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Abstract

Bacillus thuringiensis (Bt) proteins are an environmentally safe and effective alternative to chemical pesticides and have been used as
biopesticides, with great commercial success, for over 50 years. Global agricultural production is predicted to require a 70% increase
until 2050 to provide for an increasing population. In addition to agriculture, Bt proteins are utilized to control human vectors of
disease—namely mosquitoes—which account for >700 000 deaths annually. The evolution of resistance to Bt pesticial toxins threatens
the progression of sustainable agriculture. Whilst Bt protein toxins are heavily utilized, the exact mechanisms behind receptor binding
and toxicity are unknown. It is critical to gain a better understanding of these mechanisms in order to engineer novel toxin variants
and to predict, and prevent, future resistance evolution. This review focuses on the role of carbohydrate binding in the toxicity of the
most utilized group of Bt pesticidal proteins—three domain Cry (3D-Cry) toxins.
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Introduction

Bacillus thuringiensis (Bt) is a Gram-positive bacterium that pro-
duces a large variety of insecticidal §-endotoxins during sporula-
tion. These proteins may be lethal to insects and/or nematodes yet
are innocuous to vertebrates and plants. Additionally, Bt proteins
demonstrate species-specific activity, allowing for the eradication
of harmful pests that destroy crops and spread disease without
exterminating beneficial insect species. Bt proteins are an envi-
ronmentally safe and effective alternative to chemical pesticides
and have now been used as biopesticides for over 50 years. In addi-
tion, genes encoding Bt proteins have been incorporated in crops
such as corn and cotton with huge commercial success (Sandhu
et al. 2020). The exact mechanisms behind Bt protein(s) toxicity
are unknown, and increasing understanding is critical for the de-
velopment of new Bt proteins, and to counteract emerging field
resistance.

Bt pesticidal proteins may be produced during sporulation
(crystal and cytolytic proteins) or the vegetative growth phase
and are generally organized into a number of categories based on
structural families, according to a recently revised nomenclature
(Crickmore et al. 2021). The 3D-Cry toxins form the largest known
group and are also the most mechanistically well-characterized—
especially those that are lepidopteran active. Following ingestion
by invertebrates, 3D-Cry activity is proposed to occur by either
of two models; the most-widely known sequential binding pore-
forming (Schnepf and Whiteley 1981, Bravo et al. 2007, Rodriguez-
Almazan et al. 2009) or the alternative G-protein mediated apop-
totic signalling pathway model (Zhang et al. 2006, Castella et al.
2019, Mendoza-Almanza et al. 2020). In the sequential binding
model, Cry crystals are solubilized in the specific pH and physi-

ological conditions of the insect gut, producing monomeric pro-
toxins. The monomers are subsequently activated by host pro-
teinases, yielding activated Cry proteins, which bind target recep-
tors on the brush border membranes of midgut epithelial cells.
This is followed by cleavage within the a-helical domain I by host
proteinases, triggering toxin oligomerization to form a prepore
structure necessary for insertion into the phospholipid bilayer to
form a channel. This culminates in cell death via colloid-osmotic
lysis. There is increasing evidence that other routes to pore forma-
tion via receptor binding may exist and that the sequential bind-
ing model may not be a universal pathway (Vachon et al. 2012,
Endo et al. 2022, Sun et al. 2022). The signalling model differs in
that there is no pore insertion, with cell death induced, instead,
via the activation of an apoptotic signalling cascade—although
this is not a widely accepted hypothesis.

Although significantly different at the amino acid level, ac-
tive 3D-Cry proteins have a characteristic conserved 3-domain
architecture (D-I-D-III) indicative of a similar mechanism of ac-
tion. Crystal structures are available for a number of activated
3D-Cry (CrylAa (Grochulski et al. 1995), CrylAc (Derbyshire et
al. 2001), Cry2Aa (Morse et al. 2001), Cry3Aa (Heater et al. 2020),
Cry3Bb1(Galitsky et al. 2001), Cry4Aa (Boonserm et al. 2006),
Cry4Ba (Boonserm et al. 2005), Cry5Ba (Hui et al. 2012), Cry7Cal
(Jing et al. 2019), and Cry8Eal (Guo et al. 2009) along with a num-
ber of mutant and chimeric forms) and all show a conserved
structural arrangement. Domain Iis linked to pore formation and
consists of a helical bundle with a central hydrophobic helix-a5,
associated with initializing membrane insertion, encapsulated by
six amphipathic helices. Domains I and III are associated with re-
ceptor binding and are B-sheet-rich domains resembling lectins.
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Both domains present structural homology to carbohydrate bind-
ing proteins, such as lectin jacalin and sialidase, respectively. This
structural similarity implies that carbohydrate residues may play
a critical role in receptor binding for 3D-Cry proteins—although
the exact mechanisms by which this occurs remain somewhat un-
known. The 3D crystal structure of the CrylAcl protoxin has re-
cently been elucidated, presenting four cysteine-rich prodomains
(D-IV-D-VII) (Evdokimov et al. 2014). Domains IV and VI are al-
pha helical bundles that resemble spectrin or bacterial fibrinogen-
binding complement inhibitor, whilst D-V and D-VII are beta-rolls
that closely resemble the carbohydrate-binding moieties seen in
sugar hydrolases of Family 6 carbohydrate binding module—and
similar to that seen in D-II and D-III. Aside from a few recent inves-
tigations (Zghal et al. 2017, Pena-Cardena et al. 2018), prodomain
studies have largely indicated that it is dispensable for insecti-
cidal activity, and instead has roles in optimizing crystal forma-
tion, packing different toxin variants into the same crystal, sta-
bility, selective solubilization, and ensuring synchronous deliv-
ery through oligomerization (Luthy and Ebersold 1981, Hofte and
Whiteley 1989, Evdokimov et al. 2014).

Cry proteins are usually highly selective to their target in-
sect orders, and it is unusual to find a Cry protein that effec-
tively targets more than one order—although exceptions exist,
such as Cry2Aa, which has activity against Lepidoptera (Donovan
et al. 1988) and Diptera (Yamamoto and Mclaughlin 1981b), and
Cry1Ba which has been shown to target Hemiptera (Fernandez-
Luna et al. 2019), Lepidoptera (Simpson et al. 1997), and Diptera
and Coleoptera (Zhong et al. 2000). As well as the unique do-
main structure in individual Cry proteins, target selectivity is de-
termined by the presence of the receptor proteins and lipids in
the target insect midgut. A relatively strong understanding of this
process has been derived in Lepidoptera, where several protein
types have been identified to function as Cry receptors, including;
cadherin-like proteins (CAD; Nagamatsu et al. 1998, Vadlamudi et
al. 1993, 1995, Gahan et al. 2001), GPI-anchored aminopeptidases
(APN; Sangadala et al. 1994, Gill et al. 1995, Rajagopal et al. 2002,
Knight et al. 2004), GPI-anchored alkaline phosphatases (ALP; San-
gadala et al. 1994, Jurat-Fuentes and Adang 2004), and ABC trans-
porters (Sato et al. 2019). Similar receptors have been identified in
other orders, e.g. mosquitoes (Diptera) utilize cadherins (Cry4Ba,
Cry11Ba, and Cryl1Aa), APNs (Cryl1Ba), and ALPs (CryllAa). A
series of more recent work has identified that glycosphingolipids
(GSLs) can also function as Cry5B and Cry14A receptors and me-
diate toxicity in the nematode Caenorhabditis elegans (Griffitts et al.
2003, 2005).

Resistance development against insecticidal toxins is a com-
mon phenomenon, and a wide array of resistance mechanisms
has been identified from both laboratory and field studies (Peter-
son et al. 2017). The most common mechanism appears to be al-
tered Cry binding to receptors (Ferre and Van Rie 2002). Cadherins
have received substantial attention due to their commonality as
lepidopteran receptors and major mutations causing significant
resistance to CrylAc have been identified in multiple strains of
Heliothis virescens (Gahan et al. 2001), Pectinophora gossypiella (Morin
et al. 2003, Tabashnik et al. 2004, 2005, Fabrick and Tabashnik
2012, Fabrick et al. 2014), and Helicoverpa armigera (Xu et al. 2005,
Yang et al. 2006, Zhao et al. 2010, Zhang et al. 2013), yet it is clear
that cadherin binding and expression can be identical between
resistant and susceptible strains (Siqueira et al. 2006, Bel et al.
2009). This, alongside other studies, has led to the common hy-
pothesis that a combination of other putative Cry binding moi-
eties, such as APNs, ALPs, GSLs, and so on, may be required for full
toxicity.

This review will focus on appraisal of the literature surrounding
the relevance of carbohydrate moieties in eliciting the insecticidal
action of 3D-Cry proteins. In addition to the aforementioned Cry5B
and Cry14A, there is ample precedent for the role of glycoconju-
gates as receptors for protein toxins—as is the case for cholera
toxin (Holmgren et al. 1975, Kabbani et al. 2020), aerolysin (Abrami
et al. 2002), shiga toxin (Smith et al. 2006), and ricin (Sandvig et al.
1976). To understand how Cry toxins exploit carbohydrate moi-
eties for toxicity in more detail, we will also provide a beginner’s
overview to the current understanding of the structural diver-
sity, biosynthesis, and function of insect glycoconjugates, as well
as comparing insect glycopatterning to the better-characterized
pathways and glycoconjugate species present in mammals.

Glycoprotein glycans in insects and
nematodes

The addition of an oligosaccharide chain to a protein backbone
(glycosylation) is an extremely common posttranslational mod-
ification in eukaryotes. A substantial array of studies have con-
cluded that glycoprotein moieties play critical roles in cell sig-
nalling, cell migration, cell-cell interactions, blood group de-
termination, and immune cell trafficking—with changes in N-
glycosylation associated with diverse disorders including cancers
(Kodar et al. 2012), Crohn’s disease (Verhelst et al. 2020), and di-
abetic kidney disease (Bermingham et al. 2018). The distinct and
divergent glycosylation patterns observed are driven by an orches-
tra of glycosidases and glycosyltransferases, which differ in terms
of substrate specificity, and both temporal and spatial expression.
The exact size and structure of the oligosaccharide can dramat-
ically alter the biophysical properties of the protein—effectively
significantly diversifying the functions of a single gene product.

As with vertebrates, insects and nematodes demonstrate both
major forms of glycosylation; N-linked (attached to Asn in an
Asn-X-Ser motif, where X is not Pro) and O-linked (attached via
Ser/Thr). As in mammals, insect and nematode N-linked glycosy-
lation begins in the endoplasmic reticulum (ER) with the cotrans-
lational transfer of a dolichol-linked precursor oligosaccharide
to the asparagine side chain of the consensus sequence within
a nascent protein. This precursor is subsequently processed in
multiple stages to form mature variants in the ER and Golgi. O-
glycosylation also occurs in the ER, Golgi and, occasionally, the
cytoplasm but unlike N-linked does not begin with a common
oligosaccharide precursor.

The vast majority of knowledge on insect glycoconjugates
comes from the model organism Drosophila melanogaster (order
Diptera), although there are now, collectively, a generous num-
ber of studies on the glycomes of species within the orders Lep-
idoptera (Stanton et al. 2017, Cabrera et al. 2016, Fuzita et al.
2020), Hemiptera (Scheys et al. 2019), Hymenoptera (Hykollari et
al. 2019), and Nematoda (Cipollo et al. 2005, Paschinger et al. 2008,
Vanbeselaere et al. 2018, Wang et al. 2021). Genome completion
of Drosophila and random mutagenesis studies have enabled the
elucidation of putative genes for glycoconjugate biosynthesis and
the functional impact of altering glycan patterning (Seppo and
Tiemeyer 2000, Ten Hagen et al. 2009).

N-linked protein glycosylation

All N-glycans share the same pentasaccharide core, termed pauci-
mannose (MansGlcNAc,),—a core conserved from protozoan to
metazoan. After the dolichol-linked precursor oligosaccharide
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(GlesMangGlcNAC)) has been transferred to the protein, resident
ER glucosidases and mannosidase remove three glucose residues
and a mannose residue, respectively. For most glycoproteins,
mannose residues are further trimmed in the Golgi generating
a high mannose structure (MansGlcNAcy), followed by GlcNAc
transferase (GlcNAcT-1)-mediated conversion into a hybrid gly-
can (GlcNAcMansGlcNAc,), and mannosidase II-mediated conver-
sion into GlcNAcMansGlcNAc, In invertebrates, this glycan can
be trimmed further to generate paucimannose (Mans;GlcNAcy;
Fig. 1)—an N-glycan that has only rarely, and relatively recently,
been detected in vertebrates (Lattova et al. 2010, Balog et al. 2012,
Zipser et al. 2012). These initial trimming stages can be followed
by additional enzymatic steps to add diverse sugar residues and
generate more complex N-glycans.

Initial studies on N-linked glycans in Drosophila larvae and
cultured Drosophila S2 cells showed a predominance of high
(MansGIlcNAc;) and paucimannose (MansGlcNAc,) moieties, sug-
gesting an absence of more complex glycans (Parker et al. 1991,
Williams et al. 1991). These simple N-glycans can be fucosylated
via @1-6 and «1-3 linkages to the reducing terminal N-GlcNac.
This is divergent from vertebrates where, although N-glycans
have paucimannose as a core, the simplest N-glycan is chiefly
GlcNAcMansGlcNAc, Furthermore, vertebrates only fucosylate
N-glycans at the «1-6 linkage. Later work, after completion of the
Drosophila genome, elucidated candidate glycosyltransferases re-
quired for the generation of more complex glycans. This, com-
bined with improved analytical techniques, led to several mass
spectrometry-based studies, which established the presence of
hybrid, biantennary, and triantennary Drosophila glycoproteins—
including sulphated, glucuronylated, and sialylated structures
(Koles et al. 2004, North et al. 2006, Aoki et al. 2007)—although the
degree of sialyation is hotly debated (Ghosh et al. 2018, Marchal et
al. 2001), with the only published studies reporting N-linked sia-
lylated structures at a 0.01% or unquantifiable level (Aoki et al.
2007, Koles et al. 2007).

