Genome-wide association study meta-analysis of suicide attempt identifies twelve genome-wide significant loci and implicates genetic risks for specific health factors

Anna R Docherty, PhD1,2,34*, Niamh Mullins, PhD4,5*, Allison E Ashley-Koch, PhD6*, Xuiejun Qin, PhD6, Jonathan R I Coleman, PhD7,8, Andrey Shabalina, PhD1,2,3, JooEun Kang, PhD9, Balasz Murnyk, PhD1,2, Frank Wendt, PhD10, Mark Adams, PhD11, Adrian I Campos, PhD12,13, Emily DiBlasi, PhD1,2, Janice M Fullerton, PhD14,15, Henry R Kranzler, MD16,17, Amanda Bakian2, Eric T Monson, MD, PhD18, Miguel E Renteria, PhD12,18, Consuelo Walsh-Bass, PhD19, Ole A Andreassen, MD, PhD20,21, Cynthia M Bulik, PhD22,23,24, Howard J Edenberg, PhD25,26, Ronald C Kessler, PhD27, J John Mann, MD28, John I Nurnberger Jr., MD, PhD29,29, Giorgio Pisticci, PhD30, Fabian Streit, PhD31, Robert J Ursano, MD, PhD32, Renato Polimonti, PhD30, Michelle Dennis, BS33, Melanie Garrett, MS34, Lauren Hair, MS35, Philip Harvey, PhD36, Elizabeth R Hauser, PhD6,37, Michael A Hauser, PhD6, Jennifer Huffman, PhD38, Daniel Jacobson, PhD39, Jennifer H Lindquist, MS, M Stat40, Ravi Madduri, MS41, Benjamin McMahon, PhD42, David W Oslin, MD43,44, Jodie Trafton, PhD45, Swapnil Awasthi, MSc46, Andrew W Bergen, PhD47,48, Wade H Berrettini, MD, PhD49, Martin Bohus, MD50, Harry Brandt, MD51,52, Xiao Chang, PhD53, Hsi-Chung Chen, MD, PhD54, Wei J Chen, MD, PhD54,55,56, Erik D Christensen, MD57,58, Steven Crawford, MD51,52, Scott Crow, MD59, Philipil Duriez, MD60,61, Alexis C Edwards, PhD6, Fernando Fernández-Aranda, PhD62, Manfred M Fichter, MD63,64, Hanga Galfalvy, PhD65,66, Steven Gallinger, MD67, Michael Gandal, PhD68, Philip Gorwood, MD69,70, Yiran Guo, PhD71, Jonathan D Hafferty, MBChB72, Hakon Hakonarson, MD, PhD73,74, Katherine A Halmi, MD75, Akiyo Hishimoto, MD, PhD76,77, Sonia Jain, PhD77,2, Stéphanie Jamain, PhD78, Susana Jiménez-Murcia, PhD62, Craig Johnson, PhD79, Allan S Kaplan, MD, FRCP(C)75,76,77, Walter H Kaye, MD78, Pamela K Keel, PhD79, James L Kennedy, MD, FRCP(C)75,76,77, Minsoo Kim, BS8, Kelly L Klump, PhD80, Daniel F Levey, PhD81,82, Dong Li, PhD83, Shih-Chao Liao, PhD84, Klaus Lieb, MD83, Lisa Lilienfeld, PhD84, Adriana Lori, PhD85, Pierre J Magistretti, MD, PhD86,87, Christian R Marshall, PhD88, James E Mitchell, MD89, Richard M Myers, PhD90, Satoshi Okazaki, MD, PhD91, Ikuo Otsuka, MD, PhD92,93, Dalila Pinto, PhD94,5, Abigail Powers, PhD, ABPP95, Nicolas Ramoz, PhD96, Stephan Ripke, MD, PhD96,97,98, Stefan Roepke, MD99, Vsevolod Rozanov, MD, PhD99,100,101,102,103, Stephen W Scherer, PhD, FRSC97,98, Christian Schmahl, MD100, Marcus Sokolowski, PhD99, Anna Starnaw ska, PhD100,101,102,103, Michael Strober, PhD104,105, Mei-Hsin Su, PhD106, Laura M Thornton, PhD24, Janet Treasure, PhD, FRCP106,107, Erin B Ware, PhD, MPH108,109, Hunna J Watson, PhD110,111, Stephanie H Witt, PhD31, D Blake Woodside, MD112,113, Zeynep Yilmaz, PhD24,114,115, Lea Zillich, MSc31, Rolf Adolfsson, PhD116, Ingrid Agatz, MD, PhD117, Lara Alic, MSc120, Martin Alda, MD121,122, Lars Alfredsson, PhD123,124, Adebayo Anjorin, MRCPsych125, Vivek Appadurai, PhD126,127, María Soler Artigas, PhD128,129,130,131, Sandra Van der Auwera, PhD132,133, M Helena Azevedo, PhD134, Nicholas Bass, MRCPsych135, Claiiton HD Bau, PhD136,137, Bernhard T Baune, PhD138,139, Frank Bellivier, PhD140,141,142,143, Klaus Berger, MD144, Joanna M Biernacka, PhD145, Tim B Bigdeli, PhD134,146, Elisabeth B Binder, PhD147, Michael Boehneke, PhD148, Marco P Boks, PhD149, Rosa Bosch, BSc128,129,150, David L Braff, MD151, Richard Bryant, PhD152, Monika Budde, Dipl-Psych153, Enda M Byrne, PhD134,154, Wieke Cahn, PhD155, Miguel Casas, MD, PhD128,129,131,150, Enrique Castelao, MSc30, Jorge A Cervilla, MD, PhD156, Boris Chaumette, MD, PhD157,158,159, Sven Cichon, PhD160,161,162,163, Aiden Corvin, PhD164, Nicholas Craddock, PhD165, David Craig, PhD166, Franziska Degenhardt, MD163, Srdjan Djurvic, PhD167,168, Ayman H Fanous, MD3,146, Jerome C Foo, PhD169, Andreas J Forstner, MD160,163,170, Mark Frye, MD171, Justine M Gatt, PhD14,152, Pablo V Gejman, MD172,173, Ina Giegling, PhD174, Hans J Grabe, MD132,133, Melissa J Green, PhD14,175, Eugenio H Grevet, PhD176,177, Maria Grigoriou-Serbanescu, PhD178, Blanca Gutierrez, PhD179, Jose Guzman-Parra, PhD180, Steven P Hamilton, PhD181, Marian L Hamshere, PhD185, Annette M Hartmann, PhD182,183, Joanna Hauser, PhD183, Stefanie Heilmann-Hiembach, PhD163, Per Hoffmann, PhD161,162,163, Marcus Ising, PhD184, Ian Jones, PhD165, Lisa A Jones, PhD185,
Lina Jonsson, PhD
René S Kahn, MD, PhD
John R Kelsoe, MD
Kenneth S Kendler, MD
Stefan Kloiber, MD
Karestan C Koenen, PhD
Manolis Kogevinas, PhD
Bettna Konte, MSc
Marie-Odile Krebs, MD, PhD
Mikael Landén, MD, PhD
Jacob Lawrence, MRCPsych
Marion Leboyer, PhD
Phil H Lee
Douglas F Levinson, MD
Calwing Liao, PhD
Jolanta Lissowska, PhD
Susanne Lucae, PhD
Fermin Mayoral, PhD
Susan L McElroy, MD
Patrick McGrath, MD
Peter McGuftin, PhD
Andrew McQuillin, PhD
Divya Mehta, PhD
Ingrid Melle, MD, PhD
Yuri Milaneschi, PhD
Philip B Mitchell, MD
Esther Molina, PhD
Gunnar Morken, PhD
Preben Bo Mortensen, MD
Bertram Müller-Myhsok, PhD
Caroline Nievergelt, PhD
Vishwajit Nimgaonkar, PhD
Markus M Nöthen, MD
Michael C O'Donovan, FRCPsych
FRCPsych, PhD
Roel A Ophoff, PhD
Michael J Owen, FRCPsych, PhD
Carlos Pato, MD, PhD
Michele T Pato, MD
Brenda WJH Pennix, PhD
Jonathan Pimm, MRCPsych
James B Potash, MD
Robert A Power, PhD
Corresponding author
251
258
203
223
224
227
228
241
246
247
248
249
250
251
258
273
274
1,2,272
9,275,276
13,205
13,206
13,207
13,208
13,209
13,210
13,211
13,212
13,213
13,214
13,215
13,216
13,217
13,218
13,219
13,220
13,221
13,222
13,223
13,224
13,225
13,226
13,227
13,228
13,229
13,230
13,231
13,232
13,233
13,234
13,235
13,236
13,237
13,238
13,239
13,240
13,241
13,242
13,243
13,244
13,245
13,246
13,247
13,248
13,249
13,250
13,251
13,252
13,253
13,254
13,255
13,256
13,257
13,258
13,259
13,260
13,261
13,262
13,263
13,264
13,265
13,266
13,267
13,268
13,269
13,270
13,271
13,272
13,273
13,274
13,275
13,276

