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Abstract

This thesis investigates the behavioural dynamics that emerge at the interface of

Emergency Departments (EDs) and the Emergency Medical Service (EMS). The

focus is on the impact that time-targets may have on staff behaviour and patient

well-being. This research is structured into two main parts: the first part is the

development of a queueing theoretic representation of an ED and the second part

is the development of a game theoretic model between two EDs and the EMS

that distributes ambulances to them.

This thesis uses a variety of mathematical and computational fields such as linear

algebra, game theory, queueing theory, graph theory, optimisation, probability

theory, agent-based simulation and reinforcement learning.

The queueing model is developed using both a discrete event simulation and a

Markov chain approach. The queueing network consists of two queueing nodes

where there is some strategic managerial behaviour that relates to how two types

of individuals are routed between the two nodes. The first node acts as a buffer

for one type of individuals before moving to the second node, while the second

node consists of a waiting room and a service centre. Both approaches are used

to obtain performance measures of the queueing system and explicit formulas are

derived for the mean waiting time, the mean blocking time and the proportion of

individuals within a given target time. In addition, some numeric results are pre-

sented that compare the Markov chain and discrete event simulation approaches.

Consequently, this thesis describes the development and application of a 3-player

game theoretic model between two such queueing networks and a service that

distributes individuals to them. In particular the game is then reduced to a

2-player normal-form game. The resultant model is used to explore dynamics

between all players. A backwards induction technique is used to get the utilities

of the normal-form game between the two queueing systems. The particular

game is then applied to a healthcare scenario to capture the emergent behaviour

between the EMS and two EDs. The results and outcomes that are produced
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by various instances of the game are then analysed and discussed. The learning

algorithm replicator dynamics is used to explore the evolutionary behaviours that

emerge in the game. In particular, the behaviour that naturally emerges from the

game seems to be one that causes more blockage and includes less cooperation.

Several ways to escape this learned inefficient behaviour are discussed.

Finally, the thesis explores an extension of the queueing theoretic model that

allows servers to choose their own service speed. This is implemented using

an agent-based simulation approach. The agent-based model is then used in

conjunction with a reinforcement learning algorithm to explore the effect that

the servers’ behaviour has on the overall performance of the system.
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Chapter 1

Introduction

This thesis focuses on the application of Operational Research (OR) to healthcare

systems and in particular at the interface of Emergency Departments (EDs) and

Emergency Medical Services (EMS). OR models have been used a lot in the past

in conjunction with healthcare systems to better inform the decision-making of

healthcare managers and policy makers. The use of OR in healthcare systems

can be particularly useful in situations where improvements in the system are

needed to cope with the demand for healthcare services.

OR is a field of study that makes use of mathematical and computational tech-

niques to solve problems in a wide range of areas, such as healthcare, business,

engineering, and the military. The core of OR has been to help decision makers

make better decisions by providing them with the tools to analyse and under-

stand the problem at hand and the possible solutions to it. Such mathematical

tools include queueing theory, game theory, decision theory, statistical analysis,

machine learning and many more.

This research was funded by The Healthcare Improvement Studies (THIS) Insti-

tute of the University of Cambridge. The THIS Institute is a research institute

that aims to create a world-leading scientific asset for the National Health Service

(NHS) about how to improve quality and safety in healthcare.

The introductory Chapter is structured in the following way:

� Section 1.1 provides an overview of the history of OR and its development,

along with a brief introduction to queueing theory and game theory.

� Section 1.2 introduces the problem of congestion in healthcare systems and

in particular in EDs.
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� Section 1.3 presents the research questions and objectives of this thesis,

along with the overall structure of the thesis.

� Section 1.4 provides an overview of the software development tools and best

practices that were used in this research.

1.1 History of Operational Research

The history of OR can be traced back to the 1940s during Would War II when

the UK forces started to use OR techniques to optimise the use of their aircrafts.

Patrick Blackett was a British physicist and a mathematician and was one of the

first people to use OR techniques to solve problems in the military and was later

referred to as the father of OR [19]. At the time, many strategic problems were

too complicated to solve by any one person or a single discipline. Scientists and

mathematicians from different fields were brought together to solve problems such

as finding the best strategies of air defence, minimising losses from submarines

and radar deployment. These teams were called Operational Research teams or

Operations Research teams and the collection of techniques that they used were

later used to form the discipline of OR [120].

After the war, the discipline of OR started to grow and spread to other industries

and fields. Universities started advancing the field by developing new techniques

and methods and later started to offer undergraduate and postgraduate courses on

it. Additionally, the introduction of electronic computers allowed OR techniques

to be used in more complex problems [120]. The first formal definition of OR was

given by the British Operational Research Society:

“Operational research is the application of the methods of science

to complex problems arising in the direction and management of large

systems of men, machines, materials and money in industry, business,

government, and defence. The distinctive approach is to develop a sci-

entific model of the system, incorporating measurement of factors such

as chance and risk, with which to predict and compare the outcomes

of alternative decisions, strategies or controls. The purpose is to help

management determine its policy and actions scientifically” [134].

There are numerous methods and techniques that form the discipline of OR.

Some of the most common ones are mathematical programming, queueing theory,

game theory, decision theory, data mining and statistical analysis. The main OR

techniques that are used in this thesis are queueing theoretic models and game

theoretic models.
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Queueing theory is a branch of OR that studies queues like those found in banks,

supermarkets, hospitals and many more. A queueing model is an abstract repre-

sentation of a system whose purpose is to understand the underlying behaviour of

the system so that informed and intelligent decisions can be made. Queuing the-

ory was first introduced in 1909 by A.K. Erlang, who was a Danish mathematician

and engineer, where it was applied to the problem of telecommunications [3]. Er-

lang placed the foundation for the Poisson distribution in queueing theory which

then led to the development of the Exponential distribution. The motivation for

the work around queueing theory between 1920 and 1930 has been the practical

problem of congestion. In the early 1950s applications of queueing theory started

to develop outside the field of telecommunications and in 1960s queueing theory

was utilised for the performance evaluation of computer systems. Ever since,

queueing theory and its applications have been growing and expanding to many

different areas [137].

Another branch of OR that is used in this thesis is game theory. Game theory

focuses on the study of strategic interaction between players and the outcomes

of such interactions. It is widely used to study behavioural patterns of players

in a game and explore strategies that players can use to maximise their payoff.

Although mathematicians have been studying strategic games for a long time

now, it was not until 1940s that game theory started receiving more attention

with the publication of John von Neumann and Oskar Morgenstern [153]. The

book introduced the mathematical theory of economic and social organisation,

based on a theory of games of strategy. Around 1950, mathematician John Nash

developed a criterion for mutual consistency of players’ strategies, which is a

concept now known as the Nash equilibrium. Nash proved that for every finite n-

player, non-cooperative game there exists a Nash equilibrium in mixed strategies.

In the next few decades, game theory started to be applied to many different areas

such as economics, biology, politics, psychology and many more. In the last few

years, game theory has also been applied to healthcare systems [30, 82].

1.2 Congestion in healthcare

EDs are one of the most important parts of a hospital and are the first point

of contact for individuals seeking medical attention. It is also one of the most

congested areas of a hospital and is often the cause of long waiting times for

patients. EDs are under increasing pressure to meet patient waiting time targets

and satisfy regulation targets [61]. It is widely reported that ED congestion

severely impacts not only patients in the ED but also the EMS [75, 89, 94]. One
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of the major concern for the ambulance service is that the ambulances are held

waiting parked outside the EDs to offload (dispatch) their patients when the ED is

particularly busy [32]. As a result, ambulance blocking not only impacts patients

that are waiting for ED service, but has a major knock-on effect on the ability of

ambulances to respond to new EMS calls, and thus placing lives at risk [38].

There are numerous news articles that address the complications that arise when

ambulances stay blocked outside of hospitals for a long amount of time [4, 35].

Most such news reports comment on the long idle time of ambulances when being

blocked outside of hospitals and not being utilised as best as they could be [144].

In addition, there are several reports of examples where this became an issue for

new patients that needed to be transported to a hospital but were unable to do

so due to the ambulance taking too long to reach them [97]. Some even mention

the negative effect that this has on the morale of ambulance paramedics [33].

In the United Kingdom, the NHS sets some regulations on ED performance.

One of these regulations is that 95% of patients that arrive at the ED should

be admitted, transferred or discharged within four hours. This is where gaming

behaviour might be observed between the EDs and the EMS.

1.3 Research questions and thesis structure

This thesis aims to explore behavioural patterns that emerge at the ED-EMS

interface using a game theoretic model that is informed by an underlying queueing

network. A model is developed that describes the situation where an ambulance

service would have to distribute its patients between two EDs. The two EDs are

thought of as two queueing systems and the EMS as a distributor that decides how

to distribute patients to them, aiming to minimise some performance measure.

The patients that are distributed by the EMS arrive at the EDs via an ambulance

and are then either offloaded at the ED or stay blocked outside in the ambulance.

This is where gaming behaviour is incorporated into the model. The managerial

decision of whether or not to offload a patient is a strategic decision that is made

by the two EDs. This decision is mapped to a parameter that will be referred

to as the threshold of the ED. A high threshold indicates that the ED accepts

ambulance patients more often, while a low threshold means that the ED blocks

ambulances more frequently. The model is then used to explore the emergent

behaviour of the system.

The main research questions of the research presented in this thesis are:

� How can queueing theory be used to model an Emergency Department that
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can accept and block patients from an ambulance service?

� How can one extract performance measures from such a queueing model?

� How can game theory be used to model the interaction between the EMS

and two EDs?

� How can the developed model be used to explore the emergent behaviour

of the system?

� How can agent-based modelling be used to model how staff at the EDs may

choose the speed at which they serve patients in order to maximise some

utility?

Specifically, the focus is on the construction of a 3-player game theoretic model

between two queueing systems and a service that distributes individuals to them.

The resultant model is used to explore the emergent dynamics between the three

players. This study explores two new concepts: obtaining performance measures

for a new queueing theoretic model with a service centre and a buffer space

and, and using a learning algorithm to model the emergence of behaviour. The

developed theoretical model is illustrated through the application to a healthcare

system of two EDs and the EMS, exploring the inefficiencies that emerge and ways

to apply some incentive mechanisms to improve them. The EDs are modelled

as two queueing systems each with a tandem buffer and a service centre. The

performance measures are then used as the utilities of the game. The novelty of

the queueing model here is a contribution not only to game theoretic literature

but also to the queueing theoretic literature, since no such model of a tandem

queueing model with a pair of parameters for the buffer has been previously

considered.

This thesis aims to explore the behaviour that emerges from an interactive situ-

ation between two queueing systems that aim to maximise their own utility. In

addition, this research focuses on the impact that this may have on the ambu-

lance’s blocking time and patients’ waiting time.

The research presented on this thesis is based on the following assumptions:

� Some managerial decision making is involved in choosing when to start the

blockage of ambulances.

� The ambulance service decides how patients are distributed to different

hospitals rather than choosing the nearest hospital for each patient.
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� The waiting time of a patient, arriving by an ambulance in the ED, is

measured from the time they are offloaded to the ED itself, rather than

from the time the ambulance arrives at the parking space.

The research presented in this thesis consists of four main chapters. That is

a chapter on the queueing theory model that is presented introduced in this

thesis, a chapter on the game theoretic model that uses the queueing model in

its construction, a chapter on the numerical results of the game theoretic model

and a chapter on the agent-based model that is used to explore some additional

emergence of behaviour. Overall, the thesis is structured as follows:

� Chapter 1 introduces the problem and motivation behind the research pre-

sented in this thesis. A background of OR as well as an overview of the

software development process and best practices are also presented.

� Chapter 2 presents a literature review of the relevant research. This includes

a review of the literature on OR models applied to healthcare systems, a

review of the conjunction of queueing theory and game theory and a review

of the literature on game theoretic models applied to healthcare systems.

Moreover, a brief review on behavioural OR is also presented to provide

some context for the agent-based model that is presented in this thesis.

� Chapter 3 introduces a queueing network model that accepts two types

of individuals and has two waiting spaces. Two modelling approaches are

discussed; Discrete Event Simulation (DES) and the Markov chain (MC)

approach. The chapter mainly focuses on the MC approach and presents

how the steady state probabilities and certain performance measures can be

obtained from it. This system is then used to describe an ED that accepts

patients arriving by ambulance and patients that arrive by other means.

� Chapter 4 presents a game theoretic model that is informed by the queueing

network model. The chapter starts by giving a brief overview of game

theoretic concepts that are utilised in this chapter. The formulation of the

game theoretic model is then presented along with the methodology that

was used to solve it. The model is then mapped to a 3-player game between

the EMS and two EDs.

� Chapter 5 presents an overview of the numerical results of the game theo-

retic model. The chapter gives an overview of the data collection process

as well as a brief description of the data parameters explored. The results

of the numerical experiments are then presented and discussed.
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� Chapter 6 presents an extension to the queueing model discussed in Chap-

ter 3. The queueing model is extended to use state-dependent and server-

dependent service times instead of the constant service times that were pre-

viously used. An agent-based model is constructed where there are different

service times for each server and each state of the system. A reinforcement

learning algorithm is then used to observe the learning that takes place

when servers choose the speed at which they serve individuals in order to

maximise some utility.

� Chapter 7 presents an overall summary of the research presented in this

thesis. The chapter also lists the main contributions of this thesis and

presents some suggestions for future work.

1.4 Software development and best practices

Scientists and researchers are increasingly using software development tools to

conduct their research. In fact the use of software is becoming so prevalent that

it is now considered a fundamental part of the scientific process. Yet software

is not always developed following practices that ensure its reproducibility and

sustainability. The best practices discussed in this section promote better qual-

ity software, which in turn improves the research’s reproducibility and reusabil-

ity [70].

Open Source Software (OSS) is software with source code that everyone can ac-

cess, modify and improve. OSS improves accessibility, reproduction, transparency

and innovation in scientific research [101]. Moreover, OSS development encour-

ages developer-user communities and builds trust among users [99].

The following list is a summary of best practices as described in [158]:

1. Write programs for people, not computers.

2. Let the computer do the work.

3. Make incremental changes.

4. Don’t repeat yourself (or others).

5. Plan for mistakes.

6. Optimise software only after it works correctly.

7. Document design and purpose, not mechanics.
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8. Collaborate.

This is not an exhaustive list of best practices, rather it is a list of principles

that can be used to guide the development of software. Software tools that are

used together with these principles are version control, code reviews, automated

testing, code formatting and documentation. These principles were used to guide

the development of the software that is presented in this thesis. These concepts

are also discussed in more detail in the following sections.

This thesis relies heavily on the use of software. All code written for this thesis is

written in the open source programming language Python [148]. In particular, all

software developed for this thesis is publicly available on GitHub and is licensed

under the MIT license. The MIT license is a permissive license that allows users

to inspect, modify and redistribute the software. The repository for the software

developed for this thesis has also been archived using Zenodo [111].

1.4.1 Version control

A version control system (VCS) is a system that manages the evolution of an

ongoing object. It records any changes made by the software developers and

allows them to revert to previous versions of the software. The adoption of VCS

has become widespread in software development and has empowered software

developers to work effectively and collaboratively on large projects.

Version control usually consists of three main components: a repository, a working

directory and a staging area. The repository is the place where the software is

stored. The working directory is the place where the software is being developed.

The staging area is the place where the changes made to the software are stored

before they are committed to the history of the repository [20].

There are two main types of VCS: centralized VCS and distributed VCS. Central-

ized VCS is a VCS where all the software developers work with a single central

repository. The central repository is the only place where the software is stored

and where all the changes are made. The most commonly used centralized VCS

is Subversion and CVS. The distributed VCS is a VCS where all the software

developers work with a local copy of the software. The local copy of the software

is then synchronised with a central repository where the changes are made [160].

Some examples of distributed VCS are Git, Mercurial and Bazaar. For the pur-

poses of this thesis, the distributed VCS Git [130] is used.

Git is a distributed VCS that is used to track changes in source code during

software development. There are a number of services that host online Git servers
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that can be used to store Git repositories. The importance of using a Git server is

that it allows for collaboration and makes, not only the code, but also the history

of the code available to everyone. Some examples of Git servers are GitHub,

GitLab and BitBucket. For the purposes of this thesis, the Git server GitHub is

used.

GitHub has several features that make it a good choice for hosting Git repos-

itories. It is a web-based Git repository hosting service that allows users to

collaborate on projects. Every new feature or bug fix that was developed for this

thesis was developed in a separate branch of the repository. GitHub allows users

to create branches that are used to develop features independently of the main

code base. Once the feature is complete, the branch is merged into the main code

base. This process is called branching and it is a core concept of Git. Branching

allows developers to work on multiple features at the same time and to collabo-

rate with other developers. It also allows developers to work on a feature without

affecting the main code base.

GitHub also offers users the ability to comment on each other’s code, to review

each other’s code and raise issues on each other’s repositories. This is often done

through a process called a pull request (PR). A PR is a mechanism for a developer

to notify team members that they have completed a feature. The team members

review the changes, discuss potential improvements and eventually approve and

merge the changes into the main code base. Figure 1.1 shows an example of a

PR on GitHub.

Figure 1.1: Pull request example on GitHub.
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1.4.2 Virtual environments

A virtual environment is a tool that is used to create an isolated Python environ-

ment on a user’s computer for a specific project. Virtual environments are used to

isolate the dependencies of different projects and to ensure that the dependencies

of one project do not interfere with the dependencies of another project.

There are several tools that can be used for creating virtual environments and

managing dependencies. For the purposed of this thesis, the Anaconda package

manager is used. Anaconda is an open source Python distribution platform that

is used for scientific computing [123]. It offers a number of tools that are used in

conjunction with Python. The most important of these tools is the Conda package

manager. Conda is an open source package and environment management system

that is used to install, update and manage packages and their dependencies.

Conda was originally developed for Python programs but it can package and

distribute software for any language.

For every repository that was created for this thesis, a conda environment was cre-

ated. Every repository contains a .yml file that contains the list of dependencies

and the versions of the dependencies that are required to run the software. The

.yml file is recognised by Conda and is used to create the virtual environment.

Figure 1.2 shows the contents of the .yml file associated with the repository of

this thesis.

Figure 1.2: Conda environment example.
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1.4.3 Summary of written software

The software written for this thesis is written in the open source programming lan-

guage Python [148]. Python is a general-purpose, object-oriented programming

language that is used for a wide range of applications. It is both beginner-friendly

and powerful with a large community of developers and users.

For the purposes of this thesis a python library called ambulance game was devel-

oped. The library contains a number of classes and functions used to formulate

and solve the problem described in this thesis. More information about the in-

stallation and usage of the library can be found in Appendix A.

One of the most important, and often neglected, aspects of software development

is documentation. Software documentation is a set of instructions that are used

to explain how software works. Documentation should explain how users can

install and use the software. All repositories associated with this thesis contain a

README.md file that contains a brief description of the repository and instructions

on how to clone the repository or install the software associated with it. The

source code of the software has been written in a modular and readable manner

with variable and function names that focus on readability. The source code of

the software also contains docstrings that are used to explain the purpose of the

functions and classes created. Docstrings are a form of documentation that is

written directly in the source code.

1.4.4 Testing and code quality checkers

Code testing is a process that is used to ensure that the software works as ex-

pected. A test is a piece of code that is used to check the correctness of another

piece of code. Tests are used to ensure that the software works as expected and

that it produces the correct results.

“Testing is the process of executing a program with the intent of

finding errors.” [102]

Throughout the development of the software associated with this thesis, a Test

Driven Development (TDD) approach was used. TDD is a software development

process where the tests are written before the code. This ensures that all the

code is well tested and allows the programmer to change the program in small

steps, increasing overall confidence in the program’s quality [9].

The Python code was tested using the pytest library. Pytest is a testing frame-

work that is used to run tests. Figure 1.3 shows an example of a test written that
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was written as part of the ambulance game library.

Figure 1.3: Python test example.

Apart from testing the code, it is also important to ensure that the code is well

written and that it follows a set of coding standards. This can be done using a

set automated tools that are used to check the code for common errors and to

ensure that the code follows a set of coding standards. Table 1.1 shows a list of

tools that were used throughout the development of software and writing of this

thesis.

Tool Description

black A code formatter that is used to ensure that the code is

compliant with the PEP8 coding standard [149].

flake8 A tool for style guide enforcement.

pylint A code linter that statically analyses your code.

mypy A Python static type checker.

aspell A grammar checker that catches spelling errors.

alex A checker for insensitive and inconsiderate writing.

proselint A linter for prose.

Table 1.1: List of tools used to check the code quality.

The tools listed in Table 1.1 were able to be automated using the tox library. Tox

is an automation tool that aims to automate and standardise testing in Python.
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It is a generic virtual environment management and test command line tool that

can be used to check if a package installs correctly and run tests. It also acts

as a frontend to Continuous Integration (CI) servers such as GitHub Actions.

GitHub Actions is a service hosted on GitHub that is used to automate software

development workflows. It is used to build, test and deploy software. GitHub

Actions was used to automate the testing and code quality checks of the software

associated with this thesis. Figure 1.4 shows an example of a GitHub Actions

workflow that was used to automate the testing and code quality checks of the

ambulance game library.

Figure 1.4: GitHub Actions workflow example.
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1.5 Chapter summary

This chapter has given an introduction to OR and a brief overview of the history

of OR along with a discussion on queuing theory and game theory. Additionally,

the motivation for the research problem has also been discussed and the thesis

objectives have been defined.

The chapter has also provided an overview of the best practices that were adopted

throughout the development of the software associated with this thesis. Tools

such as tox and GitHub Actions were used to automate the testing and code

quality checks of the software.
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Chapter 2

Literature review

2.1 Introduction

Chapter 1 introduced the problem of congestion in emergency departments (EDs)

and the need for a model that can be used to understand the impact of different

policies on the system. This chapter provides a review of the current relevant

literature in the field of queueing theory and game theory as well as the combi-

nation of the two and their application to healthcare systems. This is achieved

by partitioning the literature in four different sections each reviewing a different

aspect of research. The literature review is structured in the following way:

� Section 2.2 provides a review of the literature of the techniques used in this

thesis along with their application to healthcare systems. This includes

Markov chain models and simulation models.

� Section 2.3 provides a review of the literature on the combination of game

theory and queueing theory.

� Section 2.4 gives an overview of some examples of game theoretic models

applied in healthcare systems.

� Section 2.5 discusses the general literature on behavioural modelling and

some of its applications.

While the literature review is not exhaustive, it provides a good overview of the

field of queueing theory and game theory as well as their application to healthcare

systems. This literature review builds on the literature review provided in [114].
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2.2 Operational Research models and Health-

care

This section aims to provide a review of Operational Research (OR) techniques

and some applications to healthcare systems. OR is a discipline that consists of

numerous mathematical tools and techniques that can be used to solve problems

in a variety of fields. Some of these fields are healthcare, transportation, logistics,

manufacturing, finance and many more.

Markov chains were originally developed by Russian mathematician Andrey

Markov in 1906 who is known for their work in probability theory, analysis and

number theory. They were originally developed to model the distribution of vow-

els and consonants in Pushkin’s poem Eugeny Onegin [118]. Markov extended

the weak law of large numbers and the central limit theorem to certain sequences

of dependent random variables that were then known as Markov chains [14].

Markov chains are a mathematical tool that can be used to model a system and

how it evolves over time. A markov chain is a stochastic model that consists of a

set of states and a transition probability matrix that describes the probability of

moving from one state to another. The following papers are examples of Markov

chains being used in healthcare systems.

Even specifically in healthcare systems, Markov chains can be used to model

a range of different scenarios. For example in [98] a Markov reward model is

developed for a healthcare system to model the movement of patients between

hospital states where patients arrive at a constant rate. An additional Markov

model is also developed to determine patient numbers and costs at any time where

arrivals are taken from a waiting list and a fixed growth of arrivals that is slowly

declining to zero is introduced in the waiting list. The model is then applied to

geriatric patients to determine costs over time. In [63] a Markov chain model is

created to analyse the elderly people flow in the French Healthcare system (FHS)

and model their pathway in hospital. The model is then applied to a French

Hospital to understand the dynamics of elderly patients flow. The authors in [56]

present a Markov-chain model to analyse the progression of opioid addiction

in order to develop treatments. The Markov chain model is used to predict

the proportion of patients in a given stage of intervention. In addition, in [91]

a Markov Decision Process (MDP) framework on Discrete time Markov chain

(DTMC) is developed to optimise medical equipment repair and replacement

decisions. The model is used to determine the optimal repair and replacement

decision based on the product life cycle and status. The authors in [91] also use a
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dataset of 24, 516 repair and maintenance records that reveal the most common

reasons of fault and the most economically viable repair options. In [151] the

optimal staffing problem is addressed for a non-preemptive priority queue with

two customer classes and a time-dependent arrival rate. The authors use mixed

discrete-continuous time Markov chains (MDCTMCs) to evaluate the behaviour

of the system and generate the minimum staffing levels required. The applications

of interest here were systems were the customers can be categorised into priority

classes, such as emergency departments and call centres.

Another queueing theory technique that has been traditionally utilised to repre-

sent healthcare systems is Discrete Event Simulation (DES). DES is a technique

that is used to model the behaviour of a system by representing it as a set of

events that occur over time. More details on DES can be found in Section 3.2.

The authors of [132] compare Markov modelling with DES to assess if any of the

two may change some healthcare resource allocation decisions. The authors com-

pare the two approaches in a systematic review and state that DES is suitable

for modelling systems with limited resources and are able to better capture com-

plexity and uncertainty in the system along with the ability to capture individual

patient histories. On the other hand, some disadvantages of DES over Markov

modelling is that it is computationally more expensive, requires more data and

is more difficult to validate. The authors conclude that DES may be preferred

over Markov modelling when individual patient history is an important driver

of future events. In [156] the authors use a discrete event simulation model to

determine the optimal number of critical care beds required for a hospital. Dis-

crete event simulation is utilised to help resource planning and simulate different

what-if scenarios. The authors in [42] use a discrete event simulation model to

model the emergency department of a hospital in Canada. The aim of the pa-

per was to reduce patient waiting times, improve the overall service delivery and

system throughput. Additionally, the authors in [53] use a discrete event simu-

lation model to predict the progression of Alzheimer’s disease through correlated

changes in cognition, behavioural disturbance and function. Individuals in the

models are assigned unique demographic and clinical characteristics and were the

severity of the disease was tracked throughout. The simulation results suggest

that donepezil leads to health benefits and cost savings for patients with mild to

moderate Alzheimer’s disease and is even more beneficial when patients are in

the mild stages of the disease.
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2.3 Game theory and Queueing theory

A number of papers have been published that touch upon the use of queueing

models together with game theoretic concepts. In [28] the authors study a simul-

taneous price competition between two firms that are modelled as two distinct

queueing systems with a fixed capacity and a combined arrival rate. They cal-

culate the Nash equilibrium both for identical and heterogeneous firms and show

that for the former a pure Nash equilibrium always exist and for the latter a

unique equilibrium exists where only one firm operates. The authors have also

extended their model in [29] by allowing the players (firms) to choose capacities.

A main result from this paper was that when both firms operate independently as

a monopoly, the equilibria are socially optimal, but this is not the case when the

firms operate together. Another extension of [28] was introduced in [31] where a

long-run version of the competition was considered that also had capacity as a

decision variable. An additional paper that focuses on competition is [45] where

the authors created a competition between two sellers where seller 1 supplies a

product instantly and seller 2 is modelled as a make-to-order M/M/1 queue. The

game that is played requires the two sellers to make a choice on the price of the

product and then seller 2 to set a capacity that guarantees a maximum expected

delay. In our work, while giving some consideration to equilibrium behaviour,

similar to the work of [28, 29], emergent behaviour is more precisely addressed by

considering learning algorithms like asymmetric replicator dynamics [52]. More

details on learning algorithms can be found in Section 4.2.3.

Another specific part of our research, as described later in the thesis, is the

construction of a queueing system with a tandem buffer and a single service centre.

There are several examples from literature that touch upon queueing models

with tandem queues. In [37] the authors explore threshold joining strategies

in a Markov model that has two tandem queues. Another example is the one

described in [25] where they investigated a network of multiple tandem queues

where customers decide which queue to attend before joining. Similarly, in [13]

the authors examine a network of N tandem M/M/1 queues and with multi-type

customers. The customers in this paper react to a price p by picking demand rates

that maximise utility. In [150] a profit maximisation problem is studied that has

two servers; an M/M/1 queue and a parking service providing complementary

service while the customer is in the first service. The providers gain a reward

when customers complete both services and no reward when they finish one of

them. One of the main conclusions of this study is that by increasing the general

demand both providers lower their prices to compensate for the increase in wait.

The problem was later extended by [135] where they considered arrivals of batches
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that can share the parking service. Finally, [2] examines a tandem network of two

M/M/1 queues that are ran by two different profit-maximising service providers.

The network receives three types of customers; those requiring both services,

customers requiring the first service and customers requiring the second service.

The authors showed that optimal prices also maximise social utility and that

removing two types of customers that don’t need both services leads to higher

profit and lower demand rate. In our work, the concepts described in [13, 25,

37] are extended by introducing a threshold parameter that determines when

individuals can progress from one queue to the other.

Additionally, in [60] the authors explore combining queueing theory, agent-based

simulation and game theory to study the impact of ambulance diversion. They

consider overcrowded emergency departments (ED) and the use of ambulance

diversion (AD) during which a hospital is not accepting patients by ambulance.

The formulated games are analysed to explore the potential of cooperation in this

setting. The authors conclude that in such a setting cooperation is not something

that emerges naturally in the presence of strategic behaviour and propose a cen-

tralised form of ambulance routing. The lack of cooperation in healthcare settings

is something that will be further explored in the work of this thesis. In particular

Section 4 will describe a game that is formulated to study the impact of am-

bulance blockage outside the emergency department. In [26] the authors study

a queueing model in which two strategic servers may choose their own capaci-

ties and service rates where the faster a server works, the more cost it incurs.

The buyer chooses to allocate demand based on the performance of the servers

where faster servers are allocated more demand. The authors investigate the

trade-off between efficiency and incentives and find that it is possible to design

an allocation policy that is both efficient and can also incentivise the servers to

work quickly. This paper shares some similarities with the work of this thesis.

In particular, this thesis formulates a game to investigate the trade-off between

ambulance blockage and overall efficiency of the ED which is a similar concept to

the one described in [26]. In [72] the authors study the behaviour of vendors in

competition. Similar to the work of [26], the authors consider a queueing model

where servers choose their own service rates at a cost. The servers are also re-

warded for each customer that they serve and based on that cost a two-player

game between the two servers is formulated.
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2.4 Game theory in Healthcare

In this section a review of the literature is provided that is relevant to game

theoretic models used in healthcare systems. Game theory is a mathematical

tool that is used to model strategic interactions between players in a system.

The players are assumed to be rational and make decisions based on their own

self-interest and the information they have about the other players’ decisions and

the system’s state. A more formal definition of the game theory concepts used in

this thesis is given in Section 4.2.

In the above models, the players are attempting to increase their share of individ-

uals choosing to queue. In public healthcare type settings, this is not necessarily

the case. Rational usage of public services will not necessarily lead to a socially

optimal outcome. Rather, the overall service needs to be considered as players

aim to minimise their experienced congestion. In [125] a healthcare application

was studied where patients could choose between two hospitals, where a utility

function is derived that is based on patients’ perceived quality of life. In [79] the

authors place the individuals’ choices between different public services within the

formulation of routing games and measure inefficiencies using a concept known

as the price of anarchy (PoA) [82]. They show that the price of anarchy increases

with worth of service and that is low for systems with insufficient capacities.

In [30] a two-tier healthcare system with a capacity constrained is studied where

patients can choose between two systems to receive their service. The first system

is labelled as the free system (public government-funded hospital) which offers

service without seeking any profit and the second one is the toll system (pri-

vate hospital) that aims to maximise its own profit. The authors, also compare

the two-tier system with its one-tier equivalent, where only the free system ex-

ists. In [77] a normal form game is built that is informed by a two-dimensional

Markov chain in order to model interactions between critical care units. In [154]

a queueing-game-theoretical model is introduced where there are two types of

service providers; a high quality high-congested hospital and a low quality low-

congested hospital. The authors study a two-stage Stackelberg game where the

government is the leader and the arriving patients are the followers. In [40] the

authors study the network effect of ambulance diversion by proposing a non-

cooperative game between two EDs that are modelled as a queueing network.

Each ED’s objective is to minimise its own waiting time and chooses a diversion

threshold based on the patients it has. In equilibrium both EDs choose to divert

ambulances in order to avoid getting arrivals from the other ED. In this thesis

this concept is extended by allowing the ambulance service to decide how to dis-

tribute its patients among the two EDs. The players of the game are both the



CHAPTER 2. LITERATURE REVIEW 21

hospitals and the customers of the hospitals, as opposed to the previous models

which are one or the other. Thus, the novelty of our work is combining both

these aspects.

2.5 Behavioural Operational Research

Behavioural OR seeks to (i) advance our understanding of how behavioural fac-

tors affect the conduct of, and interact with, model-based processes that support

problem solving and decision making [85], and (ii) to leverage this understand-

ing for improving outcomes [51, 62]. Moreover, behavioural OR is a sensitive

discipline and is subject to the individual studying it, which means that it is

interpreted differently from researchers to researcher [59].

2.5.1 Agent-based modelling

When a modeller looks into implementing behaviour into a certain model, agent-

based modelling is one of the most commonly used techniques. Agent-based

modelling is a micro-abstracted modelling technique that is capable of modelling

complex systems that are composed of many interacting agents [57, 69]. It is also

capable of dealing with both deterministic and stochastic problems.

In such models each simulated item is considered an agent. An agent represents a

person within a group of interest and is modelled in such a way that it has its own

perception of the system and the environment in general. Therefore, these au-

tonomous agents may be able to make decisions based on their own memory and

experience. Additionally they can, not only interact with the environment, but

they can also interact among themselves individually (or with the whole popula-

tion) and make certain choices based on these interactions. Essentially in every

time step all agents observe the environment and choose to move based on that

observation. Some traditional examples of agent-based models are segregation

models, predator-prey models, and forest fire models [69].

2.5.2 Agent-based modelling and healthcare

There are numerous examples of simulation models that have been used in litera-

ture to model healthcare systems but only a few of them are agent-based models.

As stated in [44] healthcare systems are based on human interactions which is

what makes them so complex. Agent-based simulation modelling is capable of

capturing both human intention and human interaction which is why it makes it

one of the most suitable candidate for modelling such healthcare systems. This
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section provides a brief overview of the literature around agent-based models

applied to healthcare.

The authors of [60], that was also mentioned in Section 2.3, also make use of agent-

based modelling to model the setting of ambulance diversion. They used an agent-

based model to provide insights into how spatial structure, number of hospitals

and different policies contribute to cooperation in avoiding ambulance diversion.

In essence, the agent-based model was used to assess whether partial diversion

of ambulances would be a viable option for the ambulance service where it was

shown at the end that it was not. Furthermore, the authors of [54] also make use

of agent-based modelling to model the different queuing strategies in the youth

health care setting. The agent-based simulation model is parameterised with

actual market data and different queuing strategies are investigated. The model

is structured to incorporate additional complexities that a queueing theoretic

model would fail to capture and thus, the model is able to provide insights on

the queueing strategy decision that would not be possible otherwise.

In [131] the authors make use of agent-based simulation to model the setting of

hospital emergency departments. The paper describes the system analysis and

the preliminary model that was developed for the simulation these emergency

departments along with the advantages of using agent-based modelling. The

authors claim that agent-based models could be a better fit to model situations

where the human aspect is important. The human element is part of the system

and thus, it should be included in the model to describe the fundamental concepts

of the system. The authors of [18] present two ongoing projects of agent-based

models that are applied to the healthcare setting. The first discussed project is an

agent-based simulation model that is used to model the long term monitoring of

Chronic Obstructive Pulmonary Disease (COPD) which is a major public health

problem. The second project is applying agent-based simulation to visualise and

explore informal social networks amongst staff at the Akdeniz University Hospital.

2.5.3 Reinforcement learning

Reinforcement learning is a machine learning technique that is used to train

agents to make decisions in an uncertain environment. Reinforcement learning is

formulated in such a way that the agent may choose between a set of policies and

aims to maximise the expected reward. The agent is able to learn from its own

experience and is able to make decisions based on the reward it receives. There

are numerous applications of reinforcement learning in the literature and it is

used in many different fields such as robotics, finance, and gaming [136]. This



CHAPTER 2. LITERATURE REVIEW 23

Section provides a brief overview of the literature around reinforcement learning.

In [68] the authors combine agent-based modelling with reinforcement learning to

model the setting of price negotiations. The authors study the ability of agents to

perform price negotiations and propose a new model that is based on the ability

of agents to distinguish between different words. The words correspond to the

agent’s demand and the agents use these words to negotiate. A reinforcement

learning algorithm is used to train the agents to distinguish between the words

and use them to negotiate. At the end it is shown that these words become

meaningful in the process of negotiations and certain strategies are learned by

the reinforcement learning algorithm. In [161] the authors combine agent-based

modelling with reinforcement learning to model the electricity market. An agent-

based simulation model is developed to compare market characteristics of different

pricing methods. The authors use reinforcement learning to train the generators

to improve their bidding strategies in a repeated bidding game where generators

aim to maximise their profit. The authors in [141] also make use of reinforce-

ment learning in the power market setting. Specifically, they use Q-learning to

train the suppliers’ bidding strategies based on maximising their profit and their

utilisation rate. Through Q-learning’s exploitation and exploration trade-off the

suppliers are able to learn the most profitable action to take under different mar-

ket conditions. At the end of the paper the authors discuss the outcomes of four

test cases with three suppliers under different demand values.

In [140] the authors compare three different learning mechanisms in a multi-agent

based simulation and analyse the results in a bargaining game. The authors

used reinforcement learning to validate and verify the results of the simulation.

The results show that the learning mechanisms that enable agents to acquire

their rational behaviours differ according to the knowledge representation of the

agents. A similar idea is extended in [138] where a multi-agent based simulation

is introduced to explore agents who can reproduce human-like behaviours in the

repeated bargaining game. The authors compare the results of Roth’s learning

agents and Q-learning agents in the sequential bargaining game. The authors

conclude that reinforcement learning agents cannot learn consistent behaviours

in the repeated bargaining game while Q-learning agents can learn such behaviour

but cannot reproduce the decreasing trend found in subject experiments. The

concepts from [138, 140] are extended in [139] where the authors explore agents

that can reproduce human-like behaviours and human-like thinking in the sequen-

tial bargaining game. The authors compare the results of Q-learning agents with

different action selection mechanisms and conclude that only Q-learning agents

with Boltzmann distribution selection can reproduce both human-like behaviours
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and thinking.

Although agent-based modelling has been somewhat used in the literature to

model healthcare systems, this has not been the case for reinforcement learning.

In this thesis reinforcement learning is used to train the servers of a queueing

system to pick their service rates in order to maximise their utility.

2.6 Chapter summary

This chapter has provided an overview of the literature around OR in healthcare

systems. More specifically, Section 2.2 provides a review of the literature of the

techniques used in this thesis along with their application to healthcare systems.

In particular the main techniques that has been reviewed are Markov modelling

and discrete event simulation. Chapter 3 of this thesis introduces a novel queueing

network that is modelled using both discrete event simulation and Markov chains.

In Section 3.6 the proposed model is applied to a healthcare scenario to model

the setting of an emergency department that receives patients from an ambulance

service.

In Sections 2.3 and 2.4 the literature around the combination of queueing theory

and game theory and the literature around game theoretic techniques applied in

healthcare is reviewed. Chapter 4 of this thesis introduces a novel game theoretic

model that is applied to the queueing network model introduced in Section 3. The

game theoretic model is used to model the scenario where two queueing systems

and a patient distribution service compete in a 3-player game to maximise their

own utilities. Subsequently, Section 4.5 describes how the game theoretic model

is applied to the healthcare scenario where the players are an ambulance service,

and two emergency departments.

Section 2.5 of this chapter provides a brief overview of the literature around

behavioural modelling. One of the main techniques that has been reviewed is

agent-based modelling and reinforcement learning. These two techniques are

used in Chapter 6.5 to extend the model introduced in Section 3 and observe the

model from a more behavioural perspective.
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Chapter 3

Queueing theoretic model

3.1 Introduction

One of the main outcomes of this research is the creation of a queueing network

model that consists of two queueing nodes and accepts two types of individuals.

M︷ ︸︸ ︷
Node 2

T

N︷ ︸︸ ︷
Node 1

C

λ2

λ1

Figure 3.1: A diagrammatic representation of the queueing network. The thresh-
old T only applies to type 2 individuals. If the number of individuals in node 1
is greater than or equal to T , only individuals of type 1 are accepted (at a rate
λ1) and individuals of type 2 (arriving at a rate λ2) are blocked in node 2.

The model consists of two types of individuals; type 1 and type 2. Type 1

individuals arrive instantly at node 1 and wait to receive their service. Type 2

individuals arrive at node 2 and wait there until they are allowed to move to node

1. They are allowed to proceed only when the number of individuals in node 1

and in service is less than a pre-determined threshold T . When the number of

individuals is equal to or exceeds this threshold, all type 2 individuals that arrive

will stay blocked in node 2 until the number of people in node 1 falls below T .

This is shown diagrammatically in Figure 3.1. The parameters of the described

queueing model are:

� λi: The arrival rate of type i individuals where i ∈ {1, 2}
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� µ: The service rate for individuals receiving service at node 1

� C: The number of servers

� T : The threshold at which individuals of the second type are blocked

� N : The capacity of node 1 (i.e N = C + (Queue capacity))

� M : The capacity of node 2

Note that the parameters N and M are defined as the capacities of nodes 1 and 2

respectively. In the case where these capacities are infinite, the queueing network

can only be modelled using the Discrete Event Simulation (DES) approach. The

Markov chain approach can only use N and M as artificial truncation parameters

to approximate the behaviour of the system. In addition, when type 1 individuals

arrive at node 1 and it is at full capacity, they become lost from the system.

Similarly, when type 2 individuals arrive at node 2 and it is at full capacity, they

are also lost from the system.

In Section 3.6 this queueing network will be used to model the structure of

an Emergency Department (ED) that receives patients in ambulances from the

Emergency Medical Services (EMS). This chapter extends the concepts described

in [114] and consists of the following sections:

� Section 3.2 gives an overview of the discrete event simulation model.

� Section 3.3 gives an overview of the Markov chain model.

� Section 3.4 describes the Markov chain model is used to extract performance

measures of the system.

� Section 3.5 presents some numerical results and timings experiments for the

queueing network, along with a comparison between the DES and Markov

chain approach.

� Section 3.6 describes how the queueing network can be used to model the

emergent behaviour between EDs and the EMS.

3.2 Discrete Event Simulation

Discrete Event Simulation (DES) is a method for modelling the behaviour of real-

world systems in which the system is made up of discrete events, each of which

has a certain duration [122]. It can be used to understand complex situations

in order to make predictions and thus provide improvements [78]. The three
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main approaches to building DES models are the activity scanning approach, the

event scheduling approach and the process interaction approach [95]. Under the

scope of this study only the event scheduling approach is considered. This section

describes the DES model used to represent the queueing network of Section 3.

In order to use DES on the queueing network shown in Figure 3.1 an equiva-

lent queueing network must be constructed. The current queueing network is a

two-node queueing system that accepts two types of individuals, where type 1

individuals arrive at node 1 and type 2 individuals arrive at node 2. The mod-

ification that is required revolves around the mechanisms of node 2. Node 2 is

defined as a non-service node where there is only a queueing space for individuals

to wait there until they are allowed to node 1. From an implementation perspec-

tive there is an equivalent system that can be used where instead of a node with

no service and queueing capacity M , there are M servers each serving with a

deterministic service time of 0 and no queueing capacity, as shown in Figure 3.2.

M

Node 2

T

N︷ ︸︸ ︷
Node 1

C

λ2

λ1

Figure 3.2: An equivalent model to the one described in Figure 3.1. The difference
between the two diagrams is the formulation of node 2. The original diagram uses
a node with no servers and a queueing capacity ofM while this one usesM servers
with no queueing capacity.

The arrival times for both nodes are exponentially distributed with mean λ1 and

λ2 corresponding to type 1 and type 2 individuals respectively. Node 1 has an

exponentially distributed service time with rate µ, a total of C servers and a

queueing capacity of N − C (making the overall capacity N). Node 2 has a

deterministic service time of 0, a total of M servers and a queueing capacity

of 0. Note here that, similar to Figure 3.1, parameters N and M are used to

approximate the real world system and in fact can be taken to be infinite in the

DES. Finally the routing parameter is defined as an array that probabilistically

routes individuals from all nodes to all other nodes. For this particular system

the routing parameter needs only to route individuals from node 2 to node 1.

routing parameter =

[
0 1

0 0

]
(3.1)



CHAPTER 3. QUEUEING THEORETIC MODEL 28

The routing parameter is a matrix that represents how nodes are connected to

each other. For example the element in the first row and second column of the

routing parameter corresponds to the probability of an individual leaving the first

node and arriving at the second node. In addition, when a row of the routing

parameter contains only zeros, the equivalent node routes individuals to the exit

of the system. Note that, in the particular routing parameter the nodes are

reversed because in the implementation node 2 is assigned id 1 and node 1 is

assigned id 2.

3.2.1 Implementation

The python library ciw [110, 142] was used to implement the DES model. The

library treats queues as distinct nodes in the network where each node has an

arrival distribution, a service distribution, a number of available servers and a

queue capacity.

The following code can be used to generate a queueing network with two queues

and two types of individuals, where type 1 individuals arrive at node 1 with an

arrival rate of lambda 1 and type 2 individuals arrive at node 2 with an arrival

rate of lambda 2. Node 2 has a deterministic fixed service rate of 0 (since there

is no service involved in the buffer centre) and node 1 has an exponential service

rate of mu.

>>> import ciw

>>> lambda_1 = 1.0

>>> lambda_2 = 2.0

>>> mu = 0.5

>>> num_of_servers = 3

>>> system_capacity = 10

>>> buffer_capacity = 5

>>> model = ciw.create_network(

... arrival_distributions =[

... ciw.dists.Exponential(lambda_2),

... ciw.dists.Exponential(lambda_1)

... ],

... service_distributions =[

... ciw.dists.Deterministic (0), ciw.dists.Exponential(mu)

... ],

... routing =[

... [0.0, 1.0],

... [0.0, 0.0]

... ],

... number_of_servers =[ buffer_capacity , num_of_servers],

... queue_capacities =[0, system_capacity - num_of_servers],

... )

Code snippet 3.1: Using the ciw library to create a queueing network with

two queues and two types of individuals and the particular structure defined

in Figure 3.2.
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As described earlier in Section 3 and as shown in Figure 3.1, type 1 individu-

als arrive at node 1 and exit the system after their service finishes, but type 2

individuals arrive at node 2 and then proceed to node 1 after leaving node 2.

This logic is implemented in the queueing network using the routing parameter

that consists of the routing probabilities between different nodes. For the current

implementation the routing matrix is a 2× 2 array that routes individuals from

node 2 to node 1 with a probability of 1.0. Furthermore, the server availability

for nodes 1 and 2 are set to the num of servers and buffer capacity respec-

tively and the queue capacities are set to system capacity - num of servers

and 0. Note that for node 2 queue capacity is set to 0 and its number of servers

is set to the buffer capacity. From ciw’s data records perspective this made more

sense since individuals are recorded as blocked this way. If the queue capacity

was non-zero, individuals could also have a waiting time but no waiting should

take place in node 2, only blockage.

3.2.2 Custom node class

Another specific feature of the particular model is that type 2 individuals need

to stay blocked in node 2 whenever the number of individuals in node 1 reaches

a certain threshold T . As opposed to the rest of the model, this portion of the

queueing network requires more effort to build. Ciw allows users to get more

custom behaviour by creating their own node class that inherits from the original

one. By inheriting the original ciw.Node the general behaviour of all nodes can

be altered. Note that node ids are assigned in the order they are created so in

the ciw implementation node 2 is assigned id 1 and node 1 is assigned id 2.

>>> import numpy as np

>>> def build_custom_node(threshold=float("inf")):

... """

... Build a custom node to replace the default ciw.Node. Inherits from

... the original ciw.Node class and replaces methods

... release_blocked_individual and finish_service .

... The methods are modified in such a way that all individuals that

... are in the buffer space (node 1) stay blocked as long as the

... number of individuals in the service area node (node 2) exceeds the

... threshold .

...

... Parameters

... ----------

... threshold : int , optional

... The capacity threshold to be used by the method

... Returns

... -------

... class

... A custom node class that inherits from ciw.Node

... """

...

... class CustomNode(ciw.Node):
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... """

... Overrides the default release_blocked_individual and

... finish_service methods of the ciw.Node class

... """

...

... def __init__(self , id_ , simulation):

... """

... Initializes the node with the given id and simulation using

... the initialisation of ciw ’s Node object with the addition of

... the threshold parameter .

... """

... super ().__init__(id_ , simulation)

... self.simulation.threshold = threshold

...

... def release_blocked_individual(self):

... """

... Releases an individual who becomes unblocked when

... another individual is released:

... - check if individual in node 2 and should stay blocked

... i.e. if the number of individuals in that

... node > threshold

... - check if anyone is blocked by this node

... - find the individual who has been blocked the longest

... - remove that individual from blocked queue

... - check if that individual had their service interrupted

... - release that individual from their node

... """

... continue_blockage = (

... self.number_of_individuals >= threshold

... and self.id_number == 2

... )

... if (

... self.len_blocked_queue > 0

... and self.number_of_individuals < self.node_capacity

... and not continue_blockage

... ):

... receiving_node = (

... self.simulation.nodes[self.blocked_queue [0][0]]

... )

... individual_to_receive_index = [

... ind.id_number

... for ind in receiving_node.all_individuals

... ]. index(self.blocked_queue [0][1])

... individual_to_receive = (

... receiving_node.all_individuals[

... individual_to_receive_index

... ]

... )

... self.blocked_queue.pop(0)

... self.len_blocked_queue -= 1

... if individual_to_receive.interrupted:

... individual_to_receive.interrupted = False

... receiving_node.interrupted_individuals.remove(

... individual_to_receive

... )

... receiving_node.number_interrupted_individuals -= 1

... receiving_node.release(individual_to_receive_index , self)

...

... def finish_service(self):
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... """

... The next individual finishes service:

... - finds the individual to finish service

... - check if they need to change class

... - find their next node

... - release the individual if there is capacity at destination ,

... otherwise cause blockage

... - Note that blockage also occurs when we are at node 1 and

... the number of individuals on node 2 are more than the

... ’threshold ’

... """

... (

... next_individual ,

... next_individual_index

... ) = self.find_next_individual ()

... self.change_customer_class(next_individual)

... next_node = self.next_node(next_individual)

... next_individual.destination = next_node.id_number

... if not np.isinf(self.c):

... next_individual.server.next_end_service_date=float("Inf")

... blockage = (

... next_node.number_of_individuals >= threshold

... and self.id_number == 1

... )

... if (

... next_node.number_of_individuals < next_node.node_capacity

... ) and not blockage:

... self.release(next_individual_index , next_node)

... else:

... self.block_individual(next_individual , next_node)

...