Although simple N-glycans (MansGlcNAc, and
MansGlcNAc,Fuc) have been predominantly observed throughout
Drosophila embryogenesis, the exact profile of N-linked glycans
is shown to be both spatially and temporally controlled (Aoki
et al. 2007, 2008). This is indicative of stage and tissue-specific
glycoprotein requirements and an associated regulation of
glycosylation machinery, which can shift the balance between
paucimannose and complex structures. More than 40 distinct gly-
coprotein species, all containing a paucimannose core, have now
been identified in Drosophila, yet as observed in the earlier studies,
these complex glycans are only present as minor components,
with the vast majority remaining as unmodified high mannose or
paucimannose structures. This is again distinct from mammals,
where complex N-glycans with abundant sialylation are predom-
inant. This invertebrate-specific abundance of paucimannose
has been partially explained by the elucidation of a Drosophila
hexosaminidase—pB-N-acetylglucosaminidase, encoded by the
gene fused lobes (fdl) (Aumiller et al. 2006, Leonard et al. 2006,
Geisler et al. 2008). This enzyme removes GlcNAc residues that
are added by N-acetylglucosaminyltransferase I (GIcNACT-I),
resulting in formation of paucimannose (and its fucosylated
derivatives), whilst blocking progression to more complex gly-
cans. Human isoenzymes (HEXA and HEXB) have been shown
to drive paucimannosidic protein production in neutrophils
(Ugonotti et al. 2022), through a noncanonical cascade, i.e. only
proposed to occur in limited tissues and (patho)physiological
conditions (Chatterjee et al. 2019, Parker et al. 2021)—unlike
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the constitutive and ubiquitous utilization of this pathway in
invertebrates.

Several groups have utilized mass spectrometry to analyse gly-
coproteins in another well-characterized model organism, the ne-
matode C. elegans; a body of work that has been reviewed in
great detail by Paschinger et al. (2008). As with Drosophila, its
well-characterized genetics helped identify candidate enzymes
associated with the synthesis of hybrid and complex glycans;
homologues of N-acetylglucosaminyltransferase I (Chen et al.
2002, Zhu et al. 2004), II (Chen et al. 2002), and V (Warren et
al. 2002). Mass spectrometric analysis of C. elegans N-glycans
has shown, as in Drosophila, an abundance of high-mannosidic
class glycoproteins (Mans_¢GlcNacy). Paucimannosidic structures
(MansGlcNAc, Fuces) are also copious in C. elegans, in which, as
in Drosophila, the core can be fucosylated via a1-6 and «1-3 core
linkages (Haslam et al. 2002, Paschinger et al. 2004, Cipollo et al.
2005, Natsuka et al. 2005, Hanneman et al. 2006). Despite the simi-
larities, these studies also highlight several distinctive and unique
features of C. elegans N-glycan species. For example, C. elegans gly-
can species can be fucosylated at, up to, three residues on the
Man, 3GlcNAc, core and five fucose residues on the mature gly-
can (Fig. 1iil) (Paschinger et al. 2019). More complex C. elegans gly-
cans can link phosphorylcholine (PC) groups to a core or termi-
nal GlcNAc. This modification is thought to be relatively frequent
in the glycoproteins of C. elegans and other nematodes compared
to other invertebrates (Stanton et al. 2017, Martini et al. 2019),
and associated with immunomodulatory properties (Harnett et
al. 1998, Pineda et al. 2014) and/or be related to nematode growth
and development (Lochnit et al. 2005). Longitudinal studies in C.
elegans have noted the N-glycan profile was distinct at each de-
velopmental stage studied, and an increased degree of N-glycan
complexity and PC-presence in the L1 and Dauer stages—C. ele-
gans stages associated with significant lifestyle changes (Cipollo
et al. 2005). Roughly 150 different N-glycan species have been
identified in C. elegans and, as with Drosophila, the relative pro-
portion of higher order glycans is low, suggestive of a gene act-
ing in a homologous way to the Drosophila fdl. Recent studies have
shown that mutant C. elegans with a partial deletion of a B-N-
acetylhexosaminidase (hex-2), produce proportionally less pauci-
mannose (Gutternigg et al. 2007), although significant amounts
are still detectable, indicating the existence of supplementary C.
elegans p-N-acetylhexosaminidase genes (hex-3, -4, -5).

Considering the number of N-glycan structures identified,
alongside the potential modifications, the structural N-glycan di-
versity in insects and nematodes is vast, as is the repertoire of as-
sociated roles and locations (cell surface, ion channels, adhesion,
and extracellular matrix among others). In fact, apart from the
lack of sialylation, structural diversity is reported as comparable
to that of mammals (Walski et al. 2017). Furthermore, interspecies
diversity is also clear. This is highlighted by a recent compara-
tive study showing minimal overlap in the N-glycoprotein profiles
from four phylogenetically diverse insecta; the flour beetle (Tri-
bolium castaneum; Coleoptera), the silkworm (Bombyx mori; Lepi-
doptera), the honeybee (Apis mellifera; Hymenoptera), and the fruit
fly D. melanogaster (Diptera) (Vandenborre et al. 2011). The rele-
vance of this diversity is yet to be fully understood with many
questions remaining on establishing synthetic pathways, deter-
mining the functional relevance of N-glycans, and understanding
the spatio temporal control throughout a life cycle. Indeed, shifts
in glycoconjugate expression could play an important role in de-
termining species susceptibility to a range of glycoconjugate bind-
ing toxins.
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Figure 1. Overview of N-glycosylation in insects and nematodes. In insects and nematodes, high-mannose oligosaccharides are attached in the ER to
consensus Asn residues and are subsequently processed by glycosidases and glycosyltransferases to generate a variety of N-linked structures. The
synthetic pathway shown begins with the ER glycosidase-processed high mannose glycan (MansGlcNAc;,). N-linked diversity is limited through the
expression of a hexosaminidase (Fdl in Drosophila, hex-2 C. elegans) generating paucimannose—one of the most predominant N-linked glycans in all
characterized insecta. A common feature of insecta N-glycans—core fucosylation, occurs at C3 and/or C6 of the reducing terminal GlcNAc (via FucT6
and FucTA in Drosophila). N-linked diversity is expanded through the expression of less well-defined glycosyltransferases (and potentially
sialyltransferases). Significant diversity and unique glycan signatures have been noted in complex N-glycans between different species. For example,
nematode N-glycans can contain structures (i) with a bisecting galactose, (ii) with multiple phosphocholine (PC) residues as antennal modifications,
and (iii) that are fucose rich with O-methylation (Me) modifications and the extension of core fucosylated residues. Nematode structures are based on
figures from Paschinger et al. (2008), Haslam et al. (2002), and Wilson and Paschinger (2016). Dipteran N-glycans with example antennae modifications
(as found in Aedes aegypti, Anopheles gambiae, and D. melanogaster; Kurz 2015, Paschinger and Wilson 2020) and an L. dispar zwitterionic lepidopteran
N-glycan (Paschinger and Wilson 2020, Stanton 2017) show features frequently found in many insect species: sulphated residues (S+) and glucuronic
acid attached to a galactose residue. Glycans are depicted according to the Symbolic Nomenclature for Glycans, as shown in KEY, linkages are shown
next to the bonds, and known enzymes are named next to initial N-glycan trimming stages.

O-linked protein glycosylation

O-linked glycan diversity appears to be one of the most var-
ied sets of posttranslational modifications across organisms and
begins with the initial monosaccharide moiety linked to the
(glyco)protein via the oxygen atom of serine or threonine (O-
S/T). These initial monosaccharides can be O-Xyl, O-Glc, O-
GalNAc (mucin-type), O-Man, O-GlcNAc, or O-Fuc (Fig. 2A-F).
Mucin-type O-linked glycosylation appears to be the predomi-
nant form in Drosophila (the best-characterized insect species),
for which the core structures and associated biosynthetic stages
are conserved in vertebrates (as shown in Fig. 2C). Mucin-
type glycans can be categorized by different core structures.
In Drosophila, unmodified core-1 structures (Galp1-3GalNAca1-O-
S/T or the ‘T-antigen’) are predominant (North et al. 2006). Core-
1 structures modified with glucuronic acid (GlcA), core-2 struc-
tures (GlcNAcp1-6(Galp1-3)GalNAca1-O-S/T), and a less well-
characterized HexNAc-GalNAc core structure are also present in
a comparatively reduced abundance (where Hex = any six car-
bon monosaccharide) (Aoki et al. 2008, Breloy et al. 2008). Lectin

binding and mass spectrometry-based characterization of the O-
glycan profiles in lepidopteran (Sf9 from Spodoptera frugiperda, Mb
from Mamestra brassicae, and Tn from Trichoplusia ni) and dipteran
(S2 from D. melanogaster) cell lines (Thomsen et al. 1990, Lopez et
al. 1999), as well as larvae from two mosquito species (Aedes ae-
gypti and Anopheles gambiae) (Kurz et al. 2015) have also all demon-
strated a prevalence of mucin-type core 1 and 2 structures.

As with N-glycans, an extension of the core O-glycan structure
to generate more complex patterning appears to be proportion-
ally reduced in arthropods—in comparison to their mammalian
counterparts (Fristrom and Fristrom 1982, Kramerov et al. 1996,
Theopold et al. 2001, North et al. 2006). Further structural com-
plexity and species-specific diversity is achieved through post syn-
thetic modifications. For example, glucuronylated and sulphated
O-glycans are observed in Drosophila (Breloy et al. 2008), Ae. aegypti,
An. gambiae, and various lepidopteran cell lines (Fig. 2 Gi) (Gare-
naux et al. 2011, Gaunitz et al. 2013), and phosphoethanolamine
is linked to HexNAc residues in wasps and mosquitoes (Fig. 2
Giii) (Garenaux et al. 2011, Kurz et al. 2015). Insect and nematode
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Figure 2. Overview of O-glycan diversity in insects and nematodes. The first residue attached to the serine/threonine determines the type of O-glycan
(A) O-Xyl, (B) O-Glc, (C) O-GalNAc or mucin-type, (D) O-Man, (E) O-GlcNAc, and (F) O-Fuc. Mucin-type O-glycans (C) appear to be the most common
glycans in studied insecta and nematodes with core 1 and core 1 modified with glucuronic acid (GlcA) generally most prevalent. Examples of Drosophila
biosynthetic pathways illustrate some of the known O-glycan diversity with frequent sulphation and glucuronylation. (G) Examples of more complex
structures and modifications including, (i) a sulphated (S) HexA-Hex-HexNAc repeat from Sf9 cells (Gaunitz 2013), (i) a glycosaminoglycan-like
zwitterionic glycan from the Oesophagostomum dentatum nematode modified with PC, and (iii) a Hex-HexNAc containing O-glycan modified with
phosphoethanolamine (PEtn), present in both Ae. aegypti and An. gambiae larvae. Glycans are depicted according to the Symbolic Nomenclature for

Glycans, as shown in KEY.

glycan diversity could also be heavily influenced by the environ-
ment. Indeed, cell media composition has been indiciated to influ-
ence the O-glycosylation potential of a range of insect cell lines
significantly (Lopez et al. 1999), and an upregulation of mucins
(a glycoprotein class where >50% have O-glycosylation), has been
reported in the nematode Laxus oneitus under conditions of anoxia
(Paredes et al. 2022). The exact role of the environment and sub-
strate scavenging in the role of insect glycan synthesis remains to
be determined.

Our understanding of the most common O-glycans (O-GalNAc,
mucin-type) has been significantly aided through the eluci-
dation of 14 putative Drosophila UDP-GalNAc:Polypeptide N-
acetylglucosaminyltransferases (pgants)-homologs of the mam-
malian enzymes required for the initial transfer of GalNAc from
the UDP-GalNAc to the Ser/Thr hydroxyl group (Gerken et al.
2008, Ten Hagen et al. 20033, b). Biochemical analysis has shown
functional conservation between mammalian and Drosophila or-
thologues with some pgants acting as glycopeptide transferases
(GalNAc modified substrate) and others as peptide transferases
(unmodified peptide substrate). Additionally, pgant genes are
shown to be spatially and temporally regulated throughout
Drosophila development, suggesting a distinct regulation of O-
glycan patterning (Tian and Ten Hagen 2006). Demonstrating the
functional importance of appropriate O-glycosylation, pgant35A
Drosophila mutants show embryonic, larval, and pupal lethality—
the first demonstration of O-linked mucin-type glycosylation be-

ing essential for viability (Ten Hagen and Tran 2002, Schwientek
et al. 2002b). Further studies with pgant35A maternal mutants
showed reduced localization of mucin-type glycans on the apical
and luminal surfaces of the developing respiratory system and
a loss of tracheal integrity (Tian and Ten Hagen 2007). Lethality
is also observed in Drosophila that cannot generate the core-1 T
antigen—(C1GalTa enzyme mutants)—potentially due to abnor-
malities in CNS morphogenesis (Lin et al. 2008, Xia et al. 2004).
Alternative O-linked structures (O-Man, O-Glc, O-GlcNAc, O-
Fuc, and O-Xyl; Fig. 2) have been detected in Drosophila (Kurz et
al. 2015), mosquitoes (Kurz et al. 2015), nematodes (Vanbeselaere
et al. 2018), lepidopteran cell lines (Lopez et al. 1999), and hy-
menopteran tissues (Garenaux et al. 2011), demonstrating diver-
gent structures with distinct tissue distributions. Genetic studies
investigating the effects of reduced transferase activity have re-
peatedly demonstrated the importance of this, more minor, glycan
patterning (Kelly and Hart 1989, Ju and Cummings 2002, Okajima
etal. 2003, Ten Hagen 20033, b) and the conservation of functional
pathways between eukaryotes. For example, Drosophila have two
orthologues of the vertebrate O-mannosyltransferases (dPOMT1
and dPOMT?2), encoded by rotated abdomen (rt) and twisted, (tw),
which are both required for the mannosylation of protein sub-
strates (Ichimiya et al. 2004, Lyalin et al. 2006). Mutations in ei-
ther Drosophila rt or tw, causes defective muscular development
and, as the name suggests, a rotated abdomen phenotype. In
humans, mutations in Pomt genes are associated with muscular
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dystrophies (Muntoni et al. 2004a, b), highlighting the functional
similarities of vertebrate and insect O-glycans. As another impor-
tant example, O-linked fucose (and elongated b3-linked GalNAc
generated via Fringe) residues are shown to play critical roles in
embryonic development in insects and mammals through the
glycosylation of Notch receptors and subsequent modification of
Notch receptor ligand preferences (Okajima and Irvine 2002, Oka-
jima et al. 2003, Sasamura et al. 2003, Pandey et al. 2019). O-
Xyl modification of serine residues represents the first stage in
the synthesis of glycosaminoglycan (GAG)-like O-glycans—linear
polysaccharides consisting of a repeating two sugar-unit con-
sisting of a six-carbon acidic sugar (HexA) and an amino sugar
(HexNAcHexA),. Nematodes, C. elegans and O. dentatum, have
shown conservation of the common mammalian tetrasaccharide
core (GlcAB1-3Galp1-3Galp1-4Xylp-O-Ser) (Yamada et al. 1999,
Guerardel et al. 2001), and also shown the addition of galac-
tose and PC (Vanbeselaere et al. 2018). These nematode GAGs are
demonstrated to be important for development, with the muta-
tion of C. elegans xylosyltransferases (squ-2 and squ-6) inhibiting
GAG biosynthesis, altering vulval morphogenesis and zygotic cy-
tokinesis, and maternal-effect lethality (Hwang et al. 2003). GAG-
like glycans have also been identified in Drosophila (Yamada et al.
2002), and have been associated with development and facilitat-
ing pathogen invasion (Park et al. 2003, Baron et al. 2009).

