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Abstract. Maintaining the stability of excavation face is one of the most concerned problems in 

Slurry pressure balanced tunnel boring machine (SPB-TBM) construction. To overcome the 

uncertainty and errors caused by manual adjustment, this paper proposes a novel data-driven model 

framework to achieve the balance between slurry and soil pressure, which consists of two significant 

components: (1) an ensemble-learning-based model for predicting slurry pressure; (2) an 

optimization model based on greedy search strategy for slurry control parameter. The proposed 

framework was implemented and verified in Pearl River Delta Water Resources Allocation Project 

and the results demonstrated that the presented framework can make highly-accurate predictions for 

the slurry pressure and effectively adjust the control parameter values to achieve the balance between 

slurry and soil pressure. 

1. Introduction 

The construction of underground engineering plays a critical role in the sustainable 

development of European cities, by mitigating land use pressure and reducing environmental 

pollution. Tunnel boring machine (TBM), which is characterized by its high excavation 

efficiency, minimal environmental impact, and strong adaptability to the stratum, has become 

a popular option for various types of tunnel projects in Europe (Li et al., 2023), e.g. the London 

JLE metro (UK), Brescia metro (Italy) and Lyon metro (France) (Rallu et al., 2023). Particularly, 

slurry pressure balanced (SPB) TBM is widely used in the construction of submarine tunnel 

because of its advantages in maintaining the stability of excavation face (Zhang et al., 2021). 

In SPB-TBM tunnelling, the balance between the slurry pressure (Ps) and the expected 

water-earth pressure (Pe) is crucial for both efficiency and safety. To reduce ground 

deformation by using air buffer to mitigate pressure fluctuations in the slurry chamber, indirect-

type (German style with air chamber) SPB TBMs are currently mainly used. However, slurry 

control parameters are still manually adjusted based on the engineer's experience in practise, 

which has the characteristics of delay and unreliability. Recently, because of its advantages in 

modelling and controlling non-linear systems (Gao et al., 2019), machine learning (ML) 

methods have been proverbially employed in TBM tunnelling (Gao et al., 2021). Specifically, 

several researchers have explored the development of an ML-based approach for dynamically 

balancing Ps and Pe from various perspectives. Zhou et al. (2013) proposed a predictive control 

system for air chamber pressure using an Elman recurrent network (ENN). Liu et al. (2010) 

proposed a method combining mechanism analysis and least squares support vector machine 

(LS-SVM) technology for balancing chamber pressure. Liu and Zhang (2019) also used LS-

SVM to predict earth pressure in the chamber during the tunnelling process. However, these 

studies do not fully consider the influence of the combined action of tunnelling operating and 

slurry control parameters, and pay more attention to the theoretical analysis and prediction tasks, 

without considering how to optimize the operating parameter strategy for practical application. 
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Ensuring high prediction accuracy is also a crucial challenge for ML tasks. Often, a single 

ML model performs not so well due to its high bias. However, combining multiple base learners 

to form an integration model may not always yield robust results due to the variance between 

the base models. To address this issue, ensemble learning algorithms have emerged as the state-

of-the-art solution for improving the predictive performance of a single model by training 

multiple models and combining their predictions (Zhou and Zhou, 2021). Ensemble methods 

aims at combining several of these base learners to create a strong learner (or an ensemble 

model) to achieve better predictive performance. The use of ensemble learning-based methods 

has also been explored in the field of tunnelling construction for rock mass classification (Liu 

et al., 2020), estimation of advance rate (Zhou et al., 2021), etc. However, there is a dearth of 

research on optimizing operating parameters by predicting results using ensemble learning 

methods. 

To obtain real-time and reliable parameter adjustments to balance the Ps and expected 

water-earth pressure in SPB-TBM tunnelling, we proposed a novel data-driven model 

framework. The framework includes an ensemble learning-based model for predicting the Ps, 

and a greedy search-based optimization model for slurry control parameters. The continuation 

of this paper is organized as follows: Section 2 gives a detailed explanation of the methodology 

employed in this paper. Section 3 presents the application case and the framework execution 

results. Section 4 concludes the researches in this paper. 