* These authors have contributed equally.
† Corresponding author
‡ Senior authors
| 1 | Huntsman Mental Health Institute, Salt Lake City, UT, US |
| 2 | University of Utah School of Medicine, Department of Psychiatry, Salt Lake City, UT, US |
| 3 | Virginia Commonwealth University, Department of Psychiatry, Richmond, VA, US |
| 4 | Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, US |
| 5 | Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, US |
| 6 | Duke University Medical Center, Duke Molecular Physiology Institute, Durham, NC, USA |
| 7 | King's College London, National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK |
| 8 | King's College London, Social Genetic and Developmental Psychiatry Centre, London, UK |
| 9 | Vanderbilt University Medical Center, Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Nashville, TN, US |
| 10 | Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA |
| 11 | University of Edinburgh, Division of Psychiatry, Edinburgh, UK |
| 12 | QIMR Berghofer Medical Research Institute, Mental Health and Neuroscience Research Program, Brisbane, QLD, Australia |
| 13 | The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD, Australia |
| 14 | Neuroscience Research Australia, Sydney, NSW, Australia |
| 15 | University of New South Wales, School of Medical Sciences, Sydney, NSW, Australia |
| 16 | University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, US |
| 17 | Crescenz VAMC, VISN 4 MIRECC, Philadelphia, PA, US |
| 18 | The University of Queensland, School of Biomedical Sciences, Faculty of Medicine, Brisbane, QLD, Australia |
| 19 | University of Texas Health Science Center, Department of Psychiatry and Behavioral Sciences, Houston, TX, US |
| 20 | Oslo University Hospital, Division of Mental Health and Addiction, Oslo, Norway |
| 21 | University of Oslo, NORMENT, Oslo, Norway |
| 22 | Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden |
| 23 | University of North Carolina at Chapel Hill, Department of Nutrition, Chapel Hill, NC, US |
| 24 | University of North Carolina at Chapel Hill, Department of Psychiatry, Chapel Hill, NC, US |
| 25 | Indiana University, Department of Medical & Molecular Genetics, Indianapolis, IN, US |
| 26 | Indiana University School of Medicine, Biochemistry and Molecular Biology, Indianapolis, IN, US |
| 27 | Harvard Medical School, Department of Health Care Policy, Boston, MA, US |
| 28 | Columbia University, Departments of Psychiatry and Radiology, New York, NY, US |
| 29 | Indiana University School of Medicine, Departments of Psychiatry and Medical and Molecular Genetics, Indianapolis, IN, US |
| 30 | Lausanne University Hospital and University of Lausanne, Department of Psychiatry, Lausanne, Vaud, Switzerland |
| 31 | Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Department of Genetic Epidemiology in Psychiatry, Mannheim, Germany |
| 32 | Uniformed University of the Health Sciences, Department of Psychiatry, Bethesda, MD, US |
| 33 | Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA |
| 34 | Duke University Medical Center, Durham, NC, USA |
| 35 | Durham Veterans Affairs Health Care System, Durham, NC, USA |
| 36 | Miami VA Health Care System, Miami, FL, USA |
| 37 | Durham Veterans Affairs Health Care System, Cooperative Studies Program Epidemiology Center, Durham, NC, USA |
38 Boston VA Health Care System, Boston, MA, USA
39 Oak Ridge National Laboratory, Oak Ridge, TN, USA
40 Durham Veterans Affairs Health Care System, VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, NC, USA
41 Argonne National Laboratory, University of Chicago Consortium for Advanced Science and Engineering, Chicago, IL, USA
42 Los Alamos National Laboratory, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
43 Corporal Michael J. Crescenz VA Medical Center, VISN 4 Mental Illness Research, Education, and Clinical Center, Philadelphia, PA, USA
44 Perelman School of Medicine, University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
45 VA Palo Alto Health Care System, VA Program Evaluation and Resource Center, Palo Alto, CA, USA
46 Charité - Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany
47 BioRealm, LLC, Walnut, CA, US
48 Oregon Research Institute, Eugene, OR, US
49 Perelman School of Medicine at the University of Pennsylvania, Department of Psychiatry, Center for Neurobiology and Behavior, Philadelphia, PA, US
50 Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Department of Psychosomatic Medicine and Psychotherapy, Mannheim, Germany
51 ERCPathlight, Baltimore, MD, US
52 University of Maryland St. Joseph Medical Center, Baltimore, MD, US
53 Children’s Hospital of Philadelphia, Center for Applied Genomics, Philadelphia, PA, US
54 National Taiwan University Hospital, Department of Psychiatry, Taipei, Taiwan
55 National Health Research Institutes, Center for Neuropsychiatric Research, Miaoli County, Taiwan
56 National Taiwan University, Institute of Epidemiology and Preventive Medicine, College of Public Health, Taipei, Taiwan
57 Utah Department of Health and Human Services, Utah Office of the Medical Examiner, Taylorsville, UT, US
58 University of Utah, Department of Pathology, Salt Lake City, UT, US
59 University of Minnesota, Department of Psychiatry, Minneapolis, MN, US
60 GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
61 Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
62 University Hospital Bellvitge-IDIBELL and CIBEROBN, Department of Psychiatry, Barcelona, Spain
63 Ludwig-Maximilians-University (LMU), Department of Psychiatry and Psychotherapy, Munich, Germany
64 Schön Klinik Roseneck affiliated with the Medical Faculty of the University of Munich (LMU), Munich, Germany
65 Columbia University, Department of Biostatistics, New York, NY, US
66 Columbia University, Department of Psychiatry, New York, NY, US
67 University of Toronto, Department of Surgery, Faculty of Medicine, Toronto, ON, Canada
68 University of California, Los Angeles, Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, Los Angeles, CA, US
69 University of Pennsylvania, The Perelman School of Medicine, Philadelphia, PA, US
70 Weill Cornell Medical College, Department of Psychiatry, New York, NY, US
71 Yokohama City University Graduate School of Medicine, Department of Psychiatry, Yokohama, Japan
72 University of California San Diego, Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, CA, US
73 Univ Paris-Est-Crêteil, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, Crêteil, France
74 Eating Recovery Center, Denver, CO, US
75 Centre for Addiction and Mental Health, Toronto, ON, Canada
76 University of Toronto, Department of Psychiatry, Toronto, ON, Canada
77 University of Toronto, Institute of Medical Science, Toronto, ON, Canada
78 University of California San Diego, Department of Psychiatry, San Diego, CA, US
79 Florida State University, Department of Psychology, Tallahassee, FL, US
80 Michigan State University, Department of Psychology, Lansing, MI, US
81 Veterans Affairs Connecticut Healthcare Center, Department of Psychiatry, West Haven, CT, US
82 Yale University School of Medicine, Division of Human Genetics, Department of Psychiatry, New Haven, CT, US
83 University Medical Center, Department of Psychiatry and Psychotherapy, Mainz, Germany
84 The Chicago School of Professional Psychology, Washington DC, Department of Clinical Psychology, Washington, DC, US
85 Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
86 King Abdullah University of Science and Technology, BESE Division, Thuwal, Saudi Arabia
87 University of Lausanne-University Hospital of Lausanne (UNIL-CHUV), Department of Psychiatry, Lausanne, Switzerland
88 The Hospital for Sick Children, Department of Paediatric Laboratory Medicine, Toronto, ON, Canada
89 University of North Dakota School of Medicine and Health Sciences, Department of Psychiatry and Behavioral Science, Fargo, ND, US
90 HudsonAlpha Institute for Biotechnology, Huntsville, AL, US
91 Kobe University Graduate School of Medicine, Department of Psychiatry, Kobe, Japan
92 Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, US
93 Massachusetts General Hospital, Analytical and Translational Genetics Unit, Boston, MA, US
94 Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Department of Psychiatry, Berlin, Germany
95 Saint-Petersburg State University, Department of Psychology, Saint-Petersburg, Russian Federation
96 V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Department of Borderline Disorders and Psychotherapy, Saint-Petersburg, Russian Federation
97 The Hospital for Sick Children, Department of Genetics and Genomic Biology, Toronto, ON, Canada
98 University of Toronto, McLaughlin Center, Toronto, ON, Canada
99 Karolinska Institutet, National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), LIME, Stockholm, Sweden
100 Aarhus University, Centre for Genomics and Personalized Medicine, CGPM, Aarhus, Denmark
101 Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
102 Aarhus University, Department of Biomedicine, Aarhus, Denmark
103 Aarhus University, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
University of California Los Angeles, David Geffen School of Medicine, Los Angeles, LA, US
University of California Los Angeles, Department of Psychiatry and Biobehavioral Science, Semel Institute for Neuroscience and Human Behavior, Los Angeles, LA, US
King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, UK
King’s College London and South London and Maudsley National Health Service Foundation Trust, National Institute for Health Research Biomedical Research Centre, London, UK
University of Michigan, Population Studies Center, Institute for Social Research, Ann Arbor, MI, US
University of Michigan, Survey Research Center, Institute for Social Research, Ann Arbor, MI, US
Curtin University, School of Psychology, Perth, Western Australia, Australia
The University of Western Australia, Division of Paediatrics, Perth, Western Australia, Australia
University Health Network, Centre for Mental Health, Toronto, ON, Canada
University Health Network, Program for Eating Disorders, Toronto, ON, Canada
Aarhus University, National Centre for Register-Based Research, Aarhus, Denmark
University of North Carolina at Chapel Hill, Department of Genetics, Chapel Hill, NC, US
Umeå University Medical Faculty, Department of Clinical Sciences, Psychiatry, Umeå, Sweden
Diakonhjemmet Hospital, Department of Psychiatric Research, Oslo, Norway
Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
University of Oslo, NORMENT, Institute of Clinical Medicine, Oslo, Norway
University of Adelaide, Discipline of Psychiatry, Adelaide, SA, Australia
Dalhousie University, Department of Psychiatry, Halifax, NS, Canada
National Institute of Mental Health, Klecany, CZ
Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
Karolinska Institutet, Inst of Environmental Medicine, Stockholm, Sweden
Berkshire Healthcare NHS Foundation Trust, Psychiatry, Bracknell, UK
Copenhagen University Hospital, Institute of Biological Psychiatry, Copenhagen Mental Health Services, Copenhagen, Denmark
iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
Hospital Universitari Vall d’Hebron, Department of Psychiatry, Barcelona, Spain
Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
University of Barcelona, Department of Genetics, Microbiology & Statistics, Barcelona, Spain
Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Barcelona, Spain
University Medicine Greifswald, Department of Psychiatry and Psychotherapy, Greifswald, Mecklenburg-Vorpommern, Germany
German Centre for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
University of Coimbra, Department of Psychiatry, Coimbra, Portugal
University College London, Division of Psychiatry, London, UK
Hospital de Clínicas de Porto Alegre, Laboratory of Developmental Psychiatry, Porto Alegre, RS, Brazil
Universidade Federal do Rio Grande do Sul, Department of Genetics, Porto Alegre, RS, Brazil
University of Melbourne, Department of Psychiatry, Melbourne Medical School, Melbourne,
Australia
139 University of Münster, Department of Psychiatry, Münster, Germany
140 Assistance Publique - Hôpitaux de Paris, Department of Psychiatry and Addiction Medicine, Paris, France
141 FondaMental Foundation, Paris Bipolar and TRD Expert Centres, Paris, France
142 INSERM, UMR-S1144 Team 1: Biomarkers of relapse and therapeutic response in addiction and mood disorders, Paris, France
143 Université Paris Cité, Psychiatry, Paris, France
144 University of Münster, Institute of Epidemiology and Social Medicine, Münster, Nordrhein-Westfalen, Germany
145 Mayo Clinic, Health Sciences Research, Rochester, MN, US
146 State University of New York Downstate Medical Center, Department of Psychiatry and Behavioral Sciences, New York, NY, US
147 Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
148 University of Michigan, Center for Statistical Genetics and Department of Biostatistics, Ann Arbor, MI, US
149 UMC Utrecht Brain Center, Psychiatry, Utrecht, Netherlands
150 Universitat Autònoma de Barcelona, Department of Psychiatry and Legal Medicine, Barcelona, Spain
151 University of California San Diego, Department of Psychiatry, La Jolla, CA, US
152 University of New South Wales, School of Psychology, Sydney, NSW, Australia
153 University Hospital, LMU Munich, Institute of Psychiatric Phenomics and Genomics (IPPG), Munich, Germany
154 The University of Queensland, Child Health Research Centre, Brisbane, QLD, Australia
155 UMC Utrecht Hersencentrum Rudolf Magnus, Department of Psychiatry, Utrecht, Netherlands
156 University of Granada, Mental Health Unit, Department of Psychiatry, Faculty of Medicine, Granada University Hospital Complex, Granada, Spain
157 CNRS GDR 3557, Institut de Psychiatrie, Paris, France
158 GHU Paris Psychiatrie et Neurosciences, Department of Evaluation, Prevention and Therapeutic innovation, Paris, France
159 Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Pathophysiology of psychiatric diseases, Paris, France
160 Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), Jülich, Germany
161 University Hospital Basel, Institute of Medical Genetics and Pathology, Basel, Switzerland
162 University of Basel, Department of Biomedicine, Basel, Switzerland
163 University of Bonn, School of Medicine & University Hospital Bonn, Institute of Human Genetics, Bonn, Germany
164 Trinity College Dublin, Neuropsychiatric Genetics Research Group, Dept of Psychiatry and Trinity Translational Medicine Institute, Dublin, Ireland
165 Cardiff University, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, UK
166 University of Southern California, Department of Translational Genomics, Pasadena, CA, US
167 Oslo University Hospital, Department of Medical Genetics, Oslo, Norway
168 University of Bergen, NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, Bergen, Norway
169 Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department of Genetic Epidemiology in Psychiatry, Mannheim, Germany
170 University of Marburg, Centre for Human Genetics, Marburg, Germany
171 Mayo Clinic, Department of Psychiatry & Psychology, Rochester, MN, US
Amsterdam, Netherlands
208 University of Granada, Department of Nursing, Faculty of Health Sciences and Biomedical Research Centre (CIBM), Granada, Spain
209 Norwegian University of Science and Technology - NTNU, Mental Health, Faculty of Medicine and Health Sciences, Trondheim, Norway
210 St Olavs University Hospital, Psychiatry, Trondheim, Norway
211 Aarhus University, Centre for Integrated Register-based Research, Aarhus, Denmark
212 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
213 University of Liverpool, Liverpool, UK
214 University of Pittsburgh, Psychiatry and Human Genetics, Pittsburgh, PA, US
215 Rutgers University, RWJMS,NJMS,UBHC, Piscatway, NJ, US
216 Rutgers University, RWJMS,NJMS, Piscatway, NJ, US
217 Amsterdam UMC, Vrije Universiteit, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, Netherlands
219 Johns Hopkins University School of Medicine, Psychiatry, Baltimore, MD, US
220 BioMarin Pharmaceuticals, Genetics, London, UK
221 University of Oxford, St Edmund Hall, Oxford, UK
222 University of Oxford, Department of Psychiatry, Oxford, UK
223 University Hospital Frankfurt, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
224 Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department of Genetic Epidemiology in Psychiatry, Mannheim, Baden-Württemberg, Germany
225 University of Granada, Department of Biochemistry and Molecular Biology II and Institute of Neurosciences, Biomedical Research Centre (CIBM), Granada, Spain
226 Harvard TH Chan School of Public Health, Department of Environmental Health, Boston, MA, US
227 McGill University, Faculty of Medicine, Department of Neurology and Neurosurgery, Montreal, QC, Canada
228 Montreal Neurological Institute and Hospital, Montreal, QC, Canada
229 Instituto de Ciencias Biomedicas Universidade de Sao Paulo, Department of Physiology and Biophysics, São Paulo, SP, Brazil
230 Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, US
231 National Institute of Mental Health, Human Genetics Branch, Intramural Research Program, Bethesda, MD, US
232 University Medical Center Göttingen, Department of Psychiatry and Psychotherapy, Göttingen, Germany
233 University of Bologna, Department of Biomedical and NeuroMotor Sciences, Bologna, Italy
234 National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD, US
235 Kaiser Permanente Washington, Behavioral Health Services, Seattle, WA, US
236 Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, NY, US
237 Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, US
238 King's College London, Institute of Psychology, Psychiatry & Neuroscience, London, UK
239 Baylor College of Medicine, Houston, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, US
240 IRCCS Santa Lucia Foundation, Rome, Laboratory of Neuropsychiatry, Rome, Italy
241 Nofer Institute of Occupational Medicine, Department of Environmental Epidemiology, Lodz, Poland
242 University of California, San Diego, Center for Behavioral Genomics, Department of
Psychiatry, La Jolla, CA, US