... return CustomNode

Code snippet 3.2: Function that contains the custom node class that blocks

individuals to node 1 when the number of individuals in node 2 exceeds the

threshold.

The class CustomNode inherits from ciw’s Node class and changes two of the

methods (release blocked individual and finish service) so that the addi-

tional logic of the threshold is incorporated. In the release blocked individual

method an additional check is added before releasing a potentially blocked indi-

vidual from node 2 to node 1. This essentially checks whether the id number of

the node is 2 and the number of individuals in it are more than or equal to the

threshold so that it can accept a blocked individual. Similarly finish service

is called once an individual finishes their service. The additional check that was

added checks whether the id of the node is 1 and the number of individuals in the

next node (i.e. node 1) is more than the threshold, which would result in block-

age. Finally, the simulation object can be created and simulated for a specific

threshold and runtime by running:

>>> threshold = 4

>>> runtime = 1000
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>>> custom_node = build_custom_node(threshold)

>>> ciw.seed (0)

>>> simulation = ciw.Simulation(model , node_class=custom_node)

>>> simulation.simulate_until_max_time(runtime)

Code snippet 3.3: Building and simulating the network model using the custom

node

3.2.3 Performance Measures

Having run the simulation using ciw all necessary performance measures can be

calculated. Calculating all performance measure that are related to the duration

of time is not too difficult. The code snippet in 3.4 gets all waiting times, service

times and blocking times for all individuals that have passed through the model.

>>> def extract_times_from_records(simulation_records , warm_up_time):

... """ Get the required times (waiting , service , blocking) out of ciw ’s

... records where all individuals are treated the same way. This function

... can ’t distinguish between class 1 and class 2 individuals . It returns

... the aggregated waiting time , service times BUT only blocking times of

... class 2 individuals .

... """

... waiting_times = [

... r.waiting_time

... for r in simulation_records

... if r.arrival_date > warm_up_time and r.node == 2

... ]

... serving_times = [

... r.service_time

... for r in simulation_records

... if r.arrival_date > warm_up_time and r.node == 2

... ]

... blocking_times = [

... r.time_blocked

... for r in simulation_records

... if r.arrival_date > warm_up_time and r.node == 1

... ]

... return waiting_times , serving_times , blocking_times

Code snippet 3.4: Function that extracts performance measures from the

simulation records

Using the earlier variable simulation, the waiting times, service times and block-

ing times can be extracted from the simulation records.

>>> warm_up_time = 100

>>> all_records = simulation.get_all_records ()

>>> waiting_times , serving_times , blocking_times = extract_times_from_records(

... all_records , warm_up_time

... )

>>> np.mean(waiting_times), np.mean(serving_times), np.mean(blocking_times)

(1.7038750111337655 , 2.041619227158985 , 8.227702587974997)

Code snippet 3.5: Using the function defined in 3.4
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The performance measures discussed so far are the ones that are related to the

amount of time that individuals spend in the system. Some additional perfor-

mance measures that could be of interest are the ones that are related to the

number of individuals, such as the mean number of individuals in the system, the

mean number of individuals in Node 1 and the mean number of individuals in

Node 2. These metrics can also by calculated using an additional functionality of

ciw. There is an additional argument that can be passed to the ciw.Simulation

object called tracker that makes the simulation object track the state probabili-

ties of the system throughout the simulation. Thus, at the end of the simulation,

the probability distribution of the number of individuals in each node can be

extracted. Section 3.4 gives a more detailed explanation of how to calculate these

performance measures using only the state probabilities of the system.

3.3 Markov chain model

A Markov chain is a stochastic model that is the primary analytical tool to study

queues. Under the assumption that all rates (arrival and service) are Markovian

the queueing system can be represented by a Markov chain model [74]. The states

of the Markov chain are denoted by (u, v) where:

� u is the number of individuals blocked in node 2

� v is the number of individuals either in node 1 or in the service centre

The set of all possible combination of pairs (u, v) form all the possible states that

the system can visit. The state space of the Markov chain is denoted as the set

S = S(T ) which can be written as the disjoint union:

S(T ) =S1(T ) ∪ S2(T ) where:

S1(T ) =
{
(0, v) ∈ N2

0 | v < T
}

(3.2)

S2(T ) ={(u, v) ∈ N2
0 | v ≥ T}

S1 consists of the set of states where the number of individuals in node 1 is less

than T (i.e. v < T ) and subsequently the number of individuals in node 2 is

zero (i.e. u = 0). Similarly, S2 consists of the set of states where the number

of individuals in node 1 is greater than or equal to T (i.e. v ≥ T ) and hence

it is possible for individuals to be at node 2 (i.e. u ≥ 0). This is illustrated

diagrammatically in Figure 3.3.
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Having defined the set of states of the Markov chain model, the generator

matrix can also be obtained. The generator matrix Q of the Markov chain

consists of the rates between the numerous states of the model. Every entry

Qij = Q(ui,vi),(uj ,vj) represents the rate from state i = (ui, vi) to state j = (uj, vj)

for all (ui, vi), (uj, vj) ∈ S. The entries of Q can be calculated using the state-

mapping function described in equation (3.3). Here Λ denotes the overall arrival

rate in the model for both types of individuals (i.e. Λ = λ1 + λ2).

Qij =



Λ, if (ui, vi)− (uj, vj) = (0,−1) and vi < T

λ1, if (ui, vi)− (uj, vj) = (0,−1) and vi ≥ T

λ2, if (ui, vi)− (uj, vj) = (−1, 0)

viµ, if (ui, vi)− (uj, vj) = (0, 1) and vi ≤ C or

(ui, vi)− (uj, vj) = (1, 0) and vi = T ≤ C

Cµ, if (ui, vi)− (uj, vj) = (0, 1) and vi > C or

(ui, vi)− (uj, vj) = (1, 0) and vi = T > C

−
∑|Q|

j=1Qij if i = j

0, otherwise

(3.3)

Note that for large values of N and M most of the entries of the transition

matrix will be zero. In order to speed up the computation of the transition

matrix, instead of considering every possible pair of states in the state space a

new function that maps a state to every possible destination state can be used.

Function M from equation (3.4) takes a state (u, v) and maps it to the set of all

possible destination states that the system can go to when on that state.

M(u, v) =



{(u, v + 1), (u, v − 1)} if v < T

{(u+ 1, v), (u, v + 1), (u, v − 1)} if v = T and u = 0

{(u+ 1, v), (u, v + 1), (u− 1, v)} if v = T and u > 0

{(u, v + 1), (u+ 1, v), (u, v − 1)} if v > T

(3.4)

A visualisation of how the transition rates relate to the states of the model can

be seen in the general Markov chain model shown in Figure 3.3.
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S1

S2

General Case

(0,0)

(0,1)

. . .

(0,T) (0,T+1) . . . (0,C) . . .

(1,T) (1,T+1) . . . (1,C) . . .

(2,T) (2,T+1) . . . (2,C) . . .

... ...
...

(ui, vi)

Λ

µ
Λ

2µ
Λ

Tµ

λ1

(T + 1)µ

λ1

(T + 2)µ

λ1

Cµ

λ1

Cµ

λ1

(T + 1)µ

λ1

(T + 2)µ

λ1

Cµ

λ1

Cµ

λ1

(T + 1)µ

λ1

(T + 2)µ

λ1

Cµ

λ1

Cµ

λ2Tµ

λ2Tµ

λ2Tµ

λ2

λ2

λ2

λ2

λ2

λ2

λ1

viµ (vi + 1)µ

λ1

λ2

λ2

Figure 3.3: Generic case of Markov chain model. The diagram shows the two
disjoint sets of states S1 and S2 and the transition rates between the states.

In order to consider this model numerically an adjustment needs to be made. The

problem defined above assumes no upper boundary to the number of individuals

that can wait for service or for the ones that are blocked in node 2. Therefore,

a different state space S̃ is constructed where S̃ ⊆ S and there is a maximum

allowed number of individuals N that can be in node 1 and a maximum allowed

number of individuals M that can be blocked in node 2:

S̃ = {(u, v) ∈ S |u ≤ M, v ≤ N} (3.5)

The adjusted Markov chain model with states S̃ can be seen in Figure 3.4.
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(0,0) . . . (0,T) . . . (0, C) . . . (0, N)

(1,T) . . . (1, C) . . . (1, N)

...
. . .

...
. . .

...

(M, T) . . . (M, C) . . . (M, N)
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Λ
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λ2Tµ
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λ2

λ2

λ2

λ2
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Figure 3.4: Adjusted case of the Markov chain model. The diagram makes use
of the truncated state space S̃ where the state space S is bounded by N and M .

The parameters N and M represent the capacities of Node 1 and Node 2 respec-

tively. In order to define the state space S̃, these two parameters need to be

finite and greater than zero. However, there is also the situation where N and

M may be infinite. In that case, the Markov chain cannot model such infinite

state space, but can consider these two parameters as the truncation points of

the state space.

3.3.1 Steady state probability vector

The generator matrix Q defined in (3.3) can be used to get the probability vector

π that contains the steady state probabilities of the Markov chain model. The

vector π is commonly used to study stochastic systems and it’s main purpose is

to keep track of the probability of being at any given state of the Markov chain

model. πi is the steady state probability of being in state (ui, vi) ∈ S̃ which is

the ith state of S̃ for some ordering of S̃. The term steady state refers to the

instance of the vector π where the probabilities of being at any state becomes

stable over time. Thus, by considering the steady state vector π the relationship

between it and Q is given by:

dπ

dt
= πQ = 0⃗ (3.6)

The following parameters of the Markov model will act as a running example for

all approaches:
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Parameter λ1 λ2 µ C T N M

Value 1.0 2.0 2.0 2.0 3.0 4.0 2.0

3.3.2 Numerical integration approach

A method that can be used to get the steady state probability vector is to solve

the differential equation (3.6) numerically. Two methods of solving the differential

equation were considered. Both methods observe the value of π over time until

it reaches the steady state based on some initial starting value π0:

dπ

dt
= πQ (3.7)

π(t0) = π0

where π0 = [
1

|π|
,
1

|π|
, . . . ,

1

|π|
]

Two types of methods were considered to solve the differential equation numeri-

cally. The first method uses a combination of Adams’ method [15] and the back-

ward differentiation formula (BDF) [36]. This method is generally used to solve

systems of the form dy
dt

= f with a dense or banded Jacobian when the problem

is stiff, which then uses the BDF algorithm, while when the problem is non-stiff

it uses Adams’ method. This was implemented using scipy.integrate.odeint

from the python library SciPy [152] that uses the lsoda [116] integration method.

>>> import ambulance_game as abg

>>> import scipy as sci

>>> Q = abg.markov.get_transition_matrix(

... lambda_1=1,

... lambda_2=2,

... mu=2,

... num_of_servers =2,

... threshold=3,

... system_capacity =4,

... buffer_capacity =2

... )

>>> pi = abg.markov.get_steady_state_numerically(

... Q, integration_function=sci.integrate.odeint

... )

>>> pi

array ([0.17596013 , 0.2639402 , 0.19795515 , 0.14846636 , 0.08660538 ,

0.05464387 , 0.02474439 , 0.02268236 , 0.02500215])

Code snippet 3.6: Steady state probabilities calculation using numeric integration

using the odeint function.

The second approach uses the explicit Runge-Kutta integration method of order
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5 by controlling the error assuming accuracy of order 4 [41, 86]. The general

recursive formula for the explicit family of Runge-Kutta methods is given by:

yn+1 = yn + h
s∑

i=1

biki (3.8)

k1 = f(tn, yn),

k2 = f(tn + c2h, yn + h(a21k1)),

k3 = f(tn + c3h, yn + h(a31k1 + a32k2)),

...

ks = f(tn + csh, yn + h(as1k1 + as2k2 + · · ·+ as,s−1ks−1))

where y0 is the given initial value, s is the number of stages and h is the step

size. The coefficients bi, ci, and aij are usually arranged in a mnemonic device

known as the Butcher’s tableau. This was implemented using scipy.integrate.

solve ivp from the python library SciPy [152].

>>> pi = abg.markov.get_steady_state_numerically(

... Q, integration_function=sci.integrate.solve_ivp

... )

>>> pi

array ([0.17596012 , 0.26394019 , 0.19795515 , 0.14846637 , 0.08660539 ,

0.05464388 , 0.02474439 , 0.02268236 , 0.02500215])

Code snippet 3.7: Steady state probabilities calculation using numeric integration

using the solve ivp function.

3.3.3 Linear algebraic approach

The steady state probability vector π can be obtained by solving the linear equa-

tion:

QTπ = 0⃗ such that
∑
i

πi = 1 (3.9)

The two equations can be combined into one by augmenting the matrix QT in

such a way that it includes the extra constraint
∑

i πi = 1. The new augmented

matrix Q̃ is defined as Q with the final column replaced with a vector of ones and

vector b⃗ is defined as a column vector of 0s apart from the final element which is

1. Note that, Q̃ needs to be a square matrix in order to solve the equation using

linear algebra (i.e. the matrix needs to be invertible). Thus, the steady state
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probability vector can be calculated by solving the linear equation:

Q̃Tπ = b⃗ (3.10)

Using LU decomposition with partial pivoting and row interchanges, matrix QT

can be expressed of the form P × L× U , where P is a permutation matrix, L is

a unit lower triangular matrix, and U is an upper triangular matrix [133]. The

factored form of QT can then be used to solve the system. This was implemented

using numpy.linalg.solve from the python library numpy [8, 65].

>>> import numpy as np

>>> pi = abg.markov.get_steady_state_algebraically(

... Q, algebraic_function=np.linalg.solve

... )

>>> pi

array ([0.17596013 , 0.2639402 , 0.19795515 , 0.14846636 , 0.08660538 ,

0.05464387 , 0.02474439 , 0.02268236 , 0.02500215])

Code snippet 3.8: Steady state probabilities calculation using linear algebraic

approach with numpy.linalg.solve.

3.3.4 Least squares approach

Another approach that is considered is the least squares method. As the problem

becomes more complex (i.e. as the artificial parameters N and M defined in

equation (3.5) increase) the computational time required to solve it increases by

a lot. Thus, one may obtain a good approximation of the steady state vector π

by solving the following equation:

π = argminπ∈R|π|∥Q̃Tπ − b∥22 (3.11)

The above expression gets the vector π that approximately solves equation Q̃Tπ =

b. This was implemented using numpy.linalg.lstsq from the python library

numpy [65].

>>> pi = abg.markov.get_steady_state_algebraically(

... Q, algebraic_function=np.linalg.lstsq

... )

>>> pi

array ([0.17596013 , 0.2639402 , 0.19795515 , 0.14846636 , 0.08660538 ,

0.05464387 , 0.02474439 , 0.02268236 , 0.02500215])

Code snippet 3.9: Steady state probabilities calculation using least squares

approach with numpy.linalg.lstsq.
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An additional approach that was considered but not completed was a closed-

form formula for the steady state probabilities. The work that was done on this

approach is described in Appendix D.

3.4 Performance measures

Using vector π there are numerous performance measures of the model that can

be calculated. The following equations utilise π to get performance measures on

the average number of individuals in node 1 and in node 2:

� Mean number of individuals in the entire system:

LS =

|π|∑
i=1

πi(ui + vi) (3.12)

� Mean number of individuals in node 1:

L1 =

|π|∑
i=1

πivi (3.13)

� Mean number of individuals in node 2:

L2 =

|π|∑
i=1

πiui (3.14)

The python code for these functions may be obtained quite quickly using the set

of all states and the steady state probability.

>>> import ambulance_game as abg

>>> import numpy as np

>>> all_states = abg.markov.build_states(

... threshold =3 ,

... system_capacity =4,

... buffer_capacity =2

... )

>>> Q = abg.markov.get_transition_matrix(

... lambda_1=1,

... lambda_2=2,

... mu=2,

... num_of_servers =2,

... threshold=3,

... system_capacity =4,

... buffer_capacity =2

... )

>>> pi = abg.markov.get_steady_state_algebraically(

... Q, algebraic_function=np.linalg.lstsq

... )
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Code snippet 3.10: Code snippet for getting the set of all states and the steady

state probabilities.

Having the set of all states and the steady state probabilities, the mean number

of individuals in the system, in node 1 and in node 2 can be calculated as shown

in code snippets 3.11, 3.12 and 3.13.

>>> def get_mean_number_of_individuals_in_system(pi , states):

... """ Gets the mean number of individuals in the system

... Parameters

... ----------

... pi : numpy.ndarray

... steady state vector

... states : list

... list of tuples that contains all states

... Returns

... -------

... float

... Mean number of individuals in the whole model

... """

... states = np.array(states)

... mean_inds_in_system = np.sum(( states[:, 0] + states[:, 1]) * pi)

... return mean_inds_in_system

>>>

>>> round(get_mean_number_of_individuals_in_system(pi , all_states), 10)

2.0872927227

Code snippet 3.11: Code snippet for calculating the mean number of individuals

in the system.

>>> def get_mean_number_of_individuals_in_node_1(pi , states):

... """ Mean number of individuals in node 1

... Parameters

... ----------

... pi : numpy.ndarray

... steady state vector

... states : list

... list of tuples that contains all states

... Returns

... -------

... float

... Mean number of individuals

... """

... states = np.array(states)

... mean_inds_in_node_1 = np.sum(states[:, 1] * pi)

... return mean_inds_in_node_1

>>>

>>> round(get_mean_number_of_individuals_in_node_1(pi , all_states), 10)

1.8187129478

Code snippet 3.12: Code snippet for calculating the mean number of individuals

in Node 1.
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>>> def get_mean_number_of_individuals_in_node_2(pi , states):

... """ Mean number of class 2 individuals blocked

... Parameters

... ----------

... pi : numpy.ndarray

... steady state vector

... states : list

... list of tuples that contains all states

... Returns

... -------

... float

... Mean number of blocked class 2 individuals

... """

... states = np.array(states)

... mean_blocked = np.sum(states[:, 0] * pi)

... return mean_blocked

>>>

>>> round(get_mean_number_of_individuals_in_node_2(pi , all_states), 10)

0.2685797749

Code snippet 3.13: Code snippet for calculating the mean number of individuals

in Node 2.

Consequently, there are some additional performance measures of interest that

are more complex to calculate. Such performance measures are the mean waiting

time in the system (for both type 1 and type 2 individuals), the mean time blocked

in node 2 (only valid for type 2 individuals) and the proportion of individuals

that wait in node 1 within a predefined time target (for both types). Under

the scope of this study three approaches have been considered to calculate these

performance measures; a recursive algorithm, a direct approach and a closed-

form equation. Furthermore, different formulas arise for type 1 individuals and

different ones for type 2 individuals.

3.4.1 Waiting time

Waiting time is the amount of time that individuals wait in node 1 before they

start their service. For a given set of parameters there are three different per-

formance measures around the mean waiting time that need to be considered.

The mean waiting time of type 1 individuals, the mean waiting time of type 2

individuals, and the overall mean waiting time.

3.4.1.1 Recursive approach

The first approach to be considered is a recursive approach to getting the mean

waiting time [12]. To calculate the mean waiting time of type 1 individuals

one must first identify the set of states (u, v) where a wait can occur. For this

particular Markov chain, these are all states that satisfy v > C i.e. all states
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where the number of individuals in the node 1 exceed the number of servers. The

set of such states is defined as the waiting states and can be denoted as a subset

of all the states, where:

Sw = {(u, v) ∈ S | v > C} (3.15)

Moreover, another element that needs to be considered is the expected waiting

time spent in each state for type i individuals. In order to do so a variation of

the Markov model has to be considered where arrivals are removed. Figure 3.5

shows this new Markov chain model.

(0,T-1) (0,T) (0,T+1)

(1,T)

(2,T)

(1,T+1)

(2,T+1)

(T − 1)µ Tµ (T + 1)µ (T + 2)µ

Tµ

(T + 1)µ (T + 2)µ

Tµ

Tµ

(T + 1)µ (T + 2)µ

Figure 3.5: Variation of Markov chain model where all arrivals are removed. This
diagram is used as a visualisation aid to illustrate how the recursive algorithm
works.

For this particular Markov chain variation the expected time spent at each state

(u, v) for type i individuals is denoted by ciw(u, v). From a type 1 individual’s

perspective, when they arrive at the system, no matter how many other individ-

uals of either type arrive after them it will not affect their own time. The desired

time spent at each state can be acquired by calculating the inverse of the sum of

the out-flow rate of that state. Therefore by eliminating the arrival rates of both

individuals, the time spent at each state for type 1 individuals can be expressed

as:
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c(1)w (u, v) =

0, if u > 0 and v = T

1
min(v,C)µ

, otherwise
(3.16)

Note here that whenever any type 1 individual is at a state (u, v) where u > 0

and v = T (i.e. all states (1, T ), (2, T ) . . . , (M,T )) the expected waiting time is

set to 0. This is done to capture the trip through the Markov chain from the

perspective of type 1 individuals, meaning that individuals visit all states of the

threshold column but only the one in the first row will return a non-zero time.

Additionally, in equation (3.16) the service rate µ is multiplied by the minimum

of v and C since, when the system is at a state (u, v) where v ≥ C, the maximum

out-flow service rate of Cµ is reached.

Similarly from a type 2 individual’s perspective the same logic holds. The only

difference is that type 2 individuals cannot have a waiting time when they are

blocked in node 2. From the Markov chain model’s perspective, type 2 individuals

cannot have a wait whenever they are at state (u, v) where u > 0. Thus, the time

at each state for type 2 individuals can be expressed as:

c(2)w (u, v) =

0, if u > 0

1
min(v,C)µ

, otherwise
(3.17)

Using the set of waiting states defined in (3.15) and equations (3.16) and (3.17)

the following recursive formula can be used to get the mean waiting time spent in

each state. The formula goes through all states from right to left recursively and

adds the total expected waiting time of all these states together until it reaches

a state that is not in the set of waiting states. Thus, the expected waiting time

of a type i individual when they arrive at state (u, v) is given by:

w(i)(u, v) =


0, if (u, v) /∈ Sw

c
(i)
w (u, v) + w(i)(u− 1, v), if u > 0 and v = T

c
(i)
w (u, v) + w(i)(u, v − 1), otherwise

(3.18)

Whenever the system is at state (u, v) and an individual arrives, depending on

the type of the individual, the system will move to a different state. The state

that the Markov chain will transition to when a type i individual arrives is defined

as the arriving state Ai(u, v). Using Figure 3.4 as reference, an arrival of a type

1 individual makes the system transition to the state on the right. Similarly
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an arrival of a type 2 individual makes the system transition to the right if the

threshold hasn’t been reached and transition down if the threshold has been

reached. This can be expressed mathematically as:

A1(u, v) = (u, v + 1) (3.19)

A2(u, v) =

(u, v + 1), if v < T

(u+ 1, v), if v ≥ T
(3.20)

Additionally, there are certain states in the model where arrivals cannot occur.

A type 1 individual cannot arrive whenever the model is at any state (u,N) for

all u, where N is the capacity of node 1. Therefore the set of all such states that

an arrival may occur are defined as accepting states. The set of accepting states

for type 1 individuals is denoted as:

S
(1)
A = {(u, v) ∈ S | v < N} (3.21)

Similarly, an arrival of a type 2 individual cannot occur whenever the model is

at state (M, v) for all v, where M is the capacity of node 2. The set of accepting

states for type 2 individuals is denoted as:

S
(2)
A = {(u, v) ∈ S | u < M} (3.22)

Finally, the total mean waiting time can be calculated by summing over all ex-

pected waiting times of accepting states multiplied by the probability of being at

that state. The different approaches that are used to get the state probabilities

are described in Section 3.3.1. The mean waiting time in the system for type i

individuals is given by:

W (i) =

∑
(u,v)∈S(i)

A
π(u,v)w

(i)(Ai(u, v))∑
(u,v)∈S(i)

A
π(u,v)

(3.23)

Consequently, using both the mean waiting time for type 1 individuals W (1) and

the mean waiting time for type 2 individuals W (2), the overall mean waiting time

in the system is a linear combination of the 2. The overall waiting time can be

then given by the following equation where θ1 and θ2 are the coefficients of the

waiting time for each type of individual:



CHAPTER 3. QUEUEING THEORETIC MODEL 46

W = θ1W
(1) + θ2W

(2) (3.24)

The two coefficients represent the proportion of individuals of each type that tra-

versed through the model. Theoretically, determining these percentages should

be as quick as looking at the arrival rates of each type λ1 and λ2, but in practise if

either node 1 or node 2 are full, some individuals may become lost to the system.

Thus, one should account for the probability that an individual is lost to the sys-

tem. This probability can be calculated by using the two sets of accepting states

S
(2)
A and S

(1)
A defined earlier in (3.21) and (3.22). Let us define the probability

that an individual of type i is not lost to the system as P (L′
i):

P (L′
1) =

∑
(u,v)∈S(1)

A

π(u, v) P (L′
2) =

∑
(u,v)∈S(2)

A

π(u, v)

Having defined these probabilities one may combine them with the arrival rates

of each individual type in such a way to get the expected proportions of type 1

and type 2 individuals in the model.

θ1 =
λ1P (L′

1)

λ2P (L′
2) + λ1P (L′

1)
, θ2 =

λ2P (L′
2)

λ2P (L′
2) + λ1P (L′

1)
(3.25)

Thus, by using these values as the coefficient of equation (3.24) the resultant

equation can be used to get the overall waiting time.

W =
λ1P (L′

1)

λ2P (L′
2) + λ1P (L′

1)
W (1) +

λ2P (L′
2)

λ2P (L′
2) + λ1P (L′

1)
W (2) (3.26)

3.4.1.1.1 Implementation

Implementing the recursive approach for the waiting time in python uses the same

logical structure as described in Section 3.4.1.1. The first function needed is one

that checks if a state belongs in the set of waiting states that corresponds to the

set defined in (3.15).

>>> def is_waiting_state(state , num_of_servers):

... """ Checks if waiting occurs in the given state. In essence , all

... states (u,v) where v > C are considered waiting states.

... Parameters

... ----------

... state : tuple

... a tuples of the form (u,v)

... num_of_servers : int

... the number of servers = C
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... Returns

... -------

... Boolean

... An indication of whether or not any wait occurs on the given

... state

... """

... return state [1] > num_of_servers

>>>

>>> is_waiting_state(state =(1, 4), num_of_servers =2)

True

Code snippet 3.14: Function that checks if a state is a waiting state.

Similarly a function that calculates the expected wait in each state is needed that

corresponds to equations (3.16) and (3.17). Note here that the following function

takes the individuals type as an argument and thus only one function is needed

for both expressions.

>>> def expected_time_in_markov_state_ignoring_arrivals(

... state ,

... class_type ,

... num_of_servers ,

... mu,

... threshold ,

... ):

... """ Get the expected waiting time in a Markov state when ignoring any

... subsequent arrivals. When considering the waiting time of class 2

... individuals , and when these individuals are in a blocked state

... (v > 0) then by the definition of the problem the waiting time in

... that state is set to 0. Additionally , all states where u > 0 and

... v = T automatically get a waiting time of 0 because class 1

... individuals only pass one of the states of that column (only state

... (0,T) is not zero).

...

... Parameters

... ----------

... state : tuple

... a tuples of the form (u,v)

... class_type : int

... A string to distinguish between class 1(=0) and class 2(=1)

... individuals

... num_of_servers : int

... The number of servers = C

... mu : float

... The service rate = mu

...

... Returns

... -------

... float

... The expected waiting time in the given state

... """

... if state [0] > 0 and (state [1] == threshold or class_type == 1):

... return 0

... return 1 / (min(state [1], num_of_servers) * mu)

>>>

>>> expected_time_in_markov_state_ignoring_arrivals(

... state=(3, 4),
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... class_type =0,

... num_of_servers =1,

... mu=4,

... threshold=2,

... )

0.25

Code snippet 3.15: Function for the expected waiting time in a state.

The following block of code is the implementation of equation (3.18), where it

returns the waiting time of an individual when they arrive at a given state until

they leave that particular state. Note that this function uses both of the functions

defined earlier.

>>> def get_waiting_time_for_each_state_recursively(

... state ,

... class_type ,

... lambda_2 ,

... lambda_1 ,

... mu,

... num_of_servers ,

... threshold ,

... system_capacity ,

... buffer_capacity ,

... ):

... """ Performs a recursive algorithm to get the expected waiting time of

... individuals when they enter the model at a given state. Given an

... arriving state the algorithm moves down to all subsequent states

... until it reaches one that is not a waiting state.

...

... Class 1:

... - If (u,v) not a waiting state: return 0

... - Next state s_d = (0, v - 1)

... - w(u,v) = c(u,v) + w(s_d)

...

... Class 2:

... - If (u,v) not a waiting state: return 0

... - Next state: s_n = (u-1, v), if u >= 1 and v=T

... s_n = (u, v - 1), otherwise

... - w(u,v) = c(u,v) + w(s_n)

...

... Note: For all class 1 individuals the recursive formula acts in a

... linear manner meaning that an individual will have the same waiting

... time when arriving at any state of the same column e.g (2, 3) or

... (5, 3).

...

... Parameters

... ----------

... state : tuple

... class_type : int

... lambda_2 : float

... lambda_1 : float

... mu : float

... num_of_servers : int

... threshold : int

... system_capacity : int

... buffer_capacity : int
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...

... Returns

... -------

... float

... The expected waiting time from the arriving state of an

... individual until service

... """

... if not is_waiting_state(state , num_of_servers):

... return 0

... if state [0] >= 1 and state [1] == threshold:

... next_state = (state [0] - 1, state [1])

... else:

... next_state = (state[0], state [1] - 1)

...

... wait = expected_time_in_markov_state_ignoring_arrivals(

... state=state ,

... class_type=class_type ,

... num_of_servers=num_of_servers ,

... mu=mu ,

... threshold=threshold ,

... )

... wait += get_waiting_time_for_each_state_recursively(

... state=next_state ,

... class_type=class_type ,

... lambda_2=lambda_2 ,

... lambda_1=lambda_1 ,

... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... return wait

>>>

>>> get_waiting_time_for_each_state_recursively(

... state=(3, 4),

... class_type =0,

... lambda_2=1,

... lambda_1=1,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =4,

... buffer_capacity =3,

... )

0.75

Code snippet 3.16: Function for the overall expected waiting time in a state using

recursion.

Additionally, before getting the mean waiting time for each type of individuals,

a function for the set of accepting states described in (3.21) and (3.22) needs to

be constructed.

>>> def is_accepting_state(

... state , class_type , threshold , system_capacity , buffer_capacity

... ):
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... """

... Checks if a state given is an accepting state. Accepting states are

... defined as the states of the system where arrivals may occur. In

... essence these states are all states apart from the one when the system

... cannot accept additional arrivals. Because there are two types of

... arrivals though , the set of accepting states is different for class 1

... and class 2 individuals :

...

... Parameters

... ----------

... state : tuple

... a tuples of the form (u,v)

... class_type : int

... A string to distinguish between class 1 (=0) and class 2

... individuals (=1)

... system_capacity : int

... The capacity of the system (hospital) = N

... buffer_capacity : int

... The capacity of the buffer space = M

...

... Returns

... -------

... Boolean

... An indication of whether or not an arrival of the given type

... ( class_type ) can occur

... """

... if class_type == 1:

... condition = (

... (state [0] < buffer_capacity)

... if (threshold <= system_capacity)

... else (state [1] < system_capacity)

... )

... if class_type == 0:

... condition = state [1] < system_capacity

... return condition

Code snippet 3.17: Function to check if a state is an accepting state.

The only thing left to do is to find the weighted average of the waiting times

for all states using the steady state probabilities. The function defined in 3.18

corresponds to the expression for W (i) defined in equation (3.23).

>>> import ambulance_game as abg

>>> import numpy as np

>>> def mean_waiting_time_formula_using_recursive_approach(

... all_states ,

... pi,

... class_type ,

... lambda_2 ,

... lambda_1 ,

... mu,

... num_of_servers ,

... threshold ,

... system_capacity ,

... buffer_capacity ,

... **kwargs ,

... ):

... """
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... Get the mean waiting time by using a recursive formula.

... All w(u,v) terms are calculated recursively by going through

... the waiting times of all previous states.

...

... Parameters

... ----------

... all_states : list

... pi : array

... class_type : int

... lambda_2 : float

... lambda_1 : float

... mu : float

... num_of_servers : int

... threshold : int

... system_capacity : int

... buffer_capacity : int

...

... Returns

... -------

... float

... """

... mean_waiting_time = 0

... probability_of_accepting = 0

... for u, v in all_states:

... if is_accepting_state(

... state =(u, v),

... class_type=class_type ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... ):

... arriving_state = (u, v + 1)

... if class_type == 1 and v >= threshold:

... arriving_state = (u + 1, v)

...

... current_state_wait = get_waiting_time_for_each_state_recursively

(

... state=arriving_state ,

... class_type=class_type ,

... lambda_2=lambda_2 ,

... lambda_1=lambda_1 ,

... mu=mu,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... mean_waiting_time += current_state_wait * pi[u, v]

... probability_of_accepting += pi[u, v]

... return mean_waiting_time / probability_of_accepting

>>>

>>> all_states = abg.markov.build_states(

... threshold=2,

... system_capacity =4,

... buffer_capacity =3,

... )

>>> Q = abg.markov.get_transition_matrix(

... lambda_1=1,

... lambda_2=1,
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... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =4,

... buffer_capacity =3

... )

>>> pi = abg.markov.get_markov_state_probabilities(

... abg.markov.get_steady_state_algebraically(

... Q, algebraic_function=np.linalg.solve

... ),

... all_states ,

... )

>>> round(

... mean_waiting_time_formula_using_recursive_approach(

... all_states=all_states ,

... pi=pi ,

... class_type =0,

... lambda_2=1,

... lambda_1=1,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =4,

... buffer_capacity =3,

... ), 10

... )

0.192140129

Code snippet 3.18: Function to get the mean waiting time recursively for a specific

individual type.

Finally the overall waiting time for both individuals can be calculated by taking

the weighted average of the waiting times for each type of individual as described

in equation (3.26).

>>> def overall_waiting_time_formula(

... all_states ,

... pi,

... lambda_2 ,

... lambda_1 ,

... mu,

... num_of_servers ,

... threshold ,

... system_capacity ,

... buffer_capacity ,

... waiting_formula ,

... **kwargs ,

... ):

... """

... Gets the overall waiting time for all individuals by calculating both

... class 1 and class 2 waiting times. Thus , considering the probability

... that an individual is lost to the system (for both classes)

... calculates the overall waiting time.

...

... Parameters

... ----------

... all_states : list
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... pi : array

... lambda_1 : float

... lambda_2 : float

... mu : float

... num_of_servers : int

... threshold : int

... system_capacity : int

... buffer_capacity : int

... waiting_formula : function

...

... Returns

... -------

... float

... The overall mean waiting time by combining class 1 and class 2

... individuals

... """

... mean_waiting_times_for_each_class = [

... waiting_formula(

... all_states=all_states ,

... pi=pi ,

... class_type=class_type ,

... lambda_2=lambda_2 ,

... lambda_1=lambda_1 ,

... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... for class_type in range (2)

... ]

... prob_accept = [

... np.sum(

... [

... pi[state]

... for state in all_states

... if is_accepting_state(

... state=state ,

... class_type=class_type ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... ]

... )

... for class_type in range (2)

... ]

... class_rates = [

... prob_accept[class_type]

... / (( lambda_2 * prob_accept [1]) + (lambda_1 * prob_accept [0]))

... for class_type in range (2)

... ]

... class_rates [0] *= lambda_1

... class_rates [1] *= lambda_2

... mean_waiting_time = np.sum(

... [

... mean_waiting_times_for_each_class[class_type]

... * class_rates[class_type]

... for class_type in range (2)
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... ]

... )

... return mean_waiting_time

>>>

>>> round(overall_waiting_time_formula(

... all_states=all_states ,

... pi=pi ,

... lambda_2=1,

... lambda_1=1,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =4,

... buffer_capacity =3,

... waiting_formula=mean_waiting_time_formula_using_recursive_approach ,

... ), 10)

0.1572461886

Code snippet 3.19: Function for the overall waiting time formula.

3.4.1.2 Direct approach

The direct approach uses similar concepts to the recursive approach of Sec-

tion 3.4.1.1. Instead of using recursion, a linear system of the set of equations

generated by equation (3.18) for every state (u, v) is solved. The set of equations

that need to be solved for individuals of type i are all w(i)(u, v) for all possible

states (u, v) ∈ S.

w(i)(u, v) =


0, if (u, v) /∈ Sw

c
(i)
w (u, v) + w(i)(u− 1, v), if u > 0 and v = T

c
(i)
w (u, v) + w(i)(u, v − 1), otherwise

Consider a relatively small model where C = 1, T = 2, N = 3,M = 1. All

possible equations w(i)(u, v) are given by equations (3.29) - (3.32).

(0,0) (0,1)

Λ

µ

(0,2)

Λ

µ

(1,2)

λ2µ

(0,3)

λ1

µ

(1,3)

λ1

µ

λ2

Figure 3.6: Markov chain example
with C = 1, T = 2, N = 3,M = 1

w(i)(0, 0) = 0 (3.27)

w(i)(0, 1) = 0 (3.28)

w(i)(0, 2) = c(i)w (0, 2) + w(i)(0, 1) (3.29)

w(i)(0, 3) = c(i)w (0, 3) + w(i)(0, 2) (3.30)

w(i)(1, 2) = c(i)w (1, 2) + w(i)(0, 2) (3.31)

w(i)(1, 3) = c(i)w (1, 3) + w(i)(1, 2) (3.32)

Additionally, the above equations can be transformed into a linear system of the
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form Zx = y where:

Z =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 0 0

0 0 1 0 −1 0

0 0 0 0 1 −1


, x =



w(i)(0, 0)

w(i)(0, 1)

w(i)(0, 2)

w(i)(0, 3)

w(i)(1, 2)

w(i)(1, 3)


, y =



0

0

−c
(i)
w (0, 2)

−c
(i)
w (0, 3)

−c
(i)
w (1, 2)

−c
(i)
w (1, 3)


(3.33)

A more generalised form of the equations in (3.33) can be given for any value of

C, T,N,M by:

w(i)(0, 0) = 0 (3.34)

w(i)(0, 1) = c(i)w (0, 1) + w(i)(0, 0) (3.35)

w(i)(0, 2) = c(i)w (0, 2) + w(i)(0, 1) (3.36)

...

w(i)(0, T − 1) = c(i)w (0, T − 1) + w(i)(0, T − 2) (3.37)

w(i)(0, T ) = c(i)w (0, T ) + w(i)(0, T − 1) (3.38)

w(i)(0, T + 1) =c(i)w (0, T + 1) + w(i)(0, T ) (3.39)

w(i)(0, T + 2) =c(i)w (0, T + 2) + w(i)(0, T + 1) (3.40)

...

w(i)(0, N) =c(i)w (0, N) + w(i)(0, N − 1) (3.41)

w(i)(1, T ) =c(i)w (1, T ) + w(i)(0, T ) (3.42)

w(i)(1, T + 1) =c(i)w (1, T + 1) + w(i)(1, T ) (3.43)

...

w(i)(M,N) =c(i)w (M,N) + w(i)(M,N − 1) (3.44)

The equivalent matrix form of the linear system of equations (3.34) - (3.44) is

given by Zx = y, where:
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Z =



−1 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0

1 −1 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0

0 1 −1 . . . 0 0 0 0 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...

0 0 0 . . . −1 0 0 0 . . . 0 0 0 . . . 0

0 0 0 . . . 1 −1 0 0 . . . 0 0 0 . . . 0

0 0 0 . . . 0 1 −1 0 . . . 0 0 0 . . . 0

0 0 0 . . . 0 0 1 −1 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...

0 0 0 . . . 0 0 0 0 . . . −1 0 0 . . . 0

0 0 0 . . . 0 1 0 0 . . . 0 −1 0 . . . 0

0 0 0 . . . 0 0 1 0 . . . 0 0 −1 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...

0 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . −1



x =



w(i)(0, 0)

w(i)(0, 1)

w(i)(0, 2)
...

w(i)(0, T − 1)

w(i)(0, T )

w(i)(0, T + 1)

w(i)(0, T + 2)
...

w(i)(0, N)

w(i)(1, T )

w(i)(1, T + 1)
...

w(i)(M,N)



, y =



0

−c
(i)
w (0, 1)

−c
(i)
w (0, 2)
...

−c
(i)
w (0, T − 1)

−c
(i)
w (0, T )

−c
(i)
w (0, T + 1)

−c
(i)
w (0, T + 2)

...

−c
(i)
w (0, N)

−c
(i)
w (1, T )

−c
(i)
w (1, T + 1)

...

−c
(i)
w (M,N)



(3.45)

Thus, solving for x gets the values of all w(i)(u, v) for all states (u, v) ∈ S. These

values can then be used with equation (3.23) to compute the mean waiting time

for type i individuals W (i). Now, having W (1) and W (2), equation (3.26) can be

utilised once more to compute the overall mean waiting time for both individual

types.

3.4.1.2.1 Implementation

Similar to the implementation of the recursive approach from Section 3.4.1.1.1

the functions that correspond to equations (3.15), (3.16), (3.17), (3.21), (3.22)
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will be used again. For the implementation of the direct approach the aim is to

construct matrix Z and vector y as described in Section 3.4.1.2 in order to solve

the system of linear equations described in (3.4.1.2).

The block of code in 3.20 returns the values of one row of matrix Z that corre-

sponds to the state (u, v) and the value of vector y that correspond to the state

(u, v).

>>> import itertools

>>> def get_coefficients_row_of_array_for_state(

... state ,

... class_type ,

... mu,

... num_of_servers ,

... threshold ,

... system_capacity ,

... buffer_capacity

... ):

... """

... For direct approach: Constructs a row of the coefficients matrix.

... The row to be constructed corresponds to the waiting time equation

... for a given state (u,v)

... """

... lhs_coefficient_row = np.zeros(

... [buffer_capacity + 1, system_capacity + 1]

... )

... lhs_coefficient_row[state [0], state [1]] = -1

... for (u, v) in itertools.product(

... range(1, buffer_capacity + 1), range(threshold)

... ):

... lhs_coefficient_row[u, v] = np.NaN

...

... rhs_value = 0

... if is_waiting_state(state , num_of_servers):

... if state [0] >= 1 and state [1] == threshold:

... next_state = (state [0] - 1, state [1])

... else:

... next_state = (state[0], state [1] - 1)

...

... lhs_coefficient_row[next_state [0], next_state [1]] = 1

... rhs_value = -expected_time_in_markov_state_ignoring_arrivals(

... state=state ,

... class_type=class_type ,

... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... )

... vectorised_array = np.hstack(

... (

... lhs_coefficient_row [0, :threshold],

... lhs_coefficient_row [:, threshold :]. flatten("F"),

... )

... )

... return vectorised_array , rhs_value

>>>

>>> get_coefficients_row_of_array_for_state(

... state =(2,3),
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... class_type =0,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =3,

... buffer_capacity =2

... )

(array([ 0., 0., 0., 0., 1., 0., 0., -1.]), -0.25)

Code snippet 3.20: Function to get a row of the coefficients matrix and the

corresponding value of the right hand side vector.

In code snippet 3.20, the function returns a tuple with two elements; the row

of matrix Z and the value of vector y that corresponds to state (2, 3). Using

the function defined in 3.20 the matrix Z and vector y can be constructed by

considering all states of the Markov chain.

>>> def get_waiting_time_linear_system(

... class_type ,

... mu,

... num_of_servers ,

... threshold ,

... system_capacity ,

... buffer_capacity

... ):

... """

... For direct approach: Obtain the linear system Z X = y by finding

... the array Z and the column vector y that are required. Here Z is

... denoted as " all_coefficients_array " and y as " constant_column ".

... The function stacks the outputs of

... get_coefficients_row_of_array_for_state () for all states. In

... essence all outputs are stacked together to form a square matrix

... (|) and equivalently a column vector (y) that will be used to find

... X s.t. Z*X=y

... """

... all_coefficients_array = np.array ([])

... all_states = abg.markov.build_states(

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... for state in all_states:

... lhs_vector , rhs_value = get_coefficients_row_of_array_for_state(

... state=state ,

... class_type=class_type ,

... mu=mu,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... if len(all_coefficients_array) == 0:

... all_coefficients_array = [lhs_vector]

... constant_column = [rhs_value]

... else:

... all_coefficients_array = np.vstack(

... [all_coefficients_array , lhs_vector]
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... )

... constant_column.append(rhs_value)

... return all_coefficients_array , constant_column

>>>

>>> Z, y = get_waiting_time_linear_system(

... class_type =0,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =3,

... buffer_capacity =2

... )

>>> Z

array ([[-1., 0., 0., 0., 0., 0., 0., 0.],

[ 0., -1., 0., 0., 0., 0., 0., 0.],

[ 0., 1., -1., 0., 0., 0., 0., 0.],

[ 0., 0., 1., -1., 0., 0., 0., 0.],

[ 0., 0., 0., 1., -1., 0., 0., 0.],

[ 0., 0., 1., 0., 0., -1., 0., 0.],

[ 0., 0., 0., 1., 0., 0., -1., 0.],

[ 0., 0., 0., 0., 1., 0., 0., -1.]])

>>> y

[0, 0, -0.25, 0, 0, -0.25, -0.25, -0.25]

Code snippet 3.21: Function that formulates (but does not solve) the linear

system needed to get the waiting time.

The piece of code in 3.22 solves the linear system ZX = y to obtain the vector

X containing the waiting times for all states of the Markov chain. After solving

the linear system for vector X it also converts the 1-dimensional array into a

2-dimensional array where the entry at row u and column v corresponds to the

expected waiting time that an individual will have to wait when arriving and the

Markov chain is at state (u, v).

>>> def convert_solution_to_correct_array_format(

... array , all_states , system_capacity , buffer_capacity

... ):

... """

... For direct approach: Convert the solution into a format that matches

... the state probabilities array. The given array is a one - dimensional

... array with the waiting times of each state

... """

... array_with_correct_shape = np.zeros(

... [buffer_capacity + 1, system_capacity + 1]

... )

... for index , (u, v) in enumerate(all_states):

... array_with_correct_shape[u, v] = array[index]

... return array_with_correct_shape

>>>

>>>

>>> def get_waiting_times_of_all_states_using_direct_approach(

... class_type ,

... all_states ,

... mu,

... num_of_servers ,

... threshold ,
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... system_capacity ,

... buffer_capacity ,

... ):

... """

... For direct approach: Solve M*X = b using numpy.linalg.solve () where:

... M = The array containing the coefficients of all w(u,v) equations

... b = Vector of constants of equations

... X = All w(u,v) variables of the equations

... """

... M, b = get_waiting_time_linear_system(

... class_type=class_type ,

... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... state_waiting_times = np.linalg.solve(M, b)

... state_waiting_times = convert_solution_to_correct_array_format(

... array=state_waiting_times ,

... all_states=all_states ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... return state_waiting_times

>>>

>>> all_states = abg.markov.build_states(

... threshold=2,

... system_capacity =3,

... buffer_capacity =2,

... )

>>>

>>> get_waiting_times_of_all_states_using_direct_approach(

... class_type =0,

... all_states=all_states ,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =3,

... buffer_capacity =2

... )

array ([[ -0. , -0. , 0.25, 0.5 ],

[ 0. , 0. , 0.25, 0.5 ],

[ 0. , 0. , 0.25, 0.5 ]])

Code snippet 3.22: Functions to solve the linear system and get waiting time for

each state

Finally, similar to Section 3.4.1.1.1, using equation (3.23) the mean waiting time

for either type of individuals can be calculated as shown in 3.23.

>>> def mean_waiting_time_formula_using_direct_approach(

... all_states ,

... pi,

... class_type ,

... lambda_2 ,

... lambda_1 ,

... mu,
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... num_of_servers ,

... threshold ,

... system_capacity ,

... buffer_capacity ,

... **kwargs ,

... ):

... """

... Get the mean waiting time by using a direct approach.

... """

... wait_times = get_waiting_times_of_all_states_using_direct_approach(

... class_type=class_type ,

... all_states=all_states ,

... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... mean_waiting_time , prob_accept_class_2_ind = 0, 0

... for (u, v) in all_states:

... if is_accepting_state(

... state =(u, v),

... class_type=class_type ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... ):

... arriving_state = (u, v + 1)

... if class_type == 1 and v >= threshold:

... arriving_state = (u + 1, v)

... mean_waiting_time += wait_times[arriving_state] * pi[u, v]

... prob_accept_class_2_ind += pi[u, v]

...

... return mean_waiting_time / prob_accept_class_2_ind

>>>

>>> all_states = abg.markov.build_states(

... threshold=2,

... system_capacity =4,

... buffer_capacity =3,

... )

>>> Q = abg.markov.get_transition_matrix(

... lambda_1=1,

... lambda_2=1,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =4,

... buffer_capacity =3

... )

>>> pi = abg.markov.get_markov_state_probabilities(

... abg.markov.get_steady_state_algebraically(

... Q, algebraic_function=np.linalg.solve

... ),

... all_states ,

... )

>>> round(

... mean_waiting_time_formula_using_direct_approach(

... all_states=all_states ,

... pi=pi ,
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... class_type =0,

... lambda_2=1,

... lambda_1=1,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =4,

... buffer_capacity =3,

... ), 10

... )

0.192140129

Code snippet 3.23: Function to calculate the mean waiting time for a given

individual type using the direct approach

3.4.1.3 Closed-form approach

The final approach for getting the mean waiting time is to use a closed-form

approach. This approach is an immediate simplification of the recursive approach

described in Section 3.4.1.1.

W (1) =

∑
(u,v)∈S(1)

A
v≥C

1
Cµ

× (v − C + 1)× π(u, v)∑
(u,v)∈S(1)

A
π(u, v)

(3.46)

The mean waiting time of type 2 individuals:

W (2) =

∑
(u,v)∈S(2)

A
min(v,T )≥C

1
Cµ

× (min(v + 1, T )− C)× π(u, v)∑
(u,v)∈S(2)

A
π(u, v)

(3.47)

Having W (1) and W (2), equation (3.26) can then be used to compute W , the

overall mean waiting time for both types.

3.4.1.3.1 Implementation

The closed-form method can be implemented in one function shown in code snip-

pet 3.24. The function is broken down in two parts for the case of each individual

type.

>>> def mean_waiting_time_formula_using_closed_form_approach(

... all_states ,

... pi,

... class_type ,

... mu,

... num_of_servers ,

... threshold ,

... system_capacity ,
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... buffer_capacity ,

... **kwargs ,

... ):

... """

... Get the mean waiting time by using a closed -form method.

... """

... sojourn_time = 1 / (num_of_servers * mu)

... if class_type == 0:

... mean_waiting_time = np.sum(

... [

... (state [1] - num_of_servers + 1) * pi[state]

... * sojourn_time

... for state in all_states

... if is_accepting_state(

... state=state ,

... class_type=class_type ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... and state [1] >= num_of_servers

... ]

... ) / np.sum(

... [

... pi[state]

... for state in all_states

... if is_accepting_state(

... state=state ,

... class_type=class_type ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... ]

... )

...