As with N-glycans, the elucidation of currently unknown insect
biosynthetic enzymes will help us to dissect the molecular func-
tion of O-glycans and the relevance of various structural features.

Glycolipids in insects and nematodes

Glycolipids are lipids with a carbohydrate attached via a glyco-
sidic bond, with known roles in maintaining cellular membrane
integrity, facilitating cell-to-cell and intracellular signalling, ini-
tiating host immune responses, and determining blood groups.
GSLs are a subclass of glycolipid where the carbohydrate group
is covalently attached to a ceramide backbone moiety (a sphin-
ganine, i.e. amide linked to a fatty acid; Fig. 3). GSLs are of par-
ticular interest when considering potential receptor functions, as
they are known toxin receptors (Geny and Popoff 2006), and found
enriched in cellular membrane microdomains (lipid rafts) that act
as specialized platforms for signal transduction and protein/lipid
transport (Simons and Ikonen 1997, Brown and London 1998).
Initial investigations into insect GSLs in 1973 by Luukkonen et
al. (1973), showed an absence of complex GSLs in cells cultured
from Aedes albopictus. However, later reports identified the first
GSLs in arthropods, by utilizing 2D high-performance thin-layer
chromatography (HPTLC) to indicate the presence of glucosylce-
ramide (GlcCer) and mannosyl-glucosylceramide (Man-GlcCer) in
two closely related dipteran species; the larvae of the green-bottle
fly, Lucilia caesar, and the pupae of the blowfly, Calliphora vicina
(Sugita et al. 1982a, Dennis et al. 1985b). This was followed by sev-
eral ground-breaking studies from Sugita, Hori, Dennis, Wiegandt
and others, predominantly in the same dipteran species, showing
arthropods form an ‘arthro-series’ of GSLs derived from a single,
neutral, Mang1,4GlcB-ceramide core—termed mactosylceramide
(MacCer) (Sugita et al. 1982a, b, 1989, 1990, Dennis et al. 1985a,
b, Dabrowski et al. 1990, Weske et al. 1990, Helling et al. 1991).
This invertebrate-specific glycolipid signature is conserved in ne-
matodes and insects but is divergent from vertebrates, where the
majority of GSLs are derived from a lactosylceramide core (Lac-
Cer; Galp1,4GlcB-ceramide). Using a combination of HPTLC, se-
quential exoglycosidic digestion, methylation analysis, and direct-
inlet mass spectrometry (MS), these aforementioned studies in

dipteran insects went on to find neutral, acidic, and zwitterionic
GSLs with increasing complexity and oligosaccharide length—all
as extensions of the MacCer core. Dipteran GSLs were also identi-
fied to be frequently modified with phosphoethanolamine (PEtn)
linked to C6 of GIcNAc, resulting in a zwitterionic core structure.

Drosophila melanogaster has become the predominant choice for
studying arthropod GSLs, with the biosynthesis pathways and
structural variants now relatively well-understood (Fig. 4)—as
summarized in greater detail by Aoki and Tiemeyer (2010). Anal-
ysis of Drosophila GSLs indicated the presence of a similar fam-
ily of variants to that observed previously in L. caesar and C. vic-
ina (Fredieu and Mahowald 1994, Callaerts et al. 1995, D'Amico
and Jacobs 1995, Seppo et al. 2000). However, there are noted
Drosophila distinctions such as an increased proportion of longer
GSLs that are substituted with two PEtn residues (Itonori et al.
2005, Aoki and Tiemeyer 2010), and a 4-linked GalNAc (as op-
posed to a 3-linked GalNAc) in the longest characterized Drosophila
GSL (Seppo et al. 2000). Studies in other insects and nematodes
have also indicated that a distinct species-specific GSL diversity is
present (Fig. 4i-iv). For example, although the MacCer core is most
commonly extended with GlcNAc via a 1-3 linkage followed by
GalNAc via a p1-4 linkage, Drosophila can extend with Gal, rather
than GalNAc, followed by Glucuronic acid (GlcA) (Fig. 4i) (Aoki
and Tiemeyer 2010). Additionally, the later steps of biosynthesis
appear to diverge between dipterans (Drosophila and Calliphora)
and nematodes. In both these dipteran genera, the common
core tetrasaccharide (GalNAcB1-4GlcNAcB1-3ManpB1-4Glcg-Cer)
is extended by a GalNAc, whereas C. elegans extends with an «1,3-
linked Gal. Furthermore, the core GIcNAc can be substituted with
PC (Fig. 4iii)—a modification that appears to be conserved in par-
asitic nematodes (Gerdt et al. 1999, Wuhrer et al. 2000). Whether
these distinctions always reflect true species-specific GSLs or de-
velopmentally regulated expression in the material studied (em-
bryonic, larvae, or pupae) is not completely clear. Indeed, GSL
synthesis is highly regulated in mammals—both spatially and
temporally—with dysregulation prevalent in disease such as stor-
age disorders (Breiden and Sandhoff 2019) and cancers (Furukawa
et al. 2019). The ability to diversify functional lipids significantly,
early in the biosynthesis pathway, may tailor GSLs for specific spa-
tial or temporal functions—such as development or toxin binding
in localized regions of the insect gut. Temporal artificial manipu-
lation of GSL biosynthesis may be a useful approach for investi-
gating toxin binding at different stages in an insect’s life cycle. For
example, many mammalian studies have utilized small molecule
inhibitors of glycolipid biosynthesis pathways, and different cell
culture media additives are known to drastically alter cellular gly-
cosylation profiles.

The presence of insect gangliosides (GSLs that contain one
or more sialic acid residue) remains controversial, as reviewed
previously (Ghosh et al. 2018, Marchal et al. 2001). Whilst little
is known about insect sialylation, eukaryotic sialylation is well-
studied and has diverse roles in development of the central ner-
vous system, immune response, cell death, cell signalling path-
ways, host-virus interaction, as well as pathogenic implications
in Alzheimer’s disease and cancer progression (Varki et al. 2008,
Schauer 2009, Ghosh et al. 2015, Yanagisawa et al. 2015, Teppa et
al. 2016). Sialic acids, sialylated macromolecules and sialyltrans-
ferase (ST) enzymes have been reported in a range of insects in-
cluding B. mori (Kajiura et al. 2015), D. melanogaster (Koles et al.
2004), Ae. aegypti (Cime-Castillo et al. 2015, Di et al. 2017), and Gal-
leria mellonella (Karacali et al. 1997) but, despite this, insect inves-
tigations indicate that gangliosides do not appear to be intrinsi-
cally present at a detectable level (Aoki et al. 2007, Koles et al.
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Figure 3. General structures of Sphingolipids. Sphingolipids are a class of lipids, which contain a backbone of sphingoid bases which is N-acylated with
various fatty acid chains. (A) A sphingoid base composed of a 16-carbon backbone (C16, hexadecanoylsphinganine). (B) A ceramide, consisting of a
sphingoid base backbone amide linked to a fatty acid. (C) A sphingomyelin, a phosphocholine headgroup attached to a ceramide. (D) Ceramide
phosphoethanolamine (CPE), a phosphoethanolamine headgroup attached to a ceramide.

2007). Additionally, little is known about the synthesis or function
of sialic acid moieties, and there is no structural information sur-
rounding STs. Arthro-series GSLs capped with GlcA on a nonre-
ducing terminal are common and have been identified in flies (C.
vicina and D. melanogaster) (Wiegandt et al. 1992). GlcA carries a
negative charge under physiological conditions, prompting com-
parisons to the sialic acid-containing gangliosides of vertebrates
and the term ‘arthrosides’. Currently, there are very limited data
to support a functional comparison. Furthermore, sialic acids can
be «2-8 linked to additional sialic acids whereas GlcA dimers, to
the best of our knowledge, have not been reported.

In addition to the sugar component of GSLs, it must also be
noted that the ceramide (a sphingoid base backbone linked to
a fatty acid) backbone composition also differs between inver-
tebrates and mammals. Mammalian sphingoid bases tend to be
longer (generally C18) (Sullards et al. 2003), whereas insect sphin-
goid bases are generally reported as C14 and C16 and are amide
linked to shorter fatty acid chains (Oswald et al. 2015) (Fig. 3A and
B). In many arthropods, ceramide phosphoethanolamine (CPE) is
the bulk sphingolipid (Fig. 3D) (Panevska et al. 2019), whereas
only trace amounts of CPE have been detected in mammalian
cells (Bickert et al. 2015) and Nematoda (Satouchi et al. 1993)
which, instead, favour sphingomyelin synthesis (a ceramide with
a phosphocholine group; Fig. 3C). Distinct biophysical properties
have been observed between sphingomyelin and CPE in terms of
membrane-order parameters (Terova et al. 2005, Bjorkbom et al.
2010) and the ability to interact with cholesterol and form lipid-
rafts (Ramstedt and Slotte 2006, Bjorkbom et al. 2010), suggesting
they have differing biological roles (Dawaliby et al. 2016). It may

be that these GSL backbone differences play a part in determining
binding specificity of insecticidal proteins, yet, to the best of our
knowledge, this has not been investigated.

As with vertebrates, the complexity of insect and nematode
GSLs occurs along common biochemical pathways via specific,
glycosyltransferase-catalyzed, sequential addition of monosac-
charides. Elucidation, and manipulation, of these glycosyltrans-
ferases has provided an insight into GSL function and utility. The
first committed step in GSL synthesis is through the addition
of glucose to ceramide via glucosylceramide synthase (GlcCer).
Knockdown of an embryonic Drosophila GlcCer homolog caused
increased apoptosis, indicating a requirement for GSLs—at least
during development (Kohyama-Koganeya et al. 2004). Catalyzing
the second and third steps in Drosophila GSL synthesis are two
genes brainiac (brn) and egghead (egh)—initially proposed to act
in the same functional pathway based on similar developmen-
tal phenotypes exhibited by their respective mutants—namely an
over proliferation of neural cells and enlarged peripheral nerves.
The brn gene was determined to encode a 1,3GlcNAc transferase
directed to transfer GIcNAc preferentially to the Mang1,4Glc core
structure (Muller et al. 2002, Schwientek et al. 2002a), and egh
to encode a B1,4-mannosyltransferase to form MacCer (Fig. 4)
(Wandall et al. 2003). Both Brn and egh mutants are lethal, im-
plying a requirement for second and third step sugar addi-
tion. Interestingly, inhibiting the fourth step in GSL synthesis—
via null mutation of B1,4-N-acetlygalactosaminyltransferases
(BAGaINACTB/B4GalNACTA) is not lethal, although still causes de-
fects including the ventralization of ovarian follicle cells (Chen
et al. 2007). Drosophila «1,4-N-acetylgalactosaminyl transferase
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Figure 4. Overview of GSL synthesis and diversity in insects and nematodes. Arthroseries GSLs present in insects and nematodes are built around a
common MacCer core, generated through addition of Man to a glucosylceramide, in contrast to the mammalian GlcCer core, exampled in GM3 (i, red
box). This core can be extended to form more complex structures, such as those shown above, which have all been identified in Drosophila embryos
(and in some cases, other Diptera). Drosophila figure components modified from Sharrow et al. (2010). Modification with phosphoethanolamine (PEtn)
on GlcNAc residues is frequent and generates zwitterionic GSLs, whilst addition of GlcA to terminal Gal residues generates acidic groups. Some of the
known glycosyltransferases that facilitate GSL biogenesis are marked; Drosophila (Egh, Brn, «4GT1, p4GalNACTA, and B4GalNACTA) and C. elegans
(BRE-5, BRE-3, and BRE-4). Although the structures in the ‘Arthro-series’ box with the sequential addition of GlcNAc then GalNAc appear to be the
most common root of more complex GSLs across invertebrate species, species-specific variants are frequently noted, such as those depicted in (ii) B.
mori (Itonori 2018), (iii) C. elegans (Griffitts 2005), (iv) Drosophila (Aoki and Tiemeyer 2010), and (v) C. vicina (Dennis et al. 1985a). PC = phosphorylcholine,
glycans are depicted according to the Symbolic Nomenclature for Glycans as shown in KEY.

(x4GTI) synthesizes the ceramide-pentahexoside (Mucha et al.
2004), although as fourth step (84GalNAcTB/B4GalNACTA) mu-
tants are still viable, this is also presumably nonessential for vi-
ability. Toxicity studies in the nematode C. elegans (discussed in
greater detail below) have found genes homologous to brainiac and
egghead, bre-5, and bre-3, respectively.