243 McGill University, Department of Psychiatry, Montreal, QC, Canada
244 Centre for Addiction and Mental Health, Molecular Brain Science, Toronto, ON, Canada
245 University Medicine Greifswald, Institute for Community Medicine, Greifswald, Mecklenburg-Vorpommern, Germany
246 Columbia University College of Physicians and Surgeons, New York, NY, US
247 New York State Psychiatric Institute, Division of Translational Epidemiology, New York, NY, US
248 Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, CA, US
249 Centre for Addiction and Mental Health, Molecular Brain Science, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
250 University of Toronto, Laboratory Medicine and Pathobiology, Toronto, ON, Canada
251 IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
252 Australian National University, Center of Mental Health Research, Canberra, Australia
253 Johns Hopkins Bloomberg School of Public Health, Department of Mental Health, Baltimore, MD, US
254 Mental Health Centre Copenhagen, Danish Research Institute for Suicide Prevention, Copenhagen, Denmark
255 Broad Institute, Program in Medical and Population Genetics, Cambridge, MA, US
256 University of Tartu, Estonian Genome Center, Institute of Genomics, Tartu, Estonia
257 SUNY Upstate Medical University, Department of Psychiatry and Behavioral Sciences, Syracuse, NY, US
258 Statens Serum Institut, Center for Neonatal Screening, Department for Congenital Disorders, Copenhagen, Denmark
259 National Taiwan University Hospital and College of Medicine, Department of Psychiatry, Taipei, Taiwan
260 King's College London, Department of Medical & Molecular Genetics, London, UK
261 Janssen Research & Development, LLC, Neuroscience, Titusville, NJ, US
262 Aarhus University Hospital, Risskov. Psychosis Research Unit, Aarhus, Denmark
263 Copenhagen University Hospital, Mental Health Center Copenhagen, Copenhagen, Denmark
264 QIMR Berghofer Medical Research Institute, Department of Population Health, Brisbane, QLD, Australia
265 University of Edinburgh, Institute for Genetics and Molecular Medicine, Edinburgh, UK
266 University of Edinburgh, Centre for Clinical Brain Sciences, Edinburgh, UK
267 Regeneron Genetics Center, Analytical Genetics and Data Science, Tarrytown, NY, US
268 University of California San Diego, Department of Psychiatry and School of Public Health, La Jolla, CA, US
269 University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
270 University of Copenhagen, Lundbeck Foundation GeoGenetics Centre, GLOBE Institute,, Copenhagen, Denmark
271 University of Iowa, Department of Psychiatry, Iowa City, IA, US
272 University of Utah School of Medicine, Biomedical Informatics, Salt Lake City, UT, US
273 Durham Veterans Affairs Health Care System, VISN 6 Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC, USA
274 Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
275 Vanderbilt University Medical Center, Department of Biomedical Informatics, Nashville, TN, US
276 Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, TN, US
Previous presentation: World Congress of Psychiatric Genetics, 2022, Florence, Italy

Address for reprint: Corresponding author, Anna R. Docherty, Department of Psychiatry, University of Utah School of Medicine, 501 Chipeta Way, Salt Lake City, Utah 84110, USA, tel. +1 763 516 7367. Email: anna.docherty@utah.edu.