... if class_type == 1:

... mean_waiting_time = np.sum(

... [

... (min(state [1] + 1, threshold) - num_of_servers)

... * pi[state]

... * sojourn_time

... for state in all_states

... if is_accepting_state(

... state=state ,

... class_type=class_type ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... and min(state [1], threshold) >= num_of_servers

... ]

... ) / np.sum(

... [

... pi[state]

... for state in all_states

... if is_accepting_state(

... state=state ,

... class_type=class_type ,
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... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

... ]

... )

... return mean_waiting_time

>>>

>>> all_states = abg.markov.build_states(

... threshold=2,

... system_capacity =4,

... buffer_capacity =3,

... )

>>> Q = abg.markov.get_transition_matrix(

... lambda_1=1,

... lambda_2=1,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =4,

... buffer_capacity =3

... )

>>> pi = abg.markov.get_markov_state_probabilities(

... abg.markov.get_steady_state_algebraically(

... Q, algebraic_function=np.linalg.solve

... ),

... all_states ,

... )

>>> round(

... mean_waiting_time_formula_using_closed_form_approach(

... all_states=all_states ,

... pi=pi ,

... class_type =0,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =4,

... buffer_capacity =3,

... ), 10

... )

0.192140129

Code snippet 3.24: Function to calculate the mean waiting time for a given

individual type using the closed-form approach

A numeric comparison of the 3 approaches used to compute the mean waiting

time can be found in Section 3.5.1.

3.4.2 Blocking time

Unlike the waiting time in Section 3.4.1, the blocking time is only calculated for

type 2 individuals. That is because type 1 individuals cannot be blocked. Thus,

one only needs to consider the pathway of type 2 individuals to get the mean

blocking time of the system.
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For the waiting time formula described in equation (3.23) in Section 3.4.1.1 the

expected waiting time for each state was considered by ignoring all arrivals. Here,

the same approach is used but ignoring only arrivals of type 2 individuals. That is

because for the waiting time formula, once an individual enters node 1 (i.e. starts

waiting) any individual arriving after them will not affect their pathway. That

is not the case for the blocking time. When a type 2 individual is blocked, any

type 1 individual that arrives will cause the blocked individual to stay blocked

for more time. Therefore, unlike Figure 3.5, type 1 arrivals are considered here.

Once again a variation of the already existing Markov chain model described in

Figure 3.4 can be seen in Figure 3.7 where type 2 arrivals are ignored.

(0,T-1) (0,T) (0,T+1)

(1,T)

(2,T)

(1,T+1)

(2,T+1)

(T − 1)µ

λ1

Tµ

λ1

(T + 1)µ

λ1

(T + 2)µ

λ1

Tµ

(T + 1)µ

λ1

(T + 2)µ

λ1

Tµ

Tµ

(T + 1)µ

λ1

(T + 2)µ

λ1

Figure 3.7: Variation of Markov chain model where type 2 arrivals are removed
(i.e. all arrows pointing down with a rate of λ1 are removed). This diagram is
used as a visualisation aid for the blocking time formula.

By the nature of this new Markov chain variation a similar recursive approach to

the waiting time cannot be used here. Since both service completions and new

arrivals can occur, the path of an individual from arrival to departure is not fixed.

For example, for a particular Markov chain model with a threshold of T = 2, an

individual arriving at state (2, 3) may have multiple different pathways. Both of

these are valid paths:

� (2, 3) → (2, 2) → (1, 2) → (0, 2)

� (2, 3) → (2, 4) → (2, 3) → (2, 2) → (1, 2) → (0, 2)
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Similar to equations (3.16) and (3.17) the expected time spent in each state here

is denoted as:

cb(u, v) =

 1
min(v,C)µ

, if v ≤ C

1
min(v,C)µ+λ1

, otherwise
(3.48)

In equation (3.48), both service completions and type 1 arrivals are considered.

Thus, from a blocked individual’s perspective whenever the system moves from

one state (u, v) to another state it can either be:

� because of a service being completed: we will denote the probability of this

happening by ps(u, v).

� because of an arrival of an individual of type 1: denoting such probability

by po(u, v).

These probabilities are given by:

ps(u, v) =
min(v, C)µ

λ1 +min(v, C)µ
, po(u, v) =

λ1

λ1 +min(v, C)µ
(3.49)

The set of states where blocking can occur is defined as the blocking states and

consists of all states (u, v) where u is non-zero. In essence, the set of blocking

state Sb is defined as:

Sb = {(u, v) ∈ S | u > 0} (3.50)

From Figure 3.7 the set Sb consists of all states below the first line of Markov

chain. In addition, in order to not consider individuals that will be lost to the

system, the set of accepting states needs to be taken into account. As defined in

Section 3.4.1.1, the set of accepting states S
(2)
A is given by equation (3.22).

Having defined cb(u, v) and Sb a formula for the expected blocking time at each

state can be given by:
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b(u, v) =



0, if (u, v) /∈ Sb

cb(u, v) + b(u− 1, v), if v = N = T

cb(u, v) + b(u, v − 1), if v = N ̸= T

cb(u, v) + ps(u, v)b(u− 1, v) + po(u, v)b(u, v + 1), if u > 0 and v = T

cb(u, v) + ps(u, v)b(u, v − 1) + po(u, v)b(u, v + 1), otherwise

(3.51)

Unlike equation (3.23), equation (3.51) cannot be solved recursively. Only a

direct approach will be used to solve this equation. By enumerating all possible

equations generated by (3.51) for all states (u, v) that belong in Sb a system of

linear equations arises where the unknown variables are all the b(u, v) terms. For

instance, let us consider a Markov model where C = 2, T = 3, N = 6,M = 2.

The Markov model is shown in Figure 3.8 and the equivalent equations are (3.52)

- (3.57). The equations considered here are only the ones that correspond to the

blocking states.
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Figure 3.8: Example of Markov model
with C = 2, T = 3, N = 6,M = 2.

b(1, 2) = cb(1, 2) + pob(1, 3) (3.52)

b(1, 3) = cb(1, 3) + psb(1, 2) + pob(1, 4) (3.53)

b(1, 4) = cb(1, 4) + b(1, 3) (3.54)

b(2, 2) = cb(2, 2) + psb(1, 2) + pob(2, 3) (3.55)

b(2, 3) = cb(2, 3) + psb(2, 2) + pob(1, 4) (3.56)

b(2, 4) = cb(2, 4) + b(2, 3) (3.57)

Additionally, the above equations can be transformed into a linear system of the

form Zx = y where:

Z =



−1 po 0 0 0 0

ps −1 po 0 0 0

0 1 −1 0 0 0

ps 0 0 −1 po 0

0 0 0 ps −1 po

0 0 0 0 1 −1


, x =



b(1, 2)

b(1, 3)

b(1, 4)

b(2, 2)

b(2, 3)

b(2, 4)


, y =



−cb(1, 2)

−cb(1, 3)

−cb(1, 4)

−cb(2, 2)

−cb(2, 3)

−cb(2, 4)


(3.58)
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A more generalised form of the linear system of (3.58) can thus be given for any

value of C, T,N,M by:

b(1, T ) =cb(1, T ) + pob(1, T + 1) (3.59)

b(1, T + 1) =cb(1, T + 1) + ps(1, T ) + pob(1, T + 1) (3.60)

b(1, T + 2) =cb(1, T + 2) + ps(1, T + 1) + pob(1, T + 3) (3.61)

... (3.62)

b(1, N) =cb(1, N) + b(1, N − 1) (3.63)

b(2, T ) =cb(2, T ) + psb(1, T ) + pob(2, T + 1) (3.64)

b(2, T + 1) =cb(2, T + 1) + psb(2, T ) + pob(2, T + 2) (3.65)

... (3.66)

b(M,T ) =cb(M,T ) + b(M,T − 1) (3.67)

The equivalent matrix form of the linear system of equations (3.59) - (3.67) is

given by Zx = y, where:

Z =



−1 po 0 . . . 0 0 0 0 0 . . . 0 0

ps −1 po . . . 0 0 0 0 0 . . . 0 0

0 ps −1 . . . 0 0 0 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...

0 0 0 . . . 1 −1 0 0 0 . . . 0 0

ps 0 0 . . . 0 0 −1 po 0 . . . 0 0

0 0 0 . . . 0 0 ps −1 po . . . 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...

0 0 0 . . . 0 0 0 0 0 . . . 1 −1



, (3.68)

x =



b(1, T )

b(1, T + 1)

b(1, T + 2)
...

b(1, N)

b(2, T )

b(2, T + 1)
...

b(M,T )



, y =



−cb(1, T )

−cb(1, T + 1)

−cb(1, T + 2)
...

−cb(1, N)

−cb(2, T )

−cb(2, T + 1)
...

−cb(M,T )



(3.69)
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Thus, having calculated the mean blocking time b(u, v) for every blocking state

individually, a similar formula to equation (3.23) can be derived. The resultant

blocking time formula is given by:

B =

∑
(u,v)∈SA

π(u,v) b(A2(u, v))∑
(u,v)∈SA

π(u,v)

(3.70)

Note here that π(u, v) is the steady state probability that the Markov chain model

is at state (u, v) described in Section 3.3.1.

3.4.2.1 Implementation

The mean blocking time is only calculated using a direct approach similar to the

one described in Section 3.4.1.2.1. Since this implementation is the same as the

waiting time one, the code snippet shown in 3.25 shows only the usage of the

function rather than the function itself.

>>> import ambulance_game as abg

>>> import numpy as np

>>>

>>> all_states = abg.markov.build_states(

... threshold=2,

... system_capacity =4,

... buffer_capacity =3,

... )

>>> Q = abg.markov.get_transition_matrix(

... lambda_1=1,

... lambda_2=1,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =4,

... buffer_capacity =3

... )

>>> pi = abg.markov.get_markov_state_probabilities(

... abg.markov.get_steady_state_algebraically(

... Q, algebraic_function=np.linalg.solve

... ),

... all_states ,

... )

>>> round(abg.markov.mean_blocking_time_formula_using_direct_approach(

... all_states=all_states ,

... pi=pi ,

... lambda_1=1,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =4,

... buffer_capacity =3,

... ), 10)

0.1287843179

Code snippet 3.25: Usage of the function to calculate the mean blocking time.
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3.4.3 Proportion of individuals within target

Another performance measure that needs to be taken into consideration is the

proportion of individuals whose waiting and service times are within a specified

time target. In order to consider such a measure though one would need to obtain

the distribution of time in the system for all individuals. The complexity of such

a task comes from the fact that different individuals arrive at different states of

the Markov model. Consider the case when an arrival occurs when the model is

at a specific state.

3.4.3.1 Distribution of time at a specific state (with 1 server)
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Figure 3.9: Example of Markov model with C = 1, T = 2, N = 4,M = 2

Consider the Markov model of Figure 3.9 with one server (i.e. the rate of service

completion is µ throughout the Markov model) and a threshold of two individuals.

Assume that a type 1 individual arrives when the model is at state (0, 3), thus

forcing the model to move to state (0, 4). The distribution of the time needed for

the specified individual to exit the system from state (0, 4) is given by the sum

of exponentially distributed random variables with the same parameter µ. The

sum of such random variables form the Erlang distribution which is defined by

the number of random variables k that are added together and their exponential

parameter µ.

Xi ∼ Exp(µ)

X1 +X2+ · · ·+Xk ∼ Erlang(k, µ) (3.71)

Note here that these random variables represent the individual’s pathway from

the perspective of the individual. Thus, Xi represents the random variable of the
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time that it takes for an individual to move from the ith position of the queue

to the (i− 1)th position (i.e. for someone in front of them to finish their service)

and X0 is the time it takes that individual from starting their service to exiting

the system.

(0, 4) ⇒ X3 ∼ Exp(µ)

(0, 3) ⇒ X2 ∼ Exp(µ)

(0, 2) ⇒ X1 ∼ Exp(µ)

(0, 1) ⇒ X0 ∼ Exp(µ)

S = X3 +X2+X1 +X0 = Erlang(4, µ) (3.72)

Thus, the waiting and service time of an individual in the model of Figure 3.9

can be captured by an Erlang distributed random variable. The general CDF of

the Erlang distribution Erlang(k, µ) is given by:

P (S < t) = 1−
k−1∑
i=0

1

i!
e−µt(µt)i (3.73)

Unfortunately, the Erlang distribution can only be used for the sum of identi-

cally distributed random variables from the exponential distribution. Therefore,

this approach cannot be used when one of the random variables has a different

parameter than the others. In fact the only case where this can be use is only

when the number of servers are C = 1, similar to the explored example, or when

an individual arrives and goes straight to service (i.e. when there is no other

individual waiting and there is an empty server).



CHAPTER 3. QUEUEING THEORETIC MODEL 72

3.4.3.2 Distribution of time at a specific state (with multiple servers)
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Figure 3.10: Example of Markov model with C = 2, T = 2, N = 4,M = 2

Figure 3.10 represents the same Markov model as Figure 3.9 with the only ex-

ception that there are 2 servers here. By applying the same logic, assuming that

an individual arrives at state (0, 4), the sum of the following random variables

arises.

(0, 4) ⇒ X2 ∼ Exp(2µ)

(0, 3) ⇒ X1 ∼ Exp(2µ) (3.74)

(0, 2) ⇒ X0 ∼ Exp(µ)

Since these exponentially distributed random variables do not share the same

parameter, an Erlang distribution cannot be used. In fact, the problem can now

be viewed as the sum of exponentially distributed random variables with different

parameters, which is in turn the sum of Erlang distributed random variables. The

sum of Erlang distributed random variables is said to follow the hypoexponential

distribution. The hypoexponential distribution is defined with two vectors of size

equal to the number of Erlang random variables that are added together [5, 127].

For this particular example:

X2 ∼ Exp(2µ)

X1 ∼ Exp(2µ)

}
X1 +X2 = S1 ∼ Erlang(2, 2µ)

X0 ∼ Exp(µ) ⇒ X0 = S2 ∼ Erlang(1, µ)

S1 + S2 = H ∼ Hypo((2, 1), (2µ, µ))

(3.75)

The random variable H from equation (3.75) follows a hypoexponential distribu-
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tion with two vector parameters ((2, 1) and (2µ, µ)). The CDF of this distribution

can be therefore used to get the probability of the time spent in the system being

less than a given target. The CDF of the general hypoexponential distribution

Hypo(r⃗, λ⃗), is given by the (3.76), where vector r⃗ contains all k-values of the

Erlang distributions defined in (3.71) and λ⃗ is a vector of the distinct parame-

ters [46].

P (H < t) = 1−

 |r⃗|∏
j=1

λ
rj
j

 |r⃗|∑
k=1

rk∑
l=1

Ψk,l(−λk)t
rk−le−λkt

(rk − l)!(l − 1)!

where Ψk,l(t) = − ∂l−1

∂tl−1

 |r⃗|∏
j=0,j ̸=k

(λj + t)−rj


and λ0 = 0, r0 = 1 (3.76)

The computation of the derivative makes equation (3.76) computationally ex-

pensive. In [87] an alternative linear version of that CDF is explored via matrix

analysis, and is given by the following formula:

F (x) =1−
n∑

k=1

k−1∑
l=0

(−1)k−1

(
n

k

)(
k − 1

l

) n∑
j=1

j−1∑
s=1

e−xλs

s−1∏
l=1

(
λl

λl − λs

)ks

×
∑

s<a1<···<al−1<j

(
λs

λs − λa1

)ks a1−1∏
m=s+1

(
λm

λm − λa1

)km a2−1∏
n=a1

(
λn

λn − λa2

)kn

· · ·
j−1∏

r=al−1

(
λr

λr − λaj

)kr ks−1∑
q=0

((λs − λa1)x)
q

q!
,

for ≥ 0

(3.77)

Although equation (3.77) is a simplified version of equation (3.76) it still has some

unnecessary complexity. The described expressions are general expressions used

to get the CDF of the hypoexponential distribution, which is in turn the sum of

multiple Erlang distributed random variables. However, the random variable H,

described in (3.75), is the sum of only two different erlang distributed random

variables. Thus, perhaps a more simplified version of the above expressions can

be derived that is specific to the case of two Erlang distributed random variables.
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3.4.3.3 Specific CDF of hypoexponential distribution

Equations (3.76) and (3.77) refer to the general CDF of the hypoexponential

distribution where the size of the vector parameters can be of any size [46]. In

the Markov chain models described in Figures 3.9 and 3.10 the parameter vectors

of the hypoexponential distribution are of size two, and in fact, for any possible

version of the investigated Markov chain model the vectors can only be of size

two. This is true since for any dimensions of this Markov chain model there

will always be at most two distinct exponential parameters; the parameter for

finishing a service (µ) and the parameter for moving forward in the queue (Cµ).

For the unique case of C = 1 the hypoexponential distribution will not be used

as this is equivalent to an Erlang distribution. Therefore, by fixing the sizes of r⃗

and λ⃗ to 2, the following specific expression for the CDF of the hypoexponential

distribution arises, where the derivative is removed:

P (H < t) = 1−

 |r⃗|∏
j=1

λ
rj
j

 |r⃗|∑
k=1

rk∑
l=1

Ψk,l(−λk)t
rk−le−λkt

(rk − l)!(l − 1)!

where Ψk,l(t) =


(−1)l(l−1)!

λ2

[
1
tl
− 1

(t+λ2)l

]
, k = 1

− 1
t(t+λ1)r1

, k = 2

and λ0 = 0, r0 = 1 (3.78)

Note here that the only difference between equation (3.76) and (3.78) is the Ψ,

where it is now only computed for k = 1, 2. The following subsection proves the

following expression:

− ∂l−1

∂tl−1

 |r⃗|∏
j=0,j ̸=k

(λj + t)−rj

 =


(−1)l(l−1)!

λ2

[
1
tl
− 1

(t+λ2)l

]
, k = 1

− 1
t(t+λ1)r1

, k = 2
(3.79)

3.4.3.4 Proof of specific hypoexponential distribution (eq. (3.79))

This section aims to show that there exists a simplified expression of equa-

tion (3.76) that is specific to the proposed Markov model. Function Ψ is defined

using the parameter t and the variables k and l. Given the Markov model, the

range of values that k and l can take can be bounded. First, from the range of the

double summation in equation (3.76), it can be seen that k = 1, 2, . . . , | r⃗ |. Now,
| r⃗ | represents the size of the parameter vectors that, for the Markov model,

will always be 2. That is because, for all the exponentially distributed random
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variables that are added together to form the new distribution, there are only

two distinct parameters, thus forming two erlang distributions. Therefore:

k = 1, 2

By observing equation (3.76) once more, the range of values that l takes are

l = 1, 2, . . . , rk, where r1 is subject to the individual’s position in the queue and

r2 = 1. In essence, the hypoexponential distribution will be used with these

bounds:

k = 1 ⇒ l = 1, 2, . . . , r1

k = 2 ⇒ l = 1 (3.80)

Thus the left hand side of equation (3.79) needs only to be defined for these

bounds. The specific hypoexponential distribution investigated here is of the

form:

Hypo((r1, 1)(λ1, λ2))

Note the initial conditions λ0 = 0, r0 = 1 defined in equation (3.76) also hold

here. Thus the proof is split into two parts, for k = 1 and k = 2.

� k = 2, l = 1

LHS = − ∂1−1

∂t1−1

(
2∏

j=0,j ̸=2

(λj + t)−rj

)
= −

(
(λ0 + t)−r0 × (λ1 + t)−r1

)
= −

(
t−1 × (λ1 + t)−r1

)
= − 1

t(t+ λ1)r1

□
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� k = 1, l = 1, . . . , r1

LHS = − ∂l−1

∂tl−1

(
2∏

j=0,j ̸=1

(λj + t)−rj

)

= − ∂l−1

∂tl−1

(
(λo + t)−r0 × (λ2 + t)−r2

)
= − ∂l−1

∂tl−1

(
1

t(t+ λ2)

)

In essence, the final part of the proof is to show that:

− ∂l−1

∂tl−1

(
1

t(t+ λ2)

)
=

(−1)l(l − 1)!

λ2

[
1

tl
− 1

(t+ λ2)l

]
Proof by Induction:

1. Base case (l = 1):

LHS = − ∂1−1

∂t1−1

(
1

t(t+ λ2)

)
= − 1

t(t+ λ2)

RHS =
(−1)1(1− 1)!

λ2

[
1

t1
− 1

(t+ λ2)1

]
= − t+ λ2 − t

λ2t(t+ λ2)

= − 1

t(t+ λ2)

LHS = RHS

2. Assume true for l = x:

− ∂x−1

∂tx−1

(
1

t(t+ λ2)

)
=

(−1)x(x− 1)!

λ2

[
1

tx
− 1

(t+ λ2)x

]

3. Prove true for l = x+ 1:

(
Show that:

∂x

∂tx

(
−1

t(t+ λ2)

)
=

(−1)x+1(x)!

λ2

[
1

tx+1
− 1

(t+ λ2)x+1

])
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LHS =
∂

∂t

[
∂x−1

∂tx−1

(
−1

t(t+ λ2)

)]
=

∂

∂t

[
(−1)x(x− 1)!

λ2

(
1

tx
− 1

(t+ λ2)x

)]
=

(−1)x(x− 1)!

λ2

(
(−x)

tx+1
− (−x)

(t+ λ2)x

)
=

(−1)x(x− 1)!(−x)

λ2

(
1

tx+1
− 1

(t+ λ2)x

)
=

(−1)x+1(x)!

λ2

(
1

tx+1
− 1

(t+ λ2)x

)
= RHS

□

3.4.3.5 Proportion within target for type 1 and type 2 individuals

Given the two CDFs of the Erlang and Hypoexponential distributions (equa-

tions (3.71) and (3.78)) a new function has to be defined to decide which one

to use between the two. Based on the state of the model, there can be three

scenarios when an individual arrives.

1. There is a free server and the individual does not have to wait

X(u,v) ∼ Erlang(1, µ)

2. The individual arrives at the queue at the nth position and the model has

C > 1 servers

X(u,v) ∼ Hypo((n, 1), (Cµ, µ))

3. The individual arrives at a queue at the nth position and the model has

C = 1 servers

X(u,v) ∼ Erlang(n+ 1, µ)

Note here that for the first case Erlang(1, µ) is equivalent to Exp(µ). Define

X
(1)
(u,v) as the distribution of type 1 individuals and X

(2)
(u,v) as the distribution of

type 2 individuals, when arriving at state (u, v) of the model.
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X
(1)
(u,v) ∼


Erlang(v, µ), if C = 1 and v > 1

Hypo
(
r⃗ = (v − C, 1), λ⃗ = (Cµ, µ)

)
, if C > 1 and v > C

Erlang(1, µ), if v ≤ C

(3.81)

X
(2)
(u,v) ∼


Erlang(min(v, T ), µ), if C = 1 and v, T > 1

Hypo
(
r⃗ = (min(v, T )− C, 1), λ⃗ = (Cµ, µ)

)
, if C > 1 and v, T > C

Erlang(1, µ), if v ≤ C or T ≤ C

(3.82)

Equations (3.73) and (3.78) can now be used. Therefore, the probability that an

individual arriving at a specific state is within a given time target t is given by

the following formulas:

P (X
(1)
(u,v) < t) =



1−
∑v−1

i=0
1
i!e

−µt(µt)i, if C = 1

and v > 1

1− (µC)v−Cµ
∑|r⃗|

k=1

∑rk
l=1

Ψk,l(−λk)t
rk−le−λkt

(rk−l)!(l−1)! , if C > 1

where r⃗ = (v − C, 1) and λ⃗ = (Cµ, µ) and v > C

1− e−µt, if v ≤ C

(3.83)

P (X
(2)
(u,v) < t) =



1−
∑min(v,T )−1

i=0
1
i!e

−µt(µt)i, if C = 1

and v, T > 1

1− (Cµ)min(v,T )−Cµ
∑|r⃗|

k=1

∑rk
l=1

Ψk,l(−λk)t
rk−le−λkt

(rk−l)!(l−1)! , if C > 1

where r⃗ = (min(v, T )− C, 1) and λ⃗ = (Cµ, µ) and v, T > C

1− e−µt, if v ≤ C

or T ≤ C

(3.84)

In addition the set of accepting states for type 1 (S
(1)
A ) and type 2 (S

(2)
A ) individ-

uals defined in equations (3.21) and (3.22) are also needed here. Note here that,

S denotes the set of all states of the Markov chain model.

Having defined everything, a formula similar to the ones of equations (3.23)

and (3.58) can be generated. The following formula uses the state probability
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vector π to get the weighted average of the probability below target of all states

in the Markov model.

P (X(1) < t) =

∑
(u,v)∈S(1)

A
P (X

(1)
u,v < t)πu,v∑

(u,v)∈S(1)
A

πu,v

(3.85)

P (X(2) < t) =

∑
(u,v)∈S(2)

A
P (X

(2)
u,v < t)πu,v∑

(u,v)∈S(2)
A

πu,v

(3.86)

3.4.3.6 Overall proportion within target

The overall proportion of individuals for both type 1 and type 2 individuals

is given by the equivalent formula of equations (3.24) and (3.26). The following

formula uses the probability of lost individuals from both types to get the weighted

sum of the two already existing probabilities.

P (L′
1) =

∑
(u,v)∈S(1)

A

π(u, v), P (L′
2) =

∑
(u,v)∈S(2)

A

π(u, v)

P (X < t) =
λ1P (L′

1)

λ2P (L′
2) + λ1P (L′

1)
P (X(1) < t) +

λ2P (L′
2)

λ2P (L′
2) + λ1P (L′

1)
P (X(2) < t)

(3.87)

3.4.3.7 Implementation

This section focuses on the implementation of all necessary equations to calculate

the proportion of individuals within target as described in Section 3.4.3. The

first equation to be considered is the simplified version of Ψk,λ(t) described in

equation (3.78). Code snippet 3.26 shows the implementation of this equation in

python.

>>> def specific_psi_function(

... arg , k, l, exp_rates , freq , a

... ):

... """

... The specific version of the Psi function that is used for the

... purpose of this study. Due to the way the hypoexponential cdf

... works the function is called only for values of k=1 and k=2.

... For these values the following hold:

... - k = 1 -> l = 1, ..., n

... - k = 2 -> l = 1

... """

... if k == 1:

... psi_val = (1 / (arg**l)) - (1 / (arg + exp_rates [2]) ** l)
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... psi_val *= (-1) ** l * math.factorial(l - 1) / exp_rates [2]

... return psi_val

... if k == 2:

... psi_val = -1 / (arg * (arg + exp_rates [1]) ** freq [1])

... return psi_val

... return 0

Code snippet 3.26: Function for the simplified version of Ψk,λ(t)

The piece of code shown in 3.27 returns the cumulative distribution function

of the hypoexponential distribution. In essence this is the value of P (H < t)

outlined in equation (3.78).

>>> def hypoexponential_cdf(

... x, exp_rates , freq , psi_func=specific_psi_function

... ):

... """

... The function represents the cumulative distribution function of the

... hypoexponential distribution . It calculates the probability that a

... hypoexponentially distributed random variable has a value less than

... x. In other words calculate P(S < x) where S ~ Hypo(lambda , r)

... where: lambda is a vector with distinct exponential parameters and

... r is a vector with the frequency of each distinct parameter

... Note that: a Hypoexponentially distributed random variable can be

... described as the sum of Erlang distributed random variables

... Parameters

... ----------

... x : float

... The target we want to calculate the probability for

... exp_rates : tuple

... The distinct exponential parameters

... freq : tuple

... The frequency of the exponential parameters

... psi_func : function , optional

... The function to be used to get Psi , by default

... specific_psi_function

... Returns

... -------

... float

... P(S < x) where S ~ Hypo(lambda , r)

... """

... a = len(exp_rates)

... exp_rates = (0,) + exp_rates

... freq = (1,) + freq

... summation = 0

... for k in range(1, a + 1):

... for l in range(1, (freq[k] + 1)):

... psi = psi_func(

... arg=-exp_rates[k],

... k=k,

... l=l,

... exp_rates=exp_rates ,

... freq=freq ,

... a=a,

... )

... iteration = (

... psi * (x ** (freq[k] - l)) * np.exp(-exp_rates[k] * x)

... )
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... iteration /= (

... np.math.factorial(freq[k] - l)*np.math.factorial(l - 1))

... summation += float(iteration)

... output = 1 - (

... product_of_all_elements(

... [exp_rates[j] ** freq[j] for j in range(1, a + 1)]

... ) * summation

... )

... return output

Code snippet 3.27: Function for the cumulative distribution of the

Hypoexponential distribution

Similarly the cumulative distribution function of the erlang distribution is also

needed here. The code snippet in 3.28 shows the implementation of this function

as described in equation (3.73).

>>> def erlang_cdf(mu, n, x):

... """

... Cumulative distribution function of the erlang distribution .

... P(X < x) where X ~ Erlang(mu , n)

... Parameters

... ----------

... mu : float

... The parameter of the Erlang distribution

... n : int

... The number of Exponential distributions that are added together

... x : float

... The argument of the function

... Returns

... -------

... float

... The probability that the erlang distributed r.v. is less than x

... """

... return 1 - np.sum([

... np.math.exp(-mu * x) * (mu * x) ** i

... * (1 / np.math.factorial(i))

... for i in range(n)

... ])

Code snippet 3.28: Function for the cumulative distribution of the Erlang

distribution

Having defined all functions necessary the code snippet in 3.29 chooses which of

the two distributions to use to calculate the probability of an individual being

within a given time target.

>>> def get_probability_of_waiting_time_in_system_less_than_target_for_state(

... state ,

... class_type ,

... mu,

... num_of_servers ,

... threshold ,

... target ,

... psi_func=specific_psi_function ,
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... ):

... """

... The function decides what probability distribution to use based on

... the state we are currently on and the class type given. The two

... distributions that are used are the Erlang and the Hypoexponential

... distribution . The time it takes the system to exit a state and enter

... the next one is known to be exponentially distributed . The sum of

... exponentially distributed random variables is known to result in

... either an Erlang distribution or a Hypoexponential distribution

... The function works as follows:

... - Checks whether the arriving individual will have to wait

... - Finds the total number of states an individual will have to visit

... - Depending on whether the parameters of the distributions to sum are

... the same or not , call the appropriate cdf function.

... Parameters

... ----------

... state : tuple

... class_type : int

... mu : float

... num_of_servers : int

... threshold : int

... target : int

... psi_func : function , optional

... Returns

... -------

... float

... The probability of spending less time than the target in the

... system when the individual has arrived at a given state

... """

... if class_type == 0:

... arrive_on_waiting_space = state [1] > num_of_servers

... rep = state [1] - num_of_servers

... elif class_type == 1:

... arrive_on_waiting_space = (

... state [1] > num_of_servers and threshold > num_of_servers

... )

... rep = min(state[1], threshold) - num_of_servers

... else:

... raise ValueError("Class␣type␣bust␣be␣0␣or␣1")

...

... if arrive_on_waiting_space:

... if num_of_servers == 1:

... prob = erlang_cdf(mu=mu, n=rep + 1, x=target)

... else:

... param = num_of_servers * mu

... prob = hypoexponential_cdf(

... x=target ,

... exp_rates =(param , mu),

... freq=(rep , 1),

... psi_func=psi_func ,

... )

... else:

... prob = erlang_cdf(mu=mu, n=1, x=target)

... return prob

Code snippet 3.29: Function for deciding which distribution to use to calculate

the probability of an individual being within a given time target.
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Finally, putting everything together, going through all the states of a given

Markov chain model, the function defined in 3.30 calculates the probability of

spending less time than the target in the system for a given individual type. This

corresponds to both equations (3.85) and (3.86).

>>> def get_proportion_of_individuals_within_time_target(

... all_states ,

... pi,

... class_type ,

... mu,

... num_of_servers ,

... threshold ,

... system_capacity ,

... buffer_capacity ,

... target ,

... psi_func=specific_psi_function ,

... **kwargs ,

... ):

... """

... Gets the probability that a certain class of individuals is within a

... given time target. This functions runs for every state the function

... get_probability_of_waiting_time_in_system_less_than_target_for_state

... and by using the state probabilities to get the average proportion of

... individuals within target.

... Parameters

... ----------

... all_states : list

... pi : numpy.array

... class_type : int

... mu : float

... num_of_servers : int

... threshold : int

... system_capacity : int

... buffer_capacity : int

... target : float

... psi_func : function , optional

... Returns

... -------

... float

... The probability of spending less time than the target in the

... system

... """

... proportion_within_limit , probability_of_accepting = 0, 0

... for (u, v) in all_states:

... if abg.markov.utils.is_accepting_state(

... state =(u, v),

... class_type=class_type ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... ):

... arriving_state = (u, v + 1)

... if class_type == 1 and v >= threshold:

... arriving_state = (u + 1, v)

...

... proportion_within_limit_at_state = (

...

get_probability_of_waiting_time_in_system_less_than_target_for_state(
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... state=arriving_state ,

... class_type=class_type ,

... mu=mu,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... target=target ,

... psi_func=psi_func ,

... )

... )

... proportion_within_limit += (

... pi[u, v] * proportion_within_limit_at_state

... )

... probability_of_accepting += pi[u, v]

... return proportion_within_limit / probability_of_accepting

Code snippet 3.30: Function for calculating the probability of spending less time

than the target in the system for a given individual type.

Using all functions created so far, the proportion of individuals within target can

be calculated for a given Markov chain model and a given individual type.

>>> import ambulance_game as abg

>>> import numpy as np

>>> all_states = abg.markov.build_states(

... threshold=2,

... system_capacity =4,

... buffer_capacity =3,

... )

>>> Q = abg.markov.get_transition_matrix(

... lambda_1=1,

... lambda_2=1,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =4,

... buffer_capacity =3

... )

>>> pi = abg.markov.get_markov_state_probabilities(

... abg.markov.get_steady_state_algebraically(

... Q, algebraic_function=np.linalg.solve

... ), all_states

... )

>>> round(get_proportion_of_individuals_within_time_target(

... all_states=all_states ,

... pi=pi ,

... class_type =0,

... mu=4,

... num_of_servers =1,

... threshold=2,

... system_capacity =3,

... buffer_capacity =4,

... target =1

... ), 10)

0.9190401179

Code snippet 3.31: Combining all functions to calculate the proportion of type 1

individuals within a time target of 1 time unit.
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This shows that for the given set of parameters and for type 1 individuals the

probability of spending less than 1 unit of time in the system is 91.9%.

3.5 Numeric results and timings

3.5.1 Markov chain waiting time approaches comparison

In Section 3.4.1 three different approaches for calculating the waiting time using

the Markov chain model have been introduced. The three approaches are the

recursive approach (Section 3.4.1.1), the direct approach (Section 3.4.1.2) and

the closed form approach (Section 3.4.1.3). In this section the three approaches

are compared in terms of accuracy and computation time.

In terms of accuracy the three approaches get close to identical results. Fig-

ures 3.11 and 3.12 show the differences of the three approaches for different values

of N and M .
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Figure 3.11: Waiting times of the three waiting time approaches for different
values of N (left) and the maximum difference in waiting time among the three
approaches over different values of N (right).
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Figure 3.12: Waiting times of the three waiting time approaches for different
values of M (left) and the maximum difference in waiting time among the three
approaches over different values of M (right).



CHAPTER 3. QUEUEING THEORETIC MODEL 86

Since the results of the three approaches are almost identical, the computation

time of the three approaches is the main factor that determines which approach

will be used. Note that the right plots of Figures 3.11 and 3.12 have a y-axis

scale of 10−16. Figures 3.13, 3.14 and 3.15 show the computation time needed

to calculate the waiting time for different values of N and M . The numbers on

these plots were generated by running each method 50 times on each value of N

and M and taking the average computation time. These experiments were run

on a computer with an Intel Core i7-1165G7 CPU running on four cores at 2.80

GHz and 16 GB of RAM.
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Figure 3.13: Computation time of the recursive, direct and closed-form waiting
time approaches for different values of N .
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Figure 3.14: Computation time of the recursive, direct and closed-form waiting
time approaches for different values of M .
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Figure 3.15: Computation time of the recursive, direct and closed-form waiting
time approaches for different values of N and M .

It can be seen from Figures 3.13, 3.14 and 3.15 that while the recursive and closed

form approaches appear to grow linearly with N and M , the direct approach ap-

pears to grows exponentially. Thus, the direct approach is the slowest approach,

which makes sense since it requires solving a system of linear equations.

3.5.2 Accuracy of steady state probability calculations

Another comparison that can be made is the comparison between the steady state

probabilities calculated using the Markov chain and the simulation. The steady

state probabilities, defined in Section 3.3.1, are an essential measure since they

are necessary in the calculation of all performance measures using the Markov

chain model. Although, there is no need to calculate the steady state probabilities

for the simulation, it is interesting to see how the two approaches compare. Note

that for these comparisons the simulation was run 10 times, each with a runtime

of 10,000 time units and a warm-up time of 500 time units.

Figures 3.16 to 3.20 show a comparison between the steady state probabilities

between the Markov chain and the simulation for different values of µ. The value

of µ gradually increases from µ = 0.03 to µ = 0.27 and for each one three plots

are generated; the steady state probabilities generated by the Markov chain, the

steady state probabilities generated by the simulation and the difference between

the two. The values of the remaining parameters are shown in Table 3.1.
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Table 3.1: Parameter values for steady state probabilities accuracy example 1

λ1 λ2 µ C T N M

0.3 0.3 {0.03, 0.09, 0.15, 0.21, 0.27} 5 5 20 20
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Figure 3.16: Heatmaps for µ = 0.03 of the state probabilities using the DES
approach, the Markov chain approach and the differences between the two.
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Figure 3.17: Heatmaps for µ = 0.09 of the state probabilities using the DES
approach, the Markov chain approach and the differences between the two.
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Figure 3.18: Heatmaps for µ = 0.15 of the state probabilities using the DES
approach, the Markov chain approach and the differences between the two.
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Figure 3.19: Heatmaps for µ = 0.21 of the state probabilities using the DES
approach, the Markov chain approach and the differences between the two.
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Figure 3.20: Heatmaps for µ = 0.27 of the state probabilities using the DES
approach, the Markov chain approach and the differences between the two.

Figure 3.16 has the smallest value of µ = 0.03. It can be seen that for both the

Markov chain and the simulation the steady state probabilities are close to zero for

most states apart from the states close to when the system is full. That is because

the arrival rate of individuals is much lower than the service rate of individuals

even with 5 servers. Note here that because the model is immediately flooded

from the beginning, the simulation has no time to explore the state space, so the

heatmap looks like it is missing some of its pieces. Additionally, it is interesting

to note that as we increase the value of µ in Figures 3.17 - 3.20 smaller states in

the model have a higher value since individuals now exit the system faster. Also,

note that for all values of µ the difference between the Markov chain approach

and the simulation is small.

Similarly Figures 3.21 - 3.25 show a comparison between the steady state prob-

abilities between the Markov chain and the simulation for different values of the

number of servers (C). The value of C gradually increases from C = 1 to C = 5

and it can be seen that as the number of servers increases the steady state prob-

abilities of the states tend to move towards the smaller states.
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Figure 3.21: Heatmaps for C = 1 of the state probabilities using the DES ap-
proach, the Markov chain approach and the differences between the two.
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Figure 3.22: Heatmaps for C = 2 of the state probabilities using the DES ap-
proach, the Markov chain approach and the differences between the two.
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Figure 3.23: Heatmaps for C = 3 of the state probabilities using the DES ap-
proach, the Markov chain approach and the differences between the two.
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Figure 3.24: Heatmaps for C = 4 of the state probabilities using the DES ap-
proach, the Markov chain approach and the differences between the two.
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Figure 3.25: Heatmaps for C = 5 of the state probabilities using the DES ap-
proach, the Markov chain approach and the differences between the two.

The parameter values used for Figures 3.21 - 3.25 are shown in Table 3.2.

Table 3.2: Parameter values for steady state probabilities accuracy example 2

λ1 λ2 µ C T N M

1.5 1 0.7 {1, 2, 3, 4, 5} 13 20 20

3.5.3 Computation time of DES and Markov chain

The choice of the artificial truncation parameters N and M is an important de-

cision of the model. The simulation can be used for both the truncated and

untruncated models. This is not possible when obtaining the steady state prob-

abilities of the finite state Markov chain. The value of N and M can be chosen

to be arbitrarily large so as to approximate the untruncated model, but the com-

putation time increases as the size of the state space increases. Table 3.3 shows

the relative timings of the different approaches used to get the performance mea-

sures for different values of N and M . Note that N and M have the same value

throughout the table. The simulation has a runtime of 104 time units and the

displayed durations are for a single run of the simulation and similarly for 100

runs of the simulation. For getting the performance measures using the finite

state Markov chain each timing recorded is for the computation of the steady

state probabilities and then the corresponding performance measure.
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Table 3.3: Relative timings for the computational time needed to get performance
measures using the DES and Markov chain models. Note that these timings are
all relative to the DES run with a single trial.

Simulation Markov chain

Value of Single 100 Waiting Blocking Proportion

N and M trial trials formula formula formula

10 1 144.3 0.015 0.014 0.014

30 1 143.4 3.73 3.83 3.65

50 1 139.8 31.57 38.39 31.98

∞ 1 142.1 N/A N/A N/A

After some investigation it was found that a huge proportion of the duration of

time needed to get the performance measures using the Markov chain approach is

due to the creation of the generator matrix defined in equation (3.3). For example,

for N = M = 50 the state space of the Markov chain consists of approximately

2500 states (depending on the value of T ). Thus, the generator matrix, that

consists of the rates from each state to every other state, has approximately

25002 = 6,250,000 entries. For larger values of N and M , the creation of this

matrix is the most time consuming part of the Markov chain approach, even

though most entries in the matrix are zero. By using equation (3.4), the set of

states with a non-zero rate can be used to fill out the generator matrix. Thus,

instead of iterating over the set states twice, the generator matrix can be filled out

by iterating over the states only once and using M(u, v) defined in equation (3.4).

Table 3.4 shows how the relative timings of the different approaches change when

using this smarter approach.

Table 3.4: Relative timings for the computational time needed to get performance
measures using the DES model and the Markov chain model with the smarter
approach.

Simulation Markov chain

Value of Single 100 Waiting Blocking Proportion

N and M trial trials formula formula formula

10 1 119.2 0.000415 0.000146 0.000274

30 1 108.2 0.008040 0.035941 0.013451

50 1 109.3 0.147455 1.229303 0.179336

∞ 1 127.4 N/A N/A N/A

Overall, it can be seen that using the Markov chain approach is much faster than
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simulating the system. Although, by choosing a larger value of N and M the

computation time of the Markov chain model increases while the simulation time

stays relatively similar.

3.5.4 Truncation effect on performance measures

This section is used to demonstrate the accuracy of the performance measure

formulas of the constructed Markov model compared to the simulation as well as

the effect of truncating the model. The simulation was run 100 times and the

recorded mean waiting time at each iteration is used to populate the violin plots

that are shown in Figures 3.26, 3.29 and 3.30.

Figures 3.26, 3.27 and 3.28 show a comparison between the calculated mean wait-

ing time using Markov chains and the simulated waiting time using discrete event

simulation over a range of values of λ2 (details of the discrete event simulation

model can be found in Section 3.2). The parameter values are shown in Table 3.5.

Table 3.5: Parameter values for truncation effect example 1

λ1 λ2 µ C T N M

2 [2, 6] 3 3 8 {10, 30, 50} {10, 30, 50}
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Figure 3.26: Example 1 - Comparison of overall mean waiting time between values
obtained from the Markov chain formula, values obtained from the truncated
simulation and values obtained from the untruncated simulation.



CHAPTER 3. QUEUEING THEORETIC MODEL 94

2 3 4 5 6
2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

W
ai

tin
g 

tim
e

N = M = 10
Finite state Markov chain
Simulation
Truncated simulation

2 3 4 5 6
2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

W
ai

tin
g 

tim
e

N = M = 30
Finite state Markov chain
Simulation
Truncated simulation

2 3 4 5 6
2

0.1

0.2

0.3

0.4

W
ai

tin
g 

tim
e

N = M = 50
Finite state Markov chain
Simulation
Truncated simulation

Truncation effect on type 1 individuals waiting time

Figure 3.27: Example 1 - Comparison of type 1 individuals mean waiting time
between values obtained from the Markov chain formula, values obtained from
the truncated simulation and values obtained from the untruncated simulation.
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Figure 3.28: Example 1 - Comparison of type 2 individuals mean waiting time
between values obtained from the Markov chain formula, values obtained from
the truncated simulation and values obtained from the untruncated simulation.

In detail, Figure 3.26 shows the calculated mean waiting time using the Markov

chain, using a truncated simulation and using a simulation with infinite capacity

(without the artificial parameters N and M). Each plot corresponds to different

values of N and M and is run over different values of λ2. The untruncated

simulation values are the same at all three graphs since the effect of truncation

does not apply to it. The waiting times generated by the truncated simulation

match the ones generated by the Markov chains model. Note that this comparison

includes both type 1 and type 2 individuals. Additionally Figures 3.27 and 3.28

show the mean waiting time for type 1 and type 2 individuals respectively. A

similar observation to the overall mean waiting time can be made for the mean

waiting time of type 1 and type 2 individuals.

Figure 3.29 shows the mean blocking time equivalent comparison between the

three approaches used for the waiting time (Markov chain, truncated simulation

and untruncated simulation). Similar to the waiting time, the blocking time
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among the different approaches begin to get closer together as the value of N

and M increases. Note that the blocking time can only be calculated for type 2

individuals.
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Figure 3.29: Example 1 - Comparison of mean blocking time between values
obtained from the Markov chain formula, values obtained from the truncated
simulation and values obtained from the untruncated simulation.

Finally, Figures 3.30, 3.31 and 3.32 show the overall proportion of individuals

whose time in the system are within a time target for different values of N and

M . Similar to the previous figures, as N and M increase the proportion of

individuals between the simulation and the Markov chain get closer.
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Figure 3.30: Example 1 - Comparison of overall proportion of individuals within
target between values obtained from the Markov chain formula, values obtained
from the truncated simulation and values obtained from the untruncated simula-
tion.
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Figure 3.31: Example 1 - Comparison of proportion of type 1 individuals within
target between values obtained from the Markov chain formula, values obtained
from the truncated simulation and values obtained from the untruncated simula-
tion.
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Figure 3.32: Example 1 - Comparison of proportion of type 2 individuals within
target between values obtained from the Markov chain formula, values obtained
from the truncated simulation and values obtained from the untruncated simula-
tion.

For this particular set of parameters it can be seen that N = M = 50 is a

reasonable choice for the truncation parameters. The results obtained from the

untruncated simulation are close to the ones obtained from the Markov chain

model and the truncated simulation. In fact, for any set of parameters, increas-

ing the values of N and M in the Markov chain model will result in a closer

approximation to the untruncated simulation.

The same seven plots are also generated for a different set of parameters and

higher values of λ2. Using higher values of λ2 results in a more congested sys-

tem where servers may not be able to serve as fast as individuals arrive. The

parameters used for Figures 3.33 - 3.39 are shown in Table 3.6.
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Table 3.6: Parameter values for truncation effect example 2

λ1 λ2 µ C T N M

4 [2, 6] 2 5 12 {15, 30, 60} {15, 30, 60}
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Figure 3.33: Example 2 - Comparison of overall mean waiting time between values
obtained from the Markov chain formula, values obtained from the truncated
simulation and values obtained from the untruncated simulation.
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Figure 3.34: Example 2 - Comparison of type 1 individuals mean waiting time
between values obtained from the Markov chain formula, values obtained from
the truncated simulation and values obtained from the untruncated simulation.
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Figure 3.35: Example 2 - Comparison of type 2 individuals mean waiting time
between values obtained from the Markov chain formula, values obtained from
the truncated simulation and values obtained from the untruncated simulation.
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Figure 3.36: Example 2 - Comparison of mean blocking time between values
obtained from the Markov chain formula, values obtained from the truncated
simulation and values obtained from the untruncated simulation.
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Figure 3.37: Example 2 - Comparison of overall proportion of individuals within
target between values obtained from the Markov chain formula, values obtained
from the truncated simulation and values obtained from the untruncated simula-
tion.
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Figure 3.38: Example 2 - Comparison of proportion of type 1 individuals within
target between values obtained from the Markov chain formula, values obtained
from the truncated simulation and values obtained from the untruncated simula-
tion.
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Figure 3.39: Example 2 - Comparison of proportion of type 2 individuals within
target between values obtained from the Markov chain formula, values obtained
from the truncated simulation and values obtained from the untruncated simula-
tion.

Figure 3.36 shows that as λ2 increases the blocking time of the truncated and

the untruncated simulation do not match. That is because as λ2 gets to a value

that is beyond what the system can respond to, the truncated and untruncated

system will never match. In essence, when the relative traffic intensity ρ = λ1+λ2

µ×C

is greater than 1 (i.e when λ1 + λ2 > µ × C) the mean blocking time of the

untruncated simulation will depend on the runtime of the simulation. The longer

the simulation is run the more individuals will stay blocked in node 2, because

there is no maximum capacity for node 2 and individuals will keep being added

to it.

3.6 ED-EMS application

The queueing network described in Section 3 can be directly applied to a health-

care setting. The healthcare scenario that is of interest here is at the interface be-

tween Emergency Department (ED) staff and Emergency Medical Services (EMS)

staff. All parameters described in Section 3 can be mapped to some components

of either the ED or the EMS.

� λ1 → Type 1 individuals → Individuals arriving without an ambulance (or

via an ambulance that cannot be blocked)

� λ2 → Type 2 individuals → Individuals arriving with an ambulance (that

can be blocked)

� µ → Service rate → The service rate of a patient

� C → Number of servers → The number of staff available in the hospital
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� T → Threshold → The number of patients that need to be in the hospital

to start blocking ambulances in the parking area.

� N → Node 1 capacity → The overall hospital capacity (i.e. the number of

beds in the hospital plus the queueing capacity)

� M → Node 2 capacity → The parking capacity

Type 1 individuals are now all patients that arrive at the ED via some other

means of transportation rather than an ambulance. Type 2 individuals are now

all patients that arrive at the ED via an ambulance whose condition allows them

to be delayed in the parking lot. The threshold parameter T is now the amount

of patients that need to be in the hospital waiting area (and in service) to start

blocking ambulances in the parking area. Figure 3.40 shows the applied version

of Figure 3.1 that is the queueing network introduced in Section 3.

M︷ ︸︸ ︷
Parking space

T

N︷ ︸︸ ︷

Hospital waiting room

C

λ2

λ1

Figure 3.40: A diagrammatic representation of the Emergency Department. Sim-
ilar to Figure 3.1, the threshold T only applies to type 2 individuals (i.e. patients
arriving via an ambulance that can be blocked). If the number of individuals in
the hospital’s waiting room is greater than or equal to T , only type 1 patients
are accepted while patients of type 2 are blocked in the parking space.

The performance measures of the queueing system have an additional meaning

under the context of this new application. The average number of individuals in

Node 1 and Node 2 are now the average number of patients in the hospital and

the average number of ambulances in the parking space. The mean waiting time

of individuals described in Section 3.4.1 is the average waiting time patients wait

in Node 1 before they are seen by a doctor or nurse. Similarly, the mean blocking

time from Section 3.4.2 is the mean time ambulances stay blocked in the parking

space before the individuals they carry are allowed to enter the hospital. Finally,

the proportion of individuals whose waiting time is longer than a predefined target

time, described in Section 3.4.3 is now the percentage of patients that wait longer

than a predefined time before they are seen by a doctor or nurse.
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3.7 Chapter summary

This chapter introduces a novel queueing network model that is then used to

model the emergent behaviour between EDs and the EMS. The models consists

of two types of individuals and two queueing nodes. Type 1 individuals arrive

instantly at node 1 and wait to receive their service while type 2 individuals arrive

at node 2 and wait there until they are allowed to move to node 1. This decision

is made based on the number of individuals in node 1 a pre-determined threshold

T .