2. Methodology 

The objective of the data-driven model framework proposed in this study is to predict the 

Ps under different excavation and slurry parameters, and subsequently determine the optimal 

combination of slurry control parameters that minimizes the difference between the predicted 

Ps and the expected Pe. According to the pressure balance control mechanism and the field 

engineering practise, the main parameters affecting the Ps can be divided into two categories: 

(1) excavation parameters: the excavation speed (𝑣), cutterhead rotation speed (𝑛), cutterhead 

torque (𝑇), penetration (𝑝) and the total propulsion (𝐹); (2) slurry control parameters: the air 

chamber pressure (Pa), slurry inlet flow (Qi) and outlet flow (Qo).The framework consists of 

two significant components, as depicted in Figure 1.  

 

Figure 1:   Data-driven model framework 

The prediction model is designed to predict Ps by establishing the complicated relationship 

between Ps and the excavation and control parameters. The predictive performance of this 

model is critical and should be optimized to the best possible extent. The optimization model, 
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on the other hand, employs a greedy search technique to explore the parameter space and 

identify various value combinations of the control parameters. This technique is particularly 

suitable for scenarios where the variation range is small and the search step is limited. The 

optimization model then determines the optimal values of Qi, Qo and Pa by selecting the 

combination that results in the minimum difference between the predicted Ps and the expected 

Pe. 

2.1 Development of the prediction model 

The construction process of the prediction model can be observed in Figure 2. Initially, the 

extracted samples are divided into training and test sets in a 9:1 ratio. Subsequently, the K-fold 

cross-validation technique is employed to determine the optimal combination of hyper-

parameters. Finally, the models are fitted on the training set, their performance is evaluated on 

the test set, and the optimal model is selected. To test and compare the performance of different 

ML-based prediction models, three types of models are employed: (1) Base learners, including 

multi-linear regression (MLR), decision tree (DT) and back-propagation neural network 

(BPNN); (2) Bagging. We selected the random forest (RF) algorithm as the representative. (3) 

Boosting. AdaBoost, GBDT, XGBoost and LightGBM are utilized based on the optimal base 

learner. 

  

Figure 2:   Construction process of prediction model 

The prediction performance measurements include mean squared error (MSE), mean 

absolute error (MAE), mean absolute percentage error (MAPE) and determination coefficient 

R2, as Eq. (1) - Eq. (4). 
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Where n is the number of samples, 𝑦𝑖  is the actual value for the ith sample,𝑦�̂�  is the 

corresponding predicted value and �̅� is the mean value of the actual values. 

2.2 Ensemble learning for regression 

There are two frameworks to ensemble the base learners: the independent framework and 

the dependent framework (Sagi and Rokach, 2018). In the independent framework, each base 

learner is constructed independently of the others by manipulating the inputs, the outputs, the 

features, or by injecting randomness (Dietterich, 2002) (e.g., bagging.). In the dependent 

framework, each additional base learner will affect the weight distribution of all base learners 

(e.g., boosting). 

Bagging.  Introduced by Breiman in 1990s (Breiman, 1996), bootstrap aggregating 

(bagging for short) is commonly used to reduce the variance within a noisy dataset. In bagging 

algorithms, basic learners are trained independently, and the average of their prediction results 

is taken as the final result in the regression task, thus generating stability, as shown in Figure 

3(a) (Sagi and Rokach, 2018). 

One of the typical algorithms is random forest (RF) (Breiman, 2001), which is versatile 

enough to be applied to large-scale problems, and it performs excellently especially when the 

number of variables is much larger than the number of observations (Biau and Scornet, 2016). 

Based on a given training sample set 𝐷𝑖 = {(𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛)}, an estimate Mi of function M 

is constructed. Assuming that there are m bootstrap samples, then m almost independent base 

learners Mi(X) will be obtained, and the ensemble model for regression task is denoted by 

𝑀𝑟𝑒𝑔(𝑋) =
1

𝑚
∑ 𝑀𝑖(𝑋)
𝑚
𝑖=1 . 

  

(a)  

 

(b) 

Figure 3:   The process of (a) bagging and (b) boosting.  

Boosting.  In boosting, all the base learners are trained sequentially in a highly adaptive 

way as shown in Figure 3(b), in which each basic model depends on the previous models and 

tries to correct the predecessor (Schapire et al., 2012). Adaptive Boosting (AdaBoost) and 

Gradient boosting decision tree (GBDT) are two major algorithms in boosting. 



5 

 

AdaBoost is a machine learning meta-algorithm formulated in 1997 (Freund and Schapire, 

1997). In each iteration, the weights of samples predicted incorrectly by the kth learner Hk will 

be increased. All the base learners will be assigned a certain weight according to the strength 

of the prediction ability, and usually the base learners with small errors will be assigned a larger 

weight. The ensemble model is denoted by 𝐻𝑟𝑒𝑔(𝑋) = ∑ 𝑒𝑘𝐻𝑘(𝑋)
𝑚
𝑘=1 , where 𝑒𝑘 represents the 

weight of each weak estimation. 

