7.1 RESEARCH CONTRIBUTION AND FUTURE WORK OVERVIEW. 

It would be an unnecessary repetition to discuss each contribution of this project 

therefore a list of key findings and technologies that the author developed is shown 

below. 

+ Review of current practices in developing simulators for digital twins. 

+ Design of a new modular and flexible architecture to develop simulators. 

+ Methodology to approach monitoring data pre-processing. 

+ Mesh-based model for subtractive or additive processes. 

+ Method to replicate machining in a digital environment. 

+ New methodology to synchronise CNC process datasets using DTW. 

+ Introduction of learning module structure into simulators. 

+ Integration of automated machine learning techniques in simulators. 

+ Methodology to retain and share extracted knowledge. 

+ Approach to integrate a simulator into its digital environment. 

Due to its capability to evolve, the simulator may not only facilitate the supervision 

of the physical system but also automate the process of identifying unique 

behaviours by systematically processing all available data. This is a big step 

towards manufacturing autonomy since the current practice is to develop 

simulation models after the patterns have been recognised and expand these 

models manually when new parameters are available. On top of this characteristic, 

the generated knowledge is sharable and can create a faster learning community of 

machines that can point operators and researchers to the critical parts of the 

generated or predicted data for past and future events. 

Naturally, the proposed architecture and the suggested implementations in CNC 

processes were developed within the restrictions of a PhD project. The time and 

resources that can be reasonably dedicated to a PhD project are not enough to run 

a full feasibility study that clearly specifies all the fields where the proposed 

architecture is applicable and meaningful at the same time. In its preliminary 

stages this project was focusing on CNC processes. It became quickly clear that 

data processing and simulator evolution was relevant to a much broader field. To 

embrace the opportunity for a bigger impact the architecture was developed as a 
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more generic model which was then implemented in steps to assist in 

reproducibility of the work and ultimately to the understanding of its value. 

Consequently, due to the generalisation of the architecture it was not possible 

within the limits of a PhD project to provide evidence for the improvements the 

architecture brings in the full range of its aimed applications.  

A second gap in the reported work is that the limitations in resources did not 

enable the author to test the simulator in cases where hundreds of parameters 

have to be simulated in real time. Further work would provide more data about the 

processing needs after scaling up the simulator in terms of number of simulated 

parameters and higher calculation speed, especially in distributed computing 

scenarios.  

Finally, the simulator implementation that was used for the needs of this work is 

not a fully developed version of the simulator. Full integration of AutoWEKA was 

not possible to the extent that would allow all tasks to run automatically. This is 

due to the lack of support for integrating the library directly to another Java 

application. The workaround was to run AutoWEKA and select the best model 

manually based on AutoWEKA results. In addition, the real-time execution is based 

on a fictional data stream and there is no implementation to connect the simulator 

to a machine data interface such as MTConnect. In practice, the latest version of the 

simulator is good enough for research purposes, but any production-ready 

implementation must mitigate this issue first. 

In addition to the scope of this work which was to develop and demonstrate the 

simulator architecture, there were findings that should be noted. As stated in the 

first chapter of this report and detailed in section 2.3 manufacturing companies 

should rethink the amount and quality of data they collect and store. It is clear that 

there is a mentality of saving everything regardless of use but both collection and 

storage induce costs and vulnerabilities that are not always balanced by the 

benefits. Another finding is that there is a lack of guidance in the available 

literature about building new special shape mesh elements. When choosing the 

element shape for the milling cutting tool the author found a lot of published work 
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that compares known types of element shapes but little guidance about how to 

build a new type of element shape that would fit the needs of a simulation task. 

It is worth noting again that all the achievements of this work and consequently its 

contribution have as a starting point the generic design of the architecture which 

distributes the development work and allows for a more in-depth investigation of 

each module. This enabled the author and can assist researchers to study and 

develop each module separately and finally create next generation simulator 

prototypes that contribute beyond the scope of the initial work. The development 

approach is effective whether researchers are studying a specific module, single 

developers are building a simulator for a new process or teams of developers 

create prototypes under time pressure. It is therefore the intention of the author to 

provide the foundation for two types of future work regardless of the manpower 

that will carry it out: 

1. Development of simulators for different processes that will gradually build a 

more knowledgeable digital ecosystem. 