Two modelling approaches were used to model the queueing network. Section 3.2

gives an overview of the first approach that was used to model the queueing

network with a discrete event simulation (DES) model. The DES model was

also used to extract certain performance measures of the system. The implemen-

tation of this approach was written in Python and uses the Ciw library. The

second approach that was used to model the queueing network was a Markov

chain model. Section 3.3 introduces the Markov chain model that was used to

model the queueing network and describes several approaches that were used to

extract the steady state probabilities of the system (Section 3.3.1). The steady

state probabilities of the system are calculated using numerical integration, linear

algebra and a least squares approach. An attempt to derive a closed form solution

for the steady state probabilities was also made using concepts from graph theory

and combinatorics and is described in Appendix D. The Markov chain model was

also implemented in Python.

Section 3.4 describes several algorithms that were used to extract performance

measures from the Markov chain model. There are three key performance metrics

that are of particular interest in this thesis. These are the average waiting time

of individuals in the system, the average blocking time of individuals in node

2 and the proportion of individuals that are able to be served within a certain

time target. Section 3.4.1 describes the different methods that were considered

to extract the average waiting time of individuals in the system. Such methods

were a recursive approach (Section 3.4.1.1.1), a direct approach (Section 3.4.1.2)

and a closed form approach (Section 3.4.1.3). For the mean blocking time of indi-

viduals in node 2 only a direct approach was developed (Section 3.4.2). Because

of the nature of arrivals in the system, a recursive approach was not formulated

and neither was a closed form approach. The final performance measure that was

considered was the proportion of individuals that are able to be served within a

certain time target. For this performance measure the distribution of the wait-

ing time of individuals had to be considered so that the cumulative distribution
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function (CDF) could be extracted. The CDF could then be used to get the

probability that the waiting time of individuals is less than a certain value. The

CDF of the waiting time is partitioned into three cases, each one using a differ-

ent distribution. The exponential distribution, the Erlang distribution and the

Hypoexponential distribution were considered for the creation of this CDF.

Section 3.5 presents some numerical results and timings experiments for the

queueing network, along with a comparison between the DES and Markov chain

approach. Subsection 3.5.1 compares the three different approaches that were

used to extract the average waiting time of individuals in the system and it is

observed that the three approaches return the same results for a particular ex-

ample of parameters. In addition, the computation time of the three approaches

is compared for different values of the system’s capacity. It is observed that,

for small values of N and M all approaches take a similar amount of time to

compute the average waiting time. As the values of N and M increase the direct

approach takes a considerably longer time to compute the average waiting time.

Subsection 3.5.2 compares the value of steady state probability vector that is

obtained using the DES model and the Markov chain model. Subsection 3.5.3

compares the computation time of the DES model and the Markov chain model.

Timing results are shown for a single trial and 100 trials of the DES model, and

timings for each of the performance measure formula are shown for the Markov

chain model. Consequently, the effect of truncating the Markov model is also

investigated in Subsection 3.5.4. It is shown that as the arrival rate increases and

the system is more busy, the truncation of the Markov model has a greater effect

on the performance measures.

In addition Section 3.6 describes how the queueing network can be used in a

healthcare scenario. The queueing structure is mapped to an ED that accepts

two types of patients; non-urgent patients from the EMS and patients form other

sources (walk-ins, urgent patients from the EMS, etc).

Overall, this Chapter has introduced a novel queueing network model that can be

used to represent an ED that accepts patients from the EMS and other sources.

This model will be used in the Chapter 4 to model the emergent behaviour be-

tween EDs and the EMS.
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Chapter 4

Game theoretic model

4.1 Introduction

Apart from the queueing theoretic model the second main outcome of this research

is the construction of a game theoretic model that uses the queueing model de-

scribed in Section 3. This game theoretic framework consists of three players

where these players (in Section 4.5) will represent the Emergency Medical Ser-

vices and two Emergency Departments. The game theoretic model aims to look

into behavioural patterns that emerge when the players are interacting with each

other and act in such a way so that they maximise their utility. This chapter

consists of four main sections:

� Section 4.2 gives a brief introduction to the game theoretic concepts

� Section 4.3 describes the formulation of the game theoretic model that is

used in this research

� Section 4.4 describes the methodology that is used to solve the game theo-

retic model

� Section 4.5 describes the application of the game theoretic model to the

Emergency Medical Services and two Emergency Departments

This chapter extends the concepts described in [114].

4.2 Game theory concepts

In game theory there are several different forms of games. This section outlines

only the ones necessary for the formulation of the scenario studied in this research.
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The first one is normal form games, the second is perfect information extensive

form games, and the third is extensive form games with imperfect information.

The documentation of the python library nashpy can be used to find more in-

formation about the different types of games and concepts that are discussed

throughout this section.

4.2.1 Normal form games

Normal form games are strategic games that model strategic decision-makers.

These decision makers are referred to as players where each player has a set of

possible actions that they can take. The game captures the interaction between

the players by taking into account the payoffs that each player receives for each

possible combination of actions taken by all players. A strategic game consists of

a set of players, a set of actions for each player, and a payoff function that maps

each combination of actions to a payoff for each player [108].

Normal form games with 2 players are usually represented by 2 matrices that

include the payoffs for each player for every possible combination of actions. The

set of available actions of a player is denoted by |S|. A pure strategy is a strategy

that is associated with a single action i and a mixed strategy σ is a strategy that

is associated with a probability distribution over the pure strategies σi, where∑|Sk|
i σk

i = 1 for each player k ∈ {1, 2, . . . n}. A utility function uk is a function

that maps n strategy profiles (one for each player) to a payoff for player k. The

payoff for player k is given by uk(σ
1, σ2, . . . , σn) where each σi represents a player.

For example, consider the Prisoner’s Dilemma game shown in Table 4.1 [55]. In

this game, player 1 can choose to either Cooperate (C) or Defect (D) and player

2 can also choose to either Cooperate (C) or Defect (D).

Table 4.1: A game theoretic matrix representation of the Prisoner’s Dilemma
game

Player 1

Player 2
Cooperate Defect

Cooperate 3, 3 0, 5

Defect 5, 0 1, 1

An alternative way to represent the Prisoner’s Dilemma game is by using the

payoff matrices in (4.1). The payoff matrix A shows the payoffs for player 1 and
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the payoff matrix B shows the payoffs for player 2.

C D

A =

(
3 0

5 1

)
C

D
B =

(
3 5

0 1

)
(4.1)

The entry in the first row and first column of both matrix A and matrix B is 3.

That indicates that if both players choose to Cooperate (i.e. player 1 chooses row

1 and player 2 chooses column 1) then they both receive a payoff of u1 = 3 and

u2 = 3. Similarly, the entry in the second row and first column of matrix A is 0

and the equivalent entry in matrix B is 5. That indicates that if player 1 chooses

to Defect and player 2 chooses to Cooperate then player 1 receives a payoff of

u1 = 0 and player 2 receives a payoff of u2 = 5.

Equivalently, a 3-player normal form game is represented by three 3-dimensional

matrices A, B and C. The rows of each matrix correspond to the actions of player

1, the columns of each matrix correspond to the actions of player 2 and the third

dimension of each matrix corresponds to the actions of player 3.

4.2.2 Nash Equilibrium

The Nash equilibrium is a concept that was developed by John Nash in the 1950s.

It is a concept that is used to describe the behaviour of players in a game when

they are playing against each other [83]. In essence, it is the state of the game

where players are not able to improve their payoff by changing their strategy.

Theorem 1 In a 2-player game a player’s strategy σ̂1 is said to be a best re-

sponse to the opposing’s player strategy σ2 if the following holds:

u1(σ̂
1, σ2) ≥ u1(σ

1, σ2) for all σ1 ∈ S1 (4.2)

The Nash equilibrium is a pair of strategies for the two players where neither

player can improve their payoff by changing their strategy. Thus the following

definition can be built upon the best response definition.

Theorem 2 A pair of strategies σ̂1 and σ̂2 is a Nash equilibrium if they are both

best responses to each other. In other words, the following holds:

u1(σ̂
1, σ2) ≥ u1(σ

1, σ2) and u2(σ
1, σ̂2) ≥ u2(σ

1, σ2) for all σ1 ∈ S1, σ2 ∈ S2

(4.3)
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Consider the pig and piglet game where there are two players, the pig and the

piglet and two strategies each, to Push (P) a lever or Don’t push it (D). The payoff

matrices A and B for this game are shown in (4.4) where matrix A corresponds

to the pig’s payoff and matrix B corresponds to the piglet’s payoff.

P D

A =

(
4 2

5 0

)
P

D
B =

(
2 3

−1 0

)
(4.4)

Consider the case where the pig is playing the Push strategy. The piglet’s best

response to the pig is to play the Don’t push strategy as this will result in a higher

payoff of u2 = 3 instead of u2 = 2. Similarly, if the pig is playing the Don’t push

strategy then the piglet’s best response is still the Don’t push strategy as this

will result in a higher payoff of u2 = 0 instead of u2 = −1. Thus, regardless of

the pig’s strategy the piglet’s best response is to play the Don’t push strategy.

From the pig’s perspective, if the piglet is playing the Don’t push strategy then

the pig’s best response is to play the Push strategy as this will result in a higher

payoff of 2 instead of 0. Therefore, one possible pair of strategies that is a Nash

equilibrium is σ1 = (1, 0) and σ2 = (0, 1). Note that σ = (p1, p2) where p1 is the

probability of the player playing the first strategy and p2 is the probability of the

player playing the second strategy.

This in only an example of the Nash equilibrium where it only consisted of pure

strategies. In general, the Nash equilibrium can consist of mixed strategies. There

are numerous algorithms that can be used to find the Nash equilibrium of a

game. The algorithms that will be discussed in this section are the Lemke-Howson

algorithm and the support enumeration algorithm.

4.2.2.1 Lemke-Howson Algorithm

The Lemke-Howson algorithm is a method that can be used to find a Nash equi-

librium of a 2-player normal form game [88]. Note that the algorithm is only

applicable to 2-player normal form games and the algorithm outputs only one

Nash equilibrium. The Lemke-Howson algorithm uses the concept of support

enumeration described in [106] that is used to find all pairs of best responses

for a given game. For a non-degenerate 2-player game [73] the Lemke-Howson

algorithm performs the following steps:

1. Obtain the best response polytopes P and Q.

2. Choose a starting label to drop, this will correspond to a vertex of P or Q.
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3. In that polytope, remove the label from the corresponding vertex and move

to the vertex that shared that label. A new label will be picked up and

duplicated in the other polytope.

4. In the other polytope drop the duplicate label and move to the vertex that

shared that label.

Repeat steps 3 and 4 until there are no duplicate labels.

The Lemke-Howson algorithm is implemented using nashpy [143], which is a

game theoretic python library. The code snippet in 4.1 shows how to use the

Lemke-Howson algorithm to find the Nash equilibrium of the pig and piglet game

described in equation (4.4).

>>> import nashpy as nash

>>> import numpy as np

>>> A = np.array ([[4, 2], [6, 0]])

>>> B = np.array ([[2, 3], [-1, 0]])

>>> game = nash.Game(A, B)

>>> sigma_1 , sigma_2 = game.lemke_howson(initial_dropped_label =0)

>>> sigma_1

array ([1., 0.])

>>> sigma_2

array ([0., 1.])

Code snippet 4.1: Lemke-Howson python code for the pig and piglet game.

The outcome indicates that the Nash equilibrium of the pig and piglet game is

σ1 = (1, 0) and σ2 = (0, 1). That is, the pig should always push the lever and

the piglet should never push the lever. Consider the game of Rock-Paper-Scissors

now where the payoff matrices are shown in (4.5).

R P S

A =

 0 −1 1

1 0 −1

−1 1 0

R

P

S

B =

 0 1 −1

−1 0 1

1 −1 0

 (4.5)

By implementing the Lemke-Howson algorithm on the Rock-Paper-Scissors game,

one Nash equilibrium can be found.

>>> A = np.array([

... [1, -1, 0],

... [0, 1, -1],

... [-1, 0, 1]]

... )

>>> B = np.array([

... [-1, 1, 0],

... [0, -1, 1],

... [1, 0, -1]]
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... )

>>> game = nash.Game(A, B)

>>> sigma_1 , sigma_2 = game.lemke_howson(initial_dropped_label =0)

>>> sigma_1

array ([0.33333333 , 0.33333333 , 0.33333333])

>>> sigma_2

array ([0.33333333 , 0.33333333 , 0.33333333])

Code snippet 4.2: Lemke-Howson python code for the Rock-Paper-Scissors game.

The outcome indicates that a Nash equilibrium of the Rock-Paper-Scissors game

is σ1 = (1/3, 1/3, 1/3) and σ2 = (1/3, 1/3, 1/3). That is, the players should play

each strategy with equal probability.

4.2.2.2 Support Enumeration

Another algorithm that can be used to find the Nash equilibrium of a 2-player

normal form game is the support enumeration algorithm. The support enumera-

tion algorithm can be used to find all Nash equilibria of a non-degenerate 2-player

normal form game [73] by using all possible pairs of support of a game [104]. The

following steps are performed by the support enumeration algorithm and return

all pairs of best responses in a game with payoff matrices A and B [119]:

1. For all possible pairs of support (Mx, Ny) of the mixed strategies (x, y)

2. Solve the following equations:∑
i∈Mx

xiBij = v, for all j ∈ Ny (4.6)∑
i∈Mx

xi = 1 (4.7)∑
j∈Ny

yjAij = u, for all i ∈ Mx (4.8)

∑
j∈Ny

yj = 1 (4.9)

The support enumeration algorithm is implemented using the nashpy [143]

python library. Consider the payoff matrices for the game of coordination shown

in (4.10), where the two players would prefer to perform the same action if pos-

sible, but player 1 has a slight preference for action S1 and player 2 has a slight
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preference for action S2.

S1 S2

A =

(
3 1

0 2

)
S1

S2

B =

(
2 1

0 3

)
(4.10)

The piece of code in 4.3 implements the support enumeration algorithm on the

coordination game and returns all Nash equilibria of the game.

>>> A = np.array([

... [3, 1],

... [0, 2]

... ])

>>> B = np.array([

... [2, 1],

... [0, 3]

... ])

>>> game = nash.Game(A, B)

>>> nash1 , nash2 , nash3 = tuple(game.support_enumeration ())

>>> nash1

(array ([1., 0.]), array ([1., 0.]))

>>> nash2

(array ([0., 1.]), array ([0., 1.]))

>>> nash3

(array ([0.75 , 0.25]) , array ([0.25 , 0.75]))

Code snippet 4.3: Support enumeration python code for the coordination game.

The outcome indicates that there are three Nash equilibria of the coordination

game. The first Nash equilibrium is σ1 = (1, 0) and σ2 = (1, 0), which corresponds

to both players playing action S1. Similarly, the second Nash equilibrium is

σ1 = (0, 1) and σ2 = (0, 1), and corresponds to both players playing action S2.

The third Nash equilibrium is σ1 = (3
4
, 1
4
) and σ2 = (1

4
, 3
4
), which means that

player 1 should play action S1 with probability 3
4
and action S2 with probability

1
4
and player 2 should play action S1 with probability 1

4
and action S2 with

probability 3
4
.

4.2.3 Learning Algorithms

Nash equilibria is a theoretical measure which can be inconsistent with intuitive

notions about what should be the outcome of a game [103]. The concept of Nash

equilibria is not always applicable to real-world situations. There are scenarios

where a game has multiple Nash equilibria, but not all of them can be reached by

allowing the players to repeatedly play the game. Evolutionary stable strategies

(ESS) is a subsequent general concept that can be more applicable to real-world

situations [107]. Consider a population that consists of all possible strategies of
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a player and stronger strategies can invade weaker ones strategies and replace

them in this population [128, 129]. A strategy is an ESS if no other strategy

can replace it or invade it from the population of all strategies. Note that all

strategies that are ESS are also Nash equilibrium. Learning algorithms can be

used to reach certain ESS of a game. The benefit of using learning algorithms

and ESS, instead of calculating the Nash equilibria, is that not only is it a more

powerful concept of equilibrium, but also the decision journey of the players can

be observed. Thus, players’ decisions at each time step can be observed and the

learning process can be visualised. There are numerous leaning algorithms that

can be used to find ESS of a game. In this subsection an overview of some of

them will be given.

4.2.3.1 Fictitious play

One such learning algorithm is called Fictitious play [24, 52]. The fictitious play

algorithm is a sequential learning algorithm that is based on the assumption that

the players are rational and have perfect information about the game. At each

time step, the players play a strategy that is based on the previous actions of

the opposing player. In other words the players play a best response to their

opponent’s empirical frequency of actions.

Once again, using the nashpy python library [143], the fictitious play algorithm

can be implemented on the game shown in 4.4.

>>> A = np.array([

... [4, 1, 3],

... [2, 0, 2],

... [3, 4, 1]

... ])

>>> B = np.array([

... [4, 5, 1],

... [2, 3, 2],

... [6, 4, 0]

... ])

>>> game = nash.Game(A, B)

>>> np.random.seed (0)

>>> play_counts = list(game.fictitious_play(iterations =1000))

>>> play_counts [-1]

[array ([642. , 0., 358.]) , array ([757. , 243., 0.])]

Code snippet 4.4: Fictitious play python code for a 2-player game.

The output is the empirical frequency of actions played by each player. The

outcome indicates that the fictitious play algorithm converges to the following

Nash equilibrium: σ1 = (2
3
, 0, 1

3
) and σ2 = (3

4
, 1
4
, 0). That is the outcome of

the last iteration of the fictitious play algorithm and normalised to sum to one.

Figure 4.1 shows all iterations of the fictitious play algorithm and how the players
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converge to a Nash equilibrium.

0 200 400 600 800 1000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Row Player Strategies
s0
s1
s2

0 200 400 600 800 1000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Column Player Strategies
s0
s1
s2

Figure 4.1: Example of fictitious play algorithm run for 1000 iterations that
converges to a Nash equilibrium.

4.2.3.2 Stochastic fictitious play

Another similar learning algorithm is called stochastic fictitious play [52, 67].

Stochastic fictitious play is a variation of the fictitious play algorithm where a

stochastic perturbation ϵi is added to each expected payoff where ϵi ∈ [0, ϵ̄] where

ϵ̄ is a parameter needed for the algorithm.

>>> A = np.array([

... [4, 1, 3],

... [2, 0, 2],

... [3, 4, 1]

... ])

>>> B = np.array([

... [4, 5, 1],

... [2, 3, 2],

... [6, 4, 0]

... ])

>>> game = nash.Game(A, B)

>>> np.random.seed (0)

>>> play_counts_and_distributions = tuple(

... game.stochastic_fictitious_play(iterations =1000)

... )

>>> end_play_count , end_distribution = play_counts_and_distributions [-1]

>>> end_play_count

[array ([624. , 0., 376.]) , array ([767. , 233., 0.])]

Code snippet 4.5: Stochastic fictitious play python code for a 2-player game.

The output is the empirical probability of all actions played by player 1 and player

2. The outcome indicates that the stochastic fictitious play algorithm converges

to the following strategy: σ1 = (2
3
, 0, 1

3
) and σ2 = (3

4
, 1
4
, 0). This is the outcome

of the last iteration of the stochastic fictitious play which is also similar to the

fictitious play outcome. Figure 4.2 shows all iterations of the stochastic fictitious

play algorithm and how the players converge to a Nash equilibrium.
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Figure 4.2: Example of stochastic fictitious play algorithm for 1000 iterations
that converges to a Nash equilibrium.

4.2.3.3 Asymmetric replicator dynamics

The learning algorithm that will be used most in this thesis is asymmetric repli-

cator dynamics [1]. Replicator dynamics is a learning algorithm that is used to

express the evolutionary dynamics of a population of players [81]. Consider a

large population of some agents, also known as replicators. Different types of

such replicators meet and interact. Each such interaction generates a certain

payoff for each type of the replicators. This payoff is often referred to as the

fitness of the replicator. In evolutionary game theory these replicators are the

strategies of the two players.

Consider two types of individuals, A and B, each with their own set of strategies,

SA and SB. Different strategies from SA are assigned among the population of

type A and different strategies from SB are assigned among the population of

type B. Individuals of type A are randomly paired with individuals of type B

and perform their assigned strategies. As the game progresses the proportion

of each strategy changes based on previous interactions. Given that the payoff

matrices of the two players are A and B, the fitness of a strategy is given by:

fx = Ay fy = xTB (4.11)

Note that x and y are the strategy vectors and correspond to the population

proportion of each strategy. The average fitness of the two types of individuals

is also given by:

ϕx = fxx
T ϕy = fyy (4.12)
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Finally the rate of change of the strategies are captured by the following equations:

dx

dt
= xi((fx)i − ϕx) for all i (4.13)

dy

dt
= yi((fy)i − ϕy) for all i (4.14)

Asymmetric replicator dynamics is implemented by using the python nashpy

library. Code snippet 4.6 shows how to use the asymmetric replicator dynamics

algorithm to find the Nash equilibrium of a two-player game.

>>> A = np.array([

... [4, 1, 3],

... [2, 0, 2],

... [3, 4, 1]

... ])

>>> B = np.array([

... [4, 5, 1],

... [2, 3, 2],

... [6, 4, 0]

... ])

>>> game = nash.Game(A, B)

>>> xs , ys = game.asymmetric_replicator_dynamics(

... timepoints=np.linspace(0, 100, 100),

... )

>>> np.round(xs[-1], 4)

array ([0.9207 , 0. , 0.0793])

>>> np.round(ys[-1], 4) # doctest: +SKIP

array ([0.7429 , 0.2571 , 0. ])

Code snippet 4.6: Asymmetric replicator dynamics python code for a 2-player

game.

The output of the asymmetric replicator dynamics algorithm is the latest popula-

tion proportion of each strategy σ1 = (0.92, 0, 0.08) and σ2 = (0.74, 0.26, 0). That

doesn’t mean that the strategies have reached a steady state. For this condition

to be reached the rate of change of the strategies needs to be dx
dt

= dy
dt

= 0. In

fact Figure 4.3 shows that the strategies played over time using the asymmetric

replicator dynamics algorithm have in fact not reached a steady state.
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Figure 4.3: Example of asymmetric replicator dynamics algorithm that does not
converge.

It can be seen that strategies player 1 alternates between strategy s1 and s3 while

player 2 alternates between strategy s1 and s2. This game cannot reach a steady

state given the uniform initial distribution of the strategies. Consider a different

game where the steady strategy choice can be reached.

>>> A = np.array([

... [4, 1],

... [2, 5],

... ])

>>> B = np.array([

... [4, 5],

... [2, 3],

... ])

>>> game = nash.Game(A, B)

>>> x0 = np.array ([0.9, 0.1])

>>> y0 = np.array ([0.9, 0.1])

>>> xs , ys = game.asymmetric_replicator_dynamics(

... timepoints=np.linspace(0, 20, 100),

... x0=x0 ,

... y0=y0 ,

... )

>>> np.round(xs[-1], 4)

array ([0., 1.])

>>> np.round(ys[-1], 4)

array ([0., 1.])

Code snippet 4.7: Asymmetric replicator dynamics run on a game that is able to

reach steady state

The output of the asymmetric replicator dynamics algorithm is the latest pop-

ulation proportion of each strategy σ1 = (0, 1) and σ2 = (0, 1). This indicates

that the strategies have reached a steady state. In replicator dynamics when a

replicator is eliminated (in this case strategy s1), it cannot be recovered. In addi-

tion, note that for this game the asymmetric replicator dynamics algorithm was

ran with a non-uniform initial distribution of the strategies. In fact, even though

the initial distribution of the strategies was x0 = (0.9, 0.1) and y0 = (0.9, 0.1),
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strategy s2 still managed to take over the population.
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Figure 4.4: Example of asymmetric replicator dynamics algorithm that converges

4.2.4 Perfect-information extensive form game

Unlike normal-form games extensive-form games work in a sequential way, where

players do not make decisions at the same time. Instead, the first player chooses

their strategy and then the opposing player, fully aware of the choice made by

the first player, chooses their own strategy. There are numerous situations where

decision makers can change their actions based on the actions of other decision

makers. Such type of sequential games are also referred to as extensive form

games. One of the most common types of extensive form games is the perfect-

information extensive form game. In this type of game, the players are assumed

to have perfect information about the previous actions of other players. There are

four key components of a perfect-information extensive form game; the players,

the terminal nodes, the player function and the preferences of the players [109].

Examples of such games are the game of chess and the game of Backgammon [66].

Perfect information extensive form games are represented by a tree where the

nodes of the tree are the terminal nodes and represent the outcome of the game.

Figure 4.5 shows an example of a perfect information extensive form game.
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B

(5, 1) (5, 0) (2, 2) (3, 3)

C

D

C

D
Figure 4.5: Example of a perfect information extensive form game with 2 players
and 4 terminal nodes.

Figure 4.5 shows an example of a perfect information extensive form game. The

game starts at the root node and the players take turns to make a move. Player

1 can choose to either perform action A or action B. Once player 1 has made a

move, player 2 can choose to either action C or action D, while having complete

awareness of the action taken by player 1 and hence their own position on the

tree. The final nodes of the tree represent the outcome of the game.

4.2.5 Imperfect-information extensive form game

An imperfect information game is defined as an extensive form game where some

of the information about the game state is hidden for at least one of the play-

ers [17]. In other words, when making a decision, the players might not know

their exact position on the tree. Similar to perfect information, imperfect infor-

mation games are also represented by a tree. Figure 4.6 shows an example of an

imperfect information extensive form game.

P1

. .P2

a b

(5, 1) (5, 0) (2, 2) (3, 3)

c d c d

Figure 4.6: An example of an imperfect information extensive form game with 2
players and 4 terminal nodes.



CHAPTER 4. GAME THEORETIC MODEL 117

Figure 4.6 shows an example of an imperfect information extensive form game

where player 2, when making their decision, does not know whether they are in

the left or right branch of the tree. The game starts at the root node and the

players take turns to make a move. Player 1 can choose to either action a or action

b. Once player 1 has made a move, player 2 can choose to either action c or action

d, while having incomplete awareness of the action taken by player 1 and hence

their own position on the tree. The final nodes of the tree represent the outcome

of the game. This game can also be represented by a normal form game since

both players end up being completely unaware of the actions taken by the other

player. The payoff matrices in (4.15) show the normal form game representation

of the imperfect information extensive form game shown in Figure 4.6.

c d

A =
a

b

(
5 5

2 3

)
B =

(
1 0

2 3

)
(4.15)

4.3 Formulation

In order to formulate the game theoretic model one needs to define the players

of the game, the strategies of each player and the payoffs of each pair of strategy

being played.

4.3.1 Players and parameters

The problem studied is a 3-player extensive form game that consists of three

players. This will later be reduced to a 2-player standard normal form game [96].

The three players are:

� the decision makers of queueing system A

� the decision makers of queueing system B

� a distribution service that distributes individuals to the two queueing sys-

tems
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Figure 4.7: A diagrammatic representation of the game theoretic model. Indi-
viduals arrive at the distribution service at a rate of λ2 and then a proportion of
them are distributed to Queueing system A (pA) and the remaining proportion
to Queueing system B (pB) so that pA + pB = 1. The corresponding arrival rates
of type 2 individuals to Queueing systems A and B are thus given by: pAλ2 and
pBλ2.

Each player has their own objective which they aim to optimise. More specifically,

the queueing systems’ objective is captured by an upper bound of the time that a

fixed proportion of individuals spend in the system, while the distribution service

aims to minimise the time that its individuals stay blocked at each queueing

system’s node 2. These objectives are more formally defined in Section 4.3.2.

The parameters of the game theoretic model are:

� λ2: The arrival rate of type 2 individuals arriving at the distribution service

that need to be distributed to the queueing systems

� λ1i : The arrival rate of type 1 individuals to queueing system i ∈ {A,B}

� µi: The service rate of individuals at queueing system i ∈ {A,B}

� Ci: The number of servers in queueing system i ∈ {A,B}

� Ti: The strategy that queueing system i ∈ {A,B} chooses to play which

corresponds to the threshold at which they start blocking type 2 individuals

at node 2.

� Ni: The total capacity of node 1 in queueing system i ∈ {A,B}

� Mi: The total capacity of node 2 in queueing system i ∈ {A,B}

� t: The time target for both queueing systems

� α ∈ [0, 1] : Weight of blocking time and lost individuals (defined in equa-
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tion (4.22))

� P̂ : is the percentage target of individuals that need to be within that target

(this is set to 95% unless otherwise stated)

4.3.2 Strategies

Each player is given a predetermined set of strategies from which to choose. The

strategies of the two queueing systems are the range of thresholds that they can

choose from. In essence the strategy space of queueing system A is the set of

integers from 1 to the capacity of node 1 in queueing system A (NA), while the

strategy space of queueing system B is the set of integers from 1 to the capacity

of node 1 in queueing system B (NB).

TA ∈ {1, 2, . . . , NA} and TB ∈ {1, 2, . . . , NB} (4.16)

In essence this means that for either queueing system (A or B), every strategy

choice generates a different queueing network of the form that is described in

Section 3. In other words, different strategies are equivalent to different thresholds

which is one of the core parameters of the queueing network. Consider queueing

system A as one of the three players of the game theoretic model with node

1 capacity of NA = 6 and node 2 capacity of MA = 3. The strategy space

of queueing system A is then TA ∈ {1, 2, 3, 4, 5, 6}. Every possible value of TA

corresponds to a different queueing network. Figures 4.8 - 4.13 show all possible

Markov chain models that arise from such a strategy space.
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Figure 4.8: The Markov chain model that will be generated when queueing system
A chooses to play a strategy of TA = 1.
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Figure 4.9: The Markov chain model that will be generated when queueing system
A chooses to play a strategy of TA = 2.
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Figure 4.10: The Markov chain model that will be generated when queueing
system A chooses to play a strategy of TA = 3.
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Figure 4.11: The Markov chain model that will be generated when queueing
system A chooses to play a strategy of TA = 4.
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Figure 4.12: The Markov chain model that will be generated when queueing
system A chooses to play a strategy of TA = 5.
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Figure 4.13: The Markov chain model that will be generated when queueing
system A chooses to play a strategy of TA = 6.

Each of these Markov chains generate unique performance measures, state prob-

abilities and overall queueing network behaviour. By varying the threshold TA

from 1 to 6, the queueing network of queueing system A has a significant change

in the mean waiting time and in the mean blocking time. As a matter of fact,

as the threshold is increased the mean waiting time is non-increasing while the

mean blocking time is non-decreasing. Having a low threshold means that queue-

ing system A will block type 2 individuals more often and thus the mean blocking

time will be higher and hence the mean waiting time will be lower. The same

logic applies to queueing system B, with TB ∈ {1, 2, . . . , NB}.

The strategy space of the distribution service, which is the third player of the

game is the range of all possible ways to distribute individuals to the two queueing

systems. That is the proportions of individuals to send to queueing system A and

the proportion of individuals to send to queueing system B (pA, pB).

pA ∈[0, 1] and pB ∈ [0, 1]

such that pA + pB = 1 (4.17)

Since pB is dependent on pA and vice versa, equation (4.17) can be further sim-

plified so that the strategy space is defined solely by pA.

pA ∈ [0, 1] and pB = 1− pA (4.18)
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Similar to the strategy space of the queueing networks, the strategy space of the

distribution service is also translated back into the queueing network. Different

values of pA and pB, directly affect the arrival rates of type 2 individuals to the

two queueing systems. In fact the arrival rate of type 2 individuals to queueing

system A is pAλ2 and to queueing system B is pBλ2. Thus by increasing pA both

the mean waiting time and the mean blocking time of queueing system A will

increase but equivalently will decrease for queueing system B.

4.3.3 Payoffs

Consider the three players of the game: queueing system A, queueing system B

and the distribution service. Apart from a strategy space each player also has

some objective that they would want to either minimise or maximise.

Blocking time

λ2

pA

pB

Proportion of individuals within target

Queueing System A

Node 2

Node 1

TA

pAλ2

λA
1

Queueing System B

Node 2

Node 1

TB

pBλ2

λB
1

Figure 4.14: A diagrammatic representation of the game theoretic model listing
the performance measures that correspond to each player’s utilities.

The payoffs of the players are directly related to the performance measures of

the queueing networks. More specifically the utilities of the queueing systems

focus on the proportion of individuals whose waiting time and service time falls

within a predefined time target, where this is defined in Section 3.4.3. Similarly

the utilities of the distribution service focus on the blocking time of the queueing

systems defined in Section 3.4.2.

Consider the queueing system players first. The objective of either queueing

system should be to pick a threshold so that their own mean waiting time is

minimised.

argmin
Ti

E[Wi] i ∈ A,B (4.19)
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The mean waiting time is defined in Section 3.4.1 as the average time that an

individual spends in node 1. Although this might seem like a sensible objective

at first glance, it is not necessarily a realistic one. By using the utility function of

equation (4.19) the queueing systems best response will always be to pick strategy

of T = 1. A threshold of T = 1 will always result in the lowest mean waiting time

since it will prevent type 2 individuals from entering node 1 as long as there is at

least one individual in node 1. Depending on the number of available servers this

might be true for other values of T as well. For example if there is one available

server in node 1, then a threshold of T = 1 will always result in a mean waiting

time of zero for type 2 individuals. That is because type 2 individuals can only

enter node 1 if there is nobody else in node 1, which means that there will always

be a free server for type 2 individuals. Similarly if there are two available servers

in node 1, then a threshold of either T = 1 or T = 2 will also result in a mean

waiting time of zero for type 2 individuals.

Therefore a more sophisticated objective that doesn’t force the queueing systems

to pick the lowest threshold is also considered. The new objective function is

defined as:

argmax
Ti

1−
(
P̂ − P (Wi < t)

)2
i ∈ A,B (4.20)

where W is the waiting time of a potential individual, t is the time target and P̂

is the percentage target of individuals that need to be within that target. In other

words, their aim is to find the threshold that minimises the difference between

the probability P (Wi < t) and the percentage goal, or maximise its negation.

The third player, the distribution service, has its own choices to make and its own

goals to satisfy. The strategy set of the third player is a proportion 0 ≤ pA ≤ 1

that corresponds to the proportion of individuals to send to queueing system A

(defined in equation (4.18)). The choice of pA and pB, are based on minimising

any potential blockages that may occur, given the pair of thresholds chosen by

the two queueing systems. Thus, its objective is to minimise the blocked time of

the individuals (BA and BB) that they send to queueing systems A and B.

Apart from the time being blocked, an additional aspect that may affect the

decision of the distribution service is the probability that an individual becomes

lost to a queueing system. A type 2 individual can become lost to a queueing

system if they arrive in a queueing system and node 2 is at its maximum capacity

M . Therefore, the probability that an individual is lost to queueing system i is
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given by Li where i ∈ {A,B}:

Li =
∑

(u,v)∈S
u=M

π(u,v) (4.21)

where S is the set of all states in queueing system i, M is the maximum capacity of

node 2 and π(u,v) is the probability of being in state (u, v) (as defined in Section 3).

For each queueing system, there is a penalty of sending a proportion of pi indi-

viduals to that queueing system. That penalty is given by:

αLi(pi) + (1− α)Bi(pi), i ∈ A,B (4.22)

Equation (4.22) can be used to capture a mixture between the two objectives Li

and Bi where i ∈ {A,B}. Here, α represents the “weight” of each objective [58],

where a high α indicates a higher weight on the proportion of lost individuals

and a smaller α a higher weight on the time blocked. In fact, the best response

of the distribution service can be found by equating the penalty of sending pA

individuals to queueing system A and the penalty of sending pB individuals to

queueing system B (where pB = 1− pA).

αLA(pA) + (1− α)BA(pA) = αLB(pB) + (1− α)BB(pB) (4.23)

There are some cases where the best response of the distribution service is to

distribute all individuals to one of the two queueing systems. For example, if

queueing system A has a low threshold and queueing system B has a high thresh-

old, then the distribution service’s best response may be to send all individuals

to queueing system B. Thus equation (4.23) can be modified to be:

O(pA;TA, TB) = αLA(pA) + (1− α)BA(pA)− αLB(1− pA)− (1− α)BB(1− pA)

argmin
pA

|O(pA;TA, TB)| (4.24)

The choice of pA and pB rely solely on equation (4.24). Note that the current

system is modelled using unobservable queues which is not necessarily an unreal-

istic approach [126]. Another approach would be to allow the distribution service
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to observe the state of each queueing system before sending each individual to

either of them and making a decision based on that state. There are several other

factors that can affect the routing of the individuals that are outside the scope

of this thesis. For example the distance from the distribution service to each

queueing system or even the priority level of each individual may be a significant

factor that affects the distribution service’s decision.

4.3.4 Imperfect information extensive form game

The game can be modelled as an imperfect information extensive form game as

described in Section 4.2.5. The strategies and payoffs of all players can be put

together to form the following game tree:

QA

. . .TA
=
1

T A
=

2

T
A
=
N

A

QB

. . .TB
=
1

T B
=

2

T
B
=
N

B

D

0

. . .

1

pA
=
0 p

A
=
1

Figure 4.15: Imperfect information extensive form game between the distribution
service and the 2 queueing systems

The game tree is a representation of all possible sequences of decisions that can

be made by the players. Initially, queueing system A chooses which threshold

TA to play out of NA possible choices. Then, queueing system B chooses its

own threshold QB without knowing the threshold chosen by queueing system A.

Note here that it doesn’t matter which queueing system chooses its threshold first

since the other queueing system will always choose its threshold independently of

the first queueing system’s choice. Afterwards, the distribution service chooses

the proportion of individuals to send to queueing system A, from the continuous
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strategy space of 0 ≤ pA ≤ 1. The distribution service has all the information

about the state that the game is at when it’s choosing the value of pA. Thus,

the distribution service’s choice of pA is based on the thresholds chosen by the

queueing systems. The payoffs for all players are then calculated.

4.4 Methodology

A big part of the methodology that is used to solve the game requires the use

of backwards induction. Backwards induction is a method that is used to solve

a game by starting at the terminal nodes and working backwards to the root

node [155]. The terminal nodes from Figure 4.15 are the nodes that are connected

to the choice of the distribution service. In essence, by working backwards from

the choice of the distribution service and then to the choices of the queueing

systems, which happen simultaneously, the game can be solved. Furthermore,

by finding the distribution’s service response for all possible pairs of strategies

that the two queueing systems can choose from, the game can be reduced to a

two-player Normal form game.

4.4.1 Distribution service and Brent’s algorithm

Form the distribution service’s perspective all information is known and can be

used to find the best possible strategy to maximise their payoff. In fact, having

the two strategy choices of the two queueing systems the distribution service

can find the optimal strategy that satisfies equation (4.24). Consider the pair

of strategies (T ∗
A, T

∗
B) that correspond to a possible strategy choice of queueing

system A and queueing system B. The distribution service can then find the best

strategy by solving equation (4.24) for TA = T ∗
A and TB = T ∗

B. The particular

numerical algorithm used for this is Brent’s algorithm [22].

Brent’s algorithm is a root-finding algorithm which combines the bisection

method [34], the secant method [115] and inverse quadratic interpolation [43].

The algorithm is used to find the root x∗ of a function f(x) from within the

interval [a, b] such that f(a) < f(x∗) < f(b). One of the requirements for Brent’s

algorithm is f(a)f(b) < 0. In other words the function must change sign within

the interval [a, b].

Consider equation (4.24). Under the assumption that O(pA;TA, TB) is either

non-increasing or non-decreasing in pA, the root can be found by using Brent’s

algorithm for pA ∈ [0, 1].
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O(pA;TA, TB) = αLA(pA) + (1− α)BA(pA)− αLB(1− pA)− (1− α)BB(1− pA)

For this particular scenario, the function f(pA) needs to have a different sign

for f(pA = 0) and f(pA = 1) so that f(a)f(b) < 0 is satisfied. In the case

f(a)f(b) ≥ 0, Brent’s algorithm cannot be used. Instead, the value of pA becomes:

pA =

1 if f(0) < 0 and f(1) < 0

0 if f(0) > 0 and f(1) > 0
(4.25)

The first case of equation (4.25) corresponds to the event where both f(0) and

f(1) are negative. Therefore, for all values of pA ∈ [0, 1] the objective function is

negative, which means that:

αLA(pA) + (1− α)BA(pA) < αLB(pB)− (1− α)BB(pB), for all pA ∈ [0, 1]

Thus, the distribution service’s best response would be to send all individuals to

queueing system A (pA = 1, pB = 0). Similarly, the second case of equation (4.25)

corresponds to the event where for all values of pA ∈ [0, 1] the objective function

is positive, which means that:

αLA(pA) + (1− α)BA(pA) > αLB(pB)− (1− α)BB(pB), for all pA ∈ [0, 1]

Equivalently, this indicates that the distribution service’s best response would be

to send all individuals to queueing system B (pA = 0, pB = 1). Therefore, the

methodology that is used to find the best pA that satisfies equation (4.24) can by

calculated in the following way:

pA =


1, if O(0) < 0 and O(1) < 0

0, if O(0) > 0 and O(1) > 0

Use Brent’s algorithm, if O(0)O(1) < 0

(4.26)

where O(pA) is the objective function of the distribution service described in
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equation (4.24).

4.4.1.1 Examples

Consider a distribution service whose arrival rate of type 2 individuals is λ2 = 4

and the ‘weight’ is α = 0.2. Additionally, let queueing system A and queueing

system B have the parameters shown in Table 4.2.

Table 4.2: Parameter values for Brent’s method examples.

D Queueing system A Queueing system B

λ2 α λA
1 µA CA TA NA MA λB

1 µB CB TB NB MB

4 0.2 2 3 3 8 15 10 1 1 3 10 10 5

The distribution service’s best response for this particular example can be found

at the intersection of the two decision values of the two queueing systems over pA.

Figure 4.16 illustrates the distribution service’s best response for this particular

example.
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Figure 4.16: Decision values for queueing system A and queueing system B
where (decision value 1) = αLA(pA) + (1 − α)BA(pA) and (decision value 2) =
αLB(pB)− (1− α)BB(pB)

In order to apply Brent’s algorithm to the current example the differences between

the two decision values need to be calculated. Figure 4.17 shows that the value

of pA that the distribution service should pick is where the function crosses the

x-axis.
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Figure 4.17: Visualisation of Brent’s algorithm showing the differences between
the two decision values and the point at which the function crosses the x-axis

In fact, the value of pA that the distribution service should pick, for this particular

example, is pA = 0.58. That is the point at which the line of the difference between

the two decision values crosses the x-axis.

Consider now the same parameters as in the previous example, for different values

of the service rate of queueing system A, µA = {1, 1.5, 2, 2.5, 3}.
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Figure 4.18: Brent’s algorithm example where the service parameter of queueing
system A is µA = 1
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Figure 4.19: Brent’s algorithm example where the service parameter of queueing
system A is µA = 1.5
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Figure 4.20: Brent’s algorithm example where the service parameter of queueing
system A is µA = 2
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Figure 4.21: Brent’s algorithm example where the service parameter of queueing
system A is µA = 2.5
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Figure 4.22: Brent’s algorithm example where the service parameter of queueing
system A is µA = 3

It can be seen from Figures 4.18 - 4.22 that as the service rate of queueing system

A increases, the intersection point of the two decision values moves from pA = 0

towards pA = 1.

In addition consider a different example with the same parameters as before but

by increasing the threshold of queueing system A from TA = 8 to TA = 10

and decreasing the threshold of queueing system B from TB = 10 to TB = 2.

Figure 4.23 shows the decision values that correspond to the two queueing systems

of the new example.
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Figure 4.23: Decision values for queueing system A and queueing system B (top)
and the differences between them (bottom).

It can be observed that for all values of pA the decision value of queueing system A

is less than the decision value of queueing system B. Since the differences of them

don’t pass through the x-axis within the interval [0, 1], Brent’s algorithm cannot

be used since f(0)f(1) < 0. Therefore, using equation (4.26) the distribution

service’s best response should be pA = 1.

4.4.1.2 Implementation

The first part of the implementation of the distribution service’s best response

is to calculate the difference between the decision values of the two queueing

systems. Function get mean blocking difference using markov defined in 4.8

is the python implementation of the first part of equation (4.24).
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>>> import ambulance_game as abg

>>> def get_mean_blocking_difference_using_markov(

... prop_1 ,

... lambda_2 ,

... lambda_1_1 ,

... lambda_1_2 ,

... mu_1 ,

... mu_2 ,

... num_of_servers_1 ,

... num_of_servers_2 ,

... threshold_1 ,

... threshold_2 ,

... system_capacity_1 ,

... system_capacity_2 ,

... buffer_capacity_1 ,

... buffer_capacity_2 ,

... alpha=0,

... ):

... """

... Get a weighted mean blocking difference between two systems. This

... function is to be used as a routing function to find the point at

... which it is set to 0. This function calculates :

... - a*(1 - P(A_1)) + (1 - a)*B_1

... - a*(1 - P(A_2)) + (1 - a)*B_2

... and returns their difference .

... Parameters

... ----------

... prop_1 : float

... The proportion of class 2 individuals to distribute to the first

... system

... lambda_2 : float

... The overall arrival rate of class 2 individuals for both systems

... lambda_1_1 : float

... The arrival rate of class 1 individuals in the first system

... lambda_1_2 : float

... The arrival rate of class 1 individuals in the second system

... mu_1 : float

... mu_2 : float

... num_of_servers_1 : int

... num_of_servers_2 : int

... threshold_1 : int

... threshold_2 : int

... system_capacity_1 : int

... system_capacity_2 : int

... buffer_capacity_1 : int

... buffer_capacity_2 : int

... Returns

... -------

... float

... The weighted mean difference between the decision values of the

... two systems

... """

... lambda_2_1 = prop_1 * lambda_2

... lambda_2_2 = (1 - prop_1) * lambda_2

...

... mean_blocking_time_1 = abg.markov.

get_mean_blocking_time_using_markov_state_probabilities(

... lambda_2=lambda_2_1 ,
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... lambda_1=lambda_1_1 ,

... mu=mu_1 ,

... num_of_servers=num_of_servers_1 ,

... threshold=threshold_1 ,

... system_capacity=system_capacity_1 ,

... buffer_capacity=buffer_capacity_1 ,

... )

... mean_blocking_time_2 = abg.markov.

get_mean_blocking_time_using_markov_state_probabilities(

... lambda_2=lambda_2_2 ,

... lambda_1=lambda_1_2 ,

... mu=mu_2 ,

... num_of_servers=num_of_servers_2 ,

... threshold=threshold_2 ,

... system_capacity=system_capacity_2 ,

... buffer_capacity=buffer_capacity_2 ,

... )

... prob_accept_1 = abg.markov.

get_accepting_proportion_of_class_2_individuals(

... lambda_1=lambda_1_1 ,

... lambda_2=lambda_2_1 ,

... mu=mu_1 ,

... num_of_servers=num_of_servers_1 ,

... threshold=threshold_1 ,

... system_capacity=system_capacity_1 ,

... buffer_capacity=buffer_capacity_1 ,

... )

... prob_accept_2 = abg.markov.

get_accepting_proportion_of_class_2_individuals(

... lambda_1=lambda_1_2 ,

... lambda_2=lambda_2_2 ,

... mu=mu_2 ,

... num_of_servers=num_of_servers_2 ,

... threshold=threshold_2 ,

... system_capacity=system_capacity_2 ,

... buffer_capacity=buffer_capacity_2 ,

... )

...

... decision_value_1 = (

... alpha * (1 - prob_accept_1) + (1 - alpha) * mean_blocking_time_1

... )

... decision_value_2 = (

... alpha * (1 - prob_accept_2) + (1 - alpha) * mean_blocking_time_2

... )

... return decision_value_1 - decision_value_2

Code snippet 4.8: Function that gets the mean blocking difference using the

Markov chain model

Using the same example as in section 4.4.1.1 the differences between the two

decision values can be calculated as shown in 4.9. Note, that the outcome of the

function corresponds to the point of the line in Figure 4.17 where pA = 0.5.

>>> import numpy as np

>>>

>>> lambda_1_A = 2

>>> mu_A = 2
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>>> num_of_servers_A = 3

>>> threshold_A = 8

>>> system_capacity_A = 15

>>> buffer_capacity_A = 10

>>> lambda_1_B = 1

>>> mu_B = 1

>>> num_of_servers_B = 3

>>> threshold_B = 10

>>> system_capacity_B = 10

>>> buffer_capacity_B = 5

>>>

>>> lambda_2 = 4

>>> alpha = 0.2

>>> p_A = 0.5

>>>

>>> np.round(get_mean_blocking_difference_using_markov(

... prop_1=p_A ,

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_A ,

... lambda_1_2=lambda_1_B ,

... mu_1=mu_A ,

... mu_2=mu_B ,

... num_of_servers_1=num_of_servers_A ,

... num_of_servers_2=num_of_servers_B ,

... threshold_1=threshold_A ,

... threshold_2=threshold_B ,

... system_capacity_1=system_capacity_A ,

... system_capacity_2=system_capacity_B ,

... buffer_capacity_1=buffer_capacity_A ,

... buffer_capacity_2=buffer_capacity_B ,

... alpha=alpha ,

... ), 8)

-0.10424302

Code snippet 4.9: Using the function defined in 4.8 to calculate the difference

between the decision values of the two systems at pA = 0.5

In addition function calculate class 2 individuals best response uses an

implementation of Brent’s algorithm, implemented by the scipy library, to find

the point at which the difference between the two decision values is set to 0.

>>> import scipy.optimize

>>> def calculate_class_2_individuals_best_response(

... lambda_2 ,

... lambda_1_1 ,

... lambda_1_2 ,

... mu_1 ,

... mu_2 ,

... num_of_servers_1 ,

... num_of_servers_2 ,

... threshold_1 ,

... threshold_2 ,

... system_capacity_1 ,

... system_capacity_2 ,

... buffer_capacity_1 ,

... buffer_capacity_2 ,

... lower_bound =0.01 ,
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... upper_bound =0.99 ,

... alpha=0,

... xtol=1e-04,

... rtol =8.9e-16,

... ):

... """

... Obtains the optimal distribution of class 2 individuals such that the

... blocking times in the two systems are identical and thus minimised .

... The brentq function is used which is an algorithm created to find the

... root of a function that combines root bracketing , bisection , and

... inverse quadratic interpolation . In this specific example the root to

... be found is the difference between the blocking times of two systems.

... In essence the brentq algorithm attempts to find the value of prop_1

... where the difference is zero.

...

... Parameters

... ----------

... lower_bound : float , optional

... The lower bound of p_1 , by default 0.01

... upper_bound : float , optional

... The upper bound of p_1 , by default 0.99

... routing_function : function , optional

... The function to find the root of

... Returns

... -------

... float

... The value of p_1 such that routing_function = 0

... """

...