Instead of adjusting weights of samples, Gradient boosting decision tree (GBDT) focuses 

on the difference between the prediction and the ground truth, which tries to fit the new 

predictor to the residual errors 𝐿𝑘  made by the previous predictor rather than changing the 

weights for each incorrect and erroneous observation at each iteration (Yang et al., 2020). First, 

learn a model F1 based on the training samples. Then in the following k iterations, the base 

learner 𝐹𝑘 is trained according to 𝐿𝑘 = ∑ (𝑌𝑖 − 𝐹𝑘(𝑋𝑖))
2𝑁

𝑖=1 . The final prediction is calculated 

by 𝐹𝑚(𝑋) = 𝐹
1(𝑋) + 𝜌 × ∑ 𝐹𝑘(𝑚)

𝑚
𝑘=1 , where 𝜌 controls the step size to combine all the wear 

regression estimations.  

Under the framework of GBDT, extreme Gradient Boosting (XGBoost) (Chen et al., 2015) 

and Light Gradient Boosting Machine (LightGBM) (Ke et al., 2017) are two of the improved 

algorithms. XGBoost efficiently saves the hardware resources through system optimization and 

algorithmic enhancements. LightGBM utilizes Gradient-based One side Sampling (GOSS) and 

Exclusive Feature Building (EFB) techniques to make the model more capable to deal with 

large amounts of data. 

2.3 Optimization of slurry pressure by greedy search strategy 

To search for the optimal value combination of the slurry control parameters, the search 

space needs to be established in advance. The three-dimensional space is composed of Pa, Qi, 

and Qo. In search of [Pa_min, Pa_max], [Qi_min, Qi_max], [Qo_min, Qo_max], {( , , )}a i oP Q Q  (the search 

collection) is obtained. The objective function and the constraint conditions of slurry pressure 

optimization are shown in Eq. (5). 

𝑎𝑟𝑔𝑚𝑖𝑛 𝑔 = 𝑎𝑟𝑔𝑚𝑖𝑛 |𝑃𝑠 − 𝑃𝑒| 

𝑠. 𝑡.

{
 
 

 
 

𝑃𝑎 ∈ [𝑃𝑎_𝑚𝑖𝑛, 𝑃𝑎_𝑚𝑎𝑥]

𝑄𝑖 ∈ [𝑄𝑖_𝑚𝑖𝑛, 𝑄𝑖_𝑚𝑎𝑥]

𝑄𝑜 ∈ [𝑄𝑜_𝑚𝑖𝑛, 𝑄𝑜_𝑚𝑎𝑥]

𝑄𝑖 < 𝑄𝑜
𝑃𝑠 = 𝑓(𝐹, 𝑇, 𝑛, 𝑣, 𝑃𝑎, 𝑄𝑖 , 𝑄𝑜)

 (5) 

Where 𝑓 is the prediction model. 

The greedy search algorithm is efficient to optimize the value combination of control 

parameters within their specified scopes. Basically, greedy search always makes the optimal 

choice by exploring in the whole search space. It will look at each step to ensure that the 

objective function is optimized globally. The process of the greedy search algorithm applied in 

the optimization of Ps is as shown in Figure 4. The search ranges of the control parameters Pa 

(Bar), Qi (m3/h), and Qo (m3/h) are [4, 4.5], [1980, 2000], [1980, 2000], respectively. The search 

step length 𝑙𝑎, 𝑙𝑖, and 𝑙𝑜 are 0.01Bar, 0.1 m3/h, 0.1m3/h, respectively.  