2. Exploitation of the capability of the machines to process data to the point that 

machines and not scientists create the theory that describes the process state and 

behaviour. 
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Appendix A.  VMC SIMULATOR (VERSION 0.65) 

The simulator has been developed as a self-contained package that can be 

extracted and run either in a Windows or Linux environment. The following example 

is based on the Windows operating system, but the process is very similar for a 

Linux system since Java supports portability and it is an excellent programming 

language for portable applications. In the following sections, all steps of installing 

the simulator and running an example are described. The intention is to provide a 

teach-by-example document for potential users of the VMC simulator. 

A.1 SOFTWARE INSTALLATION 

1. Download or copy MillingVM.zip from the location that it is provided. 

2. Extract MillingVM.zip to a folder. The folders shown in Figure 72 are created 

into the folder where the .zip file has been extracted. These folders contain 

(in the order that they appear in Figure 72): Tomcat webserver, SQLite files, 

Java Runtime Environment, simulator’s Java archive files (.jar), example 

numerical control and monitoring data files, notepad application to read data 

files, Opera browser to access the web application, batch file to start the 

simulator and shortcuts. 

 

Figure 72 VMC simulator folders 
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3. Run MillingVM Menu.bat 

Option 1 starts the web server, option 2 stops the web server, option 3 

reserves 4GB in memory to run the simulator’s local GUI and option 4 is 

similar to option 3 but with double the reserved memory. Q exits the 

simulator system start menu. 

 

Figure 73 Simulator system start menu 

4. Type 3 (or 4 depending on the available memory) and press enter to run the 

simulator’s local GUI application. After selecting an option, information about 

the computer is displayed. 

A.2 VMC SIMULATOR DATABASE 

When the GUI is started the user must create a database or select an existing one 

which will hold all simulator input and output data. Using different databases is 

mainly required when different element sizes are examined otherwise multiple 

setups can be stored in one database. To create a database: 

5. Click on “New” button. 

6. Type in the available text field the name of the new database and modify the 

element size as needed. The time step field overrides the default timestep of 

the simulator but this is not supported for the majority of the simulator’s 

functions. 

7. Click “Save” and the new database has been created. 
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Figure 74 Top: Database selection screen. Bottom: Creation of new database 

After the database has been created (or selected) the full view of the simulator’s 

local GUI opens. From there, the user can enter parts and cutting tools, configure 

the simulator setup and analyse both the physical and the virtual process. In brief, 

the menu options have the following functionalities. 

 

File > Database shows the database selection tool 

File > Exit exits the application 

 

Libraries > Cutting Tools opens the cutting tools creation and management tool 

Libraries > Carousel shows the carousel setup panel 
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Libraries > Materials opens the materials creation and management tool 

Libraries > Billets opens the billets creation and management tool 

 

Simulation > Data opens the monitoring data explorer. 

Simulation > Control opens the simulation setup tool. 

Simulation > Results shows the results after a simulation is run. 

Simulation > Log shows the log of events related to the simulator. 

 

Learning > Connect opens the panel to connect NC files to monitoring data sources 

Learning > Train opens the learning module training tool 

Learning > Compare opens the dataset comparison tool 

 

Help > Contents opens simulator’s help 

Help > About shows details 

A.3 LIBRARIES 

Before running a simulation, the cutting tools and billet need to be specified. 

8. Click on “Libraries > Cutting Tools” and in the panel that opens click on “New” 

button. 
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9. Fill out the new tool form. Tool Name is a unique name describing the cutting 

tool. Tool type is the type of cutting tool. Tool Series is the manufacturer’s 

code for this tool. Number of teeth is the number of teeth/flutes. Total length 

is the length of the cutting tool. Cutting length is the distance between the 

bottom of the tool and the spindle (spindle is the coordinates of the spindle 

as measured by the monitoring system and not necessarily the centre of the 

physical spindle). 