... routing_function = get_mean_blocking_difference_using_markov

... check_1 = routing_function(

... prop_1=lower_bound ,

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_1 ,

... lambda_1_2=lambda_1_2 ,

... mu_1=mu_1 ,

... mu_2=mu_2 ,

... num_of_servers_1=num_of_servers_1 ,

... num_of_servers_2=num_of_servers_2 ,

... threshold_1=threshold_1 ,

... threshold_2=threshold_2 ,

... system_capacity_1=system_capacity_1 ,

... system_capacity_2=system_capacity_2 ,

... buffer_capacity_1=buffer_capacity_1 ,

... buffer_capacity_2=buffer_capacity_2 ,

... alpha=alpha ,

... )

... check_2 = routing_function(

... prop_1=upper_bound ,

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_1 ,

... lambda_1_2=lambda_1_2 ,

... mu_1=mu_1 ,

... mu_2=mu_2 ,

... num_of_servers_1=num_of_servers_1 ,

... num_of_servers_2=num_of_servers_2 ,

... threshold_1=threshold_1 ,

... threshold_2=threshold_2 ,

... system_capacity_1=system_capacity_1 ,
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... system_capacity_2=system_capacity_2 ,

... buffer_capacity_1=buffer_capacity_1 ,

... buffer_capacity_2=buffer_capacity_2 ,

... alpha=alpha ,

... )

...

... if check_1 >= 0 and check_2 >= 0:

... return 0

... if check_1 <= 0 and check_2 <= 0:

... return 1

...

... brentq_arguments = (

... lambda_2 ,

... lambda_1_1 ,

... lambda_1_2 ,

... mu_1 ,

... mu_2 ,

... num_of_servers_1 ,

... num_of_servers_2 ,

... threshold_1 ,

... threshold_2 ,

... system_capacity_1 ,

... system_capacity_2 ,

... buffer_capacity_1 ,

... buffer_capacity_2 ,

... alpha ,

... )

...

... optimal_split = scipy.optimize.brentq(

... routing_function ,

... a=lower_bound ,

... b=upper_bound ,

... args=brentq_arguments ,

... xtol=xtol ,

... rtol=rtol ,

... )

... return optimal_split

Code snippet 4.10: Using Brent’s algorithm to find the point where the differences

of the two decision values are zero.

The code in 4.11 uses function calculate class 2 individuals best response

to find the optimal split of class 2 individuals between the two queueing systems.

The same set of parameters are used as in the example in Section 4.4.1.1. Note

that this is the value of pA for which the line of Figure 4.17 crosses the x-axis.

>>> np.round(calculate_class_2_individuals_best_response(

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_A ,

... lambda_1_2=lambda_1_B ,

... mu_1=mu_A ,

... mu_2=mu_B ,

... num_of_servers_1=num_of_servers_A ,

... num_of_servers_2=num_of_servers_B ,

... threshold_1=threshold_A ,

... threshold_2=threshold_B ,

... system_capacity_1=system_capacity_A ,
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... system_capacity_2=system_capacity_B ,

... buffer_capacity_1=buffer_capacity_A ,

... buffer_capacity_2=buffer_capacity_B ,

... alpha=alpha ,

... ), 8)

0.5778495

Code snippet 4.11: Calculating the optimal split between type 1 and type 2

individuals. Note that the outcome of the function is the value of pA while the

value of pB is given by 1− pA.

4.4.1.3 Brent’s algorithm - tolerance sensitivity analysis

The implementation of Brent’s algorithm uses the brentq function from SciPy.

The function receives two essential arguments; another function for which to

find the root of, and the interval in which the root is located. In addition to

these two arguments, the function also receives two optional arguments; xtol

and rtol [152]. These two parameters are the ones that define the tolerance

of the algorithm. In other words, the smaller the tolerance parameters are, the

more accurate the result will be. However, the smaller the tolerance parameters

are, the more iterations will be needed to find the root. Therefore, the tolerance

parameters are a trade-off between accuracy and computation time.

The documentation of the brentq function states that the default values of

the tolerance parameters are xtol=2e-12 and rtol=8.881784197001252e-16.

Within the brentq function these two parameters are used to ensure that

allclose(x, x0, atol=xtol, rtol=rtol) = True. Function allclose is im-

plemented by the numpy library [65]. and checks if two arrays are element-

wise similar given a certain tolerance. The way the internal mechanisms of

the allclose function work is that given two values a and b, with some abso-

lute tolerance (atol) and relative tolerance (rtol) parameters, the function returns

True if:

|a− b| ≤ (atol + rtol× |b|) (4.27)

These tolerance parameters are the ones used by Brent’s algorithm to determine

if the root has been found. In the remainder of this subsection the effect of the

absolute tolerance parameter xtol will be analysed. To determine the effect of the

absolute tolerance parameters on the accuracy and computation time of Brent’s

algorithm, the algorithm was ran for different set of parameters and different

values of the absolute tolerance parameter. The two parameter sets that were

used for these experiments are shown in Table 4.3.
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Table 4.3: Parameter sets that were used for the tolerance sensitivity analysis.

Distributor Queueing system A Queueing system B

λ2 α λA
1 µA CA TA NA MA λB

1 µB CB TB NB MB

4 0.2 3 4 2 4 [8, 25] 8 3 3 3 5 8 8

5 0.2 2 3 3 7 [7, 24] 10 2 2 4 10 15 10

Note the system capacity of queueing system A varies for both parameter sets.

For every value of NA Brent’s algorithm was run for different values of the ab-

solute tolerance parameter xtol. The values of the absolute tolerance param-

eter that were used are: xtol = [1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5,

0.0001, 0.001, 0.01, 0.1]. For each value of the absolute tolerance parame-

ter, the algorithm was run 200 times and the computation time in seconds was

recorded for each run. These experiments were run on a computer with an Intel

Core i7-1165G7 CPU running on four cores at 2.80 GHz and 16 GB of RAM.
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Figure 4.24: Violinplots of the duration of Brent’s algorithm for different values
of NA for the first parameter set.
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Figure 4.25: Violinplots of the duration of Brent’s algorithm for different values
of NA for the second parameter set.

It can be seen that for both parameter sets in Figures 4.24 and 4.25 the duration

of the algorithm is increasing as NA increases. Note that the violinplots include

all values of the tolerance parameters xtol that were used.
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Figure 4.26: Line plots of the duration of Brent’s algorithm for different values
of NA over different values of the absolute tolerance parameter xtol for the first
parameter set.
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Figure 4.27: Line plots of the duration of Brent’s algorithm for different values of
NA over different values of the absolute tolerance parameter xtol for the second
parameter set.

The plots of Figure 4.26 and 4.27 show for each value of NA how the duration

of the algorithm changes as the absolute tolerance parameter xtol increases. It

can be seen that for both parameter sets the duration of the algorithm on most

cases the computational time decreases as the tolerance parameter increases.

4.4.2 Routing Matrix

Section 4.4.1.1 showed how Brent’s algorithm can be used to find the best response

of the distribution service given the pair of strategies played by the queueing

systems (TA, TB). In order to properly solve the game, best response of the

distribution service needs to be calculated for every possible pair of strategies. In

essence, one needs to find the values of pA and pB that correspond to every pair of

(TA, TB), and then use these values to construct the routing matrix. The routing

matrix holds the values (pA, pB) which are the proportion of type 2 individuals

to send to queueing systems A and B. Each pair (pA, pB) can be calculated using

equation (4.22), as shown in Section 4.4.1.1, for all possible pairs of thresholds.

Thus, the routing matrix is aNA×NB matrix, whereNA andNB are the capacities

of Node 1 for queueing systems A and B, respectively.

R =


(pA1,1, p

B
1,1) (pA1,2, p

B
1,2) . . . (pA1,NB

, pB1,NB
)

(pA2,1, p
B
2,1) (pA2,2, p

B
2,2) . . . (pA2,NB

, pB2,NB
)

...
...

. . .
...

(pANA,1, p
B
NA,1) (pANA,2, p

B
NA,2) . . . (pANA,NB

, pBNA,NB
)

 (4.28)
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Note that since pAi,j + pBi,j = 1 the routing matrix needs only to store one of the

two values; either pAi,j or p
B
i,j. Thus, the routing matrix R can be simplified to:

R =


pA1,1 pA1,2 . . . pA1,NB

pA2,1 pA2,2 . . . pA2,NB

...
...

. . .
...

pANA,1 pANA,2 . . . pANA,NB

 (4.29)

4.4.2.1 Example

Using the same example as in Section 4.4.1.1, the routing matrix can be calculated

by finding the values of pA and pB for every possible pair of thresholds (TA, TB).

The arrival rate of type 2 individuals is arrival rate of type 2 individuals is λ2 = 4

and the ‘weight’ is α = 0.2. The remaining parameters that relate to the two

queueing systems are shown in Table 4.4.

Table 4.4: Parameter values for routing matrix example.

Distributor Queueing system A Queueing system B

λ2 α λA
1 µA CA NA MA λB

1 µB CB NB MB

4 0.2 2 3 3 15 10 1 1 3 10 5

Note that the thresholds are not defined for the routing matrix since they are not

constants. In fact the thresholds can take values from 1 to Ni for each queueing

system. Thus, TA ∈ {1, 2, . . . , 15} and TB ∈ {1, 2, . . . , 10}. The routing matrix

is then going to be a 15 × 10 matrix where each entry i, j consists of the best

response of the distribution service when QA plays a strategy of TA = i and QB

plays a strategy of TB = j.
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R =



0.59 0.22 0.16 0.15 0.15 0.15 0.15 0.14 0.13 0.06

0.94 0.67 0.51 0.49 0.47 0.46 0.45 0.44 0.41 0.31

1.00 0.85 0.71 0.67 0.64 0.62 0.60 0.57 0.54 0.45

1.00 0.86 0.74 0.70 0.67 0.64 0.62 0.60 0.57 0.48

1.00 0.88 0.76 0.72 0.69 0.67 0.64 0.62 0.59 0.51

1.00 0.89 0.78 0.74 0.71 0.68 0.66 0.64 0.61 0.54

1.00 0.90 0.79 0.75 0.72 0.70 0.68 0.66 0.63 0.56

1.00 0.91 0.81 0.77 0.74 0.71 0.69 0.67 0.64 0.58

1.00 0.91 0.82 0.78 0.75 0.73 0.71 0.68 0.66 0.59

1.00 0.92 0.83 0.80 0.76 0.74 0.72 0.70 0.67 0.61

1.00 0.93 0.84 0.80 0.77 0.75 0.73 0.71 0.68 0.62

1.00 0.93 0.85 0.81 0.78 0.76 0.74 0.72 0.69 0.64

1.00 0.95 0.87 0.83 0.80 0.78 0.75 0.73 0.71 0.65

1.00 0.98 0.90 0.86 0.83 0.80 0.78 0.76 0.73 0.68

1.00 1.00 0.99 0.94 0.90 0.87 0.84 0.82 0.79 0.74


Note that the entries of the routing matrix correspond to different pairs of

thresholds (TA, TB). In other words, the entry Ri,j corresponds to the pair

(TA = i, TB = j). For example, consider the example discussed in Section 4.4.1.1

that had the same set of parameters with thresholds TA = 8, TB = 10. The best

response of the distribution service is calculated to be pA = 0.58 and it can also

be found in the routing matrix at the 8th row and 10th column (i.e. R8,10 = 0.58).

4.4.2.2 Implementation

The function defined in 4.12 shows how the routing matrix can be calculated by

using function calculate class 2 individuals best response for every possi-

ble pair of thresholds.

>>> import itertools

>>> import numpy as np

>>> def get_routing_matrix(

... lambda_2 ,

... lambda_1_1 ,

... lambda_1_2 ,

... mu_1 ,

... mu_2 ,

... num_of_servers_1 ,

... num_of_servers_2 ,

... system_capacity_1 ,

... system_capacity_2 ,

... buffer_capacity_1 ,

... buffer_capacity_2 ,

... alpha=0,

... ):

... """
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... Get the optimal distribution matrix that consists of the proportion of

... individuals to be distributed to each hospital for all possible

... combinations of thresholds of the two hospitals (T_1 , T_2). For every

... set of thresholds , the function fills the entries of the matrix using

... the proportion of individuals to distribute to hospital 1.

...

... Parameters

... ----------

... lambda_2 : float

... lambda_1_1 : float

... lambda_1_2 : float

... mu_1 : float

... mu_2 : float

... num_of_servers_1 : int

... num_of_servers_2 : int

... system_capacity_1 : int

... system_capacity_2 : int

... buffer_capacity_1 : int

... buffer_capacity_2 : int

... routing_function : function , optional

... The function to use to get the optimal distribution of patients

... Returns

... -------

... numpy array

... The matrix with proportions of all possible combinations of

... threshold

... """

... routing_matrix = np.zeros (( system_capacity_1 , system_capacity_2))

... for threshold_1 , threshold_2 in itertools.product(

... range(1, system_capacity_1 + 1), range(1, system_capacity_2 + 1)

... ):

... opt = calculate_class_2_individuals_best_response(

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_1 ,

... lambda_1_2=lambda_1_2 ,

... mu_1=mu_1 ,

... mu_2=mu_2 ,

... num_of_servers_1=num_of_servers_1 ,

... num_of_servers_2=num_of_servers_2 ,

... system_capacity_1=system_capacity_1 ,

... system_capacity_2=system_capacity_2 ,

... buffer_capacity_1=buffer_capacity_1 ,

... buffer_capacity_2=buffer_capacity_2 ,

... threshold_1=threshold_1 ,

... threshold_2=threshold_2 ,

... alpha=alpha ,

... )

... routing_matrix[threshold_1 - 1, threshold_2 - 1] = opt

... return routing_matrix

Code snippet 4.12: Function that returns the routing matrix for a given set of

game parameters.

Using the same set of parameters as in the example discussed in Section 4.4.2.1,

the routing matrix can be calculated.
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>>> get_routing_matrix(

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_A ,

... lambda_1_2=lambda_1_B ,

... mu_1=mu_A ,

... mu_2=mu_B ,

... num_of_servers_1=num_of_servers_A ,

... num_of_servers_2=num_of_servers_B ,

... system_capacity_1=system_capacity_A ,

... system_capacity_2=system_capacity_B ,

... buffer_capacity_1=buffer_capacity_A ,

... buffer_capacity_2=buffer_capacity_B ,

... alpha=alpha ,

... )

array ([[0.58864276 , 0.22335975 , 0.15533059 , 0.15265663 , 0.15078926 ,

0.14922469 , 0.14719237 , 0.14271416 , 0.12874758 , 0.06396441] ,

[0.93574605 , 0.67443129 , 0.51051637 , 0.48986689 , 0.474517 ,

0.46234589 , 0.45136222 , 0.43786699 , 0.41004722 , 0.31135186] ,

[1. , 0.84928478 , 0.70944125 , 0.66945048 , 0.63960878 ,

0.61601954 , 0.59573161 , 0.5746382 , 0.54157719 , 0.44625113] ,

[1. , 0.86430904 , 0.73661752 , 0.69683427 , 0.66686909 ,

0.64296716 , 0.62233703 , 0.6011736 , 0.56942852 , 0.48372486] ,

[1. , 0.8769602 , 0.75856893 , 0.71911699 , 0.68913141 ,

0.66505568 , 0.64416384 , 0.62297243 , 0.59220666 , 0.51352681] ,

[1. , 0.88782106 , 0.77691989 , 0.73780511 , 0.7078792 ,

0.68366777 , 0.66270079 , 0.64146588 , 0.61149112 , 0.5382421 ],

[1. , 0.89728669 , 0.79261746 , 0.75382586 , 0.72401867 ,

0.69978202 , 0.6787237 , 0.65751624 , 0.6282157 , 0.55939581] ,

[1. , 0.90564353 , 0.80614796 , 0.7677999 , 0.73815484 ,

0.71398819 , 0.69284969 , 0.67167208 , 0.64301254 , 0.5778495 ],

[1. , 0.91312427 , 0.81813225 , 0.78016576 , 0.75073204 ,

0.72662301 , 0.70549771 , 0.68440782 , 0.65624748 , 0.59425681] ,

[1. , 0.91997634 , 0.82894698 , 0.79141059 , 0.76218245 ,

0.73812947 , 0.71705972 , 0.69606716 , 0.66837977 , 0.60914055] ,

[1. , 0.92662384 , 0.83917256 , 0.80200443 , 0.77297551 ,

0.74903033 , 0.7279936 , 0.70708275 , 0.67987751 , 0.62310053] ,

[1. , 0.93417364 , 0.85009707 , 0.81320876 , 0.7843084 ,

0.7604156 , 0.73937585 , 0.7185154 , 0.69171265 , 0.63719748] ,

[1. , 0.94615952 , 0.8654791 , 0.82845358 , 0.79936661 ,

0.77525057 , 0.75399993 , 0.73296783 , 0.70639403 , 0.65395543] ,

[1. , 0.97522952 , 0.89772397 , 0.85877431 , 0.82812693 ,

0.80267354 , 0.78024478 , 0.75829045 , 0.73124439 , 0.68050787] ,

[1. , 1. , 0.98966703 , 0.94066708 , 0.90265479 ,

0.87136701 , 0.84412235 , 0.81814844 , 0.78822172 , 0.73774973]])

Code snippet 4.13: Using the function defined in the code snippet 4.12 to get the

routing matrix

4.4.3 Queueing systems and normal form games

In subsection 4.4.1 it is shown that given the strategies played by queueing sys-

tems A and B the best response of the distribution service can be found. Consider

the routing matrix R defined in equation (4.28).
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R =


pA1,1 pA1,2 . . . pA1,NB

pA2,1 pA2,2 . . . pA2,NB

...
...

. . .
...

pANA,1 pANA,2 . . . pANA,NB


Every entry Ri,j of the routing matrix represents best response of the distribution

service when TA = i and TB = j. In other words, given TA = i and TB = j,

the distribution service’s strategy that maximises its utility should be to route

a proportion of pAi,j of the individuals to queueing system A and a proportion

of 1 − pAi,j individuals to queueing system B. Assuming that for every pair of

strategies TA and TB the best response of the distribution service is known to the

queueing systems, then the formulation of the game can be simplified even more.

In fact the imperfect information extensive form game defined in Section 4.2.5 can

be now transformed into a 2-player normal form game between the two queueing

systems. From equation (4.20) the utility of queueing system i when the pair of

strategies (TA, TB) is played, is defined as:

U i
TA,TB

= 1−
(
P̂ − P (Wi < t)

)2
i ∈ A,B (4.30)

UA
TA,TB

and UB
TA,TB

are essentially artificial metrics that queuing systems A and B

aim to maximise. Essentially, by maximising equation (4.30) for both queueing

systems, the queueing systems are trying to minimise the difference between

the proportion of individuals that are served within the target time t and the

proportion target P̂ . For example, given a proportion target P̂ = 0.9 which

means that 90% of the individuals should be served within the target time t,

and given that the proportion of individuals that are served within the target

time is P (Wi < t) = 0.8, then the utility of the queueing system i is given

by U i
TA,TB

= 1 − (0.9 − 0.8)2 = 0.99. The payoff matrices of the game can be

populated by these utilities for all possible pairs of strategies (TA, TB).

A =


UA
1,1 UA

1,2 . . . UA
1,NB

UA
2,1 UA

2,2 . . . UA
2,NB

...
...

. . .
...

UA
NA,1 UA

NA,2 . . . UA
NA,NB

 , B =


UB
1,1 UB

1,2 . . . UB
1,NB

UB
2,1 UB

2,2 . . . UB
2,NB

...
...

. . .
...

UB
NA,1 UB

NA,2 . . . UB
NA,NB


(4.31)

Matrix A consists of all possible utilities of queueing system A, and matrix B
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consists of all possible utilities of queueing system B. The game is now a 2-player

normal form game with payoff matrices A and B.

4.4.3.1 Implementation

Consider an example of the described game with the following parameters:

Table 4.5: Parameter values for game formulation example

Distributor Queueing system A Queueing system B

λ2 t P̂ α λA
1 µA CA NA MA λB

1 µB CB NB MB

4 1 0.95 0.2 2 3 2 7 6 1 1 3 4 3

>>> lambda_2 = 4

>>> target = 1

>>> p_hat = 0.95

>>> alpha = 0.2

>>>

>>> lambda_1_A = 2

>>> mu_A = 3

>>> num_of_servers_A = 2

>>> system_capacity_A = 7

>>> buffer_capacity_A = 6

>>>

>>> lambda_1_B = 1

>>> mu_B = 1

>>> num_of_servers_B = 3

>>> system_capacity_B = 4

>>> buffer_capacity_B = 3

Code snippet 4.14: Variables that correspond to the parameter set from Table 4.5

The first function to create is one that takes a pair of thresholds TA = i, TB = j

and gets the best response of the distribution service pA. Then, using pA, the

function finds the value of UA
i,j and UB

i,j and returns the tuple (i, j, pA, U
A
i,j, U

B
i,j).

>>> import numpy as np

>>> def get_individual_entries_of_matrices(

... lambda_2 ,

... lambda_1_1 ,

... lambda_1_2 ,

... mu_1 ,

... mu_2 ,

... num_of_servers_1 ,

... num_of_servers_2 ,

... threshold_1 ,

... threshold_2 ,

... system_capacity_1 ,

... system_capacity_2 ,

... buffer_capacity_1 ,

... buffer_capacity_2 ,

... alpha ,

... target ,
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... p_hat ,

... ):

... """

... Gets the (i,j)th entry of the payoff matrices and the routing matrix

... where i= threshold_1 and j= threshold_2 .

...

... Parameters

... ----------

... lambda_2 : float

... lambda_1_1 : float

... lambda_1_2 : float

... mu_1 : float

... mu_2 : float

... num_of_servers_1 : int

... num_of_servers_2 : int

... threshold_1 : int

... threshold_2 : int

... system_capacity_1 : int

... system_capacity_2 : int

... buffer_capacity_1 : int

... buffer_capacity_2 : int

... alpha : float

... target : float

...

... Returns

... -------

... tuple

... A tuple of the form (i, j, R[i,j], A[i,j], B[i,j])

... """

... prop_to_hospital_1 = calculate_class_2_individuals_best_response(

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_1 ,

... lambda_1_2=lambda_1_2 ,

... mu_1=mu_1 ,

... mu_2=mu_2 ,

... num_of_servers_1=num_of_servers_1 ,

... num_of_servers_2=num_of_servers_2 ,

... system_capacity_1=system_capacity_1 ,

... system_capacity_2=system_capacity_2 ,

... buffer_capacity_1=buffer_capacity_1 ,

... buffer_capacity_2=buffer_capacity_2 ,

... threshold_1=threshold_1 ,

... threshold_2=threshold_2 ,

... alpha=alpha ,

... )

... prop_to_hospital_2 = 1 - prop_to_hospital_1

...

... proportion_within_target_1 = (

... abg.markov.proportion_within_target_using_markov_state_probabilities

(

... lambda_2=lambda_2 * prop_to_hospital_1 ,

... lambda_1=lambda_1_1 ,

... mu=mu_1 ,

... num_of_servers=num_of_servers_1 ,

... threshold=threshold_1 ,

... system_capacity=system_capacity_1 ,

... buffer_capacity=buffer_capacity_1 ,

... class_type=None ,

... target=target ,
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... )

... )

... proportion_within_target_2 = (

... abg.markov.proportion_within_target_using_markov_state_probabilities

(

... lambda_2=lambda_2 * prop_to_hospital_2 ,

... lambda_1=lambda_1_2 ,

... mu=mu_2 ,

... num_of_servers=num_of_servers_2 ,

... threshold=threshold_2 ,

... system_capacity=system_capacity_2 ,

... buffer_capacity=buffer_capacity_2 ,

... class_type=None ,

... target=target ,

... )

... )

... utility_1 = 1 - (

... (np.nanmean(proportion_within_target_1) - p_hat) ** 2

... )

... utility_2 = 1 - (

... (np.nanmean(proportion_within_target_2) - p_hat) ** 2

... )

...

... return (

... threshold_1 ,

... threshold_2 ,

... prop_to_hospital_1 ,

... utility_1 ,

... utility_2

... )

Code snippet 4.15: Function that takes as inputs the given strategies (thresholds)

of the players and calculates the corresponding utilities of the players.

The function get individual entries of matrices can now be used to get the

(i, j)th entry of the routing matrix R payoff matrix A and payoff matrix B. For

example consider the case when TA = 7 and TB = 4. The equivalent values

of R,A and B on the (7, 4)th position can be calculated using the code shown

in 4.16.

>>> _, _, p_A , U_A , U_B = np.round(get_individual_entries_of_matrices(

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_A ,

... lambda_1_2=lambda_1_B ,

... mu_1=mu_A ,

... mu_2=mu_B ,

... num_of_servers_1=num_of_servers_A ,

... num_of_servers_2=num_of_servers_B ,

... threshold_1 =7,

... threshold_2 =4,

... system_capacity_1=system_capacity_A ,

... system_capacity_2=system_capacity_B ,

... buffer_capacity_1=buffer_capacity_A ,

... buffer_capacity_2=buffer_capacity_B ,

... alpha=alpha ,

... target=target ,
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... p_hat=p_hat

... ), 8)

>>> p_A

0.80583153

>>> U_A

0.96146225

>>> U_B

0.87505776

Code snippet 4.16: Example of using the function defined in 4.15

The second step is to use the get individual entries of matrices function

to calculate the entries of the routing matrix R, payoff matrix A and payoff

matrix B. Thus, by iterating over all possible values of TA and TB, the routing

matrix R, payoff matrix A and payoff matrix B can be calculated. Note that

in Section 4.4.2.2 the get routing matrix function was defined that returns the

routing matrix R. The function defined in 4.17 gets all matrices in a much more

computationally efficient way.

>>> import itertools

>>> def get_payoff_matrices(

... lambda_2 ,

... lambda_1_1 ,

... lambda_1_2 ,

... mu_1 ,

... mu_2 ,

... num_of_servers_1 ,

... num_of_servers_2 ,

... system_capacity_1 ,

... system_capacity_2 ,

... buffer_capacity_1 ,

... buffer_capacity_2 ,

... target ,

... alpha ,

... p_hat ,

... alternative_utility=False ,

... ):

... """

... The function uses the distribution array (that is the array that holds

... the optimal proportion of individuals to send to each hospital), to

... calculate the proportion of patients within time for every possible set

... of thresholds chosen by each system.

... Parameters

... ----------

... lambda_2 : float

... lambda_1_1 : float

... lambda_1_2 : float

... mu_1 : float

... mu_2 : float

... num_of_servers_1 : int

... num_of_servers_2 : int

... system_capacity_1 : int

... system_capacity_2 : int

... buffer_capacity_1 : int

... buffer_capacity_2 : int

... target : float
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... The target time that individuals should be within

...

... Returns

... -------

... numpy.array , numpy.array

... The payoff matrices of the game

... """

... utility_matrix_1 = np.zeros (( system_capacity_1 , system_capacity_2))

... utility_matrix_2 = np.zeros (( system_capacity_1 , system_capacity_2))

... routing_matrix = np.zeros(( system_capacity_1 , system_capacity_2))

... for threshold_1 , threshold_2 in itertools.product(

... range(1, system_capacity_1 + 1), range(1, system_capacity_2 + 1)

... ):

... T_A , T_B , p_A , U_A , U_B = get_individual_entries_of_matrices(

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_1 ,

... lambda_1_2=lambda_1_2 ,

... mu_1=mu_1 ,

... mu_2=mu_2 ,

... num_of_servers_1=num_of_servers_1 ,

... num_of_servers_2=num_of_servers_2 ,

... threshold_1=threshold_1 ,

... threshold_2=threshold_2 ,

... system_capacity_1=system_capacity_1 ,

... system_capacity_2=system_capacity_2 ,

... buffer_capacity_1=buffer_capacity_1 ,

... buffer_capacity_2=buffer_capacity_2 ,

... alpha=alpha ,

... target=target ,

... p_hat=p_hat ,

... )

... utility_matrix_1[T_A - 1, T_B - 1] = U_A

... utility_matrix_2[T_A - 1, T_B - 1] = U_B

... routing_matrix[T_A - 1, T_B - 1] = p_A

...

... return utility_matrix_1 , utility_matrix_2 , routing_matrix

Code snippet 4.17: Function that returns the payoff matrices and the routing

matrix

The code shown in 4.18 returns matrices A, B and R for the parameters of the

example given above.

>>> A, B, R = get_payoff_matrices(

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_A ,

... lambda_1_2=lambda_1_B ,

... mu_1=mu_A ,

... mu_2=mu_B ,

... num_of_servers_1=num_of_servers_A ,

... num_of_servers_2=num_of_servers_B ,

... system_capacity_1=system_capacity_A ,

... system_capacity_2=system_capacity_B ,

... buffer_capacity_1=buffer_capacity_A ,

... buffer_capacity_2=buffer_capacity_B ,

... target=target ,

... alpha=alpha ,

... p_hat=p_hat ,
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... )

>>> A

array ([[0.9997736 , 0.9997736 , 0.9997736 , 0.9997736 ],

[0.99918651 , 0.99923556 , 0.99934362 , 0.99945211] ,

[0.99406363 , 0.99485147 , 0.99635215 , 0.99753246] ,

[0.9797136 , 0.9828782 , 0.98884481 , 0.99308839] ,

[0.95263545 , 0.9599928 , 0.97510779 , 0.98528894] ,

[0.92089495 , 0.92932621 , 0.95614727 , 0.97424141] ,

[0.92414307 , 0.92414307 , 0.94021899 , 0.96146225]])

>>> B

array ([[0.89253416 , 0.88888203 , 0.87438695 , 0.79835823] ,

[0.89253416 , 0.89054246 , 0.8796009 , 0.82819449] ,

[0.89253416 , 0.89081835 , 0.8809942 , 0.837463 ],

[0.89253416 , 0.89107223 , 0.88222127 , 0.84490465] ,

[0.89253416 , 0.89136098 , 0.88349414 , 0.85178752] ,

[0.89253416 , 0.89186314 , 0.8853596 , 0.86018873] ,

[0.89253416 , 0.89253416 , 0.88964749 , 0.87505776]])

>>> R

array ([[0.92344478 , 0.4632574 , 0.25667497 , 0.14225553] ,

[1. , 0.85220313 , 0.62624741 , 0.45231728] ,

[1. , 0.87813784 , 0.67951058 , 0.52328851] ,

[1. , 0.89972766 , 0.72107423 , 0.57760157] ,

[1. , 0.92227658 , 0.76050588 , 0.62710433] ,

[1. , 0.95776622 , 0.81369017 , 0.68824209] ,

[1. , 1. , 0.92566552 , 0.80583153]])

Code snippet 4.18: Example of code that gets the values of the payoff matrices

and the routing matrix for example 1

The final task is to use the nashpy library to build the game using the payoff

matrices.

>>> import nashpy as nash

>>> game = nash.Game(A, B)

>>> game

Bi matrix game with payoff matrices:

<BLANKLINE >

Row player:

[[0.9997736 0.9997736 0.9997736 0.9997736 ]

[0.99918651 0.99923556 0.99934362 0.99945211]

[0.99406363 0.99485147 0.99635215 0.99753246]

[0.9797136 0.9828782 0.98884481 0.99308839]

[0.95263545 0.9599928 0.97510779 0.98528894]

[0.92089495 0.92932621 0.95614727 0.97424141]

[0.92414307 0.92414307 0.94021899 0.96146225]]

<BLANKLINE >

Column player:

[[0.89253416 0.88888203 0.87438695 0.79835823]

[0.89253416 0.89054246 0.8796009 0.82819449]

[0.89253416 0.89081835 0.8809942 0.837463 ]

[0.89253416 0.89107223 0.88222127 0.84490465]

[0.89253416 0.89136098 0.88349414 0.85178752]

[0.89253416 0.89186314 0.8853596 0.86018873]

[0.89253416 0.89253416 0.88964749 0.87505776]]

Code snippet 4.19: Build the nashpy object that consists of the game
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4.4.4 Solving the game

This section describes how everything introduced in this chapter so far can be

put together to obtain numerical results of the 3-player game between two queue-

ing systems and the individual distribution service. Having formulated the game

(Section 4.3) and obtained the payoff matrices for the two players (Section 4.4.3),

the strategies of the players can now be investigated. For a 2-player game once

the two payoff matrices have been calculated, the game can be solved using the

methods described in Section 4.2. More specifically, the concept of Nash equilib-

rium described in Section 4.2.2 and the concept of Evolutionary Stable Strategies

described in Section 4.2.3 will be used to analyse the behaviour of the players in

the game.

Consider a game between queueing systems A and B and a distribution service

D with the following parameters.

Table 4.6: Parameter values for example on solving the game

Distributor Queueing system A Queueing system B

λ2 t P̂ α λA
1 µA CA NA MA λB

1 µB CB NB MB

1 1 0.8 0.5 1 2 1 2 2 1 3 1 2 2

>>> lambda_2 = 1

>>> target = 1

>>> p_hat = 0.8

>>> alpha = 0.5

>>> lambda_1_A = 1

>>> mu_A = 2

>>> num_of_servers_A = 1

>>> system_capacity_A = 2

>>> buffer_capacity_A = 2

>>> lambda_1_B = 1

>>> mu_B = 3

>>> num_of_servers_B = 1

>>> system_capacity_B = 2

>>> buffer_capacity_B = 2

Code snippet 4.20: Variables that correspond to the parameter set from Table 4.6

Note that these are two small queueing systems with a maximum capacity of 2.

In other words, since both systems have a capacity of 2, their possible strategies

are to either choose a threshold of Ti = 1 or Ti = 2 where i ∈ {A,B}. In other

words the queueing systems could start blocking type 2 individuals either when

there is 1 individual in node 1 or when there are 2 individuals. See Figure 4.7 for

a visual representation of the game. In this example, the only difference between
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the two queueing systems is that queueing system A has a lower service rate than

queueing system B.

As shown in Section 4.4.3 the payoff matrices for the two players can be obtained

using the function get payoff matrices. Every function described in this section

is also implemented in the ambulance game python library that was created for

this project. A detailed description of the library can be found in Appendix A.

The code snippet shown in 4.21 shows how the payoff matrices can be obtained

using the ambulance game library.

>>> import ambulance_game as abg

>>> A, B, R = abg.game.get_payoff_matrices(

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_A ,

... lambda_1_2=lambda_1_B ,

... mu_1=mu_A ,

... mu_2=mu_B ,

... num_of_servers_1=num_of_servers_A ,

... num_of_servers_2=num_of_servers_B ,

... system_capacity_1=system_capacity_A ,

... system_capacity_2=system_capacity_B ,

... buffer_capacity_1=buffer_capacity_A ,

... buffer_capacity_2=buffer_capacity_B ,

... target=target ,

... alpha=alpha ,

... p_hat=p_hat ,

... )

>>> game = nash.Game(A, B)

>>> game

Bi matrix game with payoff matrices:

<BLANKLINE >

Row player:

[[0.99934675 0.99934675]

[0.99282972 0.99828249]]

<BLANKLINE >

Column player:

[[0.98725977 0.99408002]

[0.98725977 0.99312791]]

Code snippet 4.21: Using the ambulance game library to build the game

Having the payoff matrices, the Nash Equilibrium can be obtained using the

support enumeration algorithm or the Lemke-Howson algorithm implemented in

the nashpy library. See Section 4.2.2 for more details on these algorithms.

>>> tuple(game.support_enumeration ())

((array ([1., 0.]), array ([0., 1.])),)

>>> tuple(game.lemke_howson(initial_dropped_label =0))

(array ([1., 0.]), array ([0., 1.]))

Code snippet 4.22: Support enumeration and Lemke-Howson computation on the

payoff matrices of the two players
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Both algorithms return the same set of equilibria, which is for queueing system

A to always choose a threshold of TA = 1 and for queueing system B to always

choose a threshold of TB = 2. This means, that queueing system A will block

type 2 individuals when there is 1 individual in node 1 and queueing system B

will block type 2 individuals only when node 1 is at maximum capacity.

As the sizes of the queueing systems considered grow the strategy spaces will

as well. This can increase the complexity of finding equilibria. In addition,

equilibria might not necessarily emerge, thus the learning algorithms described

in Section 4.2.3 can be used to obtain Evolutionary Stable Strategies (ESS) for

the game. The following code runs the fictitious play algorithm for 100 iterations

and returns the number of times each strategy was played.

>>> np.random.seed (5)

>>> play_counts = tuple(game.fictitious_play(iterations =100))

>>> play_counts [-1]

[array ([99. , 1.]), array([ 1., 99.])]

Code snippet 4.23: Fictitious play algorithm on the payoff matrices of the two

players

It can be seen that the Nash equilibrium set of strategies found by the support

enumeration algorithm and the Lemke-Howson algorithm is also reached here.

Using learning algorithms, not only can one find a Nash equilibrium, but also

visualise how the players of the game reach it. Figure 4.28 shows how the players

evolve their strategies over time.
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Figure 4.28: Fictitious play algorithm run on the strategies of the players.

Similarly, the stochastic fictitious play algorithm is ran for 1000 iterations. The

code shown in 4.24 shows how the number of times each strategy was played and

the distribution of strategies over time.
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>>> np.random.seed (0)

>>> play_counts_and_distributions = tuple(

... game.stochastic_fictitious_play(iterations =1000)

... )

>>> plays , dist = play_counts_and_distributions [-1]

>>> plays

[array ([509. , 491.]) , array ([512. , 488.])]

>>> dist

[array ([0.51785058 , 0.48214942]) , array ([0.47022964 , 0.52977036])]

Code snippet 4.24: Stochastic fictitious play algorithm on the payoff matrices of

the two players

The results are not similar to the case of the fictitious play algorithm. In fact

the stochastic fictitious play algorithm does not converge to a Nash equilibrium.

Instead, the algorithm converges to a mixed strategy equilibrium where both

players have a probability of playing each strategy. This might be due to the

choice of parameters of the algorithm η and ϵ̄ or the fact that the values of the

payoff matrices are smaller than the algorithm can handle.
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Figure 4.29: Stochastic fictitious play algorithm on the strategies of the players.

Finally, the last algorithm to be ran is the asymmetric replicator dynamics al-

gorithm. This algorithm is ran for 10,000 timepoints and the final strategies of

both players are calculated.

>>> xs , ys = game.asymmetric_replicator_dynamics(

... timepoints=np.linspace(0, 10000, 100)

... )

>>> np.round(xs[-1], 4)

array ([1., 0.])

>>> np.round(ys[-1], 4) # doctest: +SKIP

array ([0., 1.])

Code snippet 4.25: Asymmetric replicator dynamics algorithm on the payoff

matrices of the two players
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The resulted set of strategies are a Nash equilibrium. Similar to the fictitious play

algorithm, the asymmetric replicator dynamics algorithm can be used to visualise

how the players of the game reach a Nash equilibrium. Figure 4.30 shows how

the players evolve their strategies over time.
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Figure 4.30: Asymmetric replicator dynamics on the strategies of the players.

The asymmetric replicator dynamics algorithm is the learning algorithm that will

be used in the following sections to study the effect of the parameters of the game

on the strategies of the players.

4.5 ED-EMS application

Similar to Section 3.6, the game theoretic model can be applied to the same

healthcare setting. All concepts described in this Section can be mapped to some

components of either the ED or the EMS.

The EMS has to decide how to distribute its patients among the two EDs so that

the weighted combination of the ambulance blocking time and the percentage

of lost ambulances is minimised. This can be illustrated by Figure 4.7. The

interaction between the two EDs is a normal form game that is then used to

inform the decision of the EMS. Note that the formulated game here assumes

that prior to making a choice the EMS knows the strategies that each ED is

playing (Figure 4.15). This corresponds to reacting to experienced delays.

The queueing systems of the hospitals are designed in such a way where they

can accept two types of individuals (Chapter 3). Each hospital may then choose

to block type 2 individuals when the hospital reaches a certain capacity. The

strategy sets for each hospital is the set {T ∈ N | 1 ≤ T ≤ N} where N ∈
{NA, NB} are the total capacities of hospitals A and B. The chosen actions from

the strategy set are denoted as TA, TB and are the thresholds.
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Both hospitals follow a queueing model with two waiting spaces for individuals.

The first waiting space (i.e. the waiting space of the hospital) is where the patients

queue right before receiving their service and has a queue capacity of N − C,

where N is the total capacity of the hospital and C is the number of healthcare

professionals able to see them. The second waiting space (i.e. the parking space

for ambulances) is where ambulances, that are sent from the EMS distributor,

stay until their patients are allowed to enter the hospital. The parking space has

a capacity of M and no servers. This is shown diagrammatically in Figure 3.1.

Note here that both types of individuals can become lost to the system. An indi-

vidual allocated from the ambulance service becomes lost to the system whenever

an arrival occurs and the parking space is at full capacity (M ambulances already

parked). Similarly, type 1 individuals get lost whenever they arrive at the wait-

ing space of the hospital and it is at full capacity (N − C individuals already

waiting). Numerical results on the ED-EMS game theoretic model are presented

and discussed in Chapter 5.

There are certain assumptions that are made in this application. Firstly, it is

assumed that the distance from any patient’s location to any hospital is not a

factor that will affect the EMS’s decision. That means that under the scope of this

application, the EMS does not have to consider the closest hospital to the patient’s

location. Secondly, it is assumed that a patient’s timer (from the perspective

of the ED) does not start counting until the patient enters the hospital. For

instance, consider the case where a patient is sent from the EMS to hospital A

and is blocked in the parking space of hospital A for 6 hours. The patient then

proceeds to wait in the hospital for an additional 2 hours and is then receiving

their treatment for 1 hour. The patient’s total time in the hospital is assumed to

be 3 hours (2 + 1). Finally, the last assumption that is made is that arrival and

service times are exponentially distributed.

4.6 Chapter summary

This chapter introduces a 3-player game theoretic model between the decision

makers of two queueing systems and a distribution service that distributes indi-

viduals to them. The game theoretic model is used to investigate the behaviour

of the players when they interact and try to maximise their own utilities.

Section 4.2 gives a brief introduction to the game theoretic concepts that are used

in this chapter. A brief introduction on Normal Form games and the concept of

Nash equilibrium are given, along with some examples of games and their equiv-
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alent Nash equilibria. Additionally, some learning algorithms are introduced.

The learning algorithm that is mostly used in this chapter is the asymmetric

replicator dynamics algorithm. Finally, a description of perfect-information and

imperfect-information normal form games is given.

Section 4.3 describes the formulation of the game theoretic model that is used in

this thesis. An overview of the three players and the parameters that are used in

the game is given. The parameter that is of most interest here is the threshold

parameter that is used to determine when individuals are being blocked from

entering node 1 of the queueing system. The set of strategies of the two players is

essentially all possible values that the threshold parameter can take. Furthermore,

the payoffs for the two players are described. The distribution service’s payoff

is determined by the number of individuals that are blocked in node 2 of the

queueing system. The queueing system’s payoff is determined by the proportion

of individuals whose waiting time is less than a predefined target time. Thus, the

imperfect-information extensive form game is introduced.

Section 4.4 describes the methodology that is used to solve the game theoretic

model. The methodology uses Brent’s algorithm to find the optimal split of indi-

viduals that the distribution service can distribute to the two queueing systems to

minimise its own blocking time. The routing matrix is then described that con-

tains all possible values of the proportion of individuals that can be distributed

to the two queueing systems. The game theoretic model is then reduced to a

2-player normal form game where the utilities of the game are decided the dis-

tribution service. Following this, a game with some example set of parameters

is given and is solved using the support enumeration algorithm and the Lemke-

Howson algorithm. Additionally, some learning algorithms are applied to the

game to observe the behaviour of the players when they interact together. The

learning algorithms that are used are fictitious play, stochastic fictitious play, and

asymmetric replicator dynamics.

Finally, Section 4.5 maps the game theoretic model to a healthcare setting to

observe the behavioural gaming that takes place at the EMS - ED interface. The

three players now become the Emergency Medical Services (EMS) and two Emer-

gency Departments (EDs). The game essentially consists of the EMS deciding

what proportion of ambulances to send to each hospital so that the blocking time

is minimised and the EDs choosing what threshold parameter to use so that a

certain policy objective is met. In line with the current NHS policy [145], the

objective is set to be that 95% of the patients that are admitted to the EDs

should be admitted within 4 hours.
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Chapter 5

Numerical Results

5.1 Introduction

This chapter presents the results of the numerical experiments conducted to study

the behavioural patterns that can emerge from the interaction between the two

EDs and the EMS. Additional numerical experiments can also be found in ap-

pendix B. This chapter consists of the following sections:

� Section 5.2 describes the data collection process.

� Section 5.3 gives an overview and some descriptive statistics of the data.

� Section 5.4 presents the results of the numerical experiments and discusses

the implications of the results.

Note that the data presented in this chapter are archived and can be found

in [112]. This chapter extends the results presented in [114].

5.2 Data Collection

The data presented in this chapter were collected by solving the game theoretic

model from the interaction of the two EDs and the EMS. The collected data

are the matrices A,B and R described in Section 4.4.3. Each triplet of matrices

(A,B,R) was generated by solving the corresponding game for a different set of

parameters.

Different values of the parameters were used to generate this dataset. The pa-

rameters that were changed throughout these experiments are listed in Table 5.1.
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Table 5.1: Data collection: Parameters

Parameter Description

λ2 Arrival rate of patients in EMS

α Weight of lost individuals over time blocked

t Time target for the EDs

λA
1 Arrival rate of patients in ED A

λB
1 Arrival rate of patients in ED B

µA Service rate of patients in ED A

µB Service rate of patients in ED B

CA Number of servers in ED A

CB Number of servers in ED B

NA Maximum capacity in ED A

NB Maximum capacity in ED B

MA Maximum capacity of parking space in ED A

MB Maximum capacity of parking space in ED B

Overall, 5,160,404 different sets of parameters were used. For each parameter

set, the script solves the game and stores the resulting entries of the matrices

(A,B,R) as well as the parameters used to generate them in a sub-directory of

the data directory. All parameter values of each parameter set, along with the

corresponding values of A,B and R, are mapped to a unique fixed-size hash value

which is used as the name of the sub-directory for that parameter set. The hash

function that is used for this operation is the MD5 message-digest algorithm [121].

Having the name of the sub-directory for the current parameter set, the resulting

matrices are stored in a compressed .npz file in that sub-directory. The .npz file

format is a zipped archive of files named after the variables they contain, which

are stored using numpy’s savez compressed function [65]. The .npz files can be

loaded using numpy’s load function. In addition, to the .npz file, a README.md

file containing general instructions and a .csv file containing the value of each

parameter is also stored in each sub-directory. The code snippet in 5.1 shows an

example of how the data are stored and loaded using numpy.
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>>> import numpy as np

>>> array_1 , array_2 = np.arange (10), np.arange (10, 20)

>>> np.savez_compressed(

... "demo", array_1=array_1 , array_2=array_2

... ) # doctest: +SKIP

>>> loaded_file = np.load("demo.npz") # doctest: +SKIP

>>> loaded_file["array_1"] # doctest: +SKIP

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> loaded_file["array_2"] # doctest: +SKIP

array ([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])

Code snippet 5.1: Example of saving and loading compressed data

Apart from every sub-directory containing the data for a specific parameter set,

there is also a sub-directory named parameters. This sub-directory contains a

.csv file containing the values of all parameters used in the experiments along

with their corresponding hash values. This file can be used to map the hash

values of the sub-directories to the corresponding parameter values. Consider the

first 5 entries of the .csv file from the parameters sub-directory and the first 5

directories in the data directory.

Table 5.2: Contents of parameters/main.csv file

0 5 4 0 0 0.1 2 3 3 2 6 7 0 0c2d6a2e23de39d69ffb3b2a18d33692

0 5 4 0 0 0.1 2 3 3 2 6 7 1 8268e1967541e5d8edff3f3f00a4cfb8

0 5 4 0 0 0.1 2 3 3 2 6 7 2 95d86d6bdca819eff8acc3d7a9297fd5

0 5 4 0 0 0.1 2 3 3 2 6 7 3 b60ba099d5eabf6f07a9d9a81a2bab59

0 5 4 0 0 0.1 2 3 3 2 6 7 4 2f542f3e30736267ace3bb24a45de427

The corresponding sub-directories of the data directory are shown in the tree

structure in Figure 5.1:
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data
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main.csv

main.npz

README.md

Figure 5.1: Structure of the data directory

The main.csv file in each sub-directory contains the values of the parameters

used to generate the data in that sub-directory. The main.npz file contains the

compressed entries of the matrices A,B and R. The complete dataset along with

the scripts used to generate it have been archived using www.zenodo.org and can

be found with the following DOI: 10.5281/zenodo.7501988 [112].

5.3 Dataset description

As mentioned in Section 5.2, the dataset contains matrices A,B and R for a

total of 5, 160, 404 parameter sets. A descriptive analysis of the values of the

parameters used in the experiments is shown in Table 5.3.

www.zenodo.org
10.5281/zenodo.7501988
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Table 5.3: Descriptive statistics of the dataset

Parameter Mean Standard Deviation Minimum Maximum

λ2 4.545320 7.045888 0.100000 161.821844

α 0.504179 0.305070 0.000000 1.000000

t 4.999915 3.036935 0.000000 10.000000

λB
1 1.217896 2.050153 0.000000 34.019111

µA 2.024239 0.400677 0.420571 6.773554

CA 1.081755 0.680075 1.000000 9.000000

NA 2.107661 0.821679 2.000000 24.000000

MA 2.045482 0.456713 1.000000 20.000000

λA
1 1.156440 2.628927 0.000000 60.961985

µB 2.052536 0.421094 2.000000 6.602015

CB 1.102124 0.784007 1.000000 9.000000

NB 2.121707 0.804273 2.000000 28.000000

MB 2.071752 0.560980 2.000000 16.000000

Not all values listed in Table 5.3 are used equally often. In fact consider the values

of the parameter λ2 that range from 0.1 to 162. Figure 5.2 shows the number of

times each value of λ2 is used in the dataset.
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Figure 5.2: Number of times each value of λ2 is used in the dataset
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It can be seen that the values of λ2 that are used the most are the ones from 0.1

to 10. In fact, the y-axis of Figure 5.2 has been cut at 10,000 to better show the

values of λ2 that are greater than 10. Figure 5.3 shows the zoomed-in version

of Figure 5.2 where only values of λ2 from 0 to 10 are shown. From Figures 5.2

and 5.3 it can be seen that the values of λ2 that are used the most are the ones

from 0 to 10.
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Figure 5.3: Number of times each value of λ2 is used in the dataset for λ2 ∈ [0, 10]

In addition, in terms of the values of C,N and M of the two players A and B,

only some combinations of these values were explored. Figures 5.4 and 5.5 show

the explored combinations of the values of C,N and M for player A and player

B respectively.
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Figure 5.4: Explored combinations of the values of C,N and M for player A
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Figure 5.5: Explored combinations of the values of C,N and M for player B

From Figures 5.4 and 5.5 it can be seen that only a small subset of the possi-

ble combinations of the values of C,N and M were explored. Note here that

for each of this explored combinations additional combinations of the values of

λ2, λ
A
1 , λ

B
1 , µ

A, µB, α and t were also used.