Disclosures: Dr. Qingqin Li is employed by Janssen Pharmaceuticals. Dr. Eli Stahl is a full-time employee of the Regeneron Genetics Center, a subsidiary of Regeneron Pharmaceuticals Inc. All other authors have no financial relationships with commercial interests.

Acknowledgements: This work was supported by the National Institute of Mental Health (R01MH123619, R01MH123489, R01MH099134, K01MH109765, R01MH116269, R01MH121455). This research is also based on data from the U.S. Department of Veterans Affairs (VA) Million Veteran Program (MVP) program and was supported by Award #I01CX001729 from the Clinical Science Research and Development Service of the Veterans Health Administration Office of Research and Development. J.C. Beckham was also supported by a Senior Research Career Scientist Award (#IK6BX003777) from CSR&D. Research reported in this publication was supported by NIGMS of the National Institutes of Health under award number T32GM007347 (J.K.). This work was also supported by the Brain & Behavior Research Foundation/NARSAD Young Investigator Awards No. 29551 to N. Mullins, No. 28686 to A. Shabalin, and No. 28132 to E. DiBlasi. Work was supported by the Huntsman Mental Health Institute, the American Foundation for Suicide Prevention (A. Docherty, A. Shabalin, E. DiBlasi, A. Bakian, H. Coon), and the Clark Tanner Research Foundation. This work was also supported by research funding from Janssen Research & Development, LLC to University of Utah. Data from the Utah cohort is available through the Utah Population Database, which is partially supported by the Huntsman Cancer Institute and award number P30CA42014 from the National Cancer Institute. Several statistical analyses were carried out on the Mount Sinai high performance computing cluster (http://hpc.mssm.edu), which is supported by the Office of Research Infrastructure of the National Institutes of Health (Grant Nos. S10OD018522 and S10OD026880). This work was also conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University, Nashville, TN and the Huntsman Mental Health Institute at the University of Utah School of Medicine, Salt Lake City, UT. This publication does not represent the views of the Department of Veteran Affairs or the United States Government. We also thank and acknowledge MVP, the MVP Suicide Exemplar Workgroup, and the ISGC for their contributions to this manuscript. A complete listing of contributors from the MVP, MVP Suicide Exemplar Workgroup, and the ISGC is provided in the Supplementary Materials.
Abstract

Objective: Suicidal behavior is heritable and a major cause of death worldwide. Two large-scale genome-wide association studies (GWAS) recently discovered and cross-validated genome-wide significant (GWS) loci for suicide attempt (SA). The current study leveraged the genetic cohorts from both studies to conduct the largest GWAS meta-analysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures.

Methods: This study was comprised of 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian Randomization with brain eQTL data, phenome-wide genetic correlation, and genetic causal proportion analyses.

Results: Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p<5x10^{-8}. These loci were mostly intergenic and implicated DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. The multi-ancestry SNP-based heritability estimate of SA was 5.7% on the liability scale (SE=0.003, p = 5.7x10^{-80}). Significant brain tissue gene expression and drug set enrichment was observed. There was shared genetic variation of SA with ADHD, smoking, and risk tolerance after conditioning SA on both major depressive disorder and post-traumatic stress disorder. Genetic causal proportion analyses implicated shared genetic risk for specific health factors.

Conclusions: This multi-ancestry analysis of suicide attempt identified several loci contributing to risk, and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across major ancestry admixtures, in veteran and civilian populations, and in attempt versus death.
Introduction

Suicide was the fourth leading cause of death among 15–29-year-olds in 2019, accounting for more than 700,000 deaths worldwide (1). Suicide attempts (SA; defined as self-injurious behaviors with an intent to die) are even more common (2-4). Suicide attempts are strongly associated with psychiatric conditions, poor quality of life, traumatic experiences, and social and economic burden (1), and are the single strongest predictor of future suicide death (5).

Heritability estimates for suicidal thoughts and behaviors from twin and family studies range from 30-55% (6), and recent large-scale genome-wide association studies (GWAS) have yielded promising and replicable results. The International Suicide Genetics Consortium (ISGC; total N=549,743; 29,782 cases) identified two loci reaching genome-wide significance for suicide attempt in individuals of primarily European ancestry admixtures, on chromosomes 6 (index SNP rs71557378, \(p = 1.97 \times 10^{-8}\)) and 7 (index SNP rs62474683, \(p = 1.91 \times 10^{-10}\)) (7). The intergenic locus on chromosome 7 remained significant after conditioning on psychiatric disorders, and was independently replicated \((p = 3.27 \times 10^{-3})\) within the Million Veteran Program (MVP) cohort (9). The MVP cohort GWAS of SA (total N=409,153; 14,089 cases) resulted in two genome-wide significant multi-ancestry loci, on chromosomes 20 (index SNP rs56817213, \(p = 3.64 \times 10^{-9}\)) and 1 (index SNP rs72730526, \(p = 3.69 \times 10^{-8}\)) (8). A top signal identified at the Dopamine Receptor D2 locus \((p = 1.77 \times 10^{-7})\) also showed moderate association in the ISGC GWAS \((p = 7.97 \times 10^{-4})\) (7).

These studies established the complexity of the common variant genetic architecture of suicide attempt and demonstrated the critical role of sample size for discovering novel, replicable risk loci for suicide phenotypes through GWAS (10). Together, these GWAS suggested that larger studies will identify additional genomic risk loci and refine genetic risk metrics.

The objective of the current study was to conduct a meta-analysis of the ISGC and MVP studies (total N=958,896; 43,871 suicide attempt and suicide death cases). Moreover, there is considerable need to increase the diversity and generalizability of GWAS data (11). Combining all ISGC and MVP cohorts allowed for the largest GWAS meta-analyses of European, African, and East Asian ancestry admixtures to date. We also tested for gene set enrichment and functional follow-up specific to these primary ancestral admixtures.

Methods

GWAS Cohorts and Phenotype Ascertainment

The International Suicide Genetics Consortium (ISGC) Cohort

The ISGC analyses included 29,782 suicide attempt (SA) and/or suicide death (SD) cases and 519,961 controls from 18 cohorts (15 SA, 2 SD, and 1 both), 12 of which were ascertained clinically for the purpose of studying psychiatric disorders. Details about the specific cohorts have been described previously (7) and cohort references and ascertainment methods are summarized in Supplementary Table S1. Twelve SA cohorts ascertained information on SA via in-person structured psychiatric interviews conducted by trained clinicians/researchers, two SA cohorts used self-report, and two SA cohorts used ICD codes or hospital records. All interviews and self-report items asked explicitly about SA rather than self-harm (which would also include non-suicidal self-injury). ICD codes were coupled with information from emergency room settings, reason for contact information, and attempt methods that were mined from physician
notes, in order to maximize evidence that suicidal intent was present. For the cohorts using interviews or self-report to ascertain SA information, the SA was non-fatal. An additional two cohorts explicitly ascertained cases of suicide death (SD). The majority of SD cases were ascertained from the Utah Office of the Medical Examiner (Utah \(n = 4,692 \)). In these cases, suicide cause-of-death determination results from a detailed investigation of the scene of the death and circumstances of death, determination of medical conditions by full autopsy, review of medical and other public records concerning the case, interviews with survivors, and standard toxicology workups (12). Suicide determination is traditionally conservative due to its impact on surviving relatives. In the 746 suicide deaths from Kobe, Japan, autopsies on suicides were performed and cause of death was determined through discussion with the Medical Examiner’s Office and the Division of Legal Medicine in the Kobe University Graduate School of Medicine. The Columbia University cohort of both SA and SD included 317 suicide deaths that were determined by psychological autopsy and the coroner or medical examiner. A psychological autopsy is a method of determining the psychological factors that may have contributed to a death, considering additional information from family members, friends, acquaintances, medical records and other relevant documents to better characterize a death of uncertain cause, including suspected suicides.

The Million Veteran Program (MVP) Cohort

MVP recruitment and study procedures have been described previously (8) and included veterans providing a blood sample, consenting to genetic analyses and the linking of one’s genetic information to the VA’s electronic health records (EHR), and completing two optional surveys (9, 13). SA was defined as an act of deliberate self-harm with the intent to cause death that occurred at any point over the lifetime. Briefly, cases were defined as veterans with a documented history of SA in the EHR \(N = 14,089 \) and controls were defined as veterans with no documented history of suicidal thoughts or behaviors in the EHR \(N = 395,064 \). VA EHR sources were utilized to create a SA phenotype using: (a) diagnostic codes for intentional self-harm; (b) suicidal behavior reports from the VA’s Suicide Prevention Applications Network (SPAN) database; and (c) mental health survey responses from the VA’s Mental Health Assistant database indicating a history of attempting suicide. Veterans who had a history of suicidal ideation but no SA were excluded from analysis. For all ISGC and MVP cohorts, it remains undetermined which individuals with SA may have later died by suicide. Details of sample sizes by genetic ancestry admixture for the ISGC and MVP cohorts are presented in Table 1.