Input: 𝐹; 𝑇; 𝑛; 𝑝; 𝑣; 𝑃𝑒; 𝑙𝑎: search length of P𝑎; 𝑙𝑖: search 

length of Qi; 𝑙𝑜: search length of Q𝑜. 
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Output: 𝑃𝑎
𝑜𝑝𝑡
; 𝑄𝑖

𝑜𝑝𝑡
; 𝑄𝑜

𝑜𝑝𝑡
; 𝑃𝑠

𝑜𝑝𝑡
; 𝑔𝑚𝑖𝑛 : minimal difference 

between the predicted 𝑃𝑠 and the expected 𝑃𝑒. 

for 𝑃𝑎 in 𝑟𝑎𝑛𝑔𝑒(𝑃𝑎_𝑚𝑖𝑛, 𝑃𝑎_𝑚𝑎𝑥 , 𝑙𝑎) do 

  for 𝑄𝑖 in 𝑟𝑎𝑛𝑔𝑒(𝑄𝑖_𝑚𝑖𝑛, 𝑄𝑖_𝑚𝑎𝑥) do 

    if 𝑄𝑖 > 𝑄𝑜_𝑚𝑖𝑛 then 

        𝑄𝑜_𝑚𝑖𝑛
′ ← 𝑄𝑖 

      else 

        𝑄𝑜_𝑚𝑖𝑛
′ ← 𝑄𝑜_𝑚𝑖𝑛 

    for 𝑄𝑜 in 𝑟𝑎𝑛𝑔𝑒(𝑄𝑜_𝑚𝑖𝑛
′ , 𝑄𝑜_𝑚𝑎𝑥 , 𝑙𝑜) do 

      𝑃𝑠 ← 𝑓(𝐹, 𝑇, 𝑛, 𝑣, 𝑝, 𝑃𝑎, 𝑄𝑖 , 𝑄𝑜) 

      𝑔 ← 𝑎𝑏𝑠(𝑃𝑠 − 𝑃𝑒) 

      if 𝑔𝑚𝑖𝑛 is None or 𝑔 < 𝑔𝑚𝑖𝑛 then 

        𝑔𝑚𝑖𝑛 ← 𝑔, 𝑃𝑠
𝑜𝑝𝑡

← 𝑃𝑠 , 𝑃𝑎
𝑜𝑝𝑡

← 𝑃𝑎 , 𝑄𝑖
𝑜𝑝𝑡

← 𝑄𝑖 , 𝑄𝑜
𝑜𝑝𝑡

←

𝑄𝑜 

return 𝑃𝑎
𝑜𝑝𝑡
, 𝑄𝑖

𝑜𝑝𝑡
, 𝑄𝑜

𝑜𝑝𝑡
, 𝑃𝑠

𝑜𝑝𝑡
, 𝑔𝑚𝑖𝑛 

Figure 4:   Pseudocode of greedy search algorithm 

3. Case study 

3.1 Project overview and data prepocessing 

The Pearl River Delta Water Resources Allocation Project passes through the core urban 

agglomeration of the Pearl River Delta. The SPB-TBM tunnelling section is around 84.9km 

long. The data used in our work were collected from the interval GS05# − GS06# with length 

about 3.39km. All the equipment parameters are collected automatically during the excavation 

process by the Programmable Logic Controller (PLC) system at an acquisition frequency of 

1Hz. Obtained by the interfaces, the parameters of rings between 42 and 1313 from October 

20th, 2020 are collected.  

Three steps are executed sequentially in the data engineering process. To obtain more 

effective training data, the parameter values with the null value and the outliers detected 

according to the 3σ criterion are removed from the final dataset, and then we averaged the data 

on a minute-granularity basis. Eventually, total 82469 feature vectors were obtained for training 

and testing of the models. By random search (Bergstra and Bengio, 2012) with 6-fold cross 

validation, the optimal configuration of hyperparameters are shown Table 1. 

Table 1:   Configuration of hyper-parameters. 

Algorithms Hyper-parameters Optimal Values Algorithms Hyper-parameters Optimal Values 

DT Max_depth 30 
RF 

n_estimators 500 

BPNN Init_mode "uniform" max_depth 35 
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Batch_size 128 

GBDT 

learning_rate 0.1 

Optimizer "Adam" n_estimators 400 

Decay_rate 0.5 max_depth 35 

Learning-rate 0.05 loss "Is" 

Activation "relu" 

XGBoost 

learning_rate 0.1 

Drop-rate 0.5 n_estimators 450 

LightGBM 

learning_rate 0.2 max_depth 30 

n_estimators 500 

Adaboost 

learning_rate 0.1 

max_depth 35 n_estimators 450 

Boosting_type "goss" loss "linear" 

 

3.2 Results and discussion 

In this study, a comparison experiment is conducted on the pre-processed dataset to predict 

Ps using different prediction models. The statistic results were listed in Table 2. Initially, basic 

learners, including MLR, DT and BPNN, were constructed and compared. DT was found to 

perform the best among the base learners, achieving an R2 value of up to 0.98, as shown in 

Figure 5(a). Thus, DT was selected for bagging and boosting algorithms.  