As with N and O glycans, it is clear that an increasing range of
glycolipid structural variants is being identified in insects and ne-
matodes, even if these more complex structures do not make up
the majority of the total pool. Key to deciphering the molecular
function of these glycoconjugates is the elucidation of glycosyl-

transferases. Altering glycolipid biosynthesis pathways—through
manipulation of glycosyltransferase activity via gene silencing or
inhibitory compounds—will help to inform approaches towards
current, and novel, methods of pest control.

Glycoconjugates as membrane receptors for
insecticidal and nematocidal toxins
The role of host cell membrane glycoconjugates as toxin receptors

has ample precedent (Zuverink and Barbieri et al. 2018). Toxins
that rely on glycoprotein binding include pertussis toxin (Stein et
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al. 1994) and aerolysin (Diep et al. 1998). Examples of protein tox-
ins shown to use lipid-moieties to facilitate entry include the pore-
forming toxins lysenin (via sphingomyelin (Yamaji et al. 1998) and
cholesterol-dependent cytolysins (Tweten et al. 2005), Shiga toxin
(via GSL Gb3; Okuda et al. 2006, Shin et al. 2009), and cholera toxin
(via GM1a ganglioside; Wernick et al. 2010). Lipid microdomains
are also implicated in toxin binding due to the high concentra-
tion of GSLs present. For example, cholera toxin-induced mem-
brane curvature is shown to be dependent on both the multiplic-
ity and specific geometry of GM1a binding sites (Kabbani et al.
2020), and Shiga toxin is localized to Gb3 in lipid rafts (Smith et
al. 2006). Some toxins, such as members of the Botulinum toxin
family, utilize both a ganglioside and a protein receptor, whereas
others, such as ricin, bind a specific carbohydrate moiety that
can be present on either a glycolipid or a glycoprotein (Fu et al.
1996, Zuverink and Barbieri 2018). Below we will discuss the ex-
isting research surrounding the role of glycoconjugates in insec-
ticidal and nematocidal 3D-Cry protein toxin activity. Lectins are
carbohydrate-binding proteins which are, individually, highly spe-
cific to a distinct sugar group (Cummings and Etzler 2009). Lectins
have been incredibly useful, and widely used, in elucidating the
sugar binding properties of various insecticidal toxins; those dis-
cussed in this review are summarized in Table 1.

Several of the studies, discussed below, utilize cellular models
to investigate 3D-Cry binding affinity and toxicity. In these stud-
ies, it is worthwhile to consider the impact of pH, as 3D-Cry pro-
teins are solubilized and activated in the midgut lumen due to
selective pH conditions (Knowles et al. 1994). In the literature,
the insect midgut is often referred to as alkaline—a character-
istic, i.e. often cited to assist in conferring insect species selec-
tivity. Indeed, the majority of Dipteran and Lepidopteran species
assessed have an alkaline midgut (~pH 8.0-10.0), although there
are exceptions such as Marasmia trapezialis (pH 7.0-7.2), Pieris rapae
(pH 7.3-7.6), and Corcyra cephalonica (pH 7.0-7.6) (Berebaum et al.
1980). Furthermore, there are often differences between the pos-
terior and anterior midgut regions, such as Ae. aegypti and Aedes
canadensis mosquito larvae (~pH 8 in the gastric caecum, > pH10
in the anterior midgut, pH 7.5 in the posterior midgut) (Dadd et
al. 1975, Boudko et al. 2001). In contrast, other insects can have
a mildly acidic midgut such as Coleoptera, Leptinotarsa decemlin-
eata (pH 6.5-5.36) (Krishnan et al. 2007) and Diabrotica virgifera vir-
gifera (pH 5.75) (Kaiser-Alexnat 2009). In terms of cell culture ex-
periments the pH will be determined by buffer or culture media
(which are frequently more acidic than mammalian media,~pH
6.2-6.5). In many experiments the toxin in question is solubilized
and activated before addition to cells, via extracted ‘midgut-juice’
or artificially with buffer and proteinases—which in theory should
negate the need for ‘mid-gut’ conditions for solubilization and ac-
tivation but may alter the binding affinities via protonation states
of key residues.

CrylA (CrylAa, Cry1lAb, and Cry1lAc)

Binding to BBMVs show CrylAc binds in a
GalNAc-dependent manner

The CrylA subclass of lepidopteran-specific toxins are of great
commercial importance and the most well-studied 3D-Cry tox-
ins. The earliest glycoconjugate binding studies were performed
using endotoxin isolated from Bt serovar. kurstaki HD-1 (Btk HD-
1), which was later confirmed to contain three distinct Cry1A pro-
teins that share >76% aa identity as protoxins; CrylAa, Cry1Ab,
and CrylAc (Hofte and Whiteley et al. 1989). These early stud-
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ies proposed the occurrence of a common Cry insecticidal pore-
forming action (Hofmann et al. 1988a, b), yet identified mecha-
nistic heterogeneity dependent on individual Cry proteins, target
species, and putative binding ‘receptors’. Of note, early studies us-
ing the Btk HD-1 strain also likely contain other Cry proteins in-
cluding Cry2Aa2, Cry2Ab2, and Cry1lla3.

The relevance of glycoconjugates in eliciting toxin activity was
recognized early on, with Knowles et al. (1984) showing that
GalNAc and GlcNAc binding-lectins (SBA and WGA, respectively)
neutralized activity of lepidopteran-active §-endotoxin proteins
from Btk strain HD-1 in a lepidopteran cell line (CF1) isolated
from the CrylA-susceptable cabbage butterfly (Choristoneura fu-
miferana). Using the same model, they went on to identify the first
putative Cry ‘receptor'—a 146-kDa cell-surface glycoprotein capa-
ble of binding both SBA and §-endotoxin (Knowles and Ellar 1986).
Dennis et al. (1986) first proposed that glycolipids were respon-
sible for modulating §-endotoxin actions, through demonstrating
Btk HD-1 toxin binding to distinct C. vicina pupal GSLs—of which
some species contained a relevant terminal GalNAc residue. In
these studies, they isolated both total neutral and total acidic
glycolipid fractions, and isolated neutral GSL components that
they probed using a thin layer chromotography (TLC) overlay tech-
nique to detect binding of both the protoxin and activated forms
of Btk HD-1 proteins. Although Btk HD-1 contains a number of
toxins (Yamamoto and McLaughlin 1981a), the authors only used
the ~130 kDa proteins—most likely representing a mix of Cryl
proteins. Multiple binding partners were observed in both glycol-
ipid fractions, with the main component (bound by both the pro-
toxin and activated forms) being Gala1-3GalNAcB1-4GlcNAcB1-
3Manp1-4Glcg1-4Cer (denoted as 5B by the authors). Although
both the protoxin and activated form were shown to bind strongly
to the Gal-terminal 5B glycolipid, the toxin showed a decrease in
binding specificity after activation, with an increased number of
glycolipids bound and an increase towards glycolipids with termi-
nal GalNAc residues. Different binding patterns between the pro
and active forms would indicate the binding of protoxin would
not block activity of the activated protein through competition
for binding. When reading these works, it is important to consider
that these binding experiments utilized models containing cells
derived from nontarget tissues, which potentially present glyco-
conjugates found predominantly outside of the midgut, and in
an altered abundance. Brush border membrane vesicles (BBMVs)
prepared from larval midguts provided a more ‘in vivo’ represen-
tation and became common in the field for investigating toxin
binding to apical microvilli. Using BBMVs or gut tissues, isolated
from a range of lepidopteran species, several investigations con-
firmed a range of specific CrylA binding sites with nM affinity
constants (Jaquet et al. 1987, Van Rie et al. 1989, 1990, Wolfers-
berger et al. 1990, Ferre et al. 1991, Garczynski et al. 1991, Denolf
et al. 1993). In many cases the level of CrylA toxicity was shown
to correlate with binding affinity (Hofmann et al. 1988b; Van Rie
et al. 1989, 1990, Garczynski et al. 1991, Denolf et al. 1993). For
example, Cry1Ab and CrylAc recognize the same receptor on Os-
trinia nubilalis BBMV, yet the former has an 11-fold higher affinity
which correlates with a 10-fold higher toxicity (Denolf et al. 1993).
The importance of these binding sites was further illustrated by
work in a field population of Plutella xylostella, where resistance to
Cry1lAb was associated with loss of BBMV binding sites (Ferre et
al. 1991). Furthermore, these studies illustrated frequent receptor
heterogeneity and the existence of multiple binding sites, with in-
creased binding site concentration also associated with increased
toxicity (Van Rie et al. 1989, 1990, Garczynski et al. 1991). For
example, H. virescens larvae show three different populations of
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Table 1. Specificity of lectins used commonly in lectin binding studies.

Lectin

Major sugar specificity

Wheat germ agglutinin (WGA)
Concanavalin A (ConA)
Galathus nivalis (GNA)

Aleuria aurantia (AAA)

Arachis hypogea Peanut (PNA)

Soybean agglutinin (SBA)
Ulex europaeus agglutinin I (UEA1)
Datura stramonium (DSA)

GlcNAc (Gallagher et al. 1985)

Man > «Glc, eGalNAc (Osawa and Tsuji 1987)

Man (¢1,3 > 1,6 > «1,4)* (Hester and Wright 1996)
Fuc (1,6 > «1,3 > a1,4)* (Yamashita et al. 1985)
GalB1-3GalNAca1,3-Ser/Thr (Chacko and Appukuttan
2001)

GalNaca1,3-Ser/Thr, (Sueyoshi et al. 1988)

a-linked fucose (Tian et al. 2018)

GalB1,4GlcNAc (Crowley et al. 1984)

* > denotes the binding affinity where a single lectin can bind different linkages.

binding site, one which binds Cry1Aa, CrylAb, and CrylAc, a sec-
ond which binds CrylAb and CrylAc, and a third restricted to
CrylAc binding. This correlates with the pronounced larvicidal
difference between CrylA variants (Ac > Ab > Aa) (Van Rie et
al. 1989, 1990). Receptor proteins originally identified from ligand
binding studies in BBMV have since been purified and character-
ized. Two major forms of putative Cry receptor have been identi-
fied, namely cadherin-like receptors (CAD) (Vadlamudi et al. 1993,
1995), and aminopeptidase-N (APN) family receptors (Knight et al.
1994, Sangadala et al. 1994)—both shown to be glycosylated. Other
receptor families for insecticidal toxins include alkaline phos-
phatase (ALP) (Jurat-Fuentes and Adang 2004, McNall and Adang
2003, Krishnamoorthy et al. 2007, Arenas et al. 2010, Ning et al.
2010) and ATP-binding cassette (ABC) transporter protein (Xiao et
al. 2014, Guo et al. 2015, Chen et al. 2018. Wang et al. 2019, Wu
et al. 2019). Roles for putative glycosylation sites in the latter two
receptor families are less well-explored—with no specific role for
glycosylation reported for Cryl ABC receptors.

However, toxicity does not always correlate with BBMV pro-
tein binding (Van Rie et al. 1990, Wolfersberger et al. 1990, Ferre
et al. 1991, Garczynski et al. 1991). This is exemplified by Gar-
czynski et al. (1991), showing similar high affinity Cry1A binding
to BBMVs isolated from both highly susceptible (Manduca sexta
and H. virescens), moderately susceptible (Helicoverpa zea), and
tolerant (S. frugiperda) lepidopteran larvae. Kumaraswami et al.
(2001), and Higuchi et al. (2007), demonstrated BBMV proteins
isolated from either susceptible or resistant populations of P. xy-
lostella have the same Cry1A binding capacity, yet resistant insect-
derived BBMV and gut tissue had a significant reduction in neu-
tral GSLs, indicating these glycolipids can mediate toxin suscep-
tibility. In resistant P. xylostella populations, this was accompa-
nied by decreased oligosaccharide length, with synthesis arrest at
the pentasaccharide stage and a slightly reduced activity of Gal
and GalNAc transferase, suggesting that more elaborate glycol-
ipid moieties facilitate Cry1A toxicity (Kumaraswami et al. 2001).
More recent work by Ma et al. (2012a), supports the role of glycol-
ipids in Cry1lAc binding and tolerance. Helicoverpa armigera larvae
demonstrate enhanced tolerance to CrylAc if they are prefed with
LEC-8-a galectin-like protein isolated from nematodes. Both LEC-
8 and CrylAc were shown to bind to gut glycolipids in a similar
manner, implying that LEC-8 inhibits CrylAc glycolipid binding
sites, thus mediating tolerance. The LEC-8 natural ligand is un-
known, but an inhibitory ELISA showed lactose can inhibit LEC-
8 binding to H. armigera gut glycolipids by 20%, and a mild in-
hibitory effect was observed with GalNAc, galactose, mannopy-
ranose, inositol, and trehalose. LEC-8 has also been shown to in-
teract with Asialofetuin—a glycoprotein with terminal GalNAc
residues (Nemoto-Sasaki et al. 2008).

Differences in neutral sugar content between susceptible and
resistant M. sexta populations has been reported to correlate with
Cry1A binding by a number of groups (Sangadala et al. 2001, Jurat-
Fuentes et al. 2002). Knowles et al. (1991), solidified a role for a gly-
coconjugate in CrylA binding in insect gut epithelia. GalNAc ad-
dition completely abolished CrylAc binding in M. sexta, partially
in H. virescens, but had no effect on Pieris brassicae. This correlated
with SBA and CrylAc binding the same (glyco)protein in M. sexta
and H. virescens, but not P. brassicae, collectively indicating GalNAc
is a component of the CrylAc receptor(s) in some lepidopteran
species, but glycoprotein interaction is not required in others e.g.
P. brassicae. The authors did not investigate the possibility of bind-
ing to GalNAc present in glycolipids. Although much of the liter-
ature to date is focused on the role of GalNAc in eliciting CrylAc
toxicity, Haider and Ellar (1987) have proposed the relevance of
D-Glc in eliciting Cry1 activity. Here, the authors showed the ac-
tivity of a trypsinized lepidopteran-specific preparation from Bt
serovar. aizawal IC1 (containing a 55- and a 58-kDa polypeptide) is
completely inhibited in M. brassicae cells by D-Glc and the D-Glc
binding lectin—ConA. It is not clear exactly what protein toxins
were expressed in this preparation, although Cry1Ab7 is reported
in this strain (Haider and Ellar 1988).