5.4 What if scenarios

This section aims to analyse the generated dataset and investigate how gaming

can affect the performance measures of the two hospitals. In addition, under

this gaming framework, this section aims to research how players (i.e. hospitals)

can be incentivised in such a way so that they can be motivated to play a more

cooperative game with the EMS provider.
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5.4.1 Example 1

Consider the game defined by the parameters in Table 5.4.

Table 5.4: Parameter values for the first example of the what if scenarios.

Distributor Queueing system A Queueing system B

λ2 t P̂ α λA
1 µA CA NA MA λB

1 µB CB NB MB

2 2 0.95 0.5 1 2 2 10 6 2 2.5 2 10 6

The set of possible actions to choose from for player 1 and player 2 is the set of

thresholds that the EDs can choose from:

TA ∈ [1, 10], TB ∈ [1, 10] (5.1)

The resulting payoff matrices of the two hospitals, A and B, along with the

corresponding routing matrix R, are shown in (5.2):

A =



0.99919 0.99919 0.99919 0.99919 0.99919 0.99919 0.99919 0.99919 0.99919 0.99919

0.99937 0.99932 0.9993 0.99928 0.99927 0.99925 0.99924 0.99922 0.9992 0.99919

0.99985 0.99971 0.99964 0.99957 0.99952 0.99947 0.99942 0.99937 0.99931 0.9992

0.99998 0.99999 0.99992 0.99984 0.99977 0.9997 0.99963 0.99955 0.99946 0.99931

0.99943 0.9998 0.99998 1. 0.99995 0.99989 0.99981 0.99973 0.99962 0.99944

0.99802 0.99867 0.99957 0.99989 0.99999 0.99999 0.99995 0.99987 0.99976 0.99957

0.99595 0.99595 0.99845 0.9994 0.9998 0.99996 1. 0.99997 0.99988 0.99969

0.99379 0.99379 0.99643 0.99843 0.99934 0.99976 0.99994 1. 0.99996 0.99981

0.99253 0.99253 0.99253 0.99671 0.99843 0.99928 0.99972 0.99993 1. 0.99991

0.99347 0.99347 0.99347 0.99347 0.99594 0.99786 0.99893 0.99954 0.99988 1.



B =



0.99852 0.99868 0.99909 0.99954 0.99992 0.99997 0.99961 0.99901 0.9987 0.99908

0.99852 0.99861 0.99885 0.99917 0.99952 0.99984 1. 0.99987 0.99922 0.99908

0.99852 0.99858 0.99877 0.99903 0.99932 0.99962 0.99986 0.99999 0.99992 0.99928

0.99852 0.99856 0.99871 0.99892 0.99917 0.99943 0.99967 0.99987 0.99999 0.99987

0.99852 0.99855 0.99867 0.99884 0.99905 0.99927 0.9995 0.99971 0.9999 1.

0.99852 0.99853 0.99863 0.99877 0.99895 0.99915 0.99935 0.99955 0.99976 0.99996

0.99852 0.99852 0.99859 0.99872 0.99887 0.99904 0.99922 0.99941 0.99961 0.99985

0.99852 0.99852 0.99856 0.99867 0.9988 0.99895 0.99911 0.99928 0.99947 0.99972

0.99852 0.99852 0.99852 0.99861 0.99872 0.99885 0.99899 0.99914 0.99932 0.99957

0.99852 0.99852 0.99852 0.99852 0.99858 0.99869 0.9988 0.99893 0.99909 0.99934


(5.2)
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R =



0.5348 0.1965 0.1282 0.0711 0.0221 0 0 0 0 0

0.9552 0.6177 0.4967 0.4041 0.3288 0.264 0.2034 0.1379 0.0471 0

1 0.7347 0.6156 0.5241 0.4492 0.3843 0.3239 0.2599 0.1752 0.0232

1 0.8217 0.7043 0.6138 0.5394 0.475 0.415 0.3523 0.2722 0.1348

1 0.8903 0.7746 0.6852 0.6116 0.5476 0.4882 0.4268 0.3504 0.224

1 0.9466 0.8327 0.7445 0.6717 0.6084 0.5496 0.4894 0.4161 0.2984

1 1 0.8829 0.796 0.724 0.6613 0.6033 0.5442 0.4734 0.3627

1 1 0.9308 0.8447 0.7734 0.7111 0.6535 0.5953 0.5267 0.4215

1 1 1 0.9033 0.8311 0.7681 0.7101 0.6518 0.5843 0.4831

1 1 1 1 0.9405 0.8706 0.807 0.7446 0.6743 0.573



Using the Lemke-Howson algorithm on this example the following pure strategy

Nash equilibrium is found:

σA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1), σB = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) (5.3)

For this example, there exists a Nash equilibrium of the game where both players

choose a threshold of TA = 10, TB = 10 at all times. This means that the two

players’ best response to each other is to only block ambulances when hospitals

reach their maximum capacity.

The same conclusion can be obtained using a learning algorithm as well. Asym-

metric replicator dynamics is also used here, not only to confirm the same previous

result but also to show that the particular strategy is an ESS (see Section 4.2.3)

and to observe how the strategies of these two players evolve to reach the par-

ticular equilibrium. Figure 5.6 shows the results of the asymmetric replicator

dynamics algorithm for this example.
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Figure 5.6: Example 1: Asymmetric replicator dynamics

What is more important in this example is how the two hospitals reached these

decisions which also highlights the importance of using a learning algorithm.

Hospital B is able to reach the final decision in a shorter amount of time while
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hospital A takes longer and goes through numerous strategies to get there based

on the strategy choices of hospital B. By observing the strategy choices of hospital

A more closely, it can be seen that it starts out by blocking all ambulances and

then slowly starts to unblock them.

Consider the utility function of the two players from equation (4.30):

U i
TA,TB = 1−

(
P̂ − P (Wi < t)

)2
i ∈ A,B

where the hospitals’ aim is to have a proportion of patients P̂ within the target

time t. The utility function attempts to get the difference between the actual

proportion of patients within the target time t and the target proportion P̂ as

close to zero as possible.

Thus, for the current example, the fact that two hospitals are motivated to play

a strategy of TA = 10, TB = 10 means that the target of P̂ = 0.95 and t = 2 is

effortlessly achieved given the current parameters. Hospitals A and B are able to

achieve a target of t = 2 and do not need to block ambulances unless they reach

their maximum capacity.

What if the target time t was decreased from t = 2 to t = 1.7? Now, in order

for the hospitals to maximise their utility, 95% of patients would need to receive

treatment within 1.7 hours from their time of arrival instead of 2 hours. Using the

Lemke-Howson algorithm, the following pure strategy Nash equilibrium arises:

σA = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0), σB = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0) (5.4)

This corresponds to hospital A playing a strategy of TA = 3 and hospital B

playing a strategy of TB = 5. This means that hospital A will only block am-

bulances when the number of patients in hospital A reaches 3 and hospital B

will only block ambulances when the number of patients in hospital B reaches

5. Figure 5.7 shows the results of the asymmetric replicator dynamics algorithm

with the decreased target time t = 1.7.
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Figure 5.7: Example 1: Asymmetric replicator dynamics (what if t = 1.7)

It can be seen from Figure 5.7 that the two hospitals have reached the same output

as the Lemke-Howson algorithm. Hospital A chooses a strategy of TA = 3 from

a relatively early stage while hospital B first starts playing a strategy of TB = 4

and then changes to TB = 5 after a few iterations. Therefore, given the results of

the Lemke-Howson algorithm and the asymmetric replicator dynamics algorithm,

it can be seen that the more strict the time target t is, the more hospitals would

want to play a strategy where the threshold is lower, and consequently, more

ambulances will be blocked.

Additionally, the time target t can be decreased further to t = 1.5. Using the

Lemke-Howson algorithm, the following pure strategy Nash equilibrium arises:

σA = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0), σB = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0) (5.5)

This corresponds to hospital A playing a strategy of TA = 1 and hospital B

playing a strategy of TB = 2. Now consider the equivalent asymmetric replicator

dynamics algorithm run on the modified example.
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Figure 5.8: Example 1: Asymmetric replicator dynamics (what if t = 1.5)
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It can be observed from Figure 5.8 that the two hospitals choose to play a strategy

of TA = 1 and TB = 2. This is the same as the pure strategy Nash equilibrium

found using the Lemke-Howson algorithm. Therefore, it can be seen that by

decreasing the time target t further, hospitals tend to play a lower threshold

strategy and consequently, more ambulances will be blocked.

Table 5.5 shows the strategies played and the performance measures that arise

from these strategy choices for the three different time targets t = 2, 1.7, 1.5.

Table 5.5: Example 1: Strategies played and performance measures

Time target Hospital A Hospital B

Strategy Waiting Blocking Strategy Waiting Blocking

t = 2 T = 10 0.198 0.0006 T = 10 0.186 0.0006

t = 1.7 T = 3 0.102 0.0904 T = 5 0.213 0.0894

t = 1.5 T = 1 0.033 0.5852 T = 2 0.11 0.5592

It can be seen from Table 5.5 that the mean blocking time of ambulances increases

as the time target t decreases. Similarly, the mean waiting time of patients

decreases as the time target t decreases. Note that for hospital B there is a slight

increase of the mean waiting time of patients when the time target t is decreased

from t = 2 to t = 1.7. That is because of the strategy played by the third player;

the EMS. Observe the entries of the routing matrix R from equation (5.2). The

best response of the EMS when the hospital play (TA = 10, TB = 10) is to send

a proportion of R10,10 = 0.57 patients to hospital A while the best response of

the EMS when the hospital play (TA = 3, TB = 5) is to send a proportion of

R3,5 = 0.45 patients to hospital A. For that reason since hospital B receives

more patients from the EMS when the time target t is decreased from t = 2 to

t = 1.7, the mean waiting time of patients increases slightly.

5.4.2 Example 2

Consider another example now where the parameters λ2, λ
A
1 λ

B
1 are set to a rela-

tively high value.

Table 5.6: Parameter values for the second example of the what if scenarios.

Distributor Queueing system A Queueing system B

λ2 t P̂ α λA
1 µA CA NA MA λB

1 µB CB NB MB

10.7 2 0.95 0.9 4.5 2 3 6 5 6 3 2 7 4
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Recall that the relative traffic intensity of an M |M |c queue is given by ρ = λ
cµ

where λ is the arrival rate, c is the number of servers and µ is the service rate.

The relative traffic intensity is a metric that measures how congested a queue is,

based on the inflow and outflow of individuals in the queue. When ρ < 1 the rate

at which individuals leave the queue is larger than the rate at which individuals

enter the queue and when ρ > 1 the rate at which individuals enter the queue is

larger than that of those leaving the queue [7].

In this example, without solving the game, the relative traffic intensity of each

hospital cannot be calculated since the arrival rate of type 2 patients among the

two hospitals may vary based on the strategy played by the EMS. Each hospital’s

relative traffic intensity is given by:

ρA =
λA
1 + λ2p

A

CAµA
, ρB =

λB
1 + λ2(1− pA)

CBµB
, pA ∈ [0, 1] (5.6)

where pA is the proportion of type 2 patients that are sent to hospital A by the

EMS. By substituting in all the values for the parameters, the relative traffic

intensity of each hospital is given by:

ρA =
4.5 + 10.7pA

6
, ρB =

16.7− 10.7pA

6
, pA ∈ [0, 1] (5.7)

Thus, the traffic intensity of hospital A can take values ρA ∈ [0.75, 2.53] while the

traffic intensity of hospital B can take values ρB ∈ [1, 2.78]. In fact the combined

relative traffic intensity of the two hospitals is given by:

ρA,B = ρA + ρB =
4.5 + 10.7pA

6
+

16.7− 10.7pA

6
=

21.2

6
= 3.53 (5.8)

Any value of ρA,B > 2 indicates that the combined inflow of the two hospitals is

higher than the combined outflow and in this case it is well above 2. Given these

two highly congested hospitals, consider the game played by the EMS and the two

hospitals. Note that for the presentation of these data an affine transformation

has been applied to the values of the payoff matrices to make it easier for the

reader (Aij = 10,000(aij − 0.999) and Bij = 10,000(bij − 0.999)).
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A =



5.0518 5.0518 5.0518 5.0518 5.0518 5.0518 5.0518

5.4989 5.4977 5.4960 5.4924 5.4844 5.4654 5.3875

6.8232 6.8192 6.8150 6.8065 6.7871 6.7334 6.4906

9.0298 9.0244 9.0187 9.0078 8.9827 8.9082 8.5145

9.9996 9.9994 9.9992 9.9987 9.9972 9.9893 9.8571

8.7740 8.8006 8.8249 8.8660 8.9438 9.1295 9.7157



B =



1.7127 2.5822 4.6186 6.8497 8.9418 9.9999 8.2148

1.7127 2.5477 4.5634 6.8047 8.9150 9.9996 8.3358

1.7127 2.4528 4.3784 6.6441 8.8278 9.9965 8.5306

1.7127 2.4141 4.2867 6.5470 8.7656 9.9919 8.6745

1.7127 2.3415 4.0998 6.3265 8.6058 9.9716 8.9634

1.7127 2.1269 3.4930 5.4885 7.8353 9.7075 9.7322



R =



0.22 0.06 0.05 0.05 0.04 0.03 0.01

0.95 0.6 0.47 0.37 0.28 0.2 0.11

0.97 0.81 0.72 0.62 0.51 0.37 0.21

0.97 0.85 0.77 0.68 0.57 0.44 0.26

0.98 0.89 0.83 0.76 0.66 0.53 0.35

1 0.95 0.91 0.87 0.8 0.7 0.52


(5.9)

Matrices A and B are the payoff matrices of the two hospitals and can be used

to get the Nash equilibrium of the game. Using the Lemke-Howson algorithm,

the following pure strategy Nash equilibrium is found:

σA = (0, 0, 0, 0, 1, 0), σB = (0, 0, 0, 0, 0, 1, 0) (5.10)

The output of the Lemke-Howson algorithm indicates that the game is at a Nash

equilibrium when hospital A plays a strategy of TA = 5 and hospital B plays a

strategy of TB = 6. In fact, this is the only Nash equilibrium of the game. A

similar outcome is obtained when using a learning algorithm. Figure 5.9 shows

the output of the run of the asymmetric replicator dynamics algorithm.
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Figure 5.9: Example 2: Asymmetric replicator dynamics

Asymmetric replicator dynamics converges to the same strategy as the Lemke-

Howson algorithm, which is the pair of strategies (TA = 5, TB = 6).

Consider now the concept of the Price of Anarchy (PoA) [124]. PoA is a mea-

sure in game theory that is used to quantify the efficiency of the outcome of a

game when players behave in a selfish way. Examples of using this measure in a

healthcare setting include [76, 79, 105]. More specifically, the PoA measures the

ratio between the worst possible equilibria outcome of a game (so that no players

have an incentive to deviate) and the best possible centrally controlled outcome

of the game (the best possible collective situation). The PoA of a game is defined

as:

PoA =
maxs∈E F (s)

mins∈S F (s)
(5.11)

where S is the set of all possible strategies of the players, E is the set of all possible

equilibria of the game and F (s) is a cost function to measure the efficiency of

when the players play strategy s. The PoA is a measure that is used to describe

the overall efficiency of the game, rather the independent efficiency of each player.

For the purpose of this study a measure is introduced that considers the ratio

between each hospital’s best achievable blocking time and the one that is being

played. This is defined as the compartmentalised price of anarchy of the players

of the game and is defined as PoAi(s) where i ∈ {A,B} and s ∈ S is the strategy

played by player i. The compartmentalised price of anarchy is defined as:

PoAi(s) =
Bi(s)

mins′∈S Bi(s′)
(5.12)
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That is the ratio between the blocking time of player i when playing the chosen

strategy s and the minimum blocking time player i could achieve from any strat-

egy s′ ∈ S. In other words, this is the range of values that the compartmentalised

PoA can take are PoAi(s) ∈ [1,+∞), where 1 is the best possible outcome. Con-

sider, once again the asymmetric replicator dynamics run from Figure 5.9. One

may plot the compartmentalised PoA of each player alongside the outcome of the

learning algorithm. Figure 5.10 shows the asymmetric replicator dynamics run

of the game along with the compartmentalised PoA of each player.
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Figure 5.10: Example 2: Compartmentalised PoA

In Figure 5.10 it can be seen that the PoA of both players is always greater than

1. This means that the chosen strategies are not the best possible strategies in

terms of minimising the blocking time of ambulances. So, the question to be asked

here is: what can be changed in the game to escape these learned inefficiencies?

For the rest of this section, asymmetric replicator dynamics will be used in a

slightly different manner. One could run asymmetric replicator dynamics on a

modified version of the game where certain parameters are changed and observe

the outcome of the learning algorithm. Although this is a sensible approach, do-

ing that means that the learned strategies from Figure 5.10 are not considered.

As mentioned earlier, the aim is to investigate how to escape these learned in-

efficiencies, not what would happen if they never existed. Therefore, a different

approach is considered. Learning algorithms require only matrices A and B to
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run. Therefore, asymmetric replicator dynamics is ran on the original game and

stopped at a certain point. After changing the parameters of the game, the new

matrices arise, Ã and B̃. Asymmetric replicator dynamics is then ran again on

the new matrices while using the final strategies from the previous run as the

initial strategies. This approach is used to investigate how the strategies and the

PoA of the players change when the values of the parameters change.

One sensible idea would be to increase the artificial values of the hospital capac-

ities N i. The same learning algorithm is ran again with the same parameters as

before, but at some point the artificial values are increased from NA = 6 and

NB = 7 to NA = 7 and NB = 8. Figure 5.11 shows the output of the asymmetric

replicator dynamics algorithm and the compartmentalised PoA of each player.

Note that, when the artificial values are increased, hospital A gets a new strategy

of TA = 7 and hospital B gets a new strategy of TB = 8.
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Figure 5.11: Example 2: Asymmetric replicator dynamics and compartmentalised
PoA with increased hospital capacity N

In fact, by increasing the capacity of the hospitals, both hospitals become even

more inefficient. The moment the capacities are increased, both hospitals change

their strategies to close their doors for ambulance patients even earlier. That

causes the blocking time of ambulances to increase and thus the PoA of both

players increase. This happens because there are so many individuals coming in

that the hospitals cannot cope with the demand.
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Similarly, the same learning algorithm is ran again with the same parameters as

before, but at some point the parking capacity of the hospitals is increased from

MA = 5 and MB = 4 to MA = 20 and MB = 16. Figure 5.12 shows the output of

the asymmetric replicator dynamics algorithm and the compartmentalised PoA

of each player.
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Figure 5.12: Example 2: Asymmetric replicator dynamics and compartmentalised
PoA with increased parking capacity M

Although this time the strategies do not change, the PoA of both players in-

creases, which makes the entire game more inefficient in terms of the blocking

time of ambulances. This is because the parking capacity of the hospitals is in-

creased, which means that patients can now wait longer in the parking space.

Therefore, the PoA gets worse because the blocking time of ambulances when

playing strategies TA = 5 and TB = 6 is increased.

Figures 5.12 and 5.11 demonstrate that increasing the hospital capacities or the

parking capacities make the outcome of the game even more inefficient. Consider

now the case that the arrival rate of type 2 individuals λ2 is increased at some

point during the learning algorithm. Similar to before, the learning algorithm is

ran with the initial parameters, and then λ2 is increased. Figure 5.13 shows the

output of the asymmetric replicator dynamics algorithm and the compartmen-

talised PoA of each player.
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Figure 5.13: Example 2: Asymmetric replicator dynamics and compartmentalised
PoA with increased arrival of type 2 patients λ2

While the strategies of the players don’t change, the PoA of both players actually

decreases. Increasing the arrival rate of type 2 patients (ambulance patients)

shouldn’t make the game more efficient, but it does. That is not because the

blocking time is decreased. As a matter of fact the blocking time of ambulances

increases for both players. The reason why the PoA decreases can be traced

back to the definition of the PoA from equation (5.12). PoAi(s) is defined as

ratio between the blocking time when strategy s is played and the best achievable

blocking time from all strategies. Therefore, when the best achievable blocking

time becomes worse, the PoA of the players decreases, which is exactly what

happens in this case. Although this is an interesting outcome, it is not a sensible

one. Increasing the arrival rate of an already flooded system does not make the

system more efficient. This is similar to the findings of [77].

A more appropriate way to increase the efficiency of the system is to increase the

number of staff C. Figure 5.14 shows the output of the asymmetric replicator

dynamics algorithm and the compartmentalised PoA of each player when the

number of staff available is increased from CA = 3 and CB = 2 to CA = 4 and

CB = 3.
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Figure 5.14: Example 2: Asymmetric replicator dynamics and compartmentalised
PoA with increased number of staff C

Not only do the strategies of both players change, but the PoA of both players

also decreases. Strategies TA = 5 and TB = 6 are no longer the strategies that

are played. Instead, players play strategies TA = 6 and TB = 7, which makes

the hospitals accept more patient from ambulances, which in turn decreases the

mean blocking time of ambulances. As a result the PoA decrease for both players

indicating that the game has reached a more efficient outcome in terms of the

overall blocking time.

Although, Figure 5.14 shows a valid way to increase the efficiency of the sys-

tem, it might not be the most cost-effective method, since more staff means more

costs. Another attempt to increase the efficiency of the system is to apply certain

incentives to the players to change their strategies. The outcomes of the asym-

metric replicator dynamics algorithm are derived directly from matrices A and B.

Therefore by carefully altering the values of these matrices, the strategies of the

players can be changed. In other words, by penalising the chosen strategies the

players could be forced to play different ones. For instance, consider the following

example of matrices A and B:
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A =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

 , B =

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

 (5.13)

These matrices now form a game that can be solved using the asymmetric repli-

cator dynamics algorithm. In addition, these matrices can also be altered so that

certain strategies are penalised. Strategies for player A are represented by rows

of matrix A, and strategies for player B are represented by columns of matrix

B. Therefore, an entire row of matrix A can be multiplied by a certain constant

p ∈ [0, 1] to penalise a strategy of player A and an entire column of matrix B can

be multiplied by the same factor to penalise a strategy of player B. The resulting

two matrices are denoted by Ã and B̃ and have certain strategies

A =

 a11 a12 a13 a14

pa21 pa22 pa23 pa24

a31 a32 a33 a34

 , B =

b11 pb12 b13 b14

b21 pb22 b23 b24

b31 pb32 b33 b34

 (5.14)

Therefore consider the payoff matrices of the two hospitals A and B with the

played strategies highlighted.

A =



5.0518 5.0518 5.0518 5.0518 5.0518 5.0518 5.0518

5.4989 5.4977 5.4960 5.4924 5.4844 5.4654 5.3875

6.8232 6.8192 6.8150 6.8065 6.7871 6.7334 6.4906

9.0298 9.0244 9.0187 9.0078 8.9827 8.9082 8.5145

9.9996 9.9994 9.9992 9.9987 9.9972 9.9893 9.8571

8.7740 8.8006 8.8249 8.8660 8.9438 9.1295 9.7157



B =



1.7127 2.5822 4.6186 6.8497 8.9418 9.9999 8.2148

1.7127 2.5477 4.5634 6.8047 8.9150 9.9996 8.3358

1.7127 2.4528 4.3784 6.6441 8.8278 9.9965 8.5306

1.7127 2.4141 4.2867 6.5470 8.7656 9.9919 8.6745

1.7127 2.3415 4.0998 6.3265 8.6058 9.9716 8.9634

1.7127 2.1269 3.4930 5.4885 7.8353 9.7075 9.7322


Hospital A plays a strategy of TA = 5 and hospital B plays a strategy of TB = 6.

Consider a set of penalties that are applied to the entries of matrices A and B that

could be used to encourage the hospitals to play different strategies. This can be

done by multiplying the entire row of matrix A that corresponds to the strategy
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TA = 5 by a penalty factor p ∈ [0, 1] and multiplying the entire column of matrix

B that corresponds to the strategy TB = 6 by the same penalty factor. Note

here that in a real-life scenario, applying such a penalty factor would correspond

to carefully incentivising the hospitals. The precision that is required to choose

the penalty factor is equivalent on the precision required to apply such incentives

to hospital staff.

By applying a penalty to the strategies of TA = 5 and TB = 6, the resulting

payoff matrices Ã and B̃ are given. Note that the chosen penalty factor of 0.9997

is applied to the payoff matrices and then the affine transformation that was

applied to the matrices in (5.9) is also applied here.

Ã =



5.0518 5.0518 5.0518 5.0518 5.0518 5.0518 5.0518

5.4989 5.4977 5.4960 5.4924 5.4844 5.4654 5.3875

6.8232 6.8192 6.8150 6.8065 6.7871 6.7334 6.4906

9.0298 9.0244 9.0187 9.0078 8.9827 8.9082 8.5145

6.9996 6.9994 6.9992 6.9987 6.9972 6.9893 6.8571

8.7740 8.8006 8.8249 8.8660 8.9438 9.1295 9.7157



B̃ =



1.7127 2.5822 4.6186 6.8497 8.9418 6.9999 8.2148

1.7127 2.5477 4.5634 6.8047 8.9150 6.9996 8.3358

1.7127 2.4528 4.3784 6.6441 8.8278 6.9965 8.5306

1.7127 2.4141 4.2867 6.5470 8.7656 6.9919 8.6745

1.7127 2.3415 4.0998 6.3265 8.6058 6.9716 8.9634

1.7127 2.1269 3.4930 5.4885 7.8353 6.7076 9.7322


Having penalised the strategies of TA = 5 and TB = 6, Figure 5.15 shows the

outcome of asymmetric replicator dynamics when initialising the algorithm with

the initial matrices A and B and at some point replacing them with the penalised

ones Ã and B̃.
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Figure 5.15: Example 2: Asymmetric replicator dynamics and compartmentalised
PoA with incentivisation.

It can be seen that the hospitals start out by playing their usual strategies of

TA = 5 and TB = 6. After the penalised matrices Ã and B̃ are introduced, the

hospitals start to play strategies of TA = 6 and TB = 7. That has a similar effect

to the ones of Figure 5.14 but no additional members of staff have been added.

Additionally, the PoA for both hospitals is decreased, indicating that the overall

blocking time is reduced.

The results of this example show that using careful incentivisation on a managerial

level can result in an improvement of the overall blocking time for the hospitals.

Although, arguably by adding more staff, the hospitals could have achieved a

greater reduction in the blocking time, these results indicate that when that is

not possible or not desirable, incentivisation can be used to achieve a similar

effect.

5.5 Chapter summary

This chapter presents the results of the numerical experiments conducted to study

the behavioural patterns that can emerge from the interaction between the two

EDs and the EMS. Matrices A, B (the payoff matrices of the two EDs) and R

(the routing matrix of the EMS) were generated and analysed for different values
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of the parameters to study the behaviour that emerges from playing the game.

Additional numerical experiments can also be found in Appendix B.

Section 5.2 describes the data collection process. The parameter sets that were

used to generate the dataset are presented in along with the structure of the

repository that contains all data. Section 5.3 gives an overview and some de-

scriptive statistics of the data. Some plots are also presented to give a visual

representation of the data and to highlight some interesting patterns.

Section 5.4 presents the results of the numerical experiments and discusses the

implications of the results. More specifically, matrices A, B and R are used

to run the asymmetric replicator dynamics algorithm. Several what-if scenarios

are presented and discussed where the system is flooded with individuals. Such

scenarios include the effect of increasing arrival rates, the effect of increasing the

number of available servers, the effect of increasing the different capacities and

a certain incentivisation approach. The incentivisation approach is based on the

idea carefully penalising some of the EDs strategies could lead them to choose

strategies that are more cooperative and can help reduce the overall blocking

time.
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Chapter 6

Extending to agent-based model

6.1 Introduction

This chapter aims to explore an extension to the game described earlier. The

extension is based on the idea of an agent-based model [39, 47, 80]. What if the

servers of the queueing system described in Section 3 could be treated as entities

that could make their own decisions?

The idea here is that servers could choose their own service rate so as to maximise

their own utility. This would mean that the servers would be able to choose their

own speed at which they serve customers while the system is running. Such

decisions could be based on a number of factors, such as minimising the number

of customers in the system, minimising the proportion of patients lost to the

system, maximising their own idle time and so on.

The previous chapters are based on the assumption that hospitals and ambulances

play a non-cooperative game and act in their own self-interest. Although this

might be true in some cases, insights from ethnographic studies [6] have shown

that some cooperation and empathy can be found among staff in such gaming

environment. The motivation for this chapter was initiated by these insights.

This chapter consists of the following sections:

� Section 6.2 describes a variant of the queueing system described in Chapter 3

where the service rate of the servers is dependent on the state of the system.

� Section 6.3 describes another variant of the queueing system of Chapter 3

where the service rate of each server can be different.
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� Section 6.4 combines the concepts described in Sections 6.2 and 6.3 to create

a different variation of the queueing system where the rates of the servers

are both dependent on the state of the system and the servers itself.

� Section 6.5 uses the state and server-dependent model to create an agent-

based model where the servers can choose their own service rate in order to

maximise their own utility.

� Section 6.6 uses the agent-based model to create a reinforcement learning

model where the servers can learn to choose their own service rate in order

to maximise their own utility.

6.2 State-dependent variation

This section focuses on creating a state-dependent variation of the queueing sys-

tem described in Section 3. The state-dependent version is based on the idea that

the speed of the servers could be based on the number of individuals present in

the system.

In the previous chapters of this thesis, the value of the service rate µ was set to

a constant value. For this variation of the model µ will have a different value

depending on the number of individuals present in the two nodes of the queue.

In other words µ will take a different value depending on the state (u, v) of which

the system is in. A parametric service rate µ = µ(u,v) for a given (u, v) ∈ S is

defined as follows:

µ =



µ(0,0), if (u, v) = (0, 0)

µ(0,1), if (u, v) = (0, 1)
...

...

µ(M,N), if (u, v) = (M,N)

(6.1)

Consider an example of the queueing system described in Section 3 where the

number of servers is set to C = 1, the threshold is set to T = 1, node 1 capacity

is N = 2 and node 2 capacity is M = 1. Figure 6.1 shows the state-dependent

Markov chain model of the queueing system.
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Figure 6.1: Markov chain example with C = 1, T = 1, N = 2,M = 1

Consider the following value of µ for the Markov chain model shown in Figure 6.1.

µ =



µ(0,0), if (u, v) = (0, 0)

µ(0,1), if (u, v) = (0, 1)

µ(0,2), if (u, v) = (0, 2)

µ(1,1), if (u, v) = (1, 1)

µ(1,2), if (u, v) = (1, 2)

6.2.1 Implementation

The state-dependent variation of the queueing system was implemented using the

python library ciw [142] only on the Discrete Event Simulation (DES) version

of the queueing model described in Section 3.2. All the code used to implement

the state-dependent variation of the queueing system is archived at [111] and

developed openly on GitHub. More details on the code can be found in Ap-

pendix A. The ciw library is structured in a way that allows the user to create

their own class for the service time distribution. This class must inherit from the

ciw.dists.Distribution class and implement the init and sample meth-

ods. The code snippet in 6.1 shows the implementation of the state-dependent

service time distribution class.

>>> import ciw

>>> class StateDependentExponential(

... ciw.dists.Distribution

... ):

... def __init__(self , rates):

... self.rates = rates

...

... def sample(self , t=None , ind=None):

... """
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... This method is used to sample the service time for an

... individual based on the current state

... """

... state = (

... len(ind.simulation.nodes [1]. individuals [0]),

... len(ind.simulation.nodes [2]. individuals [0]),

... )

... is_invalid_state = (

... state [0] > 0 and state [1] < ind.simulation.threshold

... )

... if is_invalid_state:

... state = (state [0] - 1, state [1] + 1)

... rate = self.rates[state]

... return random.expovariate(rate)

Code snippet 6.1: State-dependent service time distribution class.

The function simulate model described in Section 3.2 takes mu as one of its

arguments. If mu is set to a dictionary, with keys the states of the system and

values the service rate for each state (as shown in code snippet 6.2), the service

distribution that will be used in ciw will be a StateDependentExponential

object. The following code shows the implementation of the simulate model

function for the state-dependent variation of the queueing system.

>>> import ambulance_game as abg

>>> import ciw

>>> import numpy as np

>>>

>>> lambda_1 = 1

>>> lambda_2 = 1

>>> num_of_servers = 1

>>> threshold = 1

>>> system_capacity = 2

>>> buffer_capacity = 1

>>> runtime = 1000

>>> seed_num = 0

>>>

>>> Q = abg.simulation.simulate_model(

... lambda_1=lambda_1 ,

... lambda_2=lambda_2 ,

... mu={(0, 0): 2, (0, 1): 3, (0, 2): 4, (1, 1): 4, (1, 2): 5},

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... seed_num=seed_num ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... runtime=runtime ,

... )

>>> mean_waiting_time = np.mean([w.waiting_time for w in Q.get_all_records ()])

>>> np.round(mean_waiting_time , 8)

0.06028274

Code snippet 6.2: Example of the state-dependent variation of the queueing

system.
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6.3 Server-dependent variation

This section describes the creation of the server-dependent variation of the queue-

ing system described in Section 3. The server-dependent model has a similar

structure as the state-dependent model described in Section 6.2. In this variation

each server has its own service rate.

Similar to Section 6.2 the server-dependent variation of the parametric service

rate µ = µi for a given i ∈ 1, 2, . . . , C (where C is the number of servers) is

defined as follows:

µ =



µ1, for server 1

µ2, for server 2
...

...

µC , for server C

(6.2)

Consider an example of the queueing system described in Section 3 where the

number of servers is set to C = 4, the threshold is set to T = 1, node 1 capacity

is N = 2 and node 2 capacity is M = 1. The value of the service rate µ for the

DES model can take the following values:

µ =



µ1, for server 1

µ2, for server 2

µ3, for server 3

µ4, for server 4

6.3.1 Implementation

The server-dependent variation of the queueing system is implemented in a similar

way as the state-dependent implementation. Using the python library ciw the

server-dependent service time distribution is defined as a class that inherits from

the Distribution class shown in 6.3.

>>> import random

>>> import ciw

>>> class ServerDependentExponential(

... ciw.dists.Distribution

... ):

... def __init__(self , rates):

... self.rates = rates

...

... def sample(self , t=None , ind=None):
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... """

... This method is used to sample the service time for an individual

based

... on the server that the individual is assigned to

... """

... server = ind.server.id_number

... rate = self.rates[server]

... return random.expovariate(rate)

Code snippet 6.3: Server-dependent service time distribution class.

Similar to the state-dependent implementation, the function simulate model

from Section 3.2 is used to simulate the server-dependent variation of the queueing

system. The main difference from the state-dependent case is that the service

rate µ is now a dictionary with the server’s id as the key and the service rate of

that server as the value.

>>> import ambulance_game as abg

>>> import ciw

>>> import numpy as np

>>>

>>> lambda_1 = 1

>>> lambda_2 = 1

>>> num_of_servers = 4

>>> threshold = 1

>>> system_capacity = 8

>>> buffer_capacity = 2

>>> runtime = 1000

>>> seed_num = 0

>>>

>>> Q = abg.simulation.simulate_model(

... lambda_1=lambda_1 ,

... lambda_2=lambda_2 ,

... mu={

... 1: 0.5,

... 2: 0.5,

... 3: 1.0,

... 4: 1.5,

... },

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... seed_num=seed_num ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... runtime=runtime ,

... )

>>> mean_waiting_time = np.mean([w.waiting_time for w in Q.get_all_records ()])

>>> np.round(mean_waiting_time , 8)

0.02668017

Code snippet 6.4: Example of the server-dependent variation of the queueing

system.
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6.4 State and server-dependent model

In addition, the final variation of the queueing model is one that is both state and

server-dependent. That is, for each server and for each state there is a different

service rate. In other words, each server can have a different service rate for every

possible scenario that the system can be in.

The new service rate µ that will be used in this scenario is defined as a combination

of equations (6.1) and (6.2) where:

µ =



µ1,(0,0), for server 1 if (u, v) = (0, 0)

µ1,(0,1), for server 1 if (u, v) = (0, 1)
...

...

µ1,(M,N), for server 1 if (u, v) = (M,N)

µ2,(0,0), for server 2 if (u, v) = (0, 0)

µ2,(0,1), for server 1 if (u, v) = (0, 1)
...

...

µ2,(M,N), for server 2 if (u, v) = (M,N)
...

...

µC,(0,0), for server C if (u, v) = (0, 0)

µC,(0,1), for server C if (u, v) = (0, 1)
...

...

µC,(M,N), for server C if (u, v) = (M,N)

(6.3)

Consider an example where the number of servers is set to C = 2, the threshold

is set to T = 1, node 1 capacity is N = 3 and node 2 capacity is M = 1. For this

particular example the possible values that µ can take shown by equation (6.4).
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µ =



µ1,(0,0), for server 1 if (u, v) = (0, 0)

µ1,(0,1), for server 1 if (u, v) = (0, 1)

µ1,(0,2), for server 1 if (u, v) = (0, 2)

µ1,(0,3), for server 1 if (u, v) = (0, 3)

µ1,(1,0), for server 1 if (u, v) = (1, 0)

µ1,(1,1), for server 1 if (u, v) = (1, 1)

µ1,(1,2), for server 1 if (u, v) = (1, 2)

µ1,(1,3), for server 1 if (u, v) = (1, 3)

µ2,(0,0), for server 2 if (u, v) = (0, 0)

µ2,(0,1), for server 2 if (u, v) = (0, 1)

µ2,(0,2), for server 2 if (u, v) = (0, 2)

µ2,(0,3), for server 2 if (u, v) = (0, 3)

µ2,(1,0), for server 2 if (u, v) = (1, 0)

µ2,(1,1), for server 2 if (u, v) = (1, 1)

µ2,(1,2), for server 2 if (u, v) = (1, 2)

µ2,(1,3), for server 2 if (u, v) = (1, 3)

(6.4)

6.4.1 Implementation

The implementation of the state and server-dependent model is the combination

of the state-dependent and server-dependent models’ implementation. Once again

the implementation is done using the python library ciw library. The distribution

for the state and server-dependent model is defined as a class that inherits from

ciw’s class Distribution from the dists module. Note that as opposed to the

classes defined earlier an additional method id defined in this class. Method

update server attributes adds additional attributes to the server objects to

allow for further analysis of each server’s performance.

>>> import random

>>> import ciw

>>> class StateServerDependentExponential(

... ciw.dists.Distribution

... ):

... def __init__(self , rates):

... self.simulation = None

... self.rates = rates

...

... def sample(self , t=None , ind=None):

... """

... This method is used to sample the service time for an individual

... based on the current state and the server that the individual is
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... assigned to. The following steps are being taken:

... 1. Find the server

... 2. Find the state

... 3. Check if the state is valid. Note that there are some cases

... where the visited state is not valid. These are the cases

... where the state ‘(u, T -1) ‘ is visited where ‘u > 0‘. This

... is meant to be an unreachable state. In such case remap

... the state to ‘(u+1, T)‘

... 4. Get the service rate for that server and state

... 5. Sample the service time

... 6. Update any possible attributes for the server

... """

... server = ind.server.id_number

... state = (

... len(ind.simulation.nodes [1]. individuals [0]),

... len(ind.simulation.nodes [2]. individuals [0]),

... )

... is_invalid = state [0] > 0 and state [1] < ind.simulation.threshold

... if is_invalid:

... state = (state [0] - 1, state [1] + 1)

... rate = self.rates[server ][state]

... service_time = random.expovariate(rate)

... self.update_server_attributes(ind , service_time)

... return service_time

...

... def update_server_attributes(self , ind , service_time):

... """

... Updates the server ’s attributes

... """

... if hasattr(ind.server , "served_inds"):

... ind.server.served_inds.append(self.simulation.current_time)

... else:

... ind.server.served_inds = [self.simulation.current_time]

...

... if hasattr(ind.server , "service_times"):

... ind.server.service_times.append(service_time)

... else:

... ind.server.service_times = [service_time]

Code snippet 6.5: Example of the state and server-dependent variation of the

queueing system

Now consider an example where the number of servers is set to C = 2, the

threshold is set to T = 1, node 1 capacity is N = 3 and node 2 capacity is

M = 1. Let the service rates be defined in such a way where:

1. Server 1’s service rate is 0.5 whenever there are less than two individuals in

the entire system, otherwise the service rate is 1.

2. Server 2’s service rate is 0.7 whenever there are less than three individuals

in the entire system, otherwise the service rate is 1.5.

The following code snippet shows how to define the model and run the simulation

for 1000 time units.
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>>> import ambulance_game as abg

>>> import numpy as np

>>>

>>> lambda_1 = 1

>>> lambda_2 = 1

>>> num_of_servers = 2

>>> threshold = 1

>>> system_capacity = 3

>>> buffer_capacity = 1

>>> runtime = 1000

>>> seed_num = 0

>>>

>>> all_states = abg.markov.build_states(

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity

... )

>>> mu = {k: {} for k in range(1, num_of_servers + 1)}

>>> mu[1] = {(u, v): 0.5 if u + v < 2 else 1 for u, v in all_states}

>>> mu[2] = {(u, v): 0.7 if u + v < 3 else 1.5 for u, v in all_states}

>>>

>>> Q = abg.simulation.simulate_model(

... lambda_1=lambda_1 ,

... lambda_2=lambda_2 ,

... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... seed_num=seed_num ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... runtime=runtime ,

... )

>>> for srv , mean_service_time in enumerate ([

... np.round(np.mean(s.service_times), 8)

... for s in Q.nodes [2]. servers

... ]):

... print(f"Server␣{srv␣+␣1}:", mean_service_time)

Server 1: 1.79718861

Server 2: 0.87253758

Code snippet 6.6: Example code of the state and server-dependent variation of

the queueing system

Note that, in the implementation shown in code snippet 6.6 the individuals are

paired with a server in an “unfair” way since the default behaviour of ciw does

not focus on the fairness of server allocation. Server 1 is always assigned an

individual if they are free, while Server 2 is only assigned an individual if Server

1 is busy. For the purposes of this project though, it is important to have a

more “fair” allocation of individuals to servers. This can be done by using the

server priority function argument of the simulate model function.

>>> Q = abg.simulation.simulate_model(

... lambda_1=lambda_1 ,

... lambda_2=lambda_2 ,
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... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... seed_num=seed_num ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... runtime=runtime ,

... server_priority_function=lambda srv , ind: random.random ()

... )

>>> for srv , mean_service_time in enumerate ([

... np.round(np.mean(s.service_times), 8)

... for s in Q.nodes [2]. servers

... ]):

... print(f"Server␣{srv␣+␣1}:", mean_service_time)

Server 1: 1.31071177

Server 2: 1.02142722

Code snippet 6.7: Example of using fair allocation of individuals to servers

6.4.2 Game theoretic model

The state and server dependent model can be used in the game theoretic model

described from Section 4. However, since the state and server dependent model

variant of the queueing theoretic model is only implemented using Discrete Event

Simulation (DES), it is not possible to use the Markov chain model here. Thus,

the implementation of the game was modified so that it can be used with the

DES model as well. More details on the code can be found in Appendix A. At its

core, the only metric that is needed from the Markov model are the performance

measures of the queue (blocking time and proportion of individuals within target)

which can also be obtained using the DES model. Consequently, the payoff

matrices can be calculated using these performance measures.

Something that needs to be taken into consideration here is whether the results of

the game are the same when using the DES model and the Markov chain model.

In fact using the DES approach, several other parameters are introduced that

can affect the results of the game. Such parameters are the runtime, the warm

up time and the cooldown time of the simulation. The runtime of the simulation

is the total time that the simulation is run for, the warm up time is the time that

the simulation is run for before the data collection starts and the cooldown time

is the time that the simulation is run for after the data collection has finished.

The runtime of the simulation is the parameter that is most likely to affect the

performance measures of the queue, since the longer the simulation is run for, the

better the estimates of the performance measures will be.

Consider a game with the parameters shown in Table 6.1.
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Table 6.1: Parameter values for game theoretic model example to observe the
differences of running the game with DES and Markov chains.

Distributor Queueing system A Queueing system B

λ2 t P̂ α λA
1 µA CA NA MA λB

1 µB CB NB MB

2 2 0.95 0.2 2 2 2 6 2 2 2 2 6 2

For a complete description of parameter notations see Section 4.3.1. Figure 6.2

shows the asymmetric replicator dynamics run of the game when the payoff ma-

trices are calculated using the Markov chain model.
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Figure 6.2: Asymmetric replicator dynamics algorithm run on the game obtained
from the Markov chain model.

It can be seen that both player end up playing strategy s3 which corresponds to

choosing a threshold of T (A) = 3 and T (B) = 3. Figures 6.3, 6.4 and 6.5 show the

asymmetric replicator dynamics run of the game when the payoff matrices are

calculated using the DES model with different runtimes. More specifically, the

runtime of the DES model is set to 300, 500 and 1000 time units respectively.
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Figure 6.3: Asymmetric replicator dynamics algorithm run on the game obtained
from the DES model using a runtime of 300 time units.
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Figure 6.4: Asymmetric replicator dynamics algorithm run on the game obtained
from the DES model using a runtime of 500 time units.
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Figure 6.5: Asymmetric replicator dynamics algorithm run on the game obtained
from the DES model using a runtime of 1000 time units.

By observing the asymmetric replicator dynamics run of the game with the DES

model when using different runtimes, it can be noticed that the results from using

a runtime of 300 time units and a runtime of 500 time units are different from the

ones obtained using the Markov chain model. However, the resultant strategies

from using a runtime of 1000 time units are the same as the ones obtained using

the Markov chain model. This is due to the fact that the runtime of the DES

model needs to be long enough for the simulation to reach a steady state. For

this particular example, it seems that a runtime of 1000 time units is sufficient.

Having found a reasonable runtime for the DES model, the state and server

dependent distribution of the service rate can be used in the game theoretic

model. Consider a small change to the parameter values defined earlier, where the

service rate is now state and server dependent. Let the service rate for queueing

system 1 be µ(1) = 6 only for server 1 if there are 4 or more individuals in the

system and µ(1) = 2 otherwise. Additionally, let the service rate for queueing

system 2 be µ(2) = 8 only for server 1 if there are 3 or more individuals in node

1 and µ(2) = 2 otherwise. In other words the service rate is now defined as:
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µ(1) =

6, if server id = 1 and u1 + v1 ≥ 4

2, otherwise
(6.5)

µ(2) =

8, if server id = 1 and u1 ≥ 3

2, otherwise
(6.6)

The game theoretic model is then run using the DES model with a runtime of

3000 time units. Figure 6.6 shows the asymmetric replicator dynamics run of the

game when the payoff matrices are calculated using the DES model with this new

service rate distribution.
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Figure 6.6: Asymmetric replicator dynamics algorithm run on the game obtained
from the DES model using a runtime of 3000 time units and a state and server
dependent service rate.

It can be seen that the outcome of the game is different than before. Player 1

chooses to play strategy s5 and player 2 also ends up playing strategy s5. That

corresponds to choosing a threshold of T (1) = 5 and a threshold of T (2) = 5. The

change in the service distribution made server 1 of queueing system 1 and server

1 of queueing system 2 work faster when their corresponding system was getting

busier. This change in the service rate distribution made the queueing systems

increase their thresholds in the game, and thus block less type 2 individuals at

node 1. Refer to Figure 3.1 for a visual representation of the types of individuals

and the nodes of the queueing systems.

6.5 The agent-based model

Section 6.4 describes an extension to the queueing system described in Section 3

that allows each server to have their own service rate for every possible state

of the system. In this section, an agent-based model is proposed where servers
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are considered as agents that can make their own decisions. The idea is that

every agent in the system can choose their own service rate based on some utility

function that they aim to maximise. This would mean that the servers would be

able to choose and update their own speed at which they serve individuals while

the system is running. Such decisions could be based on a number of factors, such

as minimising the number of patients in the system, minimising the proportion

of patients lost to the system, maximising their own idle time and so on.

6.5.1 Utility functions

Utility functions are a way of quantifying how “happy” an agent is with the

current condition of the system [48, 49]. Each agent in the system can have their

own utility function that they aim to maximise. In a realistic scenario, these

utility functions could be based in a number of factors, where each agent can

have a different weight for each factor.

At the end of the simulation run there are some key performance measures that

can be extracted to quantify the performance of the overall system and each server

individually. Table 6.2 shows these measures that will then be used to formulate

the utility functions.

Table 6.2: Performance measures that could affect each agent’s utility

Notation Description

I Total number of individuals (both served and lost)
Is Number of served individuals
IL Number of individuals that are lost due to the system being full

I
(k)
s All individuals served by server k
R Overall runtime of the simulation

B(k) Busy time of server k

R−B(k) Idle time of server k

µ̄(k) Mean service rate of server k

m̄(k) Mean service time of server k

Note that the difference between the mean service rate and the mean service

time is that the mean service rate is the average out of all the service rates for

every state (u, v) with no particular weight given to any of them. In contrast,

the mean service time is the average of all the service times that each server has

experienced. That means that if a particular state has not been visited by a

server, then the mean service time will not be affected by that state.

The above measures could be combined together in a number of ways to formulate

utility functions. Some examples of utility functions that could be used are the
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following:

U
(1)
k = e I(k)s + (1− e) (R−B(k)) (6.7)

U
(2)
k = e

I
(k)
s

Is
+ (1− e)

R−B(k)

R
(6.8)

U
(3)
k = e m̄(k) + (1− e) (R−B(k)) (6.9)

U
(4)
k = e µ̄(k) + (1− e) (R−B(k)) (6.10)

U
(5)
k = e

I
(k)
s

Is
+ (1− e) m̄(k) (6.11)

U
(6)
k = e

I
(k)
s

I
+ (1− e)

1

m̄(k)
(6.12)

U
(7)
k = e

Is
I
+ (1− e)

R−B(k)

R
(6.13)

(6.14)

where U
(i)
k is utility i of server k and e is a parameter that can be used to weight

the importance of each measure. For example, e = 0.5 would mean that the two

measures are equally important for the agent. Table 6.3 gives a brief description

of each utility function.

Table 6.3: Utility functions that can be used to measure each server’s happiness

Utility function Description

U
(1)
k Weighted average between the number of served

individuals by server k and idle time of server k

U
(2)
k Weighted average between overall proportion of served

individuals by server k and proportion of idle
time of server k

U
(3)
k Weighted average between mean service time of

server k and idle time of server k

U
(4)
k Weighted average between mean service rate of

server k and idle time of server k

U
(5)
k Weighted average between proportion of served

individuals by server k and mean service time of server k

U
(6)
k Weighted average between proportion of served

individuals by server k and inverse of mean
service time of server k

U
(7)
k Weighted average between overall proportion of served

individuals and proportion of idle time of server k
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6.5.2 Case study

In this subsection, an empirical study is presented to show how the above utility

functions can be used to measure each server’s “happiness”. The study builds

upon the empirical study on the queueing system described in [64]. This sub-

section will use the same data set as in [64], but applied to the queueing system

described in Section 3 and the agent-based model described in Section 6.5.

In that study a set of data was collected from a large emergency department

in Wales, UK. The data was collected over 6 months and contained information

on each patient that arrived at the emergency department. Such information

included the time of arrival, the time of service, the triage category and the time

of discharge. The dataset consisted of 4, 832 patients that were considered as

“urgent”. In [64] it was shown that as the workload of the system changed, the

service times of the serves also changed. In fact, low to moderate workload levels

resulted in service times that were lower than the service times experienced at

high workload levels.