Genotyping, quality control, and imputation

Details of genotyping, quality control (QC), and imputation for the ISGC and MVP data sets have been described previously (7, 8). In the ISGC analyses, genotyping was performed locally by each of the research teams using comparable procedures\(^9\) (details per cohort are available in the Table S1). Standard parameters were used to retain individuals and SNPs after quality control for missingness, relatedness, and Hardy-Weinberg equilibrium. Genetic ancestry was defined by the contributing cohorts, and we include all ascertainment, QC, and analysis details of the ISGC and MVP cohorts in Supplemental Table 1. Imputation was performed using the largest available ancestrally matched reference panels, either from 1000 Genomes or the Haplotype Reference Consortium. We confirmed the comparability of imputation across the cohorts by comparing the final set of SNPs in the meta-analysis, including the number of cohorts in which they were present, and the INFO scores across cohorts and within ancestral admixture groups. Sample overlap and/or cryptic relatedness across cohorts was assessed and corrected for using the meta-analytic tools described below. Eight of the cohorts had high control:case ratios (using an arbitrary cut-off of >15:1). In these cases, the LD Score regression
(14) (LDSC) attenuation ratio statistics were examined for evidence of population stratification or uncontrolled type 1 error in the cohort. For any evidence of inflation, the intercept was used to adjust the SE of the summary statistics.

GWAS meta-analysis of suicide attempt

For both the ISGC and MVP cohorts, the initial GWAS analysis was conducted within genetic ancestral admixture groups. For the ISGC meta-analysis, GWAS were conducted within study and genetic ancestry admixture group, covarying for at least 10 principal components of genetic ancestry, genomic relatedness matrices or factors capturing site of recruitment or genotyping batch, as required (7). For the MVP cohort, ancestry was assigned for four mutually exclusive ancestral groups utilizing a previously defined approach harmonizing genetic ancestry admixture and self-identified ancestry grouping (HARE) (15). Subsequent MVP GWAS analyses were performed within ancestral admixture group using PLINK2 (16), covarying for genetic ancestry principal components, age, and sex.

A multi-ancestry meta-analysis of SA GWAS summary statistics was conducted using an inverse variance-weighted fixed effects model (standard error) in METAL (17), assuming shared risk effects across ancestry admixtures. SNPs with a mean weighted minor allele frequency of <1%, mean weighted imputation INFO score <0.6 or SNPs present in <80% of the total effective sample size were removed to ensure adequate statistical power at every variant included. Ancestry admixture-specific GWAS meta-analyses were conducted with cohorts of significant European (EUR), African (AFR), and East Asian (EAS) ancestry admixtures using the same procedures. Only one primary ancestral admixture, Hispanic/Latino (LAT), was limited to a single cohort and thus could not be meta-analyzed. Inflation of test statistics due to polygenicity or cryptic relatedness were assessed using the LDSC attenuation ratio ((LDSC intercept - 1)/(mean of association chi-square statistics - 1)). Resulting genome-wide significant (GWS) loci were defined as those with \(p < 5 \times 10^{-8} \) with LD \(r^2 > 0.1 \), within a 3,000 kb window, based on the structure of the Haplotype Reference Consortium (HRC) EUR reference panel for the multi-ancestry meta-analysis, or the HRC ancestry-appropriate reference panel otherwise. GWS loci for SA were examined for heterogeneity across cohorts via the \(I^2 \) inconsistency metric and forest plots.

Estimation of heritability and genetic association with other disorders

LDSC (14) and cov-LDSC (18) methods were used to estimate the phenotypic variance in SA explained by common SNPs (SNP-based heritability, \(h^2_{SNP} \)) from the GWAS meta-analysis summary statistics. LD scores from 1000 Genomes (EUR and EAS) were used to derive \(h^2_{SNP} \) for the multi-ancestry GWAS meta-analysis and meta-analyses of European and East Asian ancestry admixtures. To obtain acceptable attenuation ratios for Hispanic/Latino and African ancestry admixture \(h^2_{SNP} \) estimates, we used covariate-adjusted AMR LD scores from Pan UK Biobank (Pan UKBB, https://pan.ukbb.broadinstitute.org) and AA LD scores from gnomAD v2.1.1 (19). \(h^2_{SNP} \) was calculated on the liability scale assuming a lifetime prevalence of SA in the general population of 2% (middle of the range reported worldwide) (20). The default script of LDSC was used to exclude SNPs with MAF<1% and INFO<0.9 and also to restrict variants to the list of approximately 1.2 million HAPMAP SNPs that are typically well-imputed across datasets. \(h^2 \) estimates remained stable across >2% and >5% MAF thresholds. The genetic correlation attributable to genome-wide SNPs (\(r_G \)) was estimated between the ancestral admixture groups using the Popcorn package (21), and with a range of psychiatric disorders using LDSC and the largest available discovery GWAS meta-analysis summary statistics (22-33). The latter analyses were confined to European ancestry admixture for consistency with the
discovery summary data. Tests were Bonferroni-corrected, adjusting for up to 18 phenotypes hypothesized to be associated with SA based on previous epidemiological association and/or previous evidence of genetic association in LD Hub (34). Previous LD Hub analyses in ISGC were pre-categorized manually into risk factor groups relevant to SA (5, 35, 36): autoimmune disease, neurologic disease, heart disease, hypertension, diabetes, kidney disease, cancer, alcohol use, smoking, pain, psychiatric, sleep, life stressors, socioeconomic, and education/cognition. \(r_g \) of SA in ISGC and MVP in this study were calculated using LDSC, and references for the discovery GWAS are listed in Table S2. Differences in \(r_g \) across other phenotypes using EUR GWAS meta-analyses were tested as a deviation from 0, using the block jackknife method implemented in LDSC (37). To examine phenome-wide partial genetic causality, the Complex-Traits Genetics Virtual Lab (CTG-VL) (38) was used to conduct FDR-corrected Genetic Causal Proportion (GCP) analyses on the EUR summary data.

Conditioning suicide attempt on major depressive disorder and PTSD

The results of the EUR GWAS SA meta-analysis were conditioned on genetic risks for major depressive disorder (MDD) (27) and post-traumatic stress disorder (PTSD) (32) in secondary analyses, to examine genetic associations both shared with and unique to suicide risk. Results were conditioned because MDD and PTSD are both highly co-morbid with SA, and because PTSD is particularly prevalent within military veteran populations (i.e., MVP). Conditioning was conducted using mtCOJO (multi-trait-based CONditional & JOint analysis using GWAS summary data) (39), implemented in GCTA software (40). mtCOJO estimates the effect size of a SNP on an outcome trait (e.g., SA) conditioned on exposure trait(s) (e.g., MDD). GWS SNPs for the exposure are used as instruments to estimate the effect of the exposure on the outcome, and this effect is used to perform genome-wide conditioning, yielding conditioned effect sizes and \(p \)-values for the outcome trait. The EUR-only SA GWAS summary statistics were used as the outcome trait, because mtCOJO requires GWAS summary statistics for the exposure trait, which were derived from EUR ancestry discovery GWAS. To select independent SNPs as instruments, we selected those more than 1 megabase (Mb) apart or with an LD \(r^2 < 0.05 \) based on the 1000 Genomes Project Phase 3 EUR reference panel (41). mtCOJO is robust to sample overlap between the GWAS of the exposure and outcome. In this analysis, statistical power to detect genetic associations at individual SNPs was reduced relative to the unconditioned analysis by the additional model parameters, but the genetic correlations using the conditioned summary statistics provide valuable insights into the relevant risk factors for SA over and above those related to MDD and PTSD.

Gene, gene pathway, and tissue enrichment analyses

Enrichment analyses of the GWAS results were performed to probe genes, biological pathways, and tissues implicated in SA, using the multi-ancestry and ancestry admixture-specific GWAS results. \(P \)-values quantifying the degree of association of genes and gene sets with SA were calculated using MAGMA v1.08 (42), implemented in FUMA v1.3.7 (43). Input SNPs were mapped to 18,627 protein-coding genes. Genome-wide significance was defined at \(p = 0.05/18,627 = 2.68 \times 10^{-6} \). Curated gene sets that included at least 10 genes from MSigDB V7.0 were tested for association with SA. Competitive gene-set tests were conducted to correct for gene size, variant density and LD within and between genes. Tissue-set enrichment analyses were also performed using MAGMA implemented in FUMA, to test for enrichment of association signal in genes expressed in 54 tissue types from GTEx V8 (44) (Bonferroni-corrected \(p \)-value threshold = \(9.26 \times 10^{-4} \)).

Drug target enrichment analyses
Additional gene-set enrichment analyses of both the multi-ancestry and EUR GWAS meta-analysis results were performed, restricted to genes targeted by drugs, in order to investigate putative relationships of suicide attempt with specific drug types. These analyses do not identify causal relationships, but may implicate genes relevant to pharmacotherapy. This approach has been described previously (45). Gene-level and gene-set analyses were performed in MAGMA v1.08. Gene boundaries were defined using build 37 reference data from the NCBI, available on the MAGMA website (https://ctg.cnqr.nl/software/magma), extended 35kb upstream and 10kb downstream to increase the likelihood of including regulatory regions outside of the transcribed region. Gene-level association statistics were defined as the aggregate of the mean and the lowest variant-level p-value within the gene boundary, converted to a Z-value. Gene sets were defined comprising the targets of each drug in the Drug-Gene Interaction database DGIdb v.2 (46) and in the Psychoactive Drug Screening Ki Database(47), both downloaded in June 2016 (45). Analyses were performed using competitive gene-set analyses in MAGMA.