Conversely, glycolipid and sugar binding is also implicated in
enhancing tolerance to Cry toxins through the sequestration of
toxin oligomers in the gut and subsequent prevention of receptor
bindingin the midgut brush border (Hayakawa et al. 2004, Ma et al.
2012a, b). The peritrophic membrane (PM) is the semipermeable
lining of the insect midgut which, amongits functions, acts as pro-
tection from mechanical and pathogenic damage. Several studies
have indicated that compromising the integrity of the PM can en-
hance Bt toxin activity in insect larvae, presumably through al-
lowing more insecticidal protein to reach receptors at the midgut
epithelium brush border (Granados et al. 2001). Hayakawa et al.
(2004), demonstrated that the interaction of CrylAc with the PM
can be inhibited with the addition of GalNAc in the CrylAc toler-
ant lepidopteran species, B. mori. Upon addition of GalNAc, CrylAc
passes through the PM significantly quicker, and at a similar rate
to the B. mori active toxin, CrylAa—although the authors did not
demonstrate if this renders B. mori CrylAc susceptible. Ma et al.
(2012b), have suggested that binding of Cry toxin to glycolipids
in lipophorin (lipoprotein particles that transport lipids in insect
haemolymph) increases Cry toxin tolerance. They demonstrated
that D-II of CrylAc monomers binds glycolipids from lipophorin
particles, and forms CrylAc oligomers in the presence of gly-
colipids isolated from both H. armigera and G. mellonella cell-free
plasma and midgut tissue. CrylAc addition to G. mellonella lipid
particles induced aggregation—an interaction through which, the
authors suggest, CrylAc is sequestered to the gut lumen. This
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study also used TLC to show the main CrylAc glycolipid bind-
ing species present in H. armigera gut tissue migrated to a similar
position as globoside Gb4 (GalNAcs;p1-2Gala1-4Galp1-4Glcp1-1-
Cer)—which has a terminal GalNAc.

The exact mechanistic basis for CrylA toxicity remains un-
clear. A large body of data shows insecticidal activity is depen-
dent on much more than a single receptor interaction, but with
the exact insect system, toxin oligomerization state, multicom-
ponent complexes, and tissue localization all having profound
effects on toxicity. The most established mechanism for CrylA
appears to be that of sequential binding during which a toxin
monomer is recognized by a cadherin-like receptor causing a con-
formational change, which facilitates prepore oligomer formation
(and distinct types of prepore may be possible even for the same
toxin; Gomez et al. 2014), and the subsequent binding to APN en-
abling membrane insertion. Multiple and complex receptor bind-
ing is not uncommon in the toxin field outside of 3D-Cry proteins,
e.g. diphtheria (Hasuwa et al. 2001) and protective antigen (Sco-
bie et al. 2003) are determined to utilize more than one recep-
tor. Furthermore, as discussed in the introduction, the role of the
prodomains in toxicity is yet to be fully elucidated. Aside from the
commonly hypothesized roles in toxin stability, formation, and
stabilization (Derbyshire et al. 2001), the structure of Cry1Ac1 pro-
toxin D-V and D-VII have four predicted ligand binding sites for
galactose, N-acetylglucosamine, mannose, and xylose (Zghal et
al. 2017), presenting the possibility that D-V and D-VII could in-
teract with glycans in the gut, and may be involved in protoxin
recognition of a receptor. In support of this idea, a recent study
by Pefia-Cardefia et al. (2018), has demonstrated the C-terminal
protoxin domain of CrylAb provides additional binding sites for
ALP and APN receptors, resulting in a higher binding affinity of
the protoxin, which correlates with increased toxicity—compared
to the activated form.

APN and APN glycosylation in mediating Cry1A
binding and activity

Utilizing protoxin affinity chromatography and anion-exchange
chromatography, (Knight et al. 1994), purified a glycoprotein
(APN1) present in the midgut target tissue of M. sexta that was
bound by CrylAc and SBA, but not Cry1B. Sequencing of the bound
glycoprotein revealed sequence similarity to the APN family—
a heavily glycosylated zinc aminopeptidase, i.e. a common fea-
ture of the insect midgut and, therefore, often used to assess
BBMV purity. APNs have since been extensively studied as Cry
receptors and many different lepidopteran variants have been
characterized—although not all bind Cry proteins. APNs are di-
vided into eight phylogenetic classes (Crava et al. 2010, Hughes
et al. 2014, Fonseca et al. 2015), with single insect species able to
express multiple receptors from different classes. APN isoforms
that bind CrylAa (Masson et al. 1995), Cry1Ab (Masson et al. 1995,
Denolf et al. 1997), and CrylAc (Gill et al. 1995, Valaitis et al.
1995, Wang et al. 2005b, Luo et al. 1997, Nakanishi et al. 2002, An-
gelucci et al. 2008) have been discovered in multiple lepidopteran
species—although current evidence suggests only CrylAc binds
via GalNAc, recognized by moieties present in a surface cavity in
D-III, i.e. not conserved in CrylAa or CrylAb (Burton et al. 1999,
de Maagd et al. 1999b, Jenkins et al. 2000, Masson et al. 1995). Pu-
tative Cry toxin receptors have been identified in APN classes 1-5,
although recently APNs from classes 6 and 8 have been implicated
in mediating toxicity of Cry1Ab, CrylAc, and Cry1Ca in Chilo sup-
pressalis larvae (Sun et al. 2020).
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The crystal structures of CrylAc and CrylAc in complex with
GalNAc have been published (Fig. 5) (Derbyshire et al. 2001) and al-
though this has provided evidence of D-III involvement in GalNAc
binding, exactly where the GalNAc receptor ligand is located on
APN is unknown. Sequence analysis of class 1 CrylAc-binding M.
sexta APN isoforms showed the presence of 4-7 potential N-linked
glycosylation consensus sites and 13 putative O-glycosylation
sites (Knight et al. 1995, 2004, Stephens et al. 2004). A total of
10 of the putative O-linked sites are predicted in a Thr/Pro rich
region of the C-terminus, thought to form a ‘stalk’ that raises
the active site above the membrane. Lectin recognition of these
M. sexta Apnl-linked glycans indicated the presence of fucosy-
lated and high mannose N-glycans (ConA, AAA, GNA, and UEA1
lectin binding), and O-linked glycans (SBA lectin binding) (Denolf
et al. 1997, Knight et al. 2004). As presented in Fig. 6, the pres-
ence of N- and O-linked glycosylation sites can be predicted by
sequence analysis. Comparing the sequences of Cry-binding lepi-
dopteran midgut APNs we see the number of N-glycosylation sites
does not vary dramatically between classes (0-6 sites per protein),
and the positioning of these sites is somewhat similar—especially
between members of the same class. The number of O-linked
sites does differ dramatically between sequences (1-46 sites), with
classes 1 and 3 sequences containing substantially more consen-
sus sites (13-46) than classes 2, 4, and 5 (1-6). Previous analy-
sis of lepidopteran APN sequences using an earlier version of O-
glycosylation site prediction software (NetOGlyc v3.1, opposed to
v4.0) predicted no consensus sites for class 2 receptors (Pigott and
Ellar 2007).

Individual species of N-linked glycoconjugates on the 120-kDa
M. sexta Apn1 have been identified through MALDI-TOF/TOF tan-
dem mass spectrophotometry coupled with lectin binding and ex-
oglycosidase digestion. These included the common insect pauci-
mannose structure (MansGlcNAcy) linked to Asn609, and highly
fucosylated structures at the other three consensus sites (Asn295,
Asn623, and Asn752). These glycans were shown to display up
to a trifucosylated core and fucosylated antennae structures
(Fuc13GlcNAc). This predominance of Fuce1,3GalNAc-Asn is fur-
ther indicated by the resistance of APN to PNGase F—an en-
zyme that cleaves all asparagine-linked oligosaccharides unless
the core contains an «1,3 fucose (Stephens et al. 2004). It is un-
likely that these high-fucose glycans are responsible for CrylAc
binding as they lack terminal GalNAc residues, suggesting it is the
C-terminal O-site glycans that might determine CrylAc binding.
Supporting this hypothesis, CrylAc is not reported to bind to any
class 2 lepidopteran APNs—a class which has significantly fewer
predicted O-linked glycosylation sites and no C-terminal stalk re-
gion (Fig. 6) (Pigott and Ellar 2007). Although O-glycosylation sites
have been hypothesized to be critical for CrylAc activity, there
is evidence of CrylAc binding and activity in APN classes with
comparatively low numbers of O-glycosylation consensus sites.
Cryl1Ac can bind to a class 4, 110 kDa APN present in H. virescens
BBMYV, that does not contain a C-terminal stalk and is not recog-
nized by SBA (Banks et al. 2001). Furthermore, a class 5 APN iso-
lated from Athetis lepigone (AIAPN5) has recently been identified as
a putative functional receptor mediating Cry1Ac toxicity (Wang et
al. 2017b). This may indicate that the increased O-glycosylation
sites seen in classes 1 and 3 are not responsible for Cry1Ac toxic-
ity, although, to the best of our knowledge, it is unknown whether
CrylAc binding to AIAPNS is GalNAc-dependent. Further investi-
gations are required to determine if glycosylation is required for
CrylAc binding to classes 2 and 5 APNs, or if these receptors work
via a GalNAc-independent route.
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(A).

(B).

Figure 5. Crystal structure of CrylAc in complex with GalNAc (PDB 4ARX) and a summary of notable residues identified through mutational and
cyrstalographic studies. (A) CrylAc shares the conserved three-domain structure of the Cry family of toxins. Domain I (orange) comprises an a-helix
bundle, domain II (blue) comprises three g-sheets forming a g-prism, and domain III (green) comprises two antiparallel -sheets forming a ‘jellyroll’
domain. (B) Residues in Domain III (shown as sticks (green)) implicated as significant for APN binding and/or Cry1Ac toxicity against L. dispar, M. sexta,
and H. virescens. The binding of GalNAc (yellow) relative to these residues is also shown. (C) Residues that interact with GalNAc (yellow) were identified
using PDBePISA and are shown as sticks (green/cyan). Residues that have also been implicated as significant for APN binding are coloured cyan.
Hydrogen bonds are formed between CrylAc GIn509, Arg511, Arg590 and GalNAc.. Residues (shown as sticks) implicated as significant for APN binding
and/or CrylAc toxicity against L. dispar, M. sexta, and H. virescens in (B) Domain I, (C) Domain II, and, (D) Domain III. Binding sites for GalNAc taken from

the crystal structure of of CrylAc in complex with GalNAc (PDB 4ARY).

An array of studies has shown lepidopteran APNs, of all classes,
are attached to the membrane via glycosyl-phosphatidylinositol
(GPI) anchors (Gill et al. 1995, Knight et al. 1995, Valaitis et al.
1995, Denolf et al. 1997, Hua et al. 1998). GPI-anchors contain
carbohydrate-rich structures, often including core-linked GalNAc
present at the membrane surface, leading to speculation that this
may be a CrylA binding epitope. However, removal of the GPI-
anchor glycan moiety using phospholipase C (PLC) does not ap-
pear to alter binding activity (Masson et al. 1995), although it does
drastically reduce CrylAc pore-forming activity—as expected by
loss of membrane association (Lorence et al. 1997). GPI-anchored
proteins, including APN, are preferentially clustered in glycolipid-
enriched microdomains—specialized detergent-resistant mem-
brane microdomains present in both mammals and insects that
are enriched in cholesterol and GSLs. Chemical analysis of the
115-kDa M. sexta APN-associated lipid aggregate showed a pre-
dominance of neutral lipids, mainly diacylglycerol and free fatty
acids (Sangadala et al. 2001). The presence of neutral lipids is
interesting given the aforementioned studies indicating a reduc-
tion in neutral GSLs in resistant populations of P. xylostella and M.
sexta (Kumaraswami et al. 2001, Higuchi et al. 2007). Reconstitu-
tion of the 115-kDa M. sexta APN into liposomes showed increased
CrylAc binding when the lipid aggregate was present, as well as
preferential binding of Cry1lAc to lipid microdomains (Sangadala
et al. 2001). This concentration of APNs to lipid microdomains
is hypothesized to facilitate toxin oligomerization through the
high density of binding epitopes. Oligomerization of CrylAc and
Cry1Ab is shown to facilitate membrane insertion and pore for-

mation via significantly increasing the binding affinity to APN
(~100-fold over the monomeric form) (Pardo-Lopez et al. 2006).
Nevertheless, these lipid domains could also be required for pro-
tection from gut proteases or APN structural stabilization. Fur-
thermore, lipid rafts appear to be required for the pore-forming
actions of GalNAc-insensitive Cry1Ab (Zhuang et al. 2002), indi-
cating they are not simply just enhancing toxicity via increasing
GalNAc receptor concentration.