The system was modelled as a single-server queueing system with two service

speeds. Arrivals follow a Poisson distribution with mean inter-arrival time of

92 minutes, thus the arrival rate can be set to λ = 1
92
. The service speed was

partitioned into two distributions; one for low to moderate workload levels and

one for high workload levels. The service speed for the low to moderate workload

levels was found to follow a lognormal distribution with a mean of 86 minutes and

the service speed for the high workload levels was found to follow a lognormal

distribution with a mean of 62 minutes. Therefore, the service rates can be set

to µ1 =
1
86

and µ2 =
1
62
. It was observed that the slow service speed was used for

when 6 or less individuals were in the system and the fast service speed was used

for when 7 or more individuals were present.

The above parameters were slightly modified so that they are applied to the

queueing system described in Section 3. In essence, the queueing system is now

a 4 server system and the arrival rate is set to λ = 4 × 1
92

and the two service

speeds stay the same. In addition, the new arrival rate is now split into two

distributions, one for type 1 individuals and one for type 2 individuals. Type 1

arrivals follow a Poisson distribution with mean inter-arrival time of 57.5 minutes

and type 2 arrivals follow a Poisson distribution with mean inter-arrival time of

38.3 minutes. Therefore, the arrival rates for type 1 and type 2 individuals are

λ1 =
1

57.5
and λ2 =

1
38.3

respectively.

Additionally, for this modified example the 4 servers fall into one of three groups;
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experienced, moderate and intern. In particular server 1 is an experienced server,

server 2 and server 3 are moderate servers and server 4 is an intern. This means

that server 1 has a slightly higher service rate than the other servers and if they

are available they will always be assigned the incoming individual. Servers 2 and

3 have the same service rate and if they are available they may be assigned the

incoming individual with an equal probability. Finally, server 4 has the lowest

service rate and they will only be assigned the incoming individual if the other

servers are unavailable. More specifically, the service rates for the “experienced”

server is multiplied by a factor of 1.2 and the service rates for the “intern” server

is multiplied by a factor of 0.8, while the “moderate” servers stay unchanged.

Whilst this might not be a realistic example, it is used here to demonstrate the

utilities in this agent-based model.

Because of the way the queueing system described in Section 3 is modelled, there

are some additional parameters that need to be considered. These are the capacity

of Node 1, the capacity of Node 2, and the threshold. The capacity of Node 1 is

set to N = 35, the capacity of Node 2 is set to M = 20 and the threshold is set

to T = 10. Therefore the complete set of parameters for the queueing system are

given by equation (6.15) and Table 6.4.

µ(1) =

1.2× 1
86
, if u+ v < 7

1.2× 1
62
, if u+ v ≥ 7

µ(i) =

 1
86
, if u+ v < 7

1
62
, if u+ v ≥ 7

for i ∈ {2, 3} (6.15)

µ(4) =

0.8× 1
86
, if u+ v < 7

0.8× 1
62
, if u+ v ≥ 7

Table 6.4: Parameter values used in the case study.

λ1 λ2 C T N M
1

57.5
1

38.3
4 10 35 20

Running the simulation for 100,000 time units each server’s utilisation (i.e. what

percentage of time they were busy), the proportion of individuals that they served

and their mean service time were recorded.
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Table 6.5: Each server’s performance measure for a run of the simulation.

Server Server utilisation Proportion of individuals served Mean service time

1 87.24 33.07 62.44

2 82.51 24.54 79.56

3 83.55 24.26 81.51

4 78.45 18.13 102.3

These performance measures can now be used to populate the different utility

functions described in equations (6.7) - (6.13). All utility functions are a weighted

average between two performance measures that are chosen to be the important

factors for a server. The weigh parameter e can take on any value between 0 and

1. Tables 6.6 - 6.12 show the utility functions for each server for different values

of e.

Table 6.6: Utility function 1 (U
(1)
k ) for the 4 servers and different values of e

Server e = 0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = 0.5 e = 0.6 e = 0.7 e = 0.8 e = 0.9 e = 1

1 17703 16101 14500 12899 11298 9697 8096 6494 4893 3292 1691

2 20729 18754 16780 14805 12830 10855 8880 6905 4931 2956 981

3 21270 19247 17224 15200 13177 11154 9131 7108 5084 3061 1038

4 25599 23111 20624 18136 15648 13161 10673 8186 5698 3211 723

Table 6.7: Utility function 2 (U
(2)
k ) for the 4 servers and different values of e

Server e = 0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = 0.5 e = 0.6 e = 0.7 e = 0.8 e = 0.9 e = 1

1 0.128 0.148 0.168 0.189 0.209 0.229 0.25 0.27 0.29 0.311 0.331

2 0.175 0.182 0.189 0.196 0.203 0.21 0.217 0.224 0.232 0.239 0.246

3 0.165 0.172 0.18 0.188 0.196 0.204 0.212 0.219 0.227 0.235 0.243

4 0.216 0.212 0.209 0.205 0.202 0.199 0.195 0.192 0.188 0.185 0.182

Table 6.8: Utility function 3 (U
(3)
k ) for the 4 servers and different values of e

Server e = 0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = 0.5 e = 0.6 e = 0.7 e = 0.8 e = 0.9 e = 1

1 0.1 6.4 12.6 18.8 25.1 31.3 37.5 43.7 50.0 56.2 62.4

2 0.2 8.1 16.1 24.0 31.9 39.9 47.8 55.7 63.7 71.6 79.6

3 0.2 8.3 16.4 24.6 32.7 40.8 49.0 57.1 65.2 73.4 81.5

4 0.2 10.4 20.6 30.8 41.0 51.3 61.5 71.7 81.9 92.1 102.3

Table 6.9: Utility function 4 (U
(4)
k ) for the 4 servers and different values of e

Server e = 0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = 0.5 e = 0.6 e = 0.7 e = 0.8 e = 0.9 e = 1

1 0.128 0.117 0.105 0.094 0.083 0.072 0.061 0.05 0.038 0.027 0.016

2 0.175 0.159 0.142 0.126 0.11 0.094 0.078 0.061 0.045 0.029 0.013

3 0.165 0.149 0.134 0.119 0.104 0.088 0.073 0.058 0.043 0.027 0.012

4 0.216 0.195 0.174 0.154 0.133 0.113 0.092 0.072 0.051 0.03 0.01
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Table 6.10: Utility function 5 (U
(5)
k ) for the 4 servers and different values of e

Server e = 0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = 0.5 e = 0.6 e = 0.7 e = 0.8 e = 0.9 e = 1

1 62.44 56.23 50.02 43.81 37.6 31.39 25.18 18.96 12.75 6.54 0.33

2 79.56 71.62 63.69 55.76 47.83 39.9 31.97 24.04 16.11 8.18 0.25

3 81.51 73.38 65.25 57.13 49.0 40.87 32.75 24.62 16.5 8.37 0.24

4 102.3 92.08 81.87 71.66 61.45 51.24 41.03 30.82 20.6 10.39 0.18

Table 6.11: Utility function 6 (U
(6)
k ) for the 4 servers and different values of e

Server e = 0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = 0.5 e = 0.6 e = 0.7 e = 0.8 e = 0.9 e = 1

1 0.02 0.05 0.08 0.11 0.14 0.17 0.2 0.24 0.27 0.3 0.33

2 0.01 0.04 0.06 0.08 0.11 0.13 0.15 0.18 0.2 0.22 0.25

3 0.01 0.04 0.06 0.08 0.1 0.13 0.15 0.17 0.2 0.22 0.24

4 0.01 0.03 0.04 0.06 0.08 0.1 0.11 0.13 0.15 0.16 0.18

Table 6.12: Utility function 7 (U
(7)
k ) for the 4 servers and different values of e

Server e = 0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = 0.5 e = 0.6 e = 0.7 e = 0.8 e = 0.9 e = 1

1 0.128 0.215 0.302 0.389 0.476 0.563 0.65 0.737 0.824 0.911 0.999

2 0.175 0.257 0.34 0.422 0.504 0.587 0.669 0.751 0.834 0.916 0.999

3 0.165 0.248 0.331 0.415 0.498 0.582 0.665 0.748 0.832 0.915 0.999

4 0.216 0.294 0.372 0.45 0.529 0.607 0.685 0.764 0.842 0.92 0.999

Tables 6.5 - 6.12 show the range of values that the utility functions can take for

the different servers and different values of e. Throughout the rest of this section,

these utility functions will be used as the key performance indicators that the

servers will use to make decisions about their own service speed.

6.6 Reinforcement learning algorithm

The agent-based mode described in Section 6.5 describes how the agents can

interact with the environment. The next step is to describe how the agents can

learn from their interactions. A reinforcement learning algorithm is described in

this section where the agents update their service rates based on the utilities they

receive from the queueing system [10, 71, 92]. The concepts described in Section 3

and Section 6.5 are incorporated in the reinforcement learning algorithm so that

the agents decide how fast they should serve the customers in order to maximise

their own utility.

The reinforcement learning algorithm is a policy iteration algorithm [93] where

the agents update their service rates based on the utilities they receive from the

queueing system. The service rates will be referred to as the policy in this section.
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A policy is a set of service rates for every server for each possible state they can

be in. The general form of a policy is given by equation (6.3).

The following pseudo-code describes the reinforcement learning algorithm. At

each iteration, the agent receives a utility U from the queueing system and up-

dates its service rate s based on the utility it received. A policy update is consid-

ered a change in the service rate of a server k at a state (u, v) that was visited in

the last simulation run (i.e. increasing or decreasing the value of µk,(u,v) for some

k and (u, v)). Recall from Section 6.5 that each agent (server) has a different

service rate for each possible state they can be in.

Choose an i n i t i a l p o l i c y

Run s imu la t i on with cur rent po l i c y

Ca l cu la te i n i t i a l u t i l i t y U current

For each i t e r a t i o n

1 . Choose a s e r v e r k

2 . Choose a s t a t e (u , v )

3 . Update po l i c y f o r s e r v e r k and s t a t e (u , v )

4 . Rerun s imu la t i on

5 . Ca l cu la te u t i l i t y U new

6 . I f u t i l i t y U i s h igher than prev ious u t i l i t y

= Accept po l i c y s

= Update U current to U new

The algorithm has been implemented in python and the scripts are archived and

can be found in [113].

The total number of iterations is a parameter that needs to be set to a high

enough value to ensure that the agents have enough time to learn from their

interactions with the queueing system. Additionally, in order to eliminate any

stochasticity from the simulation at each iteration, the simulation is run for a

fixed runtime and a fixed number of trials. Furthermore, when choosing a new

policy for a server and a state, the algorithm will choose a new policy that is

within a certain range of the current policy and that cannot be below zero.

An additional rule is that there is a maximum service rate that a server can have

for any given state. This is to ensure that unrealistic service rates are not chosen.

Some numeric results on why this rule is necessary are presented in Section 6.6.1.4.

Consider an example of a queueing system with 2 servers and the following set

of states:
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S = {(0, 0), (0, 1), (0, 2), (1, 2), (0, 3), (1, 3)} (6.16)

The 2 servers have a different service rate for each state (u, v) ∈ S. An initial

policy is chosen where the service rates for the 2 servers is set to:

µ(1) =

1 if v < 2

1.5 otherwise
µ(2) =

0.8 if v < 3

2 otherwise

Figures 6.7 - 6.9 show the policy for the 2 servers for the first 3 iterations of the

reinforcement learning algorithm.
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Figure 6.7: Example policy for server 1 and server 2 at iteration 1
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Figure 6.8: Example policy for server 1 and server 2 at iteration 2
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Figure 6.9: Example policy for server 1 and server 2 at iteration 3
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6.6.1 Numeric results

The reinforcement learning algorithm is implemented in python and the scripts

along with the generated data presented in this section have been archived and

can be found in [113]. Additional numerical experiments can also be found in

Appendix C.

Consider a queueing system with the parameters presented in Table 6.13.

Table 6.13: Parameter values for the reinforcement learning algorithm experi-
ments.

λ1 λ2 µ C T N M

0.5 1 0.7 4 7 10 7

Note that for the initial policy, the service rates of the 4 servers are set to µ = 0.7

for all servers and all states. In addition, the 4 servers are set to be of the same

expertise level as described in Section 6.5.2. That is, server 1 is an experienced

server, server 2 and server 3 are moderate servers and server 4 is an intern.

That means that when server 1 is not busy they will always receive the incoming

individual, otherwise either server 2 or server 3 will receive that individual with

an equal probability. Finally, server 4 may serve an individual only when every

other server is busy.

The remaining of this section focuses on the results of the reinforcement learning

algorithm from using utility functions U
(3)
k and U

(7)
k with different values of e.

The two utility functions are chosen because they were considered to be the most

realistic ones. In addition utility function U
(7)
k is used to express the effect of

having to balance the server’s best interest with the system’s best interest. It is

assumed that a server would like the proportion of individuals served to be as

high as possible, while also maximising their own idle time. This is what utility

function U
(7)
k aims to capture.

6.6.1.1 Utility function 3 (U
(3)
k ) with e = 0.1

Consider utility function 3 defined in (6.9) where U
(3)
k = e m̄(k)+(1−e) (R−B(k)).

Thus a server’s utility corresponds to the weighted average of the server’s service

time and their idle time. This means that in order for servers to increase their

utility they either need to work faster or increase the amount of time they are

idle. Figure 6.10 shows the utilities and mean service rate of servers from the

reinforcement learning run using utility function U
(3)
k with e = 0.1 and 100,000

iterations.
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Figure 6.10: Utilities (left) and mean service rate (right) of servers from the

reinforcement learning run using utility function U
(3)
k with e = 0.1 and 100,000

iterations

It can be seen from Figure 6.10 that the utility of server 1 (that has the highest

priority on incoming individuals) is the lowest, while server 4 (that has the lowest

priority on incoming) individuals has the highest utility. In addition, the mean

service rate of server 4 is the lowest while servers 1, 2 and 3 have similar mean

service rates. All servers managed to increase their utility by reducing their mean

service rate (i.e. working faster). Figure 6.11 shows the same example as above

but with 500,000 iterations.
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Figure 6.11: Utilities (left) and mean service rate (right) of servers from the

reinforcement learning run using utility function U
(3)
k with e = 0.1 and 500,000

iterations

Running the algorithm again for a longer runtime of 500,000 iterations does not

change the results significantly. The same observations can be made for both

figures.

6.6.1.2 Utility function 7 (U
(7)
k ) with e = 0.1

Consider the plot of the mean rates of Figures 6.10 and 6.11 (rightmost graph).

The service rate of each server consists of a different service rate for each state
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(u, v) of the system. The way the reinforcement learning algorithm is constructed,

the service rate of each server is updated at each iteration based on the visited

states of the system. This means that it doesn’t make sense to calculate the mean

service rate from all states of the system. In this subsection, the weighted mean

service rate is used instead, where the weight of each state is the probability of

visiting that state. The weighted mean service rate of server k is defined as:

µ̂(k) =
∑

(u,v)∈S

π(u, v)µk,(u,v) (6.17)

Consider the same example as in the previous subsection but with utility function

7 defined in (6.13) where U
(7)
k = e Is

I
+(1−e) R−B(k)

R
and e = 0.1. Note that given

the nature of this utility function the utilities of the agents can now only be

within the range [0, 1].
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Figure 6.12: Utilities (left) and weighted mean service rate (right) of servers from

the reinforcement learning run using utility function U
(7)
k with e = 0.1.

Figure 6.12 shows the utilities and weighted mean service rate of servers from the

reinforcement learning run using utility function U
(7)
k . It can be seen from Fig-

ure 6.12 that the utilities follow a similar pattern to the ones from Section 6.6.1.1.

That is, the utility of server 1 is the lowest while the utility of server 4 is the

highest, leaving servers 2 and 3 with similar utilities in between. In terms of the

weighted mean service rate, servers 2, 3 and 4 managed to reduce their service

rate while server 1 had to increase its service rate in order to maximise its utility.

What happens if the initial service rate of all servers is changed? Would the

servers manage to arrive to the same policies and same utilities? Figure 6.13 shows

the utilities and weighted mean service rates of servers from the reinforcement

learning run using utility function U
(7)
k with e = 0.1 and an initial service rate of
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0.2 for all servers.
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Figure 6.13: Utilities (left) and weighted mean service rate (right) of servers from

the reinforcement learning run using utility function U
(7)
k with e = 0.1 and an

initial service rate of 0.2 for all servers.

Figure 6.13 shows that, even though it takes longer to stabilise, the reinforcement

learning algorithm is able to find the same utilities as before. In addition, it can

be seen from the weighted mean service rates that servers have also managed to

find the same policies as before. Note that more exploration is needed from the

agents in order to reach the same policies as before.

Now, consider the scenario where the initial service rate of all servers is increased.

Figure 6.14 shows the utilities and weighted mean service rates of servers from

the reinforcement learning run using utility function U
(7)
k with e = 0.1 and an

initial service rate of 1.5 for all servers.
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Figure 6.14: Utilities (left) and weighted mean service rate (right) of servers from

the reinforcement learning run using utility function U
(7)
k with e = 0.1 and an

initial service rate of 1.5 for all servers.
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6.6.1.3 Utility function 7 (U
(7)
k ) with e = 0.5

This subsection considers the same parameters and utility function as in Sec-

tion 6.6.1.2 but with a different value for parameter e. Figure 6.15 shows the

utilities and weighted mean service rates of servers from the reinforcement learn-

ing run using utility function U
(7)
k with e = 0.5.
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Figure 6.15: Utilities (left) and weighted mean service rate (right) of servers from

the reinforcement learning run using utility function U
(7)
k with e = 0.5.

A similar pattern to the one in Figure 6.12 can be seen from Figure 6.15. The

policies found by the agents at the end of the run are similar to the ones found

when using e = 0.1. The only difference is that the utilities are slightly higher

when using e = 0.5.

Consider the scenario where the arrival rates of the two servers are increased.

Figure 6.16 shows the utilities and weighted mean service rates of servers when

increasing arrival rates of λ1 = 2 and λ2 = 2.5.
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Figure 6.16: Utilities (left) and weighted mean service rate (right) of servers

from the reinforcement learning run using utility function U
(7)
k with e = 0.5 and

increased arrival rates of λ1 = 2 and λ2 = 2.5.
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6.6.1.4 Utility function 7 (U
(7)
k ) with no upper bounds

Numeric results of Sections 6.6.1.1, 6.6.1.2 and 6.6.1.3 use an upper bound for

the service rate of servers. In other words, the service rate of servers is bounded

by a specific value so that the agents don’t end up with a service rate of a really

high unrealistic value. An example of the reinforcement learning run using utility

function U
(7)
k with e = 0.5 and no upper bound on the service rate is shown in

Figure 6.17.
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Figure 6.17: Utilities (left) and weighted mean service rate (right) of servers from

the reinforcement learning run using utility function U
(7)
k with e = 0.5 and no

upper bound on the service rate.

It can be seen from Figure 6.17 that the reinforcement learning algorithm ends up

with a weighted mean service rate of servers of 0 while getting all their utilities

to the maximum value of 1. The question to be asked is how something like this

is possible. The answer is that since the service rate of servers is not bounded,

server 1 ends up having a ridiculously high service rate. The service rates of the

remaining servers don’t matter since every individual that arrives, is served by

server 1 almost instantly and leaves the system immediately. This results in the

state probabilities being 0 in every state except state (0, 0). In fact, only states

(0, 0) and (0, 1) are visited in the system, where (0, 1) is visited for a short time

because of how fast server 1 is serving individuals.



1.0 2.44× 10−19 NaN NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN


(6.18)
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

0 4× 1015 9.4 0.5 2.1 1.8 0.8 0.4 0.7 0.7 0.7

NaN NaN NaN NaN NaN NaN NaN 0.7 1.9 0.08 0.7

NaN NaN NaN NaN NaN NaN NaN 1.6 0.7 0.1 0.7

NaN NaN NaN NaN NaN NaN NaN 1.3 0.7 0.7 0.7

NaN NaN NaN NaN NaN NaN NaN 0.7 0.2 0.7 0.7

NaN NaN NaN NaN NaN NaN NaN 0.7 0.7 0.7 0.7

NaN NaN NaN NaN NaN NaN NaN 0.7 0.7 0.7 0.7

NaN NaN NaN NaN NaN NaN NaN 0.7 0.7 0.7 0.7


(6.19)

Equation (6.18) shows the state probabilities of the system and equation (6.19)

shows the service rates of server 1. The service rates of the remaining servers

are not shown since they are not relevant. Note that the missing values in equa-

tion (6.18) indicate that not only the state probabilities are 0 for these states,

but can’t even be visited by the system. With a service rate of 4× 1015 for server

1, state probability 2.44× 10−19 for state (0, 1) and state probability 1.0 for state

(0, 0), the weighted mean service rate of server 1 is:

(0× 1.0) +
[
(4× 1015)× (2.44× 10−19)

]
≈ 0.001 (6.20)

That is the reason why an upper bound on the service rates is needed. Without

an upper bound, servers could choose an extremely high service rate and thus

making the system reach unreachable scenarios.

6.6.1.5 Changing arrival rates during the run

Consider once again the same parameters and utility function as in Section 6.6.1.3.

That is a using a utility function U
(7)
k with e = 0.5 and arrival rates of λ1 = 0.5

and λ2 = 1. In this subsection the reinforcement learning algorithm is run with

the same parameters, but the arrival rates are changed during the run. The total

runtime of the reinforcement learning algorithm is 5000 iterations. The arrival

rates are set to λ1 = 0.5 and λ2 = 1 for the first 2000 iterations. Then the arrival

rates are increased to λ1 = 3 and λ2 = 3.5 for iterations 2000 to 4000 and then

the arrival rates are decreased back to λ1 = 0.5 and λ2 = 1 for the last 1000

iterations.
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Figure 6.18: Utilities (left) and weighted mean service rate (right) of servers

from the reinforcement learning run using utility function U
(7)
k with e = 0.5 and

changing arrival rates throughout the run.

Figure 6.18 shows the utilities and the weighted mean service rates of the servers.

The first 2000 iterations are identical with the first 2000 iterations of the rein-

forcement learning run of Figure 6.15. At iteration 2000, when the arrival rates

are increased to λ1 = 3 and λ2 = 3.5, the utilities of the agents drop significantly.

At the same time the weighted mean service rates of servers 2, 3 and 4 increase

significantly while server 1’s rates are decreased. In other words the arrival rates

are increased so much that the priority of the servers does not matter that much

anymore. All servers are constantly busy an they end up having more similar

service rates with each other.

At iteration 4000 the arrival rates are decreased back to λ1 = 0.5 and λ2 = 1.

The utilities of the agents increase again and the weighted mean service rates of

servers 2, 3 and 4 decrease while server 1’s rates are increased. What is more

important here is how the utilities and the weighted mean service rates change.

Having learned their optimal service rates during the first 2000 iterations the

servers are able to quickly retrieve their chosen service rates when the arrival

rates are decreased back to λ1 = 0.5 and λ2 = 1.

6.7 Chapter summary

This chapter aims to explore an extension to the queueing network described in

Section 3. The proposed model is an agent-based model where the servers can

choose their own service rate. In addition, a reinforcement learning algorithm

is implemented to allow the servers to learn their own service rate so that they

maximise their own utility function.

Section 6.2 describes a variant of the queueing system described in Chapter 3
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where the service rate of the servers is dependent on the state of the system. In

this model there is a service rate for each particular state of the system. This

modification attempts to capture the idea that the servers might be more likely to

serve patients faster when the system is under pressure. In addition, Section 6.3

describes another variant of the queueing system where the service rate can be

dependent on the server. This can be used to capture the individual behaviour

of servers, where some servers might be more likely to serve patients faster than

others. Finally, Section 6.4 combines the two concepts into a model where the

service rate of the servers is dependent on both the servers and the state of the

system. An example of combining the state and server-dependent model with the

game theoretic model described in Chapter 4 is also given.

Section 6.5 then proceeds to use the state and server-dependent model to create

an agent-based model where the servers can choose their own service rate to

maximise a utility function. Some possible utility functions are given and a

case study is described where one of the utility functions is used to model the

behaviour of the servers. Finally, Section 6.6 uses the agent-based model to create

a reinforcement learning model where the servers can learn to choose their own

service rate in order to maximise their own utility function. Some numerical

results are also given to show how the change in the servers’ behaviour can affect

the overall performance of the system. A particular scenario is investigated where

the reinforcement learning algorithm is used to train the servers and when the

servers have reached a stable service rate, the system is flooded with individuals.

The results show how the servers are able to adapt to the new situation and when

the system is no longer flooded, the servers are able to return to their pre-learned

service rates.
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Chapter 7

Conclusions

This Chapter aims to summarise the research presented in this thesis and to

provide a reflection on the research process and the contributions that have been

made. Finally, it will provide some recommendations for future work. Each

chapter of this thesis included a Chapter Summary section, and so the summary

here will be brief.

7.1 Research Overview

The motivation behind this thesis has been that emergency departments are under

a lot of pressure to treat patients. This is, in practice, often centrally controlled

through a mechanism of some sort of performance measure target. The research

presented in this thesis shows how this can negatively impact the pathway of both

the ambulance patients and the ambulance service itself. Due to some managerial

decision making that takes place at the Emergency Department (ED), ambulances

may stay blocked outside of the ED in the hospital’s parking zone in an attempt

to satisfy these regulations.

This thesis presents a queueing network model that is used to describe an ED that

accepts patients arriving by ambulance and patients that arrive by other means.

The model is then used to construct a game theoretic model that is informed by

the queueing network model. The game theoretic model is presented as a 3-player

game between the Emergency Medical Services (EMS) and two EDs. The game

theoretic model is then used to explore the impact of different strategies on the

performance of the EDs.

Chapter 1 provides an overview of Operational Research (OR) and the prob-

lem of congestion in healthcare which served as the motivation for this research.
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Chapter 2 then provides a literature review of the relevant research that has been

done. Namely, a review of the literature on OR models applied to healthcare

systems, a review of the conjunction of queueing theory and game theory and

a review of the literature on game theoretic models applied to healthcare has

been presented. Moreover, a brief review on behavioural OR is also presented to

provide some context for the agent-based model that is presented in this thesis.

Chapter 3 then introduces a queueing network model with two waiting spaces

that accepts two types of individuals. The types of individuals are then used to

describe an ED that accepts patients arriving by ambulance and patients that

arrive by other means. The modelling approaches along with the calculations for

the model’s performance measures are also presented. In addition, some numer-

ical comparisons of the different approaches are given as a form of validation of

the different approaches. Chapter 4 introduces a game theoretic model using the

queueing network model as a basis. Essentially, the queueing network model is

used to construct a 3-player game between the decision makers of two queueing

networks and a provider that distributes individuals between the two queueing

networks. This is later mapped to a 3-player game between the EMS and two

EDs. In the methodology Brent’s algorithm was used to find the best response

of the third player (the EMS), for all possible combinations of strategies that

the other two players (the two EDs) might choose. The resultant game is then

reduced to a 2-player game between the two EDs where already existing Nash

Equilibrium algorithms and evolutionary learning algorithms could be applied.

Some results of the numerical experiments are then presented and discussed in

Chapter 5. The particular scenario that was explored was one between two EDs

that were heavily congested. Several what-if scenarios were investigated to de-

termine ways to reduce the ambulance congestion at the EDs.

In addition to the game theoretic model, an agent-based model was also devel-

oped in Chapter 6. Instead of the previous constant service times, the queueing

model was expanded to use state and server-dependent service times. As a result,

an agent-based model is built with different service times for every server and sys-

tem state. The learning that occurs when servers determine the speed at which

they serve customers in order to maximise some utility is then observed using a

reinforcement learning algorithm. Some numerical results are then presented and

discussed in Section 6.6.1.

The motivation for the agent-based extension came from certain ethnographic

insights where it was observed that ambulance staff and ED staff were in fact

playing a more cooperative game. In fact, the players were not only trying to

maximise their own utility but also the utility of the system. Thus, some of
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the utility functions used for the agent-based model were structured in a way

that aimed to increase both each staff member’s happiness and the overall social

welfare of the system.

7.2 Contributions

The research presented in this thesis has made some novel contributions to the

literature on OR models and healthcare applications. The findings of this thesis

that relate to the queueing network and the game theoretic model have also been

published and are presented in [114]. The contributions are as follows:

� A novel queueing network model with two waiting spaces where one serves

as a buffer for the other. The model is used to describe an ED that accepts

patients arriving by ambulance and patients that arrive by other means.

� Performance measure calculations for the queueing network model. Such

performance metrics include the average number of individuals in the sys-

tem, mean waiting time, mean blocking time and proportion of individuals

that are served within a certain time.

� A 3-player game theoretic model between two queueing networks and a

provider that distributes individuals between the two queueing networks.

The game is then mapped to a 3-player game between the EMS and two

EDs.

� Numerical experiments showing emergent behaviour of gaming between EDs

and the EMS. A scenario where two EDs are heavily congested is explored

and several what-if scenarios are investigated to determine ways to reduce

the ambulance congestion at the EDs.

� An agent-based model with reinforcement learning that is used to explore

the learning that occurs when servers determine the speed at which they

serve customers in order to maximise some utility. The model is built using

the queueing network model as a basis.

� Numerical experiments using the agent-based model with reinforcement

learning to explore the learning that occurs.

Although this research is motivated by the particular EMS-ED example, the de-

veloped modelling framework and behavioural insights has applications to similar

systems across a range of sectors and settings. The queueing model can be ap-

plied to any setting where individuals may be blocked on a separate queue. An
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example of such setting can be any type of delivery service where customers can

purchase goods either online or in-person. At busier times, the person deliver-

ing the product may be blocked outside the store in an attempt to improve the

waiting times for walk-in customers.

The key findings from this paper that were observed when playing the game

between two EDs and the EMS are:

� Inefficiencies can be learned and emerge naturally;

� Targeted incentivisation of behaviours can help escape inefficiencies.

The former relates to the results of asymmetric replicator dynamics shown in

Chapter 5. The results showed that inefficient scenarios can arise when letting

the players play the game by prioritising their best interests, while the latter

implies that these learned inefficiencies can be escaped by carefully applying cer-

tain incentives to the players. In theory, this careful incentivisation of behaviours

is done by applying some form of penalty to the payoff matrices of the players

to force them change their strategy. In practice, getting that penalty is more

difficult.

The motivation for this thesis has been the problem of ambulance congestion

at EDs. The findings of the thesis suggest that by letting the EDs and the

EMS play a non-cooperative game, some behaviour that might not be optimal

for the EMS, is likely to emerge. Such behaviour could be escaped with careful

incentivisation of the EDs. In practice, applying this incentive mechanism to

an ED would be difficult because the EDs are not a single entity but rather a

collection of individuals that could be incentivised in different ways. Although it

would require further research to determine the best way to apply such incentive

mechanisms in practice, the findings of this thesis could be used to inform the

design of such incentive mechanisms.

Apart from the theoretical contributions, this thesis also made some contributions

to open-source software. The following software contributions were made as part

of this thesis:

� ambulance game: A Python package that implements the queueing network

model and the game theoretic model presented in this thesis. A detailed

description of the package can be found in Appendix A.

� nashpy contribution: Implemented the asymmetric replicator dynamics al-

gorithm in the nashpy Python library.
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� ciw contribution: Implemented custom server priorities in the ciw Python

library.

� ciw contribution: Implemented server dependent distributions in the ciw

Python library.

7.3 Future Work

The model that is being discussed here presupposes the presence of only two

players that can receive individuals. However, in a realistic healthcare scenario an

ambulance may have to decide among multiple EDs. An immediate extension of

this work would be to consider a multiplayer system that could represent a group

of hospitals in a concentrated area. Moreover, the developed game theoretic model

employs a discrete strategy space for the EDs (something that is also present in

various related literature [40, 77]). The single threshold parameter that is used

for the ED’s decision may not be a good representation of the way EDs actually

operate. In reality ED managers might adopt far more complex parameters for

their decision making process. Moreover, the game theoretic model of this work

assumes that the EMS and EDs act in a selfish and rational way by only aiming

to satisfy their own objectives. In some settings, cooperation may be observed

and would therefore require an adapted modelling approach. The creation of

the agent-based model that was introduced in Chapter 6.5 was motivated by the

potential cooperation between the EMS and EDs. Further research could be done

to explore the potential for cooperation in this setting and how it could be further

investigated. Finally, future work could touch upon the completion of the work

presented in Appendix D, where an attempt to develop a closed form formula for

the steady state probabilities of the queueing model was made. The formula was

not completed and therefore further research could be done to derive the formula

and investigate its properties.
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Appendix A

The ambulance game Python

library

This chapter of the appendix provides an overview of the ambulance game Python

library. This is a library that accompanies all chapters of this thesis and provides

the functionality to run the mathematical models and simulations described in

the thesis. The library uses the best available tools to ensure the code is correct,

readable, well-documented and properly tested. These tools are outlined in Sec-

tion 1.4.4. The library is also publicly available on GitHub and has been archived

on Zenodo [111].

This appendix chapter is structured based on the Diataxis framework [117]. The

structure of the chapter is as follows:

� Section A.1 provides instructions on how to install the library.

� Section A.2 a learning-oriented lesson on performing a specific task using

the library.

� Section A.3 provides a goal-oriented how-to guide on how to use the library.

� Section A.4 provides some technical descriptions of the library and how to

use it.

� Section A.5 provides a discussion of some of the details of the library.
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A.1 Installation

The ambulance game library is published on the Python Package Index (PyPI)

and can be installed using the pip package manager [50]:

$ python -m pip install ambulance_game

Alternatively, a development version of the library can be installed from GitHub.

The following commands clone the repository, activate the conda environment,

install the flit package manager and install the library in development mode:

$ git clone https :// github.com/MichalisPanayides/AmbulanceDecisionGame.git

$ cd AmbulanceDecisionGame

$ conda env create --file environment.yml

$ conda activate ambulance_game

$ python -m pip install flit

$ python -m flit install --symlink

To make sure that the library is installed correctly, and to check that the tests

pass, the following command install the tox package manager and runs the tests:

$ python -m pip install tox

$ python -m tox

A.2 Tutorial

The following tutorial provides the steps to get the Nash equilibrium of an in-

stance of the game between two hospitals and an ambulance service provider

using the ambulance game library. Table A.1 provides the parameters of the

game instance.

λ2 t P̂ α

8 2 0.7 0.5

λA
1 µA CA NA MA

1 3 2 10 5

λB
1 µB CB NB MB

2 1 3 10 5

Table A.1: Parameters of the game

A full description of the parameters of the game can also be found in Section 4.3.1.

The code snippet in Listing A.1 defines the parameters of the game instance using

Python.
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>>> lambda_2 = 8

>>> target = 2

>>> alpha = 0.5

>>> p_hat = 0.7

>>>

>>> lambda_1_1 = 1

>>> mu_1 = 3

>>> num_of_servers_1 = 2

>>> system_capacity_1 = 10

>>> buffer_capacity_1 = 5

>>>

>>> lambda_1_2 = 2

>>> mu_2 = 1

>>> num_of_servers_2 = 3

>>> system_capacity_2 = 10

>>> buffer_capacity_2 = 5

Code snippet A.1: Python code that defnies the parameters.

The arrival rate of type 2 individuals (ambulance patients) is set to lambda 2 =

8. The parameters that correspond to the policy imposed to the hospitals are

target = 2 and p hat = 0.7. This means that the hospitals should aim to serve

70% of the patients that arrive at the hospital within 2 time units.

The python code shown in A.2 uses the parameters of the current game to create

matrices A, B and R that represent the payoff matrices of the game and the

routing matrix respectively. For more information on the matrices of the game,

refer to Section 4.4.3. The code snippet also uses the nashpy library [143] to

define the game object.

>>> import ambulance_game as abg

>>> import numpy as np

>>> import nashpy as nash

>>>

>>> A, B, R = abg.game.get_payoff_matrices(

... lambda_2=lambda_2 ,

... target=target ,

... alpha=alpha ,

... p_hat=p_hat ,

... lambda_1_1=lambda_1_1 ,

... lambda_1_2=lambda_1_2 ,

... mu_1=mu_1 ,

... mu_2=mu_2 ,

... num_of_servers_1=num_of_servers_1 ,

... num_of_servers_2=num_of_servers_2 ,

... system_capacity_1=system_capacity_1 ,

... system_capacity_2=system_capacity_2 ,

... buffer_capacity_1=buffer_capacity_1 ,

... buffer_capacity_2=buffer_capacity_2 ,

... )

>>> game = nash.Game(A, B)

Code snippet A.2: Python code that defines the game instance.
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Thus, a Nash equilibrium of the game can be found using the lemke howson

function of the nashpy library. The Python code shown in Listing A.3 gets a

Nash equilibrium of the game instance.

>>> strat_1 , strat_2 = game.lemke_howson(initial_dropped_label =0)

>>> strat_1

array ([0., 0., 0., 0., 0., 0., 0., 0., 0., 1.])

>>> strat_2

array ([0., 0., 0., 0., 0., 1., 0., 0., 0., 0.])

Code snippet A.3: Python code that finds a Nash equilibrium of the game

instance.

This corresponds to player 1 playing a strategy of σA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

and player 2 playing a strategy of σB = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0). This in turn

corresponds to player 1 choosing a threshold of TA = 10 and player 2 choosing a

threshold of TB = 6.

Apart from the Nash equilibrium, a learning algorithm can also be used to get

an evolutionary stable strategy (ESS) of the game. In the code snippet shown in

Listing A.4, the results of the asymmetric replicator dynamics algorithm run are

shown. The code snippet also uses the matplotlib library to plot the results of

the algorithm.

>>> import matplotlib.pyplot as plt

>>> xs ,ys = game.asymmetric_replicator_dynamics(

... timepoints=np.linspace(0, 10000, 1000)

... )

>>>

>>> plt.plot(xs [0:30]) # doctest: +SKIP

>>> plt.title("Asymmetric replicator dynamics for player 1") # doctest: +SKIP

>>> plt.xlabel("Timepoints") # doctest: +SKIP

>>> plt.ylabel("Probability") # doctest: +SKIP

>>> plt.show() # doctest: +SKIP

>>>

>>> plt.plot(ys) # doctest: +SKIP

>>> plt.title("Asymmetric replicator dynamics for player 2") # doctest: +SKIP

>>> plt.xlabel("Timepoints") # doctest: +SKIP

>>> plt.ylabel("Probability") # doctest: +SKIP

>>> plt.show() # doctest: +SKIP

Code snippet A.4: Python code that runs the asymmetric replicator dynamics

algorithm.
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From the results of both the Lemke-Howson algorithm and the asymmetric repli-

cator dynamics algorithm, the same pair of strategies is found. That is player 1

choosing a threshold of TA = 10 and player 2 choosing a threshold of TB = 6.

The equivalent strategy of the third player; the ambulance service, can be found

from the routing matrix R in position R10,6.

>>> threshold_1 , threshold_2 = 10, 6

>>> prop_A = R[threshold_1 - 1, threshold_2 - 1]

>>> prop_B = 1 - prop_A

>>> np.round(prop_A , 2), np.round(prop_B , 2)

(0.95, 0.05)

Code snippet A.5: Python code for the strategy of the third player.

In response to the thresholds chosen by the first two players, the ambulance

service chooses to send 95% of the ambulances to the first hospital and 5% of

the ambulances to the second hospital. Having this percentage of ambulances

sent to each hospital, the overall waiting time of patients at each hospital can be

calculated. The Python code shown in Listing A.6 calculates the waiting time of

patients at each hospital.

>>> mean_wait_1 = abg.markov.

get_mean_waiting_time_using_markov_state_probabilities(

... lambda_2=lambda_2 * prop_A ,

... lambda_1=lambda_1_1 ,

... mu=mu_1 ,

... num_of_servers=num_of_servers_1 ,

... threshold=threshold_1 ,

... system_capacity=system_capacity_1 ,

... buffer_capacity=buffer_capacity_1 ,

... )

>>> mean_wait_2 = abg.markov.

get_mean_waiting_time_using_markov_state_probabilities(

... lambda_2=lambda_2 * (1 - prop_A),

... lambda_1=lambda_1_2 ,

... mu=mu_2 ,

... num_of_servers=num_of_servers_2 ,

... threshold=threshold_2 ,

... system_capacity=system_capacity_2 ,
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... buffer_capacity=buffer_capacity_2 ,

... )

>>> np.round(mean_wait_1 , 3)

1.257

>>> np.round(mean_wait_2 , 3)

0.632

Code snippet A.6: Python code for the waiting time of patients at each hospital.

The results of the calculations show that the average waiting time of patients at

the first hospital is 1.257 time units and the average waiting time of patients at

the second hospital is 0.632 time units. Going back to the parameters that relate

to the policy imposed on the hospitals, target = 2 and p hat = 0.7. As stated

earlier, that corresponds to both hospitals serving 70% of the patients within 2

time units. The mean total time of patients is calculated by adding the average

waiting time and the average service time of patients.

>>> np.round(mean_wait_1 + (1 / mu_1), 3)

1.591

>>> np.round(mean_wait_2 + (1 / mu_2), 3)

1.632

Code snippet A.7: Python code for the mean total time of patients at each

hospital.

The first mean time in hospital 1 for patients is 1.591 time units and the mean

time in hospital 2 for patients is 1.632 time units.

A.3 How-to guides

This section contains a series of how-to guides that explain how to use the library.

This section contains four subsections that explain how to use the library for the

following purposes:

� Simulating the hospital using discrete event simulation.

� Getting the Markov chain representation of the hospital.

� Creating an object oriented implementation of the functionality of both the

discrete event simulation and the Markov chain representation.

� Creating a game theoretic model of the hospital.
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A.3.1 Discrete Event Simulation

For the purposes of this study, a discrete event simulation (DES) model was

constructed that is also described in Section 3.2. The queueing model was built

in python using the Ciw library [142].

The same performance measures described in Section 3.4.1, Section 3.4.2 and

Section 3.4.3 can also be calculated using the DES model. The simulation can

be ran a number of times to eliminate stochasticity and the outcomes of the two

methods can be directly comparable.

The DES representation of the hospital network is a discrete event simulation

that is implemented using the ciw library [142]. The required arguments that

need to be passed to the simulate model function are the following:

� lambda 1 (λ1): The arrival rate of class 1 individuals.

� lambda 2 (λ2): The arrival rate of class 2 individuals.

� mu (µ): The service rate of the servers.

� num of servers (C): The number of servers in the system.

� threshold (T ): The threshold that indicates when to start blocking type

2 individuals.

>>> lambda_1 = 3

>>> lambda_2 = 2

>>> mu = 1

>>> num_of_servers = 6

>>> threshold = 10

To get the simulation object with all the data records, the following code can

be used:

>>> import ambulance_game as abg

>>> import numpy as np

>>> simulation = abg.simulation.simulate_model(

... lambda_1=lambda_1 ,

... lambda_2=lambda_2 ,

... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... seed_num=0,

... )

>>> simulation.get_all_records ()[4]

Record(id_number=2, customer_class =0, node=2, arrival_date =0.5727571550618586 ,

waiting_time =0.0, service_start_date =0.5727571550618586 , service_time

=0.7159547497671506 , service_end_date =1.2887119048290092 , time_blocked =0.0,

exit_date =1.2887119048290092 , destination=-1, queue_size_at_arrival =1,

queue_size_at_departure =3)
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Additional arguments that can be passed to the function are:

� system capacity (N): The maximum number of individuals in waiting

zone 1.

� buffer capacity M : The maximum number of individuals in waiting zone

2.

� seed num: The seed number for the random number generator.

� runtime: How long to run the simulation for.

From a single run of the simulation the data records can be used to get the

average for certain performance measures. The following code can be used to

get the mean waiting time, blocking time, service time and the proportion of

individuals within target.

>>> records = simulation.get_all_records ()

>>> mean_wait = np.mean(

... [w.waiting_time for w in records]

... )

>>> mean_wait

0.23845862661827116

>>> mean_block = np.mean(

... [b.time_blocked for b in records]

... )

>>> mean_block

0.08501727452006658

>>> mean_service = np.mean(

... [s.service_time for s in records]

... )

>>> mean_service

0.7102610863960119

>>> target = 1

>>> proportion_within_target = np.mean(

... [r.waiting_time + r.service_time <= target for r in records]

... )

>>> proportion_within_target

0.6200119712689545

To reduce the effects of stochasticity in the simulation, the simulation can be run

numerous times and get the average performance measures out of all the runs.

>>> all_simulations = abg.simulation.get_multiple_runs_results(

... lambda_1=lambda_1 ,

... lambda_2=lambda_2 ,

... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... system_capacity =20,

... buffer_capacity =10,
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... seed_num=0,

... runtime =2000 ,

... num_of_trials =10,

... target=1,

... )

>>> mean_wait = np.mean([

... np.mean(w.waiting_times) for w in all_simulations

... ])

>>> mean_wait

0.35585979549204577

>>> mean_service = np.mean([

... np.mean(s.service_times) for s in all_simulations

... ])

>>> mean_service

1.002184850213415

>>> mean_block = np.mean([

... np.mean(b.blocking_times) for b in all_simulations

... ])

>>> mean_block

0.3976966024549059

>>> mean_prop = np.mean([

... p.proportion_within_target for p in all_simulations

... ])

>>> mean_prop

0.45785790578122043

To get the steady state probabilities of the model based on the simulation the

following code can be used:

>>> import numpy as np

>>> import ambulance_game as abg

>>> simulation_object = abg.simulation.simulate_model(

... lambda_1=1,

... lambda_2=2,

... mu=2,

... num_of_servers =2,

... threshold=3,

... system_capacity =4,

... buffer_capacity =2,

... seed_num=0,

... runtime =2000 ,

... )

>>> probs = abg.simulation.get_simulated_state_probabilities(

... simulation_object=simulation_object ,

... )

>>> np.round(probs , decimals =3)

array ([[0.166 , 0.266 , 0.192, 0.147, 0.025] ,

[ nan , nan , nan , 0.094, 0.024] ,

[ nan , nan , nan , 0.058, 0.027]])

>>> total = np.nansum(probs)

>>> np.round(total , decimals =5)

1.0
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Similarly to get the average steady state probabilities over multiple runs, one can

use the code in Listing A.8 to get the average steady state probabilities out of

multiple runs.

>>> import numpy as np

>>> import ambulance_game as abg

>>> probs = abg.simulation.get_average_simulated_state_probabilities(

... lambda_1=1,

... lambda_2=2,

... mu=2,

... num_of_servers =2,

... threshold=3,

... system_capacity =4,

... buffer_capacity =2,

... seed_num=0,

... runtime =2000 ,

... num_of_trials =10,

... )

>>> np.round(probs , decimals =3)

array ([[0.18 , 0.267, 0.197 , 0.144, 0.024] ,

[ nan , nan , nan , 0.085, 0.022] ,

[ nan , nan , nan , 0.054, 0.026]])

>>> total = np.nansum(probs)

>>> np.round(total , decimals =5)

1.0

Code snippet A.8: The average steady state probabilities of the model based on

the simulation.

As an additional feature, the simulation can use a service rate that is state de-

pendent, server dependent or both. This feature was implemented to accompany

Chapter 6 of this thesis. The state-dependent service rate is defined as a dic-

tionary with the keys being the states (see Section 6.2). The server-dependent

service rate is defined as a dictionary with the keys being the servers (see Sec-

tion 6.3). The state and server dependent service rate is defined as a dictionary

with the keys being the servers and the values being dictionaries with the keys be-

ing the states (see Section 6.4). The code snippet in Listing A.9 shows examples

of how to define these service rates.

>>> state_dependent_service_rate = {

... (0, 0): np.nan ,

... (0, 1): 0.5,

... (0, 2): 0.3,

... (0, 3): 0.2,

... (1, 3): 0.2,

... (0, 4): 0.2,

... (1, 4): 0.4,

... }

>>> server_dependent_service_rate = {

... 1: 0.5,

... 2: 0.3,

... }

>>> state_server_dependent_service_rate = {
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... 1: {

... (0, 1): 0.5,

... (0, 2): 0.3,

... (0, 3): 0.2,

... (1, 3): 0.2,

... (0, 4): 0.2,

... (1, 4): 0.4,

... },

... 2: {

... (0, 1): 1.5,

... (0, 2): 1.3,

... (0, 3): 1.2,

... (1, 3): 1.2,

... (0, 4): 1.2,

... (1, 4): 1.4,

... },

... }

Code snippet A.9: Examples of how to define the state-dependent, server-

dependent and state and server dependent service rates.

Note that for this particular example server 1 is much slower than server 2 for all

states. The code shown in A.10 shows how to use the state and server dependent

service rate in the simulation. At the end the busy time of the two servers can

be compared.

>>> simulation_object = abg.simulation.simulate_model(

... lambda_1 =0.2,

... lambda_2 =0.15,

... mu=state_server_dependent_service_rate ,

... num_of_servers =2,

... threshold=4,

... seed_num=0,

... runtime =100,

... )

>>> servers = simulation_object.nodes [2]. servers

>>> [server.busy_time for server in servers]

[32.88159812544271 , 8.576662185652019]

Code snippet A.10: The simulation using the state and server dependent service

rate.

It can be seen that the busy time of server 1 is much higher than the busy time

of server 2.

A.3.2 Markov Chains

This subsection presents a guide on how to use the ambulance game library to

create and solve the Markov chain (MC) model of the hospital network discussed

in this thesis (see Section 3.3). The parameters used are defined in Listing A.11.

For more information on the parameters, refer to Section 3.
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>>> lambda_1 = 1

>>> lambda_2 = 2

>>> mu = 5

>>>

>>> num_of_servers = 1

>>> threshold = 2

>>> system_capacity = 3

>>> buffer_capacity = 1

Code snippet A.11: Python code for the parameters used in the Markov chain

model.

This section focuses on the markov module of the ambulance game library which

focuses on the Markov model. Function build states takes in the threshold,

the system capacity and the buffer capacity variables and returns a list of

all the states of the MC model.

>>> import ambulance_game as abg

>>> all_states = abg.markov.build_states(

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

>>> all_states

[(0, 0), (0, 1), (0, 2), (1, 2), (0, 3), (1, 3)]

Code snippet A.12: Python code for building the states of the Markov chain

model.

To visualise the list of states that are returned by the build states function,

the visualise markov chain function can be used.

>>> abg.markov.visualise_markov_chain(

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... ) # doctest: +SKIP

Code snippet A.13: Python code for visualising the Markov chain model.
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(0, 0) (0, 1) (0, 2)

(1, 2)

(0, 3)

(1, 3)

The function get transition matrix builds the transition matrix of the MC

model. The transition matrix is defined in Equation 3.3.

>>> Q = abg.markov.get_transition_matrix(

... lambda_1=lambda_1 ,

... lambda_2=lambda_2 ,

... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... )

>>> Q

array ([[-3., 3., 0., 0., 0., 0.],

[ 5., -8., 3., 0., 0., 0.],

[ 0., 5., -8., 2., 1., 0.],

[ 0., 0., 5., -6., 0., 1.],

[ 0., 0., 5., 0., -7., 2.],

[ 0., 0., 0., 5., 0., -5.]])

Code snippet A.14: Python code for building the transition matrix of the Markov

chain model.