Results from the drug-set analysis were then grouped according to the Anatomical Therapeutic Chemical class of the drug (45). Only drug classes containing at least 10 valid drug gene sets within them were analyzed, and drug-class analysis was performed using enrichment curves. All drug gene sets were ranked by their association in the drug-set analysis, and then for a given drug class, an enrichment curve was drawn scoring a "hit" if the drug gene set was within the class, or a "miss" if it was outside of the class. The area under the curve was calculated, and a p-value for this calculated as the Wilcoxon Mann-Whitney test comparing drug gene sets within the class to drug gene sets outside of the class (45). A Bonferroni-corrected significance threshold of \(p < 5.79 \times 10^{-5} \) and \(p < 4.35 \times 10^{-4} \) were used for the drug-set and the drug-class analysis, respectively, accounting for 863 drug-sets and 115 drug classes.

Summary data-based Mendelian randomization

Summary data-based Mendelian randomization (SMR) (v1.03) (48, 49) was applied to detect GWAS signals that co-localize with expression quantitative trait loci (eQTLs), in order to investigate putative causal relationships between SNPs and SA via gene expression. SMR was performed using eQTL summary statistics from the MetaBrain consortium (50), a cortex-derived eQTL dataset consisting of 2,970 EUR-cortex samples. The analysis was conducted using the EUR-only GWAS meta-analysis results, for consistency with the eQTL data. Brain eQTL data from comparable sample sizes in other ancestral groups is not currently available. SMR analysis was limited to transcripts with at least one significant \(\text{cis-eQTL} (p < 5\times10^{-8}) \) in the dataset (of 8,753 in MetaBrain). The Bonferroni-corrected significance threshold for the SMR analysis was \(p < 5.71 \times 10^{-6} \) and the significance threshold for the HEIDI test (HEterogeneity In Dependent Instruments) (51) was \(p \geq 0.01 \). A non-significant HEIDI test suggests a direct causal role, rather than a pleiotropic effect, of the SA-associated SNPs on gene expression.

Polygenic risk scoring

Polygenic risk scores (PRS) for SA were tested for association with SA versus controls in six target cohorts: PGC MDD, BIP and SCZ (all European ancestry admixtures), CONVERGE (East Asian ancestry admixtures), and Yale-Penn and Grady Trauma Project cohorts (both primarily African ancestry admixtures, located in the United States). The SA GWAS meta-analysis was repeated, excluding each cohort in turn, to create independent discovery datasets. PRS were generated using PRS-CS (51), which uses a Bayesian regression framework to place continuous shrinkage priors on the effect sizes of SNPs in the PRS, adaptive to the strength of their association signal in the discovery GWAS and the LD structure from an external reference
panel. The 1000 Genomes EUR, EAS or AFR reference panels (41) were used to estimate LD between SNPs, as appropriate for each target cohort. PLINK 1.9 (16) was used to weight SNPs by their effect sizes calculated using PRS-CS and sum all SNPs into PRS for each individual in the target cohorts. PRS were tested for association with case versus control status in the target cohort using a logistic regression model including covariates as per the GWAS. The amount of phenotypic variance explained by the PRS (R^2) was calculated on the liability scale, assuming a lifetime prevalence of SA in the general population of 2% (20). The Bonferroni-corrected significance threshold adjusting for six tests was $P<0.008$.

Results

Significant shared genetic architecture of SA between civilian (ISGC) and military populations (MVP)

The multi-ancestry GWAS included 43,871 cases and 915,025 controls from 22 cohorts (Table 1). Cases were of predominantly European ancestry admixtures (EUR, 81%), with 11% of cases with significant African ancestry admixtures located in the U.S. (AFR), 5% with East Asian ancestry admixtures (EAS), and 3% with Hispanic/Latino ancestry admixtures located in the U.S. (LAT). Case definition was lifetime SA, with ~13% of all cases having died by suicide. Additional information on study characteristics and ascertainment methods is presented in Supplementary Table S1.

Cohorts across ISGC and MVP differed with respect to ascertainment, with ISGC being largely civilian and MVP being military (Table 1a). However, examination of the genetic correlation of EUR GWAS meta-analyses for ISGC and MVP ($r_g = 0.81$, SE = 0.091, $p = 2.85 \times 10^{-19}$) indicated consistency of common-variant genetic architecture across these meta-analyses. Results from both fixed and meta-regression models were comparable in the multi-ancestry and EUR GWAS meta-analyses (all GWAS effect size correlations $>.99$) indicating that ancestry and cohort ascertainment were unlikely to confound observed genetic effects (Table 1b).

GWAS meta-analysis of SA across and within ancestries identified 12 GWS loci

The multi-ancestry GWAS meta-analysis identified eight genome-wide significant (GWS) loci ($P<5 \times 10^{-8}$) (Figure 1). The h^2_{SNP} of SA was significant at 5.7% (SE=0.003, $p = 5.70 \times 10^{-80}$) on the liability scale assuming an SA population prevalence of 2%. The cov-LDSC intercept was 1.04 (SE=0.01, $p = 1.59 \times 10^{-5}$) and the attenuation ratio was 0.13 (SE=0.03), indicating that the majority of inflation of GWAS test statistics is likely due to polygenicity (Supplementary Figure S1).

The locus most strongly associated with SA was in an intergenic region on chromosome 7 (index SNP rs62474683, odds ratio (OR) A allele = 1.05 [1.04-1.07], $p = 8.72 \times 10^{-12}$, frequency in cases = 0.57, frequency in controls = 0.56, Forest plot Figure S2). At other GWS loci, index SNPs were intronic in the SLC6A9, DRD2, HS6ST3 and FURIN genes (Table 2; additional summary data of all GWS loci are provided in Table S1b). On chromosome 3, a GWS SNP localized to the 5’ untranslated region of the NLGN1 gene, though the index SNP lacked neighboring SNPs in LD. There was no evidence of heterogeneity of effects across cohorts for any GWS locus according to I^2 heterogeneity indices (Table S1b). Forest plots for GWS loci are included in Figures S2-S9.
The EUR GWAS meta-analysis h^2_{SNP} was estimated at 7.0% (SE=0.4%) and identified four additional GWS loci (Table 2, Figure S10, Forest plots Figures S11-14), composed of mostly intergenic index SNPs. The nearest genes were PDE4B, OTX2-AS1, CACNG2, and one locus was in the major histocompatibility complex (MHC). GWAS meta-analyses in AFR (h^2_{SNP} = 9.8%, SE = 1.8%) and EAS (h^2_{SNP} = 9.8%, SE = 4.5%) produced no GWS loci. The LAT SA h^2_{SNP} (from the MVP GWAS) was estimated at 10.0% (SE = 6.5%). Regional plots of the 12 GWS risk loci across all meta-analyses are presented in Supplementary Figures S15-S26. Mapped genes from the top loci in multi-ancestry and ancestry admixture-specific meta-analyses are presented in Supplementary Tables S3-S6.

Genetic correlations of SA across ancestry GWAS

The genetic correlations of SA across each of the ancestral groupings were attenuated, with estimated r_Gs between 0.064 (SE = 0.574) (EAS with LAT) and 0.997 (SE = .537) (EUR with LAT) Popcorn r_Gs can be found in Table S7. Individual cohort GWAS were variably powered to estimate genetic correlation estimates with the other cohorts. LDSC estimates across all individual GWAS are presented in Table S8, though cov-LDSC h^2_{SNP} and Popcorn r_Gs in Table S7 are the preferred sources for statistics involving ancestry admixtures.

SA GWS loci are enriched for brain-expressed genes and overlap with previous genetic associations to known risk factors

Significant signal enrichment was observed in genes expressed in pituitary gland and brain tissues, based on the multi-ancestry GWAS (Table S9). Significant gene expression in brain was also observed in the EUR analysis (Table S10). Tissue-set enrichment analyses and corresponding GTEx gene expression heatmaps for all of the multi- and ancestry admixture-specific GWAS are provided in Tables S9-S12 and Figures S31-S34.

Several GWS genes were identified in MAGMA analyses of the multi-ancestry and EUR meta-analyses (Table S13; enrichment of SA signal with genes and gene sets across all meta-analyses are presented in Supplementary Tables S13-S14). MAGMA gene-based tests of the GWAS meta-analyses, with GWS results, are presented in Manhattan plots and QQ-plots in Figures S27-S30. EAS and AA p-value thresholds for inclusion of GWAS variants in follow-up analysis were relaxed to $p < 1 \times 10^{-5}$ and 1×10^{-6}, respectively, in order to explore gene-based tests of top ancestry-specific GWAS variants. Top genes implicated in the EAS analysis included C11orf87, MYO1C, and FAXC, and top genes implicated in the AFR analysis included CNTNAP2, IGF2R, MAN1B1, and SLC22A1. Neither set of genes was significantly associated with any pathway or tissue enrichment.

Gene-set analyses from the multi-ancestry and EUR GWAS identified 519 significant gene sets (31 and 488, respectively), spanning multiple domains, including epigenetics, gene regulation and transcription, cellular response to stress, DNA repair, and immunologic signatures (Table S14). The 31 multi-ancestry gene sets included schizophrenia and autism, containing protein-coding genes such as FURIN, FES, and DRD2, mapped from GWS loci. Most of the 488 EUR gene sets were due to overlap with a small group of 35 histone-coding genes.

Significant proportions of overlapping genes in GWAS Catalog (52) gene sets were observed for both multi-ancestry and EUR meta-analyses (Figures S35-S36). The 12 GWS loci from the multi-ancestry and EUR GWAS meta-analyses were tagged in several GWAS including cognition, smoking, insomnia, and risky behavior. Six of the 12 risk loci had p-values < 0.005 for the "Suicide or Other Intentional Self-Harm" analysis in FinnGen. A comprehensive list of results...
of SNP associations from the GWAS Catalog is presented in Table S15. Examination of the pheWAS results ($p < 0.005$) across UK Biobank, FinnGen and the GWAS Catalog resulted in the identification of several psychiatric, weight/BMI- and immune-related traits (Table S16).