The exact role of APN and glycoconjugates in facilitating Cry1A
toxicity is yet to be fully understood, with several studies indicat-
ing APN binding alone is not always enough to induce toxicity. For
example, Banks et al. showed Drosophila S2 cells transfected with
a novel 110 kDa APN from H. virescens conferred binding but did
not induce pore formation (Banks et al. 2003). Furthermore, re-
moving APN binding does not necessarily eliminate all binding,
with Lee et al. (1996), showing APN competes for CrylAc bind-
ing with Lymantria dispar BBMV—but does not eliminate it. How-
ever, a significant number of reports indicate APN is critical for
pore-formation (Sangadala et al. 1994, Schwartz et al. 1997, Gill
and Ellar 2002). For example, expression of the 120-kDa M. sexta
APN in the mesodermal and midgut tissue of Drosophila is capa-
ble of rendering normally insensitive larvae susceptible to Cry1Ac
(Gill and Ellar 2002). Furthermore, several studies show that arti-
ficial APN suppression confers CrylA resistance in several Lep-
idoptera (Qiu et al. 2017b, Sun et al. 2020). Divergent outcomes
between these experiments are partially explained by the use of
different experimental systems conferring differing posttransla-
tional modifications—especially when we know the gut tissue is
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Figure 6. Predicted N- and O-linked glycosylation sites of lepidopteran APNs. Representative lepidopteran APN sequences that have been reported as
putative Cry toxin receptors were taken from Fonseca et al. (2015), and predictions for the number of putative N-glycosylation sites (N) and
O-glycosylation sites identified using the NetNGlyc 1.0 and NetOGlyc 4.0 servers (DTU Bioinformatics), respectively (table). Species abbreviations: Ha,
Helicoverpa armigera; Hv Helicoverpa punctigera; Se, Spodoptera exigua; Px, Plutella xylostella; Bm, Bombyx mori; Ms, Manduca sexta; Ld, Lymantria dispar; Sl,
Spodoptera litura; Aj, Achaea janata; and Ep, Epiphyas postvittana. Genbank accession numbers are shown for each protein. To visualize the placement of
N-glycosylation sites, multiple sequence alignment was produced using Geneious. Mean pairwise identity is shown at the top of the alignment—green
indicates 100% identity, yellow indicates between 30% and 100% identity, and red indicates below 30% identity. Green arrows show the location of
predicted N-glycosylation sites (larger arrows are due to gaps in the sequence alignment).

the in vivo target. Carroll et al. (1997), first proposed a GalNAc sen-
sitive and a GalNAc insensitive CrylAc binding mechanism within
the same gut, by exploring the difference in CrylAc binding to
BBMYV isolated from either the anterior (A-BBMV) or posterior (P-
BBMV) midgut of a target insect, M. sexta. CrylAc binding to P-
BBMV induced a faster rate of toxicity, compared to A-BBMV, but
was substantially reduced by the presence of GalNAc, whilst A-
BBMV binding was not. Furthermore, Cry1Ac binding to APN was
concentrated in P-BBMV suggesting the GalNAc-sensitive mech-
anism involves APN, whilst the GalNAc-insensitive binding does
not. Indeed, later studies by Banks et al. (2001) supported this
idea showing that CrylAc recognized a distinct 110 kDa APN in H.
virescens, where binding was not inhibited by GalNAc and the re-
ceptor itself did not bind SBA. Furthermore, a mutant Cry1lAc with
an altered GalNAc binding pocket demonstrated enhanced bind-
ing to the 110-kDa APN variant, even though binding was abol-
ished to the GalNAc-mediated 120 and 170 kDa H. virescens APN
variant.

As briefly discussed above, a model of how APN confers CrylAc
toxicity is through a bivalent sequential binding mechanism,
with an initial low-affinity, rapidly reversed interaction (GalNAc-
sensitive) followed by a slower high-affinity irreversible interac-
tion (GalNAc insensitive) (Cooper et al. 1998, Jenkins et al. 2000).
Combined mutational, binding and toxicity studies have enabled
the identification of residues important for Cry1Ac binding to APN
and GalNAc (Fig. 5 and Table 2). Broadly, D-I is associated with
insertion of the pore into the membrane, and APN binding epi-
topes are primarily localized to Cry1A D-II and D-III (Rajamohan

et al. 1996a, b, ¢, Vachon et al. 2004, Liu and Dean 2006). Domain
II has been shown to influence membrane insertion, via a high
affinity interaction with APN, whereas D-III is hypothesized to be
involved in host specificity and the initial low-affinity receptor
recognition (Wu and Dean 1996, de Maagd et al. 1999a, b)—such
as the GalNAc-dependent binding mechanism of CrylAc (Burton
et al. 1999, de Maagd et al. 1999b, Jenkins et al. 2000). Indeed,
sequence analysis has shown D-III to be markedly divergent in
Cry1lAc compared to other related—non-GalNAc binding—3D-Cry
proteins (Bravo et al. 1997, Thompson et al. 1995).

The first phase of APN recognition is hypothesized to be
through fast, low affinity D-III binding. This is supported by Lee
et al. (1999), who generated a series of alanine substitution mu-
tations in the region of D-III unique to CrylAc (503-525 aa) and
demonstrated that binding affinity was significantly reduced, and
to a relatively greater degree than toxicity (Fig. 5B). Whilst some
of these mutant residues are in direct contact with GalNAc (Q509,
R511, and Y513,), others are not (S503, S504, N506, N510, and
W545)—but with the exception of W545 are in close proximity to
the binding pocket. It was not investigated whether any of these
mutations affect GalNAc binding, making it difficult to interpret
whether reduced mutant binding to BBMVs was through a loss
of GalNAc binding. The authors conclude that if D-III is predom-
inantly involved in initial low-affinity APN binding, then this will
only compromise second phase high-affinity binding when itis re-
duced by atleast 5-fold. Burton et al. (1999) also reported substitu-
tion mutations in the unique region of Cry1Ac D-III (N506D, QS09E,
and Y513A—the latter two having direct contact with GalNAc in
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Table 2. Summary of mutagenesis studies implicating a role for CrylAc residues in APN binding and/or CrylAc toxicity against L. dispar,
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M. sexta, and H. virescens.

Mutation Domain L. dispar M. sexta H. virescens
N135Q I - Abolished toxicity, reduced binding to -
APN (phase 2), slower rate of membrane
permeabilization (Cooper et al. 1998)
R281A 11 Reduced toxicity, reduced binding to APN - -
(phase 2) (Jenkins et al. 2000)
R289A 11 Reduced toxicity, reduced binding to APN - -
(phase 2) (Jenkins et al. 2000)
R368A, 11 Reduced toxicity, almost abolished binding - -
R369A to APN (phase 2) (Jenkins et al. 2000)
R368E, I Reduced toxicity, reduced binding to APN - -
R369E (phase 2) (Jenkins et al. 2000)
1375A 11 Slightly increased toxicity * (Jenkins et al.
2000)
N377A 11 Reduced toxicity, reduced binding to APN - -
(phase 2)
S438A~ 11 Reduced toxicity, reduced binding to APN - -
S443A (phase 2) (Jenkins et al. 2000)
S503G* 111 - Reduced toxicity (Aronson et al. 1995) Reduced toxicity (Aronson et al.
1995)
S5031%* 111 - Reduced toxicity, reduced binding to Reduced toxicity, reduced binding to
BBMVs (Aronson et al. 1995) BBMVs (Aronson et al. 1995)
S504R** 111 - Reduced toxicity (Aronson et al. 1995) Reduced toxicity
S5041** 11 - Reduced toxicity, reduced binding to Reduced toxicity, reduced binding to
BBMVs (Aronson et al. 1995) BBMVs (Aronson et al. 1995)
N506D 11 - Retained toxicity, reduced binding to -
APN, slower rate of membrane
permeabilization (Burton et al. 1999)
N506D, 11 - Retained toxicity, reduced binding to -
Q509E APN, slower rate of membrane
permeabilization (Burton et al. 1999)***
N506D, 11 - Retained toxicity, abolished binding to -
Q509E, APN, slower rate of membrane
Y513A permeabilization, binding no longer
inhibited by GalNAc (Burton et al. 1999)***
QS09E 111 - Retained toxicity, reduced binding to -
APN, slower rate of membrane
permeabilization (Burton et al. 1999)
Q509A 11 Reduced toxicity, reduced binding to BBMVs  Reduced toxicity, reduced binding to Retained toxicity, reduced binding to
(Jenkins et al. 2000, Lee et al. 1999) BBMVs (Lee et al. 1999) BBMVs (Lee et al. 1999)
Q509S 11 - Retained toxicity, reduced binding to -
APN, slower rate of membrane
permeabilization (Burton et al. 1999)
Q509A- III  Reduced toxicity, reduced binding to BBMVs, Reduced toxicity, reduced binding to Reduced toxicity, reduced binding to
R511A reduced binding to APN (phase 1) (Jenkins et BBMVs (Lee et al. 1999) BBMVs (Lee et al. 1999)
al. 2000, Lee et al. 1999)
R511A 11 Reduced toxicity, reduced binding to BBMVs, Reduced toxicity, reduced binding to Reduced toxicity, reduced binding to
reduced binding to APN (phase 1) (Jenkins et BBMVs (Lee et al. 1999) BBMVs (Lee et al. 1999)
al. 2000, Lee et al. 1999)
Y513A III  Reduced toxicity, reduced binding to BBMVs, Reduced toxicity, reduced binding to Retained toxicity, reduced binding to
reduced binding to APN (phase 1) (Jenkins et BBMVs and APN, slower rate of BBMVs (Lee et al. 1999)
al. 2000, Lee et al. 1999) membrane permeabilization (Burton et
al. 1999, Lee et al. 1999)
W545A III  Reduced toxicity, abolished binding to APN  Retained toxicity, reduced binding to APN -

(phase 1), abolished GalNAc recognition
(Jenkins et al. 2000)

(Pardo-Lopez et al. 2006)

*95% confidence intervals overlapped with wildtype CrylAc.
“*When these residues are mutated to an alanine, no differences in toxicity or binding are observed in L. dispar, M. sexta, or H. virescens (Lee et al. 1999).
“+Further decreased rate of membrane permeabilization that the previous mutation presented in the table.
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the crystal structure of the complex) resulted in reduced bind-
ing and slower pore formation, with the triple mutation no longer
inhibitable by GalNAc—yet no significant differences in toxicity
were observed. Further supporting that D-III binding is required
for sequential D-II binding, the mutation of a tryptophan residue
(W545A) in D-III (Fig. 5B) can completely abolish sequential bind-
ing of D-II to the L. dispar APN and recognition of GalNAc—of par-
ticular note given W545 is not part of the GalNAc binding pocket
(Jenkins et al. 2000). Interestingly, all Cry1Ac tryptophan residues
are conserved in the closely related Cry1Ab, except the D-III W545
residue (Rausell et al. 2004). The complete loss of APN bindingin L.
dispar, via the CrylAc W545A mutation, only caused a 50-fold de-
crease in activity, whereas the same W545A mutation in M. sexta
larvae did not abolish binding to APN, with little to no loss in tox-
icity (Pardo-Lopez et al. 2006). The work in M. sexta also demon-
strated that GalNAc binding to the Cry1Ac oligomer increases the
exposure of W545 to solvent, through a subtle conformational
change in the GalNAc binding pocket region of D-III. In M. sexta,
this conformational change is hypothesized to be responsible for
the marked increase in binding affinity of the CrylAc oligomer to
APN. Collectively, these data indicate that D-III functions to bind
both GalNAc and APN in a low affinity manner, which can affect
second-phase APN binding, yet there are apparent species-specific
differences which determine CrylAc interaction with APN and
toxicity, and an indication that CrylAc can retain toxicity even
when binding to APN and GalNAc is abolished—leaving the bind-
ing open to further investigation.

Domains II and III are not specifically linked to glycan inter-
actions, yet a common theme is apparent between mutational
studies in all three domains; the binding to APN and subsequent
toxicity are not necessarily correlated. This could be explained
by the presence of alternative in vivo CrylAc receptors—such as
cadherin-like receptors or ABC transporters—that function inde-
pendently of APN and could be potentially compensating for the
lack of APN binding/activity. The exact model used may change
the distribution/concentration of APN and any potential alterna-
tive receptors. Furthermore, the exact experimental setup may
play a significant role. If APN binding to D-III is the rate limiting
step to binding to D-II, and D-II binding and membrane perme-
abilization is not abolished but slowed, it may be possible to exert
toxicity over a longer time course. A better understanding of the
key residues in CrylAc required for binding to receptors, and the
role of GalNAc in this binding, might enable improved engineering
of both insect specificity and toxicity, as well as providing a valu-
able tool for identifying potential resistance-driving mutations.

Cry1A binding to cadherin-like receptors

Vadlamudi et al. (1995), purified and characterized the first
cadherin-like receptor from M. sexta larvae, a 210-kDa protein
termed BT-R;. Sequence analysis showed a 30%-60% similarity
to the cadherin superfamily of proteins—a large family of trans-
membrane glycoproteins characterized by repeated calcium-
binding domains. Since the discovery of BT-R;, receptors with a
highly similar domain organization have been identified in an ar-
ray of other lepidopteran species including B. mori (BtR175), H.
virescens (HevCaLP), O. nubilalis, L. dispar, P. xylostella (PxCad), C. sup-
pressalis (CsCad), and H. armigera (HaCad) (Nagamatsu et al. 1999,
Gahan et al. 2001, Morin et al. 2003, Flannagan et al. 2005, Wang et
al.2005a, Xu et al. 2005). Lepidopteran cadherin receptors are usu-
ally anchored to the apical membrane of the midgut epithelium
via a single transmembrane domain and, unlike GPI-anchored re-
ceptors (such as APNs or ALPs), are not preferentially localized to
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glycolipid-enriched lipid microdomains (Zhuang et al. 2002, Mid-
boe et al. 2003). Interestingly, Cry1Ab treatment of M. sexta mi-
crovillimembranes was shown to induce Bt-R; localization to lipid
microdomains—although this is likely due to Bt-R; remaining at-
tached after toxin oligomerization and not due to a requirement
for (glyco)lipid-facilitated binding (Bravo et al. 2004).

There are significant data to show cadherin-like receptors func-
tion in determining Cry1A specificity and toxicity in lepidopteran
larvae (Pigott and Ellar 2007) and lepidopteran and Drosophila-
derived cell lines (Keeton and Bulla 1997, Hua et al. 2004, Zhang
et al. 2005). Furthermore, expression of BT-R; and BtR175 in
mammalian-derived cell lines can induce CrylAc toxicity (Dorsch
et al. 2002, Tsuda et al. 2003), suggesting cadherin-like receptors
alone may be enough to permit cytocidal action and no other
‘insect-specific’ features are required for action. The success of in-
ducing Cry1A toxicity in cell lines through cadherin-like receptor
expression alone may be due to the redundancy of glycosylation
in specifying binding. Unlike APN, there are no reports of sugars
acting as binding competitors with CrylAc to cadherin-like recep-
tors. Further indication that glycosylation is not required comes
from a study showing that the shortest fragment of Bt-R; that
binds CrylA toxins is a nonglycosylated 169 aa ectodomain frag-
ment, i.e. also capable of inhibiting toxicity (Dorsch et al. 2002). To
the best of our knowledge, the current literature does not report
glycosylation to play a significant role in cadherin-like receptor
binding, although N- and O-linked glycosylation sites are present
on all identified lepidopteran cadherin-like receptors (Shao et al.
2018).