 

Figure 75 New cutting tool form 

10. Click save to save the new cutting tool in the database. The new tool should 

now appear in the list of available cutting tools. 

After all cutting tools have been defined, the tools should be loaded into the VMC 

carousel. The user needs to load only the tools that are being used by the part 

program. 

11. Click on Libraries > Carousel and click the “New” button repeatedly to create 

new pockets in the virtual carousel. The virtual carousel should have the 

exact number of pockets as the physical one. 



211 
 

 

Figure 76 Carousel management panel 

12. Mount each virtual cutting tool to the corresponding pocket by clicking in the 

relevant cell in the Description column and selecting the cutting tool. The 

pocket number should correspond to the physical pocket number since the 

monitoring system will use the same numbering to specify which cutting tool 

is being used. 

13. Click on “Libraries > Materials” and click “New” 

 

Figure 77 New material form 

14. Specify a material name and click “Save”. Ignore the Torque Factor field 

since this is a placeholder for future functionality to facilitate material 

categorisation. The new material should now appear in the list of available 

billet materials 

15. Click on “Libraries > Billets” and click “New” button. 

16. In the description field, add a unique name for the billet. Then select the 

billet shape from the dropdown list and depending on the shape selection 

specify the relevant dimensional parameters and the billet material. If a 

complex shape is selected, then the billet is constructed by merging the 

volumes of billets that already exist in the library. Complex billets can also 

be merged to create a new billet. 
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Figure 78 Specification of rectangular billet 

17. Click “Save” and the new billet should appear in the list of available billets. 

 

Figure 79 List of available billets including a complex billet (Demo Part) 

A.4 SIMULATION FUNCTIONALITIES 

After the libraries have been filled the simulator has the minimum required 

information to run and analyse a part program or a monitoring data file. It is 

recommended that before running a simulation the monitoring data file is checked 

through the simulator's data explorer. This step helps to understand the actual 

process and be in a better position to justify whether the simulator results are 

correct or if there have been mistakes when specifying the library elements (e.g. 

wrong dimensions, or wrong billet positioning). Therefore, to simulate the part 

program the next steps are:  

18. Select Simulation > Data and click browse to select a monitoring data file. 

The data file should be in CSV format and only the columns with numerical 

data can be processed. If the datafile is read successfully its column names 

will appear as parameter names to select from. 
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Figure 80 Parameter and options selection for data visualisation 

19. Select the parameter of interest from the Y Axis list. Multiple parameters can 

be selected by holding down Ctrl key. Then select versus which parameter 

would you like to plot. If none is selected in the X axis dropdown selector 

then the Y Axis parameter is plotted versus sample number. The SMA options 

are to apply a simple moving average on the parameter values to smooth 

them. The value represents the moving average window. There is also an 

option to select a scatter chart instead of the line chart which is the default 

functionality. A scatter chart is recommended when the relationship between 

two parameters should be classified based on the stage of the process. 

20. After the data is processed, the GUI moves automatically to the Simulator > 

Results section to display the results. The result has 3 main parts. The top is 

a double sliding bar which allows the user to view only a range of samples 

and therefore focus on details of the dataset. The second section is a 3D 

depiction of the toolpath with colour coding showing the value of the Y Axis 

parameter. The lowest value is depicted in blue colour, the highest with red, 

values between minimum and maximum are displayed by mixing blue and 

red accordingly and zero values are depicted in grey colour. 
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Figure 81 Data analysis results panel 

21. To simulate either a part program or a monitoring data file click on 

“Simulation > Control”. In the simulator setup panel select the G-Code part 

program or a monitoring .csv file to use as input for the simulator. The type 

of file is recognised automatically. Then from the Billet dropdown menu 
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select the billet to be machined. Finally, select the way that the results 

should be displayed. 3D part shows the final part after virtual machining and 

2D graphs are plots of each calculated parameter. Click “Run” for the 

simulation to begin. 