Subsequently, bagging and boosting algorithms were constructed, and the evaluation results 

indicated that the AdaBoost model performed better than other models on the test set. The MSE, 

MAE, MAPE and R2 were 0.002 Bar2, 0.005 Bar, 0.127 % and 0.996, respectively. As show in 

Figure 5(b), the predicted values were almost entirely fitted with the actual values. Therefore, 

in the next Section, the optimal fitted AdaBoost model was selected as the prediction algorithm 

in the data-driven framework. 

  

(a)                                                                        (b) 

Figure 5:   Fitting results on the test set: (a) DT and (b) Adaboost 

Table 2:   The evaluation results of base learning algorithms on the test set. 

Model MSE(Bar2) MAE(Bar) MAPE(%) R2 

MLR 0.279 0.338 8.412 0.341 

DT 0.008 0.014 0.355 0.980 

BPNN 0.014 0.046 1.158 0.968 

RF 0.004 0.016 0.394 0.992 



8 

 

AdaBoost 0.002 0.005 0.127 0.996 

GBDT 0.008 0.013 0.312 0.982 

XGBoost 0.004 0.021 0.526 0.990 

LightGBM 0.009 0.048 1.220 0.978 

Based on theoretical Pe calculations and engineering experience, the anticipated value of Pe 

in the full section sandstone and mudstone fraction zones is 4 Bar. To further evaluate the 

performance of the data-driven model framework, 50 samples belonging to 25 rings were 

randomly selected from the entire dataset. These samples were compared with the actual values, 

and the results are illustrated in Figure 6.  

As shown in Fig. 6(a), the values of Ps optimized by the framework fluctuated slightly near 

the expected value (4 Bar), with a mean absolute gap between the optimized and the expected 

values of only 0.074 Bar. In contrast, the actual values fluctuated violently with a mean error 

of approximately 0.318 Bar. This is likely due to the fact that, as shown in Figure 6(b) to 6(d), 

during the actual tunnelling process, operators only set the Pa to balance Ps with Pe. 

Consequently, since Qi and Qo were not controlled, and the floating difference of Pa was 0.912 

Bar, the actual values of Ps fluctuated violently.  

The contrast results indicated the data-driven model framework is capable of ensuring that 

Ps is more consistent with Pe and can provide operators with more rational and reliable 

assistance in adjusting control parameters. Furthermore, the results suggest that the proposed 

framework has the superior ability to track the conditions of Ps when these critical control 

parameters have changed. 

 

 

(a)                                                                  (b) 

 

(b)                                                                    (d) 

Figure 6:   Optimized results: (a) Ps, (b) Pa, (c) Qi, and (d) Qo. 
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4. Conclusions 

The stability of the excavation face is crucial for safety and efficiency in SPB-TBM 

tunnelling. To address the limitations of manual adjustment of slurry control parameters, this 

paper proposed a data-driven model framework to achieve the slurry and earth pressure balance. 

Ensemble learning algorithms were employed to forecast Ps more accurately based on the 

collected excavation and control parameters. A greedy search strategy was utilized to determine 

the optimal combination of slurry control parameters that minimized the difference between the 

predicted Ps and the expected Pe. 

The proposed framework was empirically tested using data collected from the Pearl River 

Delta Water Resources Allocation Project in China. The results of the analysis indicated that 

AdaBoost ensemble model exhibited superior performance compared to other ensemble models. 

Specifically, the AdaBoost model achieved higher accuracy and fewer errors, as evidenced by 

the MSE, MAE, MAPE and R2 of 0.002, 0.005, 0.127 and 0.996, respectively. Thus, the 

expected Ps can be accurately tracked.  

Subsequently, a greedy search algorithm was employed to optimize the slurry control 

parameters, aiming to minimize the disparity between the predicted Ps and the expected Pe. The 

results of the optimization process indicated that the proposed data-driven model framework 

was effective, with a mean absolute gap of only 0.074 Bar between the optimized Ps and the 

expected Pe. This aspect of the analysis underscores the potential value of the proposed 

framework in offering valuable insights and guidance to operators involved in the tunnelling 

process. 

In future research, the generalization issue of the proposed framework can be further 

improved to address the challenges posed by diverse tunnelling scenarios, geological conditions, 

and other relevant factors. This can be achieved by refining and expanding the framework, as 

well as integrating advanced machine learning techniques and optimization algorithms. 
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