CrylA binding to ALP receptors

Selection of a CrylAc resistant strain of H. virescens allowed
for comparison of midgut epithelium proteins between suscep-
tible (YHD2) and resistant (YHD2-B) larvae (Jurat-Fuentes et al.
2002, Jurat-Fuentes and Adang 2004). After observing reduced
CrylAc binding to YHD2-B BBMVs, based on the rationale that
GalNAc forms part of the CrylAc receptor, the authors investi-
gated levels of SBA binding to BBMVs and indeed observed re-
duced SBA binding to YHD2-B resistant larvae—initially indica-
tive of altered glycosylation (Jurat-Fuentes et al. 2002). Further
characterization of YHD2-B BBMVs identified a 68-kDa glycopro-
tein as a GPI-anchored alkaline phosphatase—HVALP. Digestion
of BBMV proteins with PNG-F to release N-terminal oligosaccha-
rides, eliminated SBA binding to HvALP, confirming the presence
of N-linked oligosaccharides with terminal GalNAc residues. Ad-
dition of Cry1Ac abolished SBA binding to HVALP, indicating com-
petitive binding of both proteins for the same N-linked GalNAc
residues on HVALP. Correlating with reduced CrylAc binding,
CrylAc-resistant BBMVs also demonstrated a reduction in ex-
pression and a 3-fold decrease in activity of HvALP—suggesting
the resistance was not due to altered glycosylation or recogni-
tion of GalNAc, but instead due to a reduction in HVALP protein
expression—although the authors did not perform oligosaccha-
ride analysis, resistance through altered glycosyl interactions can-
not be completely ruled out (Jurat-Fuentes and Adang 2004). In
a parallel with the work described above, Ning et al. 2010 de-
scribed two ALPs cloned from H. armigera (HaALPs) that specifi-
cally bind CrylAc via N-linked GalNAc. Whether GalNAc binding
on ALP is required for CrylAc toxicity is still open for debate—
indeed GalNAc addition to H. armigera BBMVs inhibits permiabi-
lization (Rodrigo-Simon et al. 2008), however, whether this is di-
rectly through ALP and the relevance to in vivo activity is yet to be
determined.
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Cry5B and Cry14A

Cry5B is the best-characterized of the Cry5 subfamily of six phy-
logenetically related proteins (Cry5Aa, Cry5B, Cry12A, Cryl3A,
Cry14A, and Cry21A) that may demonstrate nematocidal and/or
insecticidal activity (Wei et al. 2003). Consistent with the mode
of 3D-Cry protein insecticidal toxin actions, susceptible nema-
todes fed with nematocidal Bt strains experience dose-dependent
lethality associated with reduced feeding activity, inhibited devel-
opment and intestinal damage. To date, both Cry5B and Cry14A
nematocidal activity is shown to be dependent, at least in part, on
glycolipids (Marroquin et al. 2000, Griffitts et al. 2001, 2003, 2005).

Using forward genetics in C. elegans, Marroquin et al. (2000)
identified five bre genes (for Bacillus-toxin resistant), four of which
confer high levels of resistance to Cry5B induced toxicity and one
(bre-1) that confers a significantly lower level. In all resistant mu-
tants, Cry5B toxin remained in the intestine and was not inter-
nalized into the gut cells indicating resistance via reduced ‘re-
ceptor’ binding. The first bre gene to be characterized was Bre-
5, found to encode a B1,3-galactosyltransferase with strong se-
quence similarity to the Drosophila brn gene (required for glycol-
ipid synthesis; see Fig. 4) (Griffitts et al. 2001). Successively, bre-
2, bre-3, and bre-4 were characterized as encoding further gly-
colipid synthetic proteins; bre-4 as a UDP-GalNAc:GlcNac p1-4-
N-acetlygalactosaminyltransferase, bre-2 encodes a 1,3 glycosyl-
transferase, and bre-3 a putative glycosyltransferase homologous
to Drosophila egh (see Fig. 4) (Griffitts et al. 2003, 2005). Functional
homology of bre genes to the egh-brn invertebrate-specific lipid gly-
cosylation pathway was shown via TLC lipid analysis, demonstrat-
ing that bre mutants express no (bre-3, bre-4, and bre-5), or signifi-
cantly reduced (bre-2) complex GSLs, yet have no change in N- or
O-linked proteoglycan profiles. Specific binding of Cry5B to these
bre-dependent complex GSLs alongside genetic epistasis-based
experiments supported the proposal that bre-genes act consecu-
tively (bre-3, bre-4, bre-5, and bre-2) to synthesize a functional lipid-
linked oligosaccharide receptor with terminal galactose residues
(Griffitts et al. 2005). In further support of GSLs as principal de-
terminants for Cry toxicity, the C. elegans LEC-8 galectin (a &3-
galactoside-binding protein) can compete with Cry5B for carbo-
hydrate binding. Cry5B binding to C. elegans glycolipid-coated TLC
plates was inhibited through the addition of recombinant LEC-8,
and C. elegans LEC-8 deficient mutants were more susceptible to
Cry5B, in comparison to wild type worms (Ideo et al. 2009). Bre
mutants also demonstrated a moderate resistance to Cryl4A, a
toxin with 34% sequence identity to Cry5B in their protoxin forms
and ~30% identity in the activated form. This relatively low level
of amino acid identity suggests that other distantly related tox-
ins may induce bre-mediated toxicity. However, the reduced resis-
tance, compared to Cry5B, signifies that other Cry14A receptor(s)
may compensate for the loss of the bre-mediated glycolipid (Grif-
fitts et al. 2001, 2003).

Although identified in the same forward genetics screen as bre
2-5, bre-1 mutants demonstrate substantially less Cry5B resis-
tance Marroquin et al. 2000, Barrows et al. 2007). Bre-1 has since
been identified as a GDP-mannose 4,6 dehydratase (GMD), an en-
zyme involved in a fucose salvage pathway. Unlike the bre2-5
genes, it does not function in a glycolipid-specific manner, with
bre-1 defective mutants showing strikingly reduced levels of fuco-
sylated N and O-linked proteoglycans as well as fucosylated gly-
colipids (Barrows et al. 2007). This partial Cry5B resistance indi-
cates that fucose is less critical for eliciting Cry5SB binding than ter-
minal galactose residues—as shown by competitive binding stud-
ies.

Interestingly, no obvious change in phenotype or lethality were
observed in the bre-mutant C. elegans, apart from a small reduction
in brood size in bre-1 and bre-3 worms (Barrows et al. 2007). The
nematode is apparently capable of surviving with reduced levels
of GSLs and dramatically reduced fucose, which is perhaps sur-
prising given the commonality of fucose in nematode glycans and
the prevalence of detrimental phenotypes in mammalian GMD
knockouts (Keeley et al. 2019, Sturla et al. 2001). This has impli-
cations for Cry resistance in nematodes, since they can tolerate
changes in glycosylation while in Drosophila, the equivalent brn
and egh mutants are lethal/sterile, suggesting a significantly lower
tolerance to reduced bre-mediated glycosylation and an essential
role for GSLs in insects. This contrast in phenotypes could sug-
gest that insects, in contrast to nematodes, would be less able to
achieve to Cry resistance via GSL alteration.

Cry2

Like the Cry1 class of Bt proteins, Cry2 proteins are largely spe-
cific towards lepidopteran insects (Hernandez-Rodriguez et al.
2008), with some Cry2A variants also exhibiting toxicity against
mosquito species, including Ae. aegypti, Culex quinquefasciatus,
Anopheles stephensi, and An. gambiae (Moar et al. 1994, Sims et al.
1997, Misra et al. 2002, McNeil and Dean 2011, Ricoldi et al. 2018,
Goje et al. 2020, Valtierra-de-Luis et al. 2020). Whilst Cry2 is not re-
ported to bind any APNs, ALPs, or CADs, functional Cry2A ABC re-
ceptor binding proteins have been identified—ABCC1 and ABCA2
from H. armigera (HaABCC1 and HaABCA?2) and ABCA?2 from B. mori
(BmABCA?2) (Wang et al. 2017a, Chen et al. 2018, Li et al. 2020),
P. gossypiella (PgABCA2) (Fabrick et al. 2021), and Helicoverpa zea
(HzABCAZ2) (Fabrick et al. 2022). The ABC transporter superfam-
ily of proteins are responsible for the ATP-powered translocation
of a diverse assortment of substrates across membranes. In com-
mon with shared physiological mechanisms observed with mam-
malian ABC transporters, insect ABC transporters have been func-
tionally linked to lipid transport, and the transport of xenobiotics
and their metabolites (Rees et al. 2009, Broehan et al. 2013).

Sequence analysis of HaABCC1 showed the presence of 14 po-
tential N-glycosylation sites and 16 potential O-glycosylation sites
throughout the entire protein (Chen et al. 2018). In HaABCA2,
sequence analysis identified six potential N-glycosylation sites
within the extracellular (EC) domain loops of transmembrane do-
main (TMD)-1 and TMD-2 (Tay et al. 2015). One of these putative
N-glycosylation sites is located within a 5-bp deletion mutation
shown to confer Cry2Ab resistance in H. armigera. This deletion
mutation introduces a stop codon within HaABCA2 TMD-2, lead-
ing to a protein truncation. Although the use of these these puta-
tive glycosylation sites is yet to be confirmed, it has been hypoth-
esized that binding of Cry2A toxins to the glycosylated EC domain
loops of ABCA2 may form the basis of toxin oligomerization and
sequential pore formation (Tay et al. 2015). Given that ABC trans-
porters have been shown to exist as multiprotein complexes in the
membrane, it may also be the case that other ABC-associated pro-
teins are involved in Cry2A binding and pore-formation (Kaminski
etal.2006). Other reported Cry2 receptors include the Se-V-ATPase
subunit B from S. exigua, also predicted to contain several putative
glycosylation sites (Qiu et al. 2017a).

Cry2Ab has also been shown to interact with lipophorin glycol-
ipids (Ma et al. 2012b). As discussed previously, Ma et al. (2012b)
demonstrated that CrylAc addition to G. mellonella lipid particles
induced aggregation, and sequesters CrylAc to the gut lumen,
possibly increasing Cry toxin tolerance. Cry2Ab was also shown
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to aggregate following lipid particle interaction and, hence, the
authors suggest a similar mechanism of toxin tolerance.

Cry3

The Cry3 class is the best-characterized of the coleopteran-
specific proteins, with a domain architecture consistent with
other 3D-Cry proteins. The lectin-like D-III of Cry3Aa was found
to exhibit strong resemblance to the N-terminal cellulose binding
domain (CBDy3) of the bacterial Cellulomonas fimi 1,4-8-glucanase
C (CenC) (Johnson et al. 1996, Burton et al. 1999). The CBDy
domain of CenC has been shown to interact with cellulose, as
well as cell oligosaccharides and g-1,4-linked oligomers of glucose
(Tomme et al. 1996)—with binding thought to occur via g-strands
within a five-stranded cleft which constitutes the CBDy; (Johnson
etal. 1996, Kormos et al. 2000). The structural correlation between
Cry3 D-III and the CBDy; of CenC may suggest a role for sugar
moieties in Cry3 receptor binding.

Several studies have implicated CADs, ALPs, APNs, and ABCs
as Cry3 binding proteins and/or functional receptors—although
less is known regarding the relevance of glycosylation. In Tene-
brio molitor, Cry3Aa has been shown to bind to a GPI-anchored
ALP, which is preferentially expressed in the BBMV of early instar
larvae (Zuniga-Navarrete et al. 2013). In D. virgifera virgifera and
Chrysomela tremula, ABCB1 has been identified as a functional re-
ceptor for Cry3A (Niu et al. 2020). Functional validation of the D.
virgifera virgifera Cry3A receptor (DVABCB1) was achieved through
activated Cry3A addition to Sf9 or HEK293 cells, both expressing
DvABCB1. As the gut of D. virgifera vigifera is mildly acidic, this
again indicates the pH of cell studies does not need to replicate
the gut environment for toxicity to occur, in the presence of ac-
tivated toxin. Sequence analysis of CtABCB1 predicts two puta-
tive glycosylation sites on the EC loops of the transmembrane do-
mains (Pauchet et al. 2016). Although the functional relevance of
these sites is unknown, this is the first study to suggest that gly-
cosylation may be important for ABC receptors.

Cry30Ca2

Cry30Ca2 is produced by the Bt serovar. jegathesan, a mosquitoci-
dal subspecies that shows toxicity against Ae. aegypti, An. stephensi,
Culex pipiens, and C. quinquefasciatus (Delecluse et al. 1995, Kawalek
et al. 1995). Bioassays of the isolated Cry30Ca2 toxin indicate that
this individual protein is not toxic against C. quinquefasciatus and,
hence, additional studies are required to test its toxicity to other
mosquitoes (Sun et al. 2013).

Using homology modelling, based upon Cry4Ba, Zhao et al.
(2012) produced a 3D model of the Cry30Ca2 structure consistent
with that of other 3D-Cry proteins. Dissimilar from the interac-
tion of Cry1lAc with GalNAc, which occurs via Cry1Ac D-III, dock-
ing studies investigating the interaction of Cry30Ca2 with GalNAc
highlighted a distinct, putative binding site within the apical loops
of the Cry30Ca2 lectin-like D-II (residues 1321 in loop 1, Q342, T343,
Q345 in loop 2, and Y393 in loop 3, which form seven hydrogen
bonds with GalNAc) (Zhao et al. 2012). Various studies have im-
plicated the loop regions of Cry protein D-II in receptor binding,
including Cry3Aa, which is shown to bind TmCad1 via D-II loop
1 (Zuniga-Navarrete et al. 2015). Given the results of molecular
docking studies and these structural similarities, a role for GalNAc
containing carbohydrate moieties in Cry30Ca2 mosquitocidal ac-
tivity has been suggested (Zhao et al. 2012). However, the effect of
GalNAc on the activity of Cry30Ca2 is yet to be investigated.
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Crylla

Bt serovar. israelensis (Bti) strains are highly toxic to a number of
mosquito species and, as such, are used for the control of their
populations in the field (Mittal et al. 2003). One such Bti toxin is
Cry11Aa, which displays toxicity against Aedes and Culex larvae
and, to a lesser extent, Anopheles larvae (Otieno-Ayayo et al. 2008).
Cry11Aa has been identified to bind receptors in mosquito larvae
that are in the same classes as Cry toxins that act against Lepi-
doptera, including APNs, ALPs, and Cadherins.