Two loci implicated specific genes, FES and $TIAF1$, that were significantly associated with SA in SMR analyses and passed the HEIDI test. SMR results suggested that SA risk may be mediated by an increased expression of FES (previously implicated in cross-ancestry schizophrenia(53)) and decreased expression of $TIAF1$ in cortex (Table S17).

Significant overlap of SA GWS loci and targets of antipsychotics and antidepressants

Drug target enrichment results suggested that SA risk is most associated with the targets of antipsychotic and antidepressant drug classes. In the multi-ancestry gene-set analysis of the targets of drug classes defined by their Anatomical Therapeutic Chemical (ATC) classes (45), there was significant enrichment in the targets of four drug classes: Antipsychotics, Psychoanaleptics, which includes individually significant Antidepressants and its subclass Other Antidepressants (Table S18). The class of Other Antidepressants includes those not classified as selective serotonin reuptake inhibitors, monoamine oxidase inhibitors or monoamine reuptake inhibitors.

In the EUR ancestry admixture GWAS analysis, there was significant enrichment in the targets of just three drug classes, including Antipsychotics, the broad class of Psycholeptics (drugs with a calming effect on behavior), and the class Cytotoxic Antibiotics and Related Substances (Table S19). Only one drug, the insecticide cyfluthrin, was significantly enriched when grouping genes targeted by individual drugs (from the Drug-Gene Interaction Database DGIdb v.2 and the Psychoactive Drug Screening Ki Database) and this was only observed in the EUR GWAS results (see Tables S20 and S21 for multi-ancestry and EUR results).

Significant genetic correlation of SA with known non-psychiatric risk factors minimally affected after conditioning on MDD and PTSD

The out-of-sample polygenic risk analyses based on the new ISGC+MVP discovery GWAS meta-analysis statistics resulted in higher R^2 estimates than were observed in ISGC1, particularly for AA (maximum variance explained $R^2 = 0.66\%$, $p = 0.01$, and a maximum increase of 146%) and EAS ($R^2 = 0.34\%$, $p = 8.1\times 10^{-6}$, a 36% increase. EUR maximum variance explained = 1.11%, $p = 6.2\times 10^{-22}$, a 24% increase from ISGC1 (Table S22). Figure 2 presents a forest plot of the genetic correlations of the EUR GWAS meta-analyses of suicide attempt with several physical and mental health phenotypes, as well as one control phenotype (body mass index, BMI). Significant shared genetic covariation of EUR SA with smoking ($r_{G} = 0.46$, SE = 0.03, $p = 8.06\times 10^{-63}$), ADHD ($r_{G} = 0.55$, SE = 0.04, $p = 2.98\times 10^{-41}$), risk tolerance ($r_{G} = 0.32$, SE = 0.02, $p = 1.34\times 10^{-59}$), and chronic pain ($r_{G} = 0.45$, SE = 0.03, $p = 9.50\times 10^{-50}$) were observed both before and after conditioning on MDD and PTSD. Significant positive genetic correlations of neuroticism, schizophrenia, bipolar disorder, and self-harm ideation with SA ($r_{G} = 0.45$ SE = 0.03, $p = 1.0\times 10^{-52}$; $r_{G} = 0.43$, SE = 0.03, $p = 1.32\times 10^{-55}$; $r_{G} = 0.48$, SE = 0.04, $p = 1.81\times 10^{-57}$; $r_{G} = 0.83$, SE = 0.06, $p = 1.94\times 10^{-51}$) did not remain significant after conditioning on both MDD & PTSD.

For completeness of comparison across cohorts and phenotypic subgroups (SA versus SD), genetic correlation estimates for phenotypes are presented in Table S23 using the European ancestry admixture GWAS summary statistics from 1) ISGC + MVP, 2) ISGC only, 3) MVP only, 4) ISGC without suicide death, 5) ISGC suicide death only (the Utah Suicide Study, current N =
4,692 EUR suicide deaths and 20,702 controls), and 6) conditioning on MDD and PTSD for MVP, ISGC, and MVP + ISGC. LDSC jackknife tests of differences between these genetic correlation estimates are presented in Table S24, and more exhaustive comparison of phenome-wide r_G and genetic causal proportion analyses, with the European admixture GWAS meta-analysis, are provided in Table S25. Genetic causal proportion analyses implicated several non-psychiatric genetic risks in EUR SA, including particulate air matter pollution exposure (pm 2.5), smoking exposures, and pulmonary health factors. Risk factors with significant partial genetic causality estimates are presented in Table S25.

Discussion

This study presents the largest GWAS meta-analysis of SA to date, incorporating multiple ancestries and expanding the set of GWS loci from four to 12. Discovery of three of the novel GWS loci, and improved out-of-sample PRS prediction across ancestry, was only possible with the aggregation of all ancestral cohorts. For the first time, we show that implicated genes are highly expressed in brain tissue, enriched in pathways related to gene regulation and transcription, cellular response to stress, DNA repair, and immunologic signatures, and are shared with epidemiological risk factors. Genetic correlation and causal proportion analyses implicate a number of non-psychiatric genetic risks in SA, including pulmonary health factors. We also provide important evidence that a significant proportion of the common variant genetic architecture of SA is shared across large civilian and veteran populations with disparate demographics.

One advantage of combining the ISGC with MVP was the opportunity to examine genetic effects across heterogeneous cohorts. For example, the sample composition and ascertainment across the ISGC is predominantly civilian and international, with a large proportion of females (7). A number of the ISGC samples from the Psychiatric Genomics Consortium cohorts (Table 1) are collected from individuals with major psychiatric disorders, representing a more clinical population. In contrast, the MVP cohorts are predominantly male (8), and all are military veterans ascertained through the U.S. Department of Veterans Affairs (VA) healthcare system. The consistency of SA common variant genetic architecture across EUR MVP and ISGC cohorts indicates that power may be further enhanced by combining future cohorts with differing ascensions.

As expected, the increase in sample size, and resulting increase in power, led to the identification of several new GWS loci and improved out-of-sample PRS prediction, across ancestries, relative to the previous ISGC-only analyses. The loci identified in this study implicate genes expressed in brain. Genes associated with SA in this study are highly enriched among psychiatric phenotypes and overall health and wellness risk factors for SA. Brain is the predominant tissue enriched for associated genes, and there is also significant enrichment in pituitary gland, consistent with previous association of SA with hypothalamic-pituitary-adrenal system dysregulation (54). In addition, the enrichment of pathways related to epigenetics and gene regulation and transcription suggest that epigenetic modifications, such as DNA methylation, may play a role in modulating the effect of SA-associated genetic variants. However, epigenetic pathways were only enriched in GWAS of European ancestry admixture, pointing to the potential importance and varied impact of epigenetic mechanisms in diverse biological systems that may contribute to SA risk. Pathways enriched in the multi-ancestry GWAS were absent of histone-coding genes, and contained protein-coding genes mapped from GWS loci such as FURIN, FES, and DRD2. These multi-ancestry pathway results, while harder to interpret, may be more generalizable to the global population.
Drug target enrichment results suggest that SA risk is associated with the targets of antipsychotic and antidepressant drug classes. One explanation may be that psychiatric symptoms associated with SA risk are also associated with these drug targets, though the direction of any association of drugs with risk cannot be assumed and is not directly tested here. The SMR analysis of EUR results implicated \textit{FES} and \textit{TIAF1} in SA. \textit{FES} has been previously implicated in cross-ancestry schizophrenia (53).

Genetic correlations of SA with ADHD, smoking, pain, and risk tolerance remained significant after conditioning SA on both MDD and PTSD, while schizophrenia, bipolar disorder, and neuroticism did not. This suggests a potential role for health factors in SA risk that are both shared with and distinct from psychiatric disorders, as proposed in Mann & Rizk's stress diathesis model (55) of suicidal behavior based on clinical and biological studies. The suicide diathesis includes altered decision-making that may be more pronounced in the context of ADHD and smoking, and may be aggravated by sleep problems. Pain is associated with the stress domain of suicidal behavior, and is also associated with increased access to prescription opioids. Overall, this study leverages genetic data to examine important risk phenotypes that may or may not be present in medical records.

Some limitations of this study should be considered. First, a meta-analysis of such a large number of diverse cohorts, with different assessments of SA, could reduce statistical power by increasing heterogeneity. Our analyses remain still more conservative with the inclusion of age and sex covariates in three of the ISGC cohorts and MVP. However, GWAS of the primary datasets typically produced significant—and high—genetic correlation estimates. GWS loci produced similar effect sizes across cohorts and across fixed and meta-regression models (correlations of EUR and multi-ancestry GWS effect sizes across models exceeded 0.99). Indeed, the apparent consistency of genetic architecture across EUR ISGC and MVP cohorts is important given marked demographic and ascertainment differences.

This study also provides GWAS meta-analyses specific to African and East Asian ancestry admixtures. The lack of GWS loci specific to these SA meta-analyses underscores a strong need for greater ancestral diversity and representation in suicide genetics research. With high variability of sample sizes of individual ISGC and MVP ancestral cohorts (case \textit{n} ranging from 115 to 9,196) some GWAS yielded \textit{h}^2 and \textit{r}_G estimates, while others did not. Variability in \textit{r}_G indicates that increasing the examination of non-European ancestries in the future will significantly increase the generalizability of the genetic risk signals identified from studies of suicide phenotypes and the portability of polygenic scores. Importantly, broader ancestral representation, particularly from population-dense areas such as India, Western Asia, and the Global South, will be critical for improving the rigor and generalizability of GWAS results in future research.