 

Figure 82 Simulation setup 

22. While the part program is being simulated, the simulator GUI switches to the 

log section so the user can see progress both by the progress bar on the top 

and the information displayed in the text area. 

 

Figure 83 Log section while running simulation 

23. After the simulation finishes successfully the output files are generated in 

the same folder as the input file and the relevant 2D and 3D graphs are 

displayed (depending on the selections in Figure 82) 
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Figure 84 2D results 

 

24. The output .csv files contain the values of the calculated parameters 

therefore the user can open these files with the data explorer and analyse 

the results. 

A.5 LEARNING FUNCTIONALITY 

The learning module can be run manually to create new models or update existing 

ones. In the current version and due to issues with AutoWEKA integration, the 

simulator is using the ensemble model presented in section 5.2. To train a new 

model: 

25. Click on “Learning > Train” to open the model training panel. Select the 

material of the billet and the output .csv data file. If the file is read 

successfully, the inputs and targets text areas will be filled with the output 

file parameters. 

26. Select one or more inputs and outputs by holding down the Ctrl key and 

clicking on the parameter name. Then click on “Train” button. The current 
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version does not support models with multiple output parameters so if two 

output parameters are selected then two models will be created (or updated 

if they already exist). The models are stored in the database and their 

existence can be verified by running the simulator again and checking the 

output file for new parameters. If the parameter name is X then the model 

calculated one is added to the file as X_theor. 

 

Figure 85 Model training panel 

27. To compare the values of a parameter from two different output .csv files 

click on “Learning > Compare”. The simulator GUI will switch to the compare 

panel. 

28. Click on browse buttons to select the two output files to compare. If both 

files are loaded successfully the Sync Params field will be filled with the 

common parameters. Select the parameter(s) that the simulator will use to 

synchronise the two datasets. Then select the parameter to compare from 

the Target Param dropdown menu. There is an option to show only the 

difference between the two datasets otherwise the values of each dataset 

will be displayed side by side. Finally, select the simple moving average 

window to smooth the datasets by filling in the Smoothen field. 
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Figure 86 Dataset comparison setup panel 

The GUI will switch to the results section to display the generated plots. Due to the 

significant programming effort required to implement the n-sample-learning 

functionality, the current software version does not support n-sample-learning 

learning. However, the intention is to add a train button in the compare panel to 

create n-sample-learning models based on the differences identified between the 

two datasets. 
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Appendix B.  JAVA CODE DOCUMENTATION SUMMARY 

The Java, HTML and JavaScript code written for the purposes of this work will be 

submitted together with the thesis. The code itself is 14,688 lines therefore it is not 

practical to add it in the appendices. However, to facilitate understanding the 

Javadoc summary is presented below which covers the backend of the simulator. 

B.1 PERSISTENCE LAYER (MILLING-DATABASE) 

The software packages of this layer are responsible for Create Retrieve Update 

Delete (CRUD) transactions with the database. This layer is the interface between 

the database and the rest of the application so any changes in the database affect 

only this layer and not the application as a whole. 
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B.2 UTILITIES LAYER (MILLING-UTILS) 

The software packages in this layer are the main part of the application’s backend. 

They facilitate the communication between the frontend and the database and carry 

out the vast majority of computational tasks related to VMC simulation. 
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B.3 GRAPHICAL USER INTERFACE – LOCAL (MILLING-VM) 

The packages presented below create the GUI of the local application. They are the 

most complete interface for the user to supply the simulator with input data, run it 

and view the results in the form of graphs, logs, reports or simple exported files. 

The development is based on Java Swing and AWT elements. 

 

 



226 
 

 

 



227 
 

 

 



228 
 

 

 



229 
 

 

 

 

B.4 GRAPHICAL USER INTERFACE – WEB APPLICATION (MILLING-TWIN) 

Finally, the web-based user interface with the simulator is a digital twin prototype 

which is mainly written in HTML and JavaScript. The Javadoc produced contains 

only the required classes to handle the requests and responses of the web 
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application. The details for the front-end functionality can be viewed in the supplied 

code files. 

 

 