The functions shown in Listing A.15 can be used to calculate the steady state

probabilities of the MC model. The steady state probabilities can be calculated

using a numerical method or an algebraic method (see Section 3.3.1). For more

information on the arguments of these methods, refer to Section A.5.
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>>> pi = abg.markov.get_steady_state_numerically(Q)

>>> pi

array ([0.44853393 , 0.26912036 , 0.16147222 , 0.07381587 , 0.02306746 ,

0.02399016])

>>> pi = abg.markov.get_steady_state_algebraically(Q)

>>> pi

array ([0.44853393 , 0.26912036 , 0.16147222 , 0.07381587 , 0.02306746 ,

0.02399016])

Code snippet A.15: Python code for building the steady state probabilities of the

Markov chain model.

The functions shown in Listing A.16 can be used to calculate the expected number

of patients in the system, service area and buffer centre. The mathematical

formulas for these calculations can be found in Section 3.4.

>>> import numpy as np

>>> np.round(

... abg.markov.get_mean_number_of_individuals_in_system(

... pi=pi , states=all_states

... ), 3

... )

0.979

>>> np.round(

... abg.markov.get_mean_number_of_individuals_in_service_area(

... pi=pi , states=all_states

... ), 3

... )

0.881

>>> np.round(

... abg.markov.get_mean_number_of_individuals_in_buffer_center(

... pi=pi , states=all_states

... ), 3

... )

0.098

Code snippet A.16: Python code for getting the expected number of patients in

the Markov chain model.

To get the mean waiting time of patients in the system, the code snippet shown in

Listing A.17 can be used. The waiting time formula can be found in Section 3.4.1.

>>> np.round(

... abg.markov.get_mean_waiting_time_using_markov_state_probabilities(

... lambda_1=lambda_1 ,

... lambda_2=lambda_2 ,

... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... ), 4
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... )

0.1195

Code snippet A.17: Python code for getting the expected waiting time of

individuals in the Markov chain model.

Note that an additional argument class type can be used to get the mean wait-

ing time of type 1 or type 2 individuals that takes values 0 and 1, respectively.

The default value of class type is set to None which returns the mean waiting

time of all individuals.

To get the mean blocking time of type 2 patients in the system (ambulance

patients), the code snippet shown in Listing A.18 can be used. The mathematical

formula for this calculation can be found in Section 3.4.2.

>>> np.round(

... abg.markov.get_mean_blocking_time_using_markov_state_probabilities(

... lambda_1=lambda_1 ,

... lambda_2=lambda_2 ,

... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... ), 4

... )

0.0542

Code snippet A.18: Python code for getting the expected blocking time of type

2 individuals in the Markov chain model.

To get the proportion of individuals that are seen within a time target, the code

snippet shown in Listing A.19 can be used. The formulas and distributions used

for this calculation can be found in Section 3.4.3.

>>> np.round(

... abg.markov.proportion_within_target_using_markov_state_probabilities(

... lambda_1=lambda_1 ,

... lambda_2=lambda_2 ,

... mu=mu ,

... num_of_servers=num_of_servers ,

... threshold=threshold ,

... system_capacity=system_capacity ,

... buffer_capacity=buffer_capacity ,

... class_type=None ,

... target =0.5,

... ), 3

... )

0.791

Code snippet A.19: Python code for getting the proportion of individuals within

target using the Markov chain model.
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A.3.3 Game Theoretic Model

This section explains how to use the ambulance game library to create a game

theoretic model between two hospitals and an ambulance service as described in

Chapter 4. The parameters of the model are defined in Listing A.20.

>>> lambda_2 = 20

>>> p_hat = 0.99

>>> alpha = 0.7

>>> target = 1

>>>

>>> lambda_1_1 = 2

>>> mu_1 = 5

>>> num_of_servers_1 = 3

>>> threshold_1 = 4

>>> system_capacity_1 = 6

>>> buffer_capacity_1 = 4

>>>

>>> lambda_1_2 = 1

>>> mu_2 = 7

>>> num_of_servers_2 = 2

>>> threshold_2 = 3

>>> system_capacity_2 = 5

>>> buffer_capacity_2 = 4

Code snippet A.20: Parameters for the game theoretic model.

The parameters threshold 1 and threshold 2 will only be used in code snip-

pet A.21 to determine the best response of the ambulance service, given the

strategies of the hospitals. This relates to the concepts described in Section 4.4.

>>> import ambulance_game as abg

>>> import numpy as np

>>> best_response = abg.game.calculate_class_2_individuals_best_response(

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_1 ,

... lambda_1_2=lambda_1_2 ,

... mu_1=mu_1 ,

... mu_2=mu_2 ,

... num_of_servers_1=num_of_servers_1 ,

... num_of_servers_2=num_of_servers_2 ,

... threshold_1=threshold_1 ,

... threshold_2=threshold_2 ,

... system_capacity_1=system_capacity_1 ,

... system_capacity_2=system_capacity_2 ,

... buffer_capacity_1=buffer_capacity_1 ,

... buffer_capacity_2=buffer_capacity_2 ,

... )

>>> np.round(best_response , 3)

0.507

Code snippet A.21: Calculating the best response of the ambulance service given

the strategies of the hospitals (T1, T2).

For the particular example the best response of the ambulance service is to send
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0.507 individuals to hospital 1 and 1− 0.507 = 0.493 to hospital 2. This can also

be done for all possible strategies of the hospitals. The code shown in Listing A.22

calculates the best response of the ambulance service for all possible strategies of

the hospitals and stores the results in a numpy array. For more information on

the routing matrix see Section 4.4.2.

>>> R = abg.game.get_routing_matrix(

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_1 ,

... lambda_1_2=lambda_1_2 ,

... mu_1=mu_1 ,

... mu_2=mu_2 ,

... num_of_servers_1=num_of_servers_1 ,

... num_of_servers_2=num_of_servers_2 ,

... system_capacity_1=system_capacity_1 ,

... system_capacity_2=system_capacity_2 ,

... buffer_capacity_1=buffer_capacity_1 ,

... buffer_capacity_2=buffer_capacity_2 ,

... alpha=alpha

... )

>>> np.round(R, 2)

array ([[0.33 , 0.18, 0.17, 0.17, 0.15],

[0.59, 0.38, 0.36, 0.35, 0.32],

[0.71, 0.5 , 0.48, 0.46, 0.42] ,

[0.72, 0.53, 0.5 , 0.48, 0.45] ,

[0.73, 0.55, 0.52, 0.5 , 0.47] ,

[0.77, 0.6 , 0.57, 0.55, 0.51]])

Code snippet A.22: Routing matrix for the ambulance service.

Thus, the ambulance service will send 33% of the individuals to hospital 1 if both

hospitals choose a threshold of Ti = 1, 59% if hospital 1 chooses a threshold of

T1 = 2 and hospital 2 chooses a threshold of T2 = 1, and so on. Finally, the

code shown in Listing A.23 creates the game using nashpy and calculates a Nash

equilibrium of the game using the Lemke-Howson algorithm that is implemented

in nashpy. For more information on the 2-player normal form game that is created

see Section 4.4.

>>> game = abg.game.build_game_using_payoff_matrices(

... lambda_2=lambda_2 ,

... lambda_1_1=lambda_1_1 ,

... lambda_1_2=lambda_1_2 ,

... mu_1=mu_1 ,

... mu_2=mu_2 ,

... num_of_servers_1=num_of_servers_1 ,

... num_of_servers_2=num_of_servers_2 ,

... system_capacity_1=system_capacity_1 ,

... system_capacity_2=system_capacity_2 ,

... buffer_capacity_1=buffer_capacity_1 ,

... buffer_capacity_2=buffer_capacity_2 ,

... target=target ,

... alpha=alpha ,

... p_hat=p_hat ,

... )
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>>> game.lemke_howson(initial_dropped_label =0)

(array ([0., 0., 0., 0., 1., 0.]), array ([0., 0., 0., 0., 1.]))

Code snippet A.23: Building the game and getting the Nash equilibrium of the

game.

A.4 Reference

The ambulance game library is structured as shown in Figure A.1.

ambulance game

markov/

init .py

blocking.py

graphical.py

markov.py

proportion.py

tikz.py

utils.py

waiting.py

simulation

init .py

dists.py

simulation.py

comparisons.py

game.py

queue.py

Figure A.1: Structure of the modules in the ambulance game library

Below is a list of all the functions in the ambulance game library sorted by the

modules they are in. The entries that start with a capital letter are classes and

the rest are functions.

� blocking.py

– get coefficients row of array associated with state

– get blocking time linear system

– convert solution to correct array format

– get blocking times of all states using direct approach

– mean blocking time formula using direct approach
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– mean blocking time formula using closed form approach

– get mean blocking time using markov state probabilities

– get mean blocking difference using markov

� graphical.py

– reset L and R in array

– find next permutation over

– find next permutation over L and R

– generate next permutation of edges

– check permutation is valid

– get rate of state 00 graphically

– get all permutations

– get permutations ending in R

– get permutations ending in D where any RL exists

– get permutations ending in L where any RL exists

– get permutations ending in RL where RL exists only at the end

– get coefficient

� markov.py

– build states

– visualise markov chain

– get transition matrix entry

– get symbolic transition matrix

– get transition matrix by iterating through all entries

– get all pairs of states with non zero entries

– state after threshold

– state before threshold

– state at threshold

– get transition matrix

– convert symbolic transition matrix

– is steady state

– get steady state numerically

– get steady state algebraically

– get markov state probabilities
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– get mean number of individuals in system

– get mean number of individuals in service area

– get mean number of individuals in buffer center

� proportion.py

– product of all elements

– general psi function

– specific psi function

– hypoexponential cdf

– erlang cdf

– get probability of waiting time in system less than target for state

– get proportion of individuals within time target

– overall proportion of individuals within time target

– proportion within target using markov state probabilities

� tikz.py

– generate code for tikz figure

– build body of tikz spanning tree

– get tikz code for permutation

– generate code for tikz spanning trees rooted at 00

� utils.py

– is waiting state

– is blocking state

– is accepting state

– expected time in markov state ignoring arrivals

– expected time in markov state ignoring class 2 arrivals

– prob service

– prob class 1 arrival

– get probability of accepting

– get proportion of individuals not lost

– get accepting proportion of class 2 individuals

– get accepting proportion of individuals

� waiting.py

– get waiting time for each state recursively
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– mean waiting time formula using recursive approach

– get coefficients row of array for state

– get waiting time linear system

– convert solution to correct array format

– get waiting times of all states using direct approach

– mean waiting time formula using direct approach

– mean waiting time formula using closed form approach

– overall waiting time formula

– get mean waiting time using markov state probabilities

� simulation.py

– build model

– build custom node

– simulate model

– extract times from records

– extract times from individuals

– get list of results

– get multiple runs results

– extract total individuals and the ones within target for both classes

– get mean proportion of individuals within target for multiple runs

– get simulated state probabilities

– get average simulated state probabilities

– get mean blocking difference between two systems

� dists.py

– StateDependentExponential

– ServerDependentExponential

– StateServerDependentExponential

– is state dependent

– is server dependent

– is state server dependent

– get service distribution

– get arrival distribution

� comparisons.py
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� get heatmaps

� get mean waiting time from simulation state probabilities

� get mean blocking time from simulation state probabilities

� get proportion within target from simulation state probabilities

� get waiting time comparisons

� get blocking time comparisons

� get proportion comparison

� get simulation and markov outputs

� plot output comparisons

� game.py

– calculate class 2 individuals best response

– get routing matrix

– get individual entries of matrices

– compute tasks

– build matrices from computed tasks

– get payoff matrices

– build game using payoff matrices

� queue.py

– Queue

A.5 Explanation

This section provides some additional information about the ambulance game

library. The information provided in this section is not necessary to use the

library, but it may be useful to understand how the library works.

A.5.1 Additional information

Some of the functions and general functionality of the library has not been ex-

plained in the previous sections and are not necessary to use the library.

One of the functions that has not been explained is one that relates to the transi-

tion matrix and is the get symbolic transition matrix function. This function

is part of the markov.py module and is used to calculate a symbolic version of

the transition matrix of the Markov chain. The function makes use of the sympy

library [100] to get a symbolic version of the transition matrix where the entries
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are symbols. In essence, the function returns a matrix in terms of λ1, λ2 and µ.

An additional function is provided to convert the symbolic version of the tran-

sition matrix to a numerical version of the transition matrix. This function is

called convert symbolic transition matrix.

Another functionality that has not been explained is the way the transition matrix

itself is calculated. Initially, the transition matrix was calculated by iterating

through all possible states and calculating the entry of the transition matrix for

each state. This method was not computationally efficient and was replaced by

a more efficient method. The new method creates a matrix with zeros and visits

only the entries that will have a non-zero value. The new method makes use of

the function get all pairs of states with non zero entries. This function

corresponds to the function introduced in equation (3.4) of Section 3.3.

The module tikz.py has been created for faster creation of Markov chain tikz

figures. There are two main functionalities of this module. The first func-

tionality is the ability to generate a tikz figure of the specific Markov chain

that is described in this thesis with any set of parameters. This is done by

using the function generate code for tikz figure. The second functional-

ity is the ability to generate a tikz figure of all possible spanning trees rooted

at state (0, 0) of a Markov chain [90, 146]. This is done by using the func-

tion generate code for tikz spanning trees rooted at 00. More informa-

tion about the investigation between spanning trees and Markov chains that was

done in this thesis can be found in appendix D.

A.5.2 Other libraries

Numerous libraries were used in the construction of this library. Some of the key

libraries that were used are:

� numpy [65]

� scipy [152]

� ciw [142]

� nashpy [143]

In particular the numpy library was used to get the steady state probabilities of

the Markov chain algebraically and using the least squares method. Similarly,

the scipy library was used to get the steady state probabilities of the Markov

chain numerically using the odeint and solve ivp functions. Apart from that,
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the scipy library was also used to get the find the best response of the ambulance

service using the brentq function. The brentq function is part of the optimize

module of the scipy library and implements Brent’s algorithm which is a root-

finding algorithm.

The primary tool that was used in the construction of the discrete event simu-

lation model was the python library ciw. See Ciw’s documentation for a more

detailed explanation of how it works and what are its capabilities [142]. The way

the library is structured, allowed for the creation of a custom node class that

inherits from the Node class of ciw and was used to create a waiting area that

individuals could be blocked in if there were more individuals in the next node.

Finally, the nashpy library [143] was used for all the calculations related to the

Nash equilibrium and the learning algorithms that were applied to the game.

The nashpy library is a game theoretic Python library that provides tools for the

solution of two-player normal form games. See the documentation of nashpy for

a more detailed list of the functionality that is provided by the library [143].
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Appendix B

Game theoretic model -

Numerical results

Appendix B contains additional numerical results for the game theoretic model

presented in Chapter 4. These results build on the results presented in Chapter 5

and were omitted from the main text for brevity.

This appendix presents additional results of the asymmetric replicator dynamics

run and PoA of the game theoretic model with different time targets and multi-

ple values of the “weight” parameter. Refer to Chapter 5 for a description of the

asymmetric replicator dynamics run and PoA metrics. Section B.1 shows some

runs of the asymmetric replicator dynamics while changing the value of the time

target parameter t. Section B.2 presents a different set of runs of the asymmetric

replicator dynamics while changing the value of the “weight” parameter α. Fi-

nally, Section B.3 shows the results of the game theoretic model for some other

custom values of the parameters.
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B.1 Changing time targets
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Figure B.1: Asymmetric replicator dynamics run and PoA of the game theoretic
model with time target 1.0 and parameters: α = 0.97, λ2 = 0.1, λ

(1)
1 = 3.0, λ

(2)
1 =

4.5, µ(1) = 2.0, µ(2) = 3.0, C(1) = 3, C(2) = 2, N (1) = 6, N (2) = 7,M (1) = 5,M (2) =
4.
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Figure B.2: Asymmetric replicator dynamics run and PoA of the game theoretic
model with time target 3.0 and parameters: α = 0.97, λ2 = 0.1, λ

(1)
1 = 3.0, λ

(2)
1 =

4.5, µ(1) = 2.0, µ(2) = 3.0, C(1) = 3, C(2) = 2, N (1) = 6, N (2) = 7,M (1) = 5,M (2) =
4.
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Figure B.3: Asymmetric replicator dynamics run and PoA of the game theoretic
model with time target 5.0 and parameters: α = 0.97, λ2 = 0.1, λ

(1)
1 = 3.0, λ

(2)
1 =

4.5, µ(1) = 2.0, µ(2) = 3.0, C(1) = 3, C(2) = 2, N (1) = 6, N (2) = 7,M (1) = 5,M (2) =
4.
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Figure B.4: Asymmetric replicator dynamics run and PoA of the game theoretic
model with time target 7.0 and parameters: α = 0.97, λ2 = 0.1, λ

(1)
1 = 3.0, λ

(2)
1 =

4.5, µ(1) = 2.0, µ(2) = 3.0, C(1) = 3, C(2) = 2, N (1) = 6, N (2) = 7,M (1) = 5,M (2) =
4.
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Figure B.5: Asymmetric replicator dynamics run and PoA of the game theoretic
model with time target 9.0 and parameters: α = 0.97, λ2 = 0.1, λ

(1)
1 = 3.0, λ

(2)
1 =

4.5, µ(1) = 2.0, µ(2) = 3.0, C(1) = 3, C(2) = 2, N (1) = 6, N (2) = 7,M (1) = 5,M (2) =
4.

B.2 Multiple values of “weight” parameter

0 20 40 60 80 100

Timepoints

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y

Row player

0 20 40 60 80 100

Timepoints

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y

Column player

0 20 40 60 80 100

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Row player - PoA

0 20 40 60 80 100

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Column player - PoA

Figure B.6: Asymmetric replicator dynamics run and PoA of the game theoretic
model with α = 0.0 and parameters: λ2 = 32.05, λ

(1)
1 = 0.0, λ

(2)
1 = 0.0, µ(1) =

4.2, µ(2) = 6.6, C(1) = 1, C(2) = 3, N (1) = 2, N (2) = 6,M (1) = 7,M (2) = 4, t = 2.0.
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Figure B.7: Asymmetric replicator dynamics run and PoA of the game theoretic
model with α = 0.3 and parameters: λ2 = 32.05, λ

(1)
1 = 0.0, λ

(2)
1 = 0.0, µ(1) =

4.2, µ(2) = 6.6, C(1) = 1, C(2) = 3, N (1) = 2, N (2) = 6,M (1) = 7,M (2) = 4, t = 2.0.
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Figure B.8: Asymmetric replicator dynamics run and PoA of the game theoretic
model with α = 0.6 and parameters: λ2 = 32.05, λ

(1)
1 = 0.0, λ

(2)
1 = 0.0, µ(1) =

4.2, µ(2) = 6.6, C(1) = 1, C(2) = 3, N (1) = 2, N (2) = 6,M (1) = 7,M (2) = 4, t = 2.0.
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Figure B.9: Asymmetric replicator dynamics run and PoA of the game theoretic
model with α = 0.9 and parameters: λ2 = 32.05, λ

(1)
1 = 0.0, λ

(2)
1 = 0.0, µ(1) =

4.2, µ(2) = 6.6, C(1) = 1, C(2) = 3, N (1) = 2, N (2) = 6,M (1) = 7,M (2) = 4, t = 2.0.
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Figure B.10: Asymmetric replicator dynamics run and PoA of the game theoretic
model with α = 1 and parameters: λ2 = 32.05, λ

(1)
1 = 0.0, λ

(2)
1 = 0.0, µ(1) =

4.2, µ(2) = 6.6, C(1) = 1, C(2) = 3, N (1) = 2, N (2) = 6,M (1) = 7,M (2) = 4, t = 2.0.
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B.3 Other numerical results

Figure B.11: Asymmetric replicator dynamics run and PoA of the game theo-
retic model with parameters: α = 0.95, λ2 = 36.04, t = 6.0, λ

(1)
1 = 15.24, λ

(2)
1 =

0.0, µ(1) = 6.77, µ(2) = 2.22, C(1) = 9, C(2) = 9, N (1) = 10, N (2) = 9,M (1) =
4,M (2) = 3.

Figure B.12: Asymmetric replicator dynamics run and PoA of the game theoretic
model with parameters: α = 0.96, λ2 = 21.4, t = 1.0, λ

(1)
1 = 4.2, λ

(2)
1 = 19.8, µ(1) =

4.2, µ(2) = 6.6, C(1) = 1, C(2) = 3, N (1) = 2, N (2) = 6,M (1) = 7,M (2) = 4.
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Figure B.13: Asymmetric replicator dynamics run and PoA of the game theoretic
model with parameters: α = 0.97, λ2 = 18.7, t = 2.0, λ

(1)
1 = 4.5, λ

(2)
1 = 3.0, µ(1) =

2.0, µ(2) = 3.0, C(1) = 3, C(2) = 2, N (1) = 6, N (2) = 7,M (1) = 5,M (2) = 4.
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Figure B.14: Asymmetric replicator dynamics run and PoA of the game theoretic
model with parameters: α = 1.0, λ2 = 24.0, t = 5.0, λ

(1)
1 = 6.0, λ

(2)
1 = 4.5, µ(1) =

2.0, µ(2) = 3.0, C(1) = 3, C(2) = 2, N (1) = 6, N (2) = 7,M (1) = 5,M (2) = 4.
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Appendix C

Reinforcement Learning -

Numerical results

Appendix C contains additional numerical results for the reinforcement learning

algorithm presented in Chapter 6. These results build on the results presented in

Section 6.6 and were omitted from the main text because they are not essential

for the understanding of the reinforcement learning algorithm.
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Figure C.1: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(3)
k with e = 0 and 100,000 time steps
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Figure C.2: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(3)
k with e = 0.5 and 100,000 time steps
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Figure C.3: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(3)
k with e = 1 and 100,000 time steps
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Figure C.4: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(3)
k with e = 0 and 500,000 time steps
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Figure C.5: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(3)
k with e = 0.2 and 500,000 time steps
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Figure C.6: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(3)
k with e = 0.5 and 500,000 time steps

0 100000 200000 300000 400000 500000

2

3

4

5

6

7

Utilities of all servers over all iterations

0 100000 200000 300000 400000 500000

0.50

0.55

0.60

0.65

0.70

Mean rates of all servers over all iterations

Figure C.7: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(3)
k with e = 1 and 500,000 time steps
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Figure C.8: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(3)
k with e = 0.1, 500,000 time steps and an

initial service rate of µ = 1 for all servers
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Figure C.9: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(3)
k with e = 0.1, 500,000 time steps and an

initial service rate of µ = 0.1 for all servers
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Figure C.10: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(3)
k with e = 0.1, 500,000 time steps and an

initial service rate of µ = 0.5 for all servers
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Figure C.11: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(3)
k with e = 1 and 500,000 time steps de-

creasing λ2 to 0.5
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Figure C.12: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(3)
k with e = 1 and 500,000 time steps in-

creasing λ2 to 1.5
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Figure C.13: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.
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Figure C.14: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.1.
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Figure C.15: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.2.
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Figure C.16: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.3.
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Figure C.17: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.4.
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Figure C.18: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.5.
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Figure C.19: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.6.
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Figure C.20: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.7.
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Figure C.21: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.8.
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Figure C.22: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.9.
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Figure C.23: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 1.
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Figure C.24: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.1 (only the early iterations)
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Figure C.25: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.1 (only the late iterations)
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Figure C.26: Utilities and approximation of the weighted mean service rate of
servers from the reinforcement learning run using utility function U

(7)
k with e =

0.1. Note that the approximation uses the Markov chain model to get the state
probabilities instead of the DES state probabilities.
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Figure C.27: Utilities and approximation of the weighted mean service rate of
servers from the reinforcement learning run using utility function U

(7)
k with e =

0.5. Note that the approximation uses the Markov chain model to get the state
probabilities instead of the DES state probabilities.
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Figure C.28: Utilities and approximation of the weighted mean service rate of
servers from the reinforcement learning run using utility function U

(7)
k with e =

0.9. Note that the approximation uses the Markov chain model to get the state
probabilities instead of the DES state probabilities.



APPENDIX C. REINFORCEMENT LEARNING - NUMERICAL RESULTS 278

0 500 1000 1500 2000 2500 3000 3500 4000

0.2

0.4

0.6

0.8

1.0

Utilities of all servers over all iterations

0 500 1000 1500 2000 2500 3000 3500 4000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Weighted mean rates of all servers over all iterations

Figure C.29: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.1 and increased arrival rates

of λ1 = 1.0 and λ2 = 1.5.
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Figure C.30: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.5 and increased arrival rates

of λ1 = 1.0 and λ2 = 1.5.
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Figure C.31: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.5 and increased arrival rates

of λ1 = 3.0 and λ2 = 3.5.
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Figure C.32: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.5 and increased arrival rates

of λ1 = 4.0 and λ2 = 4.5.
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Figure C.33: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.9 and increased arrival rates

of λ1 = 1.0 and λ2 = 1.5.

0 1000 2000 3000 4000 5000

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Utilities of all servers over all iterations

0 1000 2000 3000 4000 5000

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Weighted mean rates of all servers over all iterations

Figure C.34: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.9.



APPENDIX C. REINFORCEMENT LEARNING - NUMERICAL RESULTS 280

0 1000 2000 3000 4000 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Utilities of all servers over all iterations

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Weighted mean rates of all servers over all iterations

Figure C.35: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.1 and no upper bound on the

service rate.

0 1000 2000 3000 4000 5000

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Utilities of all servers over all iterations

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Weighted mean rates of all servers over all iterations

Figure C.36: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.9 and no upper bound on the

service rate.
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Figure C.37: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.5 and increased arrival rates

of λ1 = 1.0 and λ2 = 1.5.
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Figure C.38: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.5 and increased arrival rates

of λ1 = 3.0 and λ2 = 3.5.
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Figure C.39: Utilities and mean service rate of servers from the reinforcement
learning run using utility function U

(7)
k with e = 0.5 and increased arrival rates

of λ1 = 4.0 and λ2 = 4.5.
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Appendix D

Steady state probabilities

(closed-form)

This section aims to explore alternative ways of calculating the steady state prob-

abilities using the connection between Markov chains and graph theory.

D.1 Graph Theory

In mathematics a graph G = (V,E) is a structure that consists of a set of vertices

V = {v1, v2, . . . , vn} and a set of edges E = {e1, e2, . . . , em} that connect the

vertices together [16]. Every edge is expressed as e = (vi, vj) where vi, vj ∈ V .

A

B

C

D

E

Figure D.1: An example of a simple undirected graph with 5 vertices and 7 edges.

An additional type of graph is a directed graph, where the edges are directed

from one vertex to another. In this case, the edges are expressed as e = (vi, vj)

where vi, vj ∈ V and (vi, vj) ̸= (vj, vi) [11].
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E

Figure D.2: An example of a directed graph with 5 vertices and 7 edges.

Furthermore, a weighted graph is a graph where each edge has a weight attached

to it [84]. In this case, the edges are expressed as e = (vi, vj, w) where vi, vj ∈ V

and w ∈ R.
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Figure D.3: An example of a weighted directed graph with 5 vertices and 7 edges.

D.2 A graph theoretic model underlying the

Markov chain

It can be assumed that a Markov chain model M can be translated as a weighted

directed graph GM = (V,E) where V = S from equation (3.2) and (vi, vj) ∈ E if

and only if qvi,vj > 0, where vi, vj ∈ V . Furthermore, the weight of each edge is

given by:

w(vi, vj) = qvi,vj



APPENDIX D. STEADY STATE PROBABILITIES (CLOSED-FORM) 284

As described in Section 3 the parameters considered as inputs are:

� the number of servers C,

� the threshold T ,

� the capacity of node 1 N ,

� the capacity of node 2 M .

These are the parameters that directly affect the structure of the Markov chain

as a graph. Additional parameters of the model are the type 1 individuals arrival

rate, the type 2 individuals arrival rate and the service rate (λ1, λ2, µ). More

specifically, the way these parameters are translated into the model are:

� Number of servers (C): Affects the weight of all edges (vi, vj) ∈ E in the

Markov chain that correspond to a service rate. These edges have a weight

of:

w(vi,vj) = qvi,vj

where qi,j is defined in equation (3.3). Thus, the coefficients of the service

rate have a lower bound of 1 and an upper bound of C.

� Threshold (T ): Determines the length of the left arm of the model. In

essence the threshold acts as a breakpoint between states where u = 0 and

states where 0 ≤ u ≤ M . Increasing T results in having more set of states

where u can only be 0.

� Node 1 capacity (N): Is the upper bound of v for all states (u, v).

� Node 2 capacity (M): Is the upper bound of u for all states (u, v) such

that v ≥ T .
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Figure D.4: Example of a Markov model with C = 1, T = 3, N = 5,M = 2

In Figure D.4 an example of such a Markov model is shown where C = 1, T = 3
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which means that the left arm of the model has a length of 3, N = 5 that

indicates that the right-most states (u, v) are of the form (u, 5) and M = 2 that

equivalently shows that the bottom states are of the form (2, v).

D.3 Spanning trees

A spanning tree is defined as a subset of the graph that visits all the vertices of

the graph and does not include any cycles [21]. Unlike undirected spanning trees,

directed ones also have a root which means that a directed spanning tree that is

rooted at a vertex v has to have a path from any other vertex to vertex v [90].

For example, consider the graph shown in Figure D.5. The graph points out a

spanning tree that is rooted at vertex 3.

1 2 3 4

5 6 7

Figure D.5: Example of one of the spanning trees rooted at vertex 3 of the directed
graph. Note that the graph corresponds to a Markov model with parameters
T = 1, N = 3,M = 1.

Let us denote the set of all spanning trees of a graph G as T (G) and the subset of

T (G) that includes only the spanning trees that are rooted at vertex v as Tv(G).

The weight of a spanning tree t can be defined as the product of the weights of

the edges it contains [157]:

w(t) =
∏
e∈t

w(e)

Theorem 3 Markov chain tree theorem [23]: Let M be an irreducible Markov

chain on n states with stationary distribution π1, π2, . . . , πn. Let GM be the di-

rected graph associated with M . Then the probability of being at state u is given

by:

πi =

∑
t∈Ti(GM ) w(t)∑
t∈T (GM ) w(t)

(D.1)

Equation D.1 states that the probability of being at state u can be found by

dividing the sum of the weights of all trees in Tu(G) by the sum of the weights of
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all tress in T (G). Let us ignore the denominator of that fraction for now and focus

only on the numerator denoted as π̃i =
∑

t∈Ti(GM ) w(t). Another useful theorem

that can be utilised is Kirchhoff’s theorem that gives some useful insights on the

number of spanning trees of a graph.

Theorem 4 Kirchhoff’s theorem [27]: The number of directed spanning trees

rooted at a state i can be found by calculating the determinant of the Laplacian

matrix Q of the directed graph and removing row i and column i.

Some additional research papers that on directed spanning trees enumeration

are [146, 147, 159].

D.4 Spanning Trees rooted at (0,0)

Let us now consider some examples of spanning trees that are rooted at (0, 0). For

each of the following examples the complete graph G is shown, then all possible

trees of T(0,0)(G) along with the weight associated with each spanning tree. As

well as this, the sum of all the weights of the spanning trees denoted by π̃(0,0) is

also included.
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π̃(0,0) = µ4 + λ2µ
3
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µ

(0,3)

(1,3)
µ

µ µ

−−−−−−−−→ µ6

π̃(0,0) = (λ2)
2µ4 + 2λ2µ

5 + λ2λ1µ
4 + µ6
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µ
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µ
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µ

λ2

(2,2)
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µ

λ2

(0,0) (0,1)
µ

(1,1)

µ

(2,1)

µ

(0,2)

(1,2)

(2,2)
µ

λ2

λ2 (λ2)
2µ4

(0,0) (0,1)
µ

(1,1)

µ

(2,1)

µ

(0,2)

(1,2)

(2,2)
µ

µ

λ2

λ2µ
5

(0,0) (0,1)
µ

(1,1)

µ

(2,1)

µ

(0,2)

(1,2)

(2,2)
µ

λ2

µ

λ2µ
5

(0,0) (0,1)
µ

(1,1)

µ

(2,1)

µ

(0,2)

(1,2)

(2,2)
µ

µ

µ

µ6

π̃(0,0) = (λ2)
2µ4 + 2λ2µ

5 + µ6

D.5 Conjecture of adding rows

Let us consider three Markov models with the same number of servers C = 1, the

same threshold T = 1, the same node 1 capacity N = 2 but M ∈ {1, 2, 3}.
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(0,0) (0,1)

Λ

µ

(1,1)

λ2µ

(0,2)

λ1

µ

(1,2)

λ1

µ

λ2

(0,0) (0,1)

Λ

µ

(1,1)

λ2µ

(2,1)

λ2µ

(0,2)

λ1

µ

(1,2)

λ1

µ

λ2

(2,2)

λ1

µ

λ2

(0,0) (0,1)

Λ

µ

(1,1)

λ2µ

(2,1)

λ2µ

(3,1)

λ2µ

(0,2)

λ1

µ

(1,2)

λ1

µ

λ2

(2,2)

λ1

µ

λ2

(3,2)

λ1

µ

λ2

Figure D.6: Examples of Markov chain models with different values of M , where
M = 1 (left), M = 2 (middle) and M = 3 (right).

By increasing the node 2 capacity of the system it can be observed that |T(0,0)(G)|
increases as well since more combinations of paths can be generated using the new

edges and vertices. The corresponding values of π̃(0,0) of the three systems are:

M = 1 : π̃(0,0) = µ4 + µ3λ2 = µ3(µ+ λ2) (D.2)

M = 2 : π̃(0,0) = µ6 + 2µ5λ2 + µ4(λ2)
2 = µ4(µ2 + 2µλ2 + (λ2)

2) = µ4(µ+ λ2)
2

(D.3)

M = 3 : π̃(0,0) = µ8 + 3µ7λ2 + 3µ6(λ2)
2 + µ5(λ2)

3

= µ5(µ3 + 3µ2λ2 + 3µ(λ2)
2 + (λ2)

3)

= µ5(µ+ λ2)
3 (D.4)

Note that in equations (D.2),(D.3) and (D.4), the following equation holds:

π̃(0,0) = µ(N+M)(µ+ λ2)
M (D.5)

A generalisation of equation (D.5), where N ≥ 1, is given in terms of an unknown

function k(C, T,N) as:

π̃(0,0) = µ(N+M)(k(C, T,N))M (D.6)

Thus, having investigated the effect of adding rows (increasing M) the next thing

to investigate is the effect of adding columns (increasing N) and finding an ex-
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pression for k(C, T,N).

D.6 The effect of increasing N

In this section we will consider a node 2 capacity of M = 1 and see the effect of

modifying other parameters on k(C, T,N).

(0,0) (0,1)

Λ

µ

(1,1)

λ2µ

(0,2)

λ1

µ

(1,2)

λ1

µ

λ2

(0,0) (0,1)

Λ

µ

(1,1)

λ2µ

(0,2)

λ1

µ

(1,2)

λ1

µ

λ2

(0,3)

λ1

µ

(1,3)

λ1

µ

λ2

π̃(0,0) = µ3[λ2 + µ] π̃(0,0) = µ4[(λ2)
2 + λ2λ1 + 2λ2µ+ µ2]

(D.7)

(0,0) (0,1)

Λ

µ

(1,1)

λ2µ

(0,2)

λ1

µ

(1,2)

λ1

µ

λ2

(0,3)

λ1

µ

(1,3)

λ1

µ

λ2

(0,4)

λ1

µ

(1,4)

λ1

µ

λ2

π̃(0,0) = µ5[(λ2)
3 + 2(λ2)

2λ1 + 3(λ2)
2µ+ λ2(λ1)

2 + 2λ2λ1µ+ 3λ2µ
2 + µ3] (D.8)

(0,0) (0,1)

Λ

µ

(1,1)

λ2µ

(0,2)

λ1

µ

(1,2)

λ1

µ

λ2

(0,3)

λ1

µ

(1,3)

λ1

µ

λ2

(0,4)

λ1

µ

(1,4)

λ1

µ

λ2

(0,5)

λ1

µ

(1,5)

λ1

µ

λ2
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π̃(0,0) =µ6[(λ2)
4 + 3(λ2)

3λ1 + 4(λ2)
3µ+ 3(λ2)

2(λ1)
2 + 6(λ2)

2λ1µ (D.9)

+ 6(λ2)
2µ2 + λ2(λ1)

3 + 2λ2(λ1)
2µ+ 3λ2λ1µ

2 + 4λ2µ
3 + µ4]

As explained in equation (D.5) the expressions defined above can be reduced to

a general form equation of the form π̃(0,0) = µ(N+M)(k(C, T,N))M . The only

thing missing is an expression for k(C, T,N). An initial attempt to get such an

expression can be seen below:

k(C, T,N) =
C−1∑
p1=0

C−p1−1∑
p2=0

C−p1−p2−1∑
p3=C−p1−p2−1

R(p1, p2, p3)(λ2)
p1(λ1)

p2µp3

=
C−1∑
p1=0

C−p1−1∑
p2=0

R(p1, p2, C − p1 − p2 − 1)(λ2)
p1(λ1)

p2µC−p1−p2−1

(D.10)

In equation (D.10) the coefficient function R(p1, p2, p3) is introduced were takes

as arguments the powers of λ2, λ1 and µ. Note here that p3, the power of µ, is

defined as p3 = C − p1 − p2 − 1 since for all base models they need to satisfy

p1 + p2 + p3 = C − 1. For the starting coefficients of the model the function

R(p1, p2, p3) gives the values of the coefficients and is defined as:

R(p1, p2, p3) =



0 if p1 = 0 and p2 > 0

1 if p1, p2 = 0 and p3 > 0(
p1+p3
p3

)
if p2 = 0 and p1 > 0(

p1+p2−1
p2

)
if p3 = 0 and p1, p2 > 0

p3 + 1 if p1 = 1(
p1+p3+1

p1

)
+ p3

(
p1+p3
p3+1

)
−
(
p1+p3
p3

)
if p2 = 1 and p1 > 1(

p1+p2+1
p1

)
−
(
p1+p2−1
p2−1

)
+
∑p1+p2−2

i=p2
i
(

i−1
p2−1

)
if p3 = 1 and p1, p2 > 1

Up1,p2,p3 otherwise

(D.11)
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Note here that the final value Up1,p2,p3 corresponds to coefficients that are un-

known and are currently investigated. The function R takes as arguments a pos-

sible combination of numbers of λ2, λ1 and µ for a given system and outputs the

coefficient of that term which in turn represents how many spanning trees exist

in the graph with that specific combination. For instance consider the coefficients

(p1, p2, p3) of some of the terms from the equations above:

� (D.7) ⇒ (λ2)
2: R(2, 0, 0) =

(
2+0
0

)
= 1

� (D.7) ⇒ λ2λ1: R(1, 1, 0) =
(
1+1−1

1

)
= 1

� (D.7) ⇒ 2λ2µ: R(1, 0, 1) =
(
1+1
1

)
= 2

� (D.7) ⇒ µ2: R(0, 0, 2) = 1

� (D.8) ⇒ 2(λ2)
2λ1: R(2, 1, 0) =

(
2+1−1

1

)
= 2

� (D.8) ⇒ 3(λ2)
2µ: R(2, 0, 1) =

(
2+1
1

)
= 3

� (D.8) ⇒ 3λ2µ
2: R(1, 0, 2) =

(
1+2
2

)
= 3

� (D.9) ⇒ 3(λ2)
3λ1: R(3, 1, 0) =

(
3+1−1

1

)
= 3

� (D.9) ⇒ 3(λ2)
2(λ1)

2: R(2, 2, 0) =
(
3
2

)
= 3

� (D.9) ⇒ 6(λ2)
2µ2: R(2, 0, 2) =

(
2+2
2

)
= 6

� (D.9) ⇒ 6(λ2)
2λ1µ: R(2, 1, 1) =

(
2+1+1

2

)
+ 1

(
2+1
1+1

)
−

(
2+1
1

)
= 6 + 3 − 3 = 6

(e.g) ⇒ (λ2)
2(λ1)

2µ : R(2, 2, 1) =

(
2 + 2 + 1

2

)
−
(
2 + 2− 1

2− 1

)
+

2+2−2∑
i=2

i

(
i− 1

2− 1

)
= 10− 3 + (2× 1) = 9

D.7 Unknown terms

The terms that are still unknown are the terms where p1, p2, p3 ≥ 2. Here are

some of these values with the corresponding values of the R(p1, p2, p3) function.

� R(2, 2, 2) = 18

� R(3, 2, 2) = 60

� R(2, 3, 2) = 24

� R(2, 2, 3) = 30

� R(4, 2, 2) = 150

� R(3, 3, 2) = 100

� R(3, 2, 3) = 120

� R(2, 4, 2) = 30

� R(2, 3, 3) = 40

� R(2, 2, 4) = 45

D.8 DRL arrays

In this section a new combinatorial object is defined: DRL arrays. It will be

shown that there is a bijection between DRL arrays and the spanning trees in

GM . DRL arrays will then be enumerated which in turn enumerates the trees of

T(0,0)(GM). Consider the following Markov model and the spanning trees rooted

at state (0, 0) that are associated with it.
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(0,0) (0,1)
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µ

λ2 λ2

(0,0) (0,1)
µ
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(1,2)
µ
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(1,3)
µ

µ

λ2

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

λ2

µ
(0,0) (0,1)

µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ
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λ2

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

µ µ

Figure D.7: Markov chain model with C = 1, T = 1, N = 3,M = 1 with all of its
equivalent spanning trees rooted at (0, 0)

Looking at these spanning trees from a different perspective it can be observed

that all spanning trees of the specific model have some edges in common.

� (0, 1) → (0, 0) � (1, 1) → (0, 1) � (1, 2) → (1, 1) � (1, 3) → (1, 2)

These edges are the ones on the bottom row of the model, on the threshold column

and on the arm of the model. In general the set of edges that are present on all

spanning trees can be denoted by:

S = S1 ∪ S2 ∪ S3

S2 = {(M, v) → (M, v − 1) | T < v ≤ N}

S1 = {(u, T ) → (u− 1, T ) | 0 < u ≤ M}

S3 = {(0, v) → (0, v − 1) | 0 < v ≤ T}

(D.12)

In addition, these edges that are common to every spanning tree (for a threshold
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of T = 1) have the same weight of µ. In this specified model there are four of

these edges, each with a weight of µ. Thus, since these edges exist on all spanning

trees, the weight of every spanning tree must have include a term µ4. Consider

the expression of π̃(0,0) associated with this Markov model:

π̃(0,0) = µ4[(λ2)
2 + λ2λ1 + 2λ2µ+ µ2] (D.13)

It can be seen that there is a µ4 term that is a common factor of all the terms.

This term can be more generally calculated as µM+N and by not considering all

these edges that belong in S the problem can be slightly simplified.

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

The specific problem has now been reduced to finding all possible combinations

of two edges where one starts from (0, 2) and the other from (0, 3). The possible

edges that can be utilised here may have a direction of either left, right, or down.

Thus, the objective of the problem can be transformed into finding all possible

permutations of an array of size 2 where elements can be L,R or D and obey

certain rules so that the permutation corresponds to a valid spanning tree. These

rules are:

1. Permutations ending with an R are not valid.

2. Permutations that have an R followed by an L are not valid.

If any of these two rules do not hold, then the permutation should not be con-

sidered. Rule 1 points to the cases where the final state has an edge pointing to

the right of it, which cannot occur since that state is the right-most state of the

first row. Rule 2 makes sure that there are no neighbour states that point to each

other since that would create a cycle and would not generate a valid spanning

tree.
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(0,0) (0,1)

(1,1)

(0,2)

(1,2)

(0,3)

(1,3)

Figure D.8: Example of a permutation
that does not produce a valid spanning
tree based on Rule 1

(0,0) (0,1)

(1,1)

(0,2)

(1,2)

(0,3)

(1,3)

Figure D.9: Example of a permutation
that does not produce a valid spanning
tree based on Rule 2

Shown below are all possible permutations of the DRL array along with the

excluded cases. The valid permutations (on the left) are shown in the same

order with their corresponding spanning trees from Figure D.5 and the excluded

permutations (on the right) are followed by the rule that determines them not

valid.

� [D,D]

� [L,D]

� [D,L]

� [R,D]

� [L,L]

� ��
��HHHH[R,R] → Rule 1

� ����HH
HH[L,R] → Rule 1

� ��
��HH
HH[R,L] → Rule 2

� ����XXXX[D,R] → Rule 1

D.9 Examples of mappings of directed spanning

trees to permutation arrays

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

λ2 λ2

−−−−−−−−→ [D,D]

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

µ

λ2

−−−−−−−−→ [L,D]

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

λ2

µ

−−−−−−−−→ [D,L]
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(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

λ1

λ2

−−−−−−−−→ [R,D]

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

µ µ

−−−−−−−−→ [L,L]

D.10 Closed-form approach for state probabili-

ties

A general formula for finding all such permutations can be found, where the inputs

are p1, p2 and p3 that correspond to the number of D, R and L respectively and

the output would be the coefficient of the term (λ2)
p1(λ1)

p2µp3 . For instance, by

applying such a formula to the example in equation (D.13), the desired output

should be:

� (λ2)
2 → p1 = 2, p2 = 0, p3 = 0 → coefficient = 1

� λ2λ1 → p1 = 1, p2 = 1, p3 = 0 → coefficient = 1

� 2λ2µ → p1 = 1, p2 = 0, p3 = 1 → coefficient = 2

� µ2 → p1 = 0, p2 = 0, p3 = 2 → coefficient = 1

Thus, given all possible and valid combinations of powers among λ2, λ1 and µ

(i.e. p1, p2, p3) generated by equation (D.10), an alternative and improved form

of the value of R(p1, p2, p3) described in equation (D.11) is given by:

R(p1, p2, p3) = T (p1, p2, p3)− ER(p1, p2, p3)− ED(p1, p2, p3)

− EL(p1, p2, p3)− ERL(p1, p2, p3) (D.14)

The term T (p1, p2, p3) denotes the number of all permutations where neither

rule is applied, i.e. all possible ways one can arrange the elements of the array.

Removing the number of terms that correspond to rule 1 and rule 2 from the

total number of permutations, the desired coefficient is obtained.
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T (p1, p2, p3)

Rule 1 Rule 2

Figure D.10: The two sets of permutations that should not be considered in the
calculation of R(p1, p2, p3). The left-most set consists of all the permutations that
are excluded by Rule 1 and the right-most are excluded by Rule 2

The difficulty with this formulation is that the highlighted intersection from Fig-

ure D.10 will be counted twice and is hard to identify how many such terms there

are. An alternative approach is to break down the Rule 2 subset into three parts

as show in Figure D.11.

T (p1, p2, p3)

ER

ED

EL

ERL

Figure D.11: All permutations that are excluded by Rule 1 and Rule 2 partitioned
into four disjoint subsets.

The terms ER, EL, ED, ERL consist of all cases that should be excluded based on

rule 1 and rule 2. The term ER(p1, p2, p3) denotes the number of permutations

that end in R, which needs to be removed from the total of all permutations

so that rule 1 is satisfied. Having excluded all permutations that end in R, the

permutations that have an R followed by an L (rule 2) need to be excluded as

well. Although, removing all permutations ending in R was not too complicated,

removing all permutations that follow rule 2 is slightly more complex. This is

because equation ER(p1, p2, p3) already considers some cases where there is an R

followed by an L. Therefore, in order to consider only new cases, permutations

of rule 2 are split into three new terms; ED, EL and ERL. These terms denote

the permutations that have an R followed by an L AND do not end in R. The
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term ED considers all permutations that end in D while EL the ones that end in

L. Finally, the last term (ERL) denotes all permutations that end in R, L where

there is no other R followed by an L in any other position apart from the last

two. This term is used because in the EL term, such cases (where R and L are

in the last two positions) are only considered when there is another R followed

by an L somewhere. Thus, the term ERL is a particular set of permutations that

the formula of EL fails to include by itself.

� T : All permutations

� ER: Permutations ending with R

� ED: Permutations ending with D that have an R followed by an L some-

where

� EL: Permutations ending with L that have an R followed by an L some-

where apart from the end of the array

� ERL: Permutations ending in R,L that do not have an R followed by an L

anywhere else

Here’s the expression for each of these terms:

T (p1, p2, p3) =
(p1 + p2 + p3)!

p1!× p2!× p3!
(D.15)

ER(p1, p2, p3) =
(p1 + p2 + p3 − 1)!

p1!× (p2 − 1)!× p3!
(D.16)

ED(p1, p2, p3) =

min(R,L)∑
i=1

(−1)i+1 (p1 + p2 + p3 − i− 1)!

(p1 − 1)!× (p2 − i)!× (p3 − i)!× (i)!
(D.17)

EL(p1, p2, p3) =

min(R,L−1)∑
i=1

(−1)i+1 (p1 + p2 + p3 − i− 1)!

p1!× (p2 − i)!× (p3 − i− 1)!× (i)!
(D.18)

ERL(p1, p2, p3) =

min(R,L)∑
i=1

(−1)i+1 (p1 + p2 + p3 − i− 1)!

p1!× (p2 − i)!× (p3 − i)!× (i− 1)!
(D.19)

R(p1, p2, p3) = T (p1, p2, p3)− ER(p1, p2, p3)− ED(p1, p2, p3)

− EL(p1, p2, p3)− ERL(p1, p2, p3)
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D.11 Example of the permutation algorithm

Consider the term (λ2)(λ1)µ
2 and the above expressions. In order to get the

coefficient of that term the permutation algorithm needs to be applied with an

input of p1 = 1, p2 = 1, p3 = 2, i.e. 1 D, 1 R and 2 Ls in the array. The

permutations that correspond to each expression can be seen below:

T (p1, p2, p3) =
(1 + 1 + 2)!

1! 1! 2!
= 12

[D,R,L, L] [R,D,L, L] [D,L,R, L] [R,L,D,L] [D,L, L,R] [R,L, L,D]

[L,D,R, L] [L,R,D,L] [L,D,L,R] [L,R, L,D] [L,L,D,R] [L,L,R,D]

ER(p1, p2, p3) =
(1 + 1 + 2− 1)!

1! (1− 1)! 2!
= 3

[D,L, L, |R] [L,D,L, |R] [L,L,D, |R]

ED(p1, p2, p3) =
1∑

i=1

(−1)i+1 (1 + 1 + 2− i− 1)!

0! (1− i)! (2− i)! (i)!
= 1× 2

0! 0! 1! 1!
= 2

[R,L, L, |D] [L,R, L, |D]

EL(p1, p2, p3) =
1∑

i=1

(−1)i+1 (1 + 1 + 2− i− 1)!

1! (1− i)! (2− i− 1)! (i)!
= 1× 2

1! 0! 0! 1!
= 2

[D,R,L, |L] [R,L,D, |L]
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ERL(p1, p2, p3) =
1∑

i=1

(−1)i+1 (1 + 1 + 2− i− 1)!

1! (1− i)! (2− i)! (i1)!
= 1× 2

1! 0! 1! 0!
= 2

[D,L, |R,L] [L,D, |R,L]

Although this method is useful, currently this can be used to find only spanning

trees that are rooted at state (0, 0) and for the case of C = 1. In order to

get the steady state probabilities, a more general approach that is generic to all

states (u, v) is needed. Further work on this specific topic will not be part of this

research project.
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