Implicated genes and established genetic relationships with ADHD, smoking, and risk tolerance help to inform our understanding of biological contributions to risk of SA. From a clinical standpoint, impulsivity, smoking status, and risk-taking behaviors are intuitive co-morbid indicators of suicide risk. Genetic causal proportion analyses implicate these and other health factors—pulmonary and cardiovascular—in risk for SA. And our preliminary comparison of genetic correlations across SA vs. SD GWAS cohorts appears to implicate risk tolerance in the severity of the suicide phenotype. Further study, comparing SD and SA with subjects with suicidal ideation, will allow for a comparison of those who think about suicide and those who act. Importantly, genetic risk for SA, calculated in new independent cohorts using these GWAS summary data, will contribute to a deeper understanding of the clinical implications of genetic
risk for suicide. The future addition of multiple ancestral cohorts is likely to yield continued discovery and increased opportunity for clinical translation.

References

1. Organization TWH: Suicide.
3. (SAMHSA) SAaMHSA.
4. Control CfD.

Figure Titles and Legends

Figure 1: Manhattan plot of multi-ancestry GWAS meta-analysis of suicide attempt. The x-axis shows genomic position and the y-axis shows statistical significance as $-\log_{10}(P \text{ value})$. The horizontal line shows the genome-wide significance threshold ($P<5.0 \times 10^{-8}$). Labels represent the nearest gene to the index SNP. Regional plots of the eight genome-wide significant loci across ancestries and the four genome-wide significant loci in EUR are presented in Supplementary Figures S3-S14.

Figure 2: Forest plot of genetic correlations of the multi-ancestry GWAS meta-analyses of suicide attempt with physical and mental health phenotypes. The x-axis presents genetic correlation values with 95% confidence intervals (CI), and the y-axis presents the discovery GWAS for multiple phenotypes. ISGC = International Suicide Genetics Consortium meta-analysis; ISGC + MVP = the primary meta-analysis including GWAS from both ISGC and Million Veterans Program sets of cohorts; ISGC + MVP | MDD & PTSD = the combined GWAS meta-analysis of both cohorts conditioning on major depressive disorder and post-traumatic stress disorder.
Table 1. Summary of GWAS cohorts and primary ancestry admixtures

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Attempt/Death</th>
<th>Ascertainment</th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Army STARRS</td>
<td>Attempt</td>
<td>Military</td>
<td>670</td>
<td>10,637</td>
</tr>
<tr>
<td>Australian Genetics of Depression Study</td>
<td>Attempt</td>
<td>Psychiatric</td>
<td>2,792</td>
<td>20,193</td>
</tr>
<tr>
<td>Columbia University</td>
<td>Attempt & Death</td>
<td>Psychiatric</td>
<td>577</td>
<td>1,233</td>
</tr>
<tr>
<td>Genetic Investigation of Suicide and SA (GISS)</td>
<td>Attempt</td>
<td>Psychiatric</td>
<td>660</td>
<td>660</td>
</tr>
<tr>
<td>German Borderline Genomics Consortium</td>
<td>Attempt</td>
<td>Psychiatric</td>
<td>481</td>
<td>1,653</td>
</tr>
<tr>
<td>iPSYCH</td>
<td>Attempt</td>
<td>Population</td>
<td>7,003</td>
<td>52,227</td>
</tr>
<tr>
<td>Janssen</td>
<td>Attempt</td>
<td>Psychiatric</td>
<td>255</td>
<td>1,684</td>
</tr>
<tr>
<td>Million Veteran Program</td>
<td>Attempt</td>
<td>Military</td>
<td>9,196</td>
<td>287,370</td>
</tr>
<tr>
<td>Psychiatric Genomics Consortium BIP</td>
<td>Attempt</td>
<td>Psychiatric</td>
<td>3,214</td>
<td>17,642</td>
</tr>
<tr>
<td>Psychiatric Genomics Consortium ED</td>
<td>Attempt</td>
<td>Psychiatric</td>
<td>170</td>
<td>5,070</td>
</tr>
<tr>
<td>Psychiatric Genomics Consortium MDD</td>
<td>Attempt</td>
<td>Psychiatric</td>
<td>1,528</td>
<td>16,626</td>
</tr>
<tr>
<td>Psychiatric Genomics Consortium SCZ</td>
<td>Attempt</td>
<td>Psychiatric</td>
<td>1,640</td>
<td>7,112</td>
</tr>
<tr>
<td>UK Biobank</td>
<td>Attempt</td>
<td>Population</td>
<td>2,433</td>
<td>334,766</td>
</tr>
<tr>
<td>University of Utah</td>
<td>Death</td>
<td>Population</td>
<td>4,692</td>
<td>20,702</td>
</tr>
<tr>
<td>Yale-Penn</td>
<td>Attempt</td>
<td>Psychiatric</td>
<td>475</td>
<td>1,817</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>35,786</td>
<td>779,392</td>
</tr>
<tr>
<td>EAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONVERGE Consortium</td>
<td>Attempt</td>
<td>Psychiatric</td>
<td>1,148</td>
<td>6,515</td>
</tr>
<tr>
<td>Kobe University</td>
<td>Death</td>
<td>Population</td>
<td>746</td>
<td>14,049</td>
</tr>
<tr>
<td>Million Veteran Program</td>
<td>Attempt</td>
<td>Military</td>
<td>115</td>
<td>4,082</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2,009</td>
<td>24,646</td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grady Trauma Project</td>
<td>Attempt</td>
<td>General medical</td>
<td>669</td>
<td>4,473</td>
</tr>
<tr>
<td>Million Veteran Program</td>
<td>Attempt</td>
<td>Military</td>
<td>3,507</td>
<td>74,306</td>
</tr>
<tr>
<td>Yale-Penn</td>
<td>Attempt</td>
<td>Psychiatric</td>
<td>629</td>
<td>2,902</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>4,805</td>
<td>81,681</td>
</tr>
<tr>
<td>LAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Million Veteran Program</td>
<td>Attempt</td>
<td>Military</td>
<td>1,271</td>
<td>29,306</td>
</tr>
<tr>
<td>Multi-ancestry Total</td>
<td></td>
<td></td>
<td>43,871</td>
<td>915,025</td>
</tr>
</tbody>
</table>

Note: EUR = European, EAS = East Asian, AFR = African, LAT = Hispanic/Latino, BIP = bipolar disorder, ED = eating disorders, MDD = major depressive disorder, SCZ = schizophrenia
Table 2: Results from meta-analyses of suicide attempt showing the index SNP from each genome-wide significant locus

<table>
<thead>
<tr>
<th>CHR</th>
<th>Index SNP</th>
<th>BP</th>
<th>Locus Start..Stop</th>
<th>Nearest gene (distance to index SNP in kb)</th>
<th>P</th>
<th>OR</th>
<th>SE</th>
<th>A1</th>
<th>A2</th>
<th>Direction</th>
<th>N_Cohorts</th>
<th>N_Total</th>
<th>N_Eff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>rs3791129</td>
<td>44480093</td>
<td>44,462,155..44,497,134</td>
<td>SLC6A9 (0.0)</td>
<td>1.22E-09</td>
<td>1.055</td>
<td>0.009</td>
<td>G</td>
<td>A</td>
<td>+--------++-</td>
<td>18</td>
<td>933,136</td>
<td>158,078</td>
</tr>
<tr>
<td>2</td>
<td>rs7649709</td>
<td>173129819</td>
<td>173,113,742..174,012,162</td>
<td>NLGN1 (0.0)</td>
<td>2.32E-08</td>
<td>1.054</td>
<td>0.010</td>
<td>A</td>
<td>C</td>
<td>+--------++-</td>
<td>21</td>
<td>954,890</td>
<td>164,921</td>
</tr>
<tr>
<td>3</td>
<td>rs6204522</td>
<td>19307114</td>
<td>19,068,774..19,180,711</td>
<td>LOC101928519 (-76.4)</td>
<td>1.68E-09</td>
<td>1.067</td>
<td>0.011</td>
<td>C</td>
<td>T</td>
<td>++--------+++--</td>
<td>22</td>
<td>956,659</td>
<td>166,924</td>
</tr>
<tr>
<td>4</td>
<td>rs62474683</td>
<td>115020725</td>
<td>114,763,653..114,871,409</td>
<td>LINCO1392 (-149.3)</td>
<td>8.72E-12</td>
<td>1.054</td>
<td>0.010</td>
<td>A</td>
<td>G</td>
<td>+--------++-</td>
<td>22</td>
<td>958,896</td>
<td>167,455</td>
</tr>
<tr>
<td>5</td>
<td>rs62514846</td>
<td>91416550</td>
<td>91,411,818..91,426,687</td>
<td>FURIN (0.0)</td>
<td>1.81E-09</td>
<td>1.048</td>
<td>0.008</td>
<td>C</td>
<td>A</td>
<td>+--------++-</td>
<td>20</td>
<td>938,959</td>
<td>162,145</td>
</tr>
</tbody>
</table>

Note: CHR = chromosome, SNP = single nucleotide polymorphism, BP = GRCh37 base pair position, kb = kilobases, OR = odds ratio, SE = standard error, A1 = tested allele, A2 = other allele, EUR = European, N_Cohorts = number of cohorts included, N_Total = Total cases and controls, N_Eff = total effective sample size, MHC = major histocompatibility complex.