Cry11Aa binding to an ALP is suggested to play a role in medi-
ating toxicity in Aedes larvae (Fernandez et al. 2006). Interestingly,
the interaction between Cryl1Aa and Ae. aegypti ALP1 (AaeALP1)
was shown to be modulated by other proteins—namely C-type
lectins and galectins—which both interfere with toxicity (Batool
et al. 2018, Zhang et al. 2018). C-type lectins are a superfam-
ily of proteins that have mannose and galactose type carbohy-
drate binding capabilities through conserved residues (Brown et
al. 2018). Galectins are a family of proteins that typically bind
to B-galactoside carbohydrates (Modenutti et al. 2019), although
comparatively little is known about their carbohydrate binding
properties and function in invertebrates compared to vertebrates
(Yangetal 2011, Zhanget al. 2018). The Ae. aegypti C-type lectin-20
(CTL-20) can bind to both Aedes BBMVs and recombinant AaeALP1,
in addition to binding to Cryl1Aa itself. Further to this, CTL-20
has been shown to compete with Cryl1Aa for binding to AaeALP1
suggesting that they bind AaeALP1 in the same region (Batool et
al. 2018). Similarly, galectin-14 has been shown to compete with
Cry11Aa for binding to AaeALP1 and Aedes BBMVs, with modelled
molecular docking indicating that Cryl1Aa and Galectin-14 bind
to ALP1 on two different, but overlapping, interfaces (Zhang et al.
2018). Additionally, other galectins such as galectin-6 have also
been shown to interfere with CryllAa toxicity (Hu et al. 2020).
There is some evidence that galectin-6 binds to molecules con-
taining galactose-g1,4-fucose (Takeuchi et al. 2008, Maduzia et al.
2011), therefore, it is possible that Cryl1Aa may be able to bind
similar glycan moieties. These results draw comparison with the
Cry5B data discussed previously, where LEC-8 competes for car-
bohydrate binding and suggests a role for glycan moieties in the
interactions between CryllAa and ALP1. However, to the best of
our knowledge, there are no studies which have directly investi-
gated the involvement of glycan residues in this binding.

Perhaps the most extensive work looking into the role of gly-
coconjugates in CryllAa receptor binding has come from Chen
et al. (2009a), investigating the interactions between Cryl1Aa and
AaeAPNL1. This study identified AaeAPN1 as a CryllAa binding
partner through pulldown assays utilizing biotinylated toxin per-
formed on solubilized Ae. aegypti BBMV. The AaeAPN1 was cloned
and expressed in both E. coli and Sf21 cells—significant in the
context of investigating the role of glycoconjugates as E. coli do
not naturally N- and O- glycosylate proteins (Du et al. 2019).
The glycosylation status of AaeAPN1 from BBMV was investigated
through lectin blots (Chen et al. 2009a) and demonstrated the na-
tive form of AaeAPN1 was detectable by WGA but not SBA, indi-
cating AaeAPN1 contains N-acetylglucosamine moieties but not
terminal N-acetylgalactosamine residues. In Sf21 cells, expression
of a catalytically active form of AaeAPN1 did not render cells sus-
ceptible to CryllAa treatment. Although Sf21 cells have the abil-
ity to N- and O-glycosylate proteins (Davis and Wood 1995), the
AaeAPN1 in these cells was not detected by WGA, SBA, ligand
blot, or toxin pull down assays and the band detected by anti-
APN1 antibody was smaller than expected—possibly due to differ-
ences in post translational modifications (Chen et al. 2009a). The
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authors also hypothesized that alternative glycosylation in Sf21
cells could mask a glycan-independent binding site. Taken to-
gether these results may indicate that that glycosyl moieties are
required for binding. However, Chen et al. (2009b) also demon-
strated, via dot blot and competitive ELISA, that a truncated
AaeAPN1 fragment expressed in E. coli binds to Cryl1Aa, suggest-
ing that thisinteraction is glycan-independent, due to the absence
of N and O-glycosylation in E. coli—although this does not deter-
mine whether this binding is involved in mediating toxicity.

The sequence of an Aedes cadherin protein shown to bind
to CryllAa has been determined and there are predicted N-
glycosylation sites within the cadherin repeats, however, there has
been no investigation so far into whether glycosylation is present
and if it is required for this interaction (Chen et al. 2009b).

Cry4Ba

Cry4Ba is also produced by Bti and is processed in the insect
midgut to produce an active toxin of 65 kDa (Angsuthanasombat
et al. 1991). Like Cry11Aa, Cry4Ba also targets Aedes and Anopheles
mosquito larvae (Otieno-Ayayo et al. 2008, Ben-Dov et al. 2014,),
and is shown to target the same receptor classes as other 3D-Cry
toxins (APNs, ALPs, and Cadherins) (Likitvivatanavong et al. 2011,
Saengwiman et al. 2011).

A cadherin Cry4Ba binding partner (AgCad1), expressed in An.
gambiae BBMVs was predicted to be glycosylated, based upon the
observed AgCadl protein band having a slightly larger molecu-
lar weight than expected (Hua et al. 2008). The same group also
demonstrated that Cry4Ba displays limited binding on dot blots to
an E. coli-expressed truncated peptide from AgCad1l (a CR11 mem-
brane proximal EC domain peptide), suggesting that some binding
is possible in the absence of glycosylation or other in vivo require-
ments. Similarly, Cry4Ba was shown to bind to a segment of the
An. gambiae cadherin BT-Rs, expressed in E. coli, which consisted
of the EC domain module 7 through to the membrane proximal
EC domain (Ibrahim et al. 2013). As this cadherin fragment was
expressed in E. coli it is unlikely to be glycosylated and provides
further evidence that glycosylation of cadherins is not required
for Cry4Ba binding.

Multiple studies have implicated ALPs as binding partners for
Cry4Ba (Bayyareddy et al. 2009, Dechklar et al. 2011, Jimenez et
al. 2012). Mutagenesis studies demonstrated Cry4Ba binding to
ALP1, in part, through D-II loop II. Multiple Cry4B D-II mutants
displayed reduced binding to ALP1 from BBMV and E. coli, and re-
duced toxicity to Ae. aegypti larvae. The results of this study sug-
gest it is unlikely that receptor glycosylation is essential for in-
teraction, as the mutated versions of Cry4Ba also display reduced
binding to E. coli expressed ALP1 and Ae. aegypti BBMV (Jimenez
et al. 2012). Further to this, Thammasittirong et al. (2011) showed
that Cry4Ba binds to an Ae. aegypti ALP expressed in E. coli with
high affinity, which they conclude supports the notion that Cry4Ba
interactions with ALPs does not require glycosyl moieties as pro-
teins expressed in E. coli are unlikely to be glycosylated. Finally,
Buzdin et al. 2002 showed through ligand blots that addition of
monosaccharides (mannose, glucose, galactose, galactosamine,
N-acetylglucosamine, and N-acetylgalactosamine, either individ-
ually or in mixtures) did not interfere with Cry4Ba binding to ALP
that was prepared from Ae. aegypti BBMVs, with similar results
shown for Cryl1Aa binding to ALP. They also demonstrated that
the addition of N-acetylglucosamine or N-acetylgalactosamine
failed to elute ALP from Cry4Ba- and Cry11Aa- Sepharose (Buzdin
et al. 2002). APNs have also been identified as receptors for
Cry4Ba (Saengwiman et al. 2011). Sf9 cells expressing two Ae. ae-

gypti APN isoforms (AaeAPN2778 and AaeAPN2783) displayed in-
creased sensitivity to Cry4Ba and the toxin was shown to bind to
APNs in Sf9 cells (Aroonkesorn et al. 2015). The APNs expressed
in these cells were thought not to be glycosylated, suggesting that
the interaction between APNs and Cry4Ba is glycan independent.

Cry4Ba has been shown to interact directly with lipid bilay-
ers, which is perhaps not surprising given the elucidation of GPI-
anchored APN and ALP receptors. Thammasittirong et al (2019)
tested full length Cry4Ba and D-III-only binding to lipid bilayers
and liposomes prepared from an artificial lipid mix containing
phosphatidylethanolamine, phosphatidylcholine and cholesterol
(but no glycans). They focused on D-III of Cry4Ba as it is shown to
bind along the apical microvilli of the larval midgut of Ae. aegypti
(Chayaratanasin et al. 2007). Domain III of Cry4Ba displayed tight
binding to immobilized liposome membranes with a Kp compa-
rable to that of the full-length protein. However, unlike the full-
length protein, the truncated D-III Cry4Ba fragment did not induce
ion-channel formation in planar lipid bilayers or permeability of
calcein dye-loaded liposomes, consistent with the role of this do-
main as a membrane anchor rather than having a role in pore
formation (Thammasittirong et al. 2019). The binding of Cry4Ba
to lipids may suggest that, like other Cry proteins, it localizes to
lipid rafts—although whether glycolipid binding occurs, remains
to be tested.

Glycan binding in other bacterially
produced insecticidal toxins

There is also evidence that glycan binding could play an impor-
tant role in the insecticidal action of other structural classes of
bacterially produced toxins, with lectin-like domains present in
the Tpp family (D-I) (Colletier et al. 2016), Vegetative insecticidal
protein family (Vip3, D-IV, and D-V) (Zheng et al. 2020), mosquito-
cidal holotoxin (Mtx1Aal) (Treiber et al. 2008), and the membrane
attack complex/perforin family (Mpf, C terminal domain) (Zait-
seva et al. 2019). Sugar binding appears to play a role with sev-
eral members of the Tpp family, including Tpp78, Tpp80, and the
Tppl/Tpp2 binary complex. Several sugars—including chitotriose,
N-acetylmuramic acid, chitobiose, and N-acetylneuraminic acid—
can reduce the mosquitocidal action of Lysinibacillus sphaericus-
produced Tppl/Tpp2 in Culex cell lines (Broadwell and Baumann
et al. 1987), and arabinose and fucose can reduce Tppl toxic-
ity towards Culex larvae (Sharma et al. 2018). Both galactose and
GalNAc have recently been demonstrated to inhibit the activity of
Bt-produced Tpp78 (Cao et al. 2022) and Tpp80 (Best et al. 2022)
against their respective targets, rice planthoppers (Laodelphax stri-
atellus and Nilaparvata lugens) and mosquitoes (C. quinquefasciatus,
Ae. aegypti, and An. gambiae). The mosquitocidal Mtx1Aal contains
12-putative sugar binding domains across four ricin B-type lectin
repeats, which are structurally related to Piersin—a cytotoxin, i.e.
reported to bind Gb3 and Gb4 glycolipids (Matsushima-Hibiya et
al.2003). This is just a snapshot of the glycan-binding literature on
other bacterial pesticidal proteins, and highlights glycan binding
as an important mechanistic theme across bacterially produced
pesticidal proteins.

Conclusions

Bt 3D-Cry toxins are critical for progressing a sustainable ap-
proach to controlling pests of agriculture and vectors of human
disease, with the development of field resistance threatening cur-
rent effectiveness and progress. Understanding the mechanism of
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action is key to understanding resistance and the potential de-
velopment of new 3D-Cry proteins. All known 3D-Cry proteins
contain lectin-like domains, indicating a potential role for glycan-
binding. For several Cry proteins, interaction with sugars, glyco-
proteins, glycolipids, and competition by lectins has been demon-
strated in receptor binding, but a role in toxicity is not always
clear. For other members of the Cry family, these studies are ab-
sent, suggesting an important gap in our knowledge that should
be addressed. While for some proteins, such as Cry4B, above, bind-
ing to protein receptors appears to be glycosylation independent,
the potential carbohydrate-binding properties of D-II and D-III
may play a role in binding to glycolipid moieties in the target
cell membrane (as shown for Cry5B). The structural differences in
glycoconjugates between insects, nematodes, and mammals is a
mechanistic explanation for target range, i.e. independent of the
protein receptor and may explain why the transfection of genes
for such receptors does not always confer susceptibility to recip-
ient cells. This effect will be mediated by both the specificity of
the carbohydrate binding domains within the Cry proteins and the
natural lipid composition of the transfected cells. Understanding
the exact role of glycoconjugates can be a challenge due to the
difficulty in replicating the in vivo environment of the gut target
tissue—especially with many studies suggesting a complex coor-
dination of binding components is required to elicit the full spec-
trum of toxicity. Indeed, the majority of model data comes from
cell lines, which are not target-tissue specific and BBMV binding
studies in which the concentrations of receptors and lipid mi-
crodomains do not necessarily accurately reflect the in vivo en-
vironment. In addition to normal development, glycan expres-
sion can be significantly altered by environmental pressures, such
as temperature, infection, and dietary changes. This should be
considered in terms of the development of Bt tolerance in target
species—where changes in glycan binding profiles may be an indi-
cation of resistance as observed with nematocidal Cry5B. Despite
these experimental complexities, it is clear that glycan moieties
might be critical for exerting insecticidal and nematocidal activ-
ity, with glycan-moieties observed as primary receptors critical
for activity, and in more additive roles that can affect the spec-
trum/potency of activity. Despite many years of study of the Cry
proteins, our understanding of their glycoconjugate interactions
remains underinvestigated and in its infancy. Application of the
tools of glycobiology to the study of insecticidal proteins in future
will help us to resolve the importance of these interactions.
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