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By Polnarev’s method we analytically calculate the polarization spectra of the cosmic microwave
background radiation (CMB) generated by cosmic relic gravitational waves (RGW). In this analytic
approach the physics involved in this generating process is more transparent. Consequently, the effects due
to various elements of physics can be isolated easily. In solving the equation for evolution of RGW in the
expanding universe, both the sudden transition and the WKB approximation for the scale factor during the
radiation-matter transition have been taken. To describe more precisely the decoupling process, we have
introduced an analytic expression for the visibility function, consisting of two pieces of half-Gaussian
curves. We also include the damping on polarizations due to the photon diffusion up to the second order of
the tight coupling. Analytic polarization spectra CXXl have been obtained with the following several
improvements over the previous results. 1. The approximate analytic result is quite close to the numerical
one evaluated from the cmbfast code, especially, for the first three peaks of the spectrum that are
observable. By using the analytic exact solution of RGW in the sudden transition approximation, we have
demonstrated the dependence of CXXl on the dark energy and the baryons. 2. Our analytic half-Gaussian
approximation of the visibility function fits better than the usual Gaussian model, and its time integration
yields an analytic damping factor, which is parameter-dependent. This improves the spectra by �30%
around the second and third peaks. 3. The second order of tight coupling reduces the overall amplitude of
CXXl by 58%, comparing with the tight-coupling limit. 4. The influences of inflation on RGW and on CMB
polarization are explicitly demonstrated.
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I. INTRODUCTION

Studies on the anisotropies and polarizations of CMB
have made great progress, yielding important information
of cosmology. Recently, Wilkinson Microwave Anisotropy
Probe (WMAP) observational results on the power spectra
of the CMB anisotropies and polarizations [1–6] agree
well with the prediction of inflation of a spatially flat
universe with the nearly scale-invariant and Gaussian spec-
trum of primordial adiabatic perturbations. Inflationary
expansion can generate two types of perturbations hij of
spacetime metric: one is the scalar type (density) of per-
turbations [7–9], and the other is the tensorial type, i.e.,
relic gravitational waves (RGW) [7,9–15]. These two
kinds of perturbations will enter the Boltzmann equation
for the distribution function of photons and influence CMB
during the decoupling. Their impact on the anisotropies
and polarizations of CMB are different, especially their
respective contributions have not yet completely deter-
mined theoretically.Among these two contributions to CMB
anisotropies and polarizations, the one from the density
perturbations [16,17] is believed to be dominant. However,
the tensorial contribution is also important, especially in
long wave-length range. Moreover, the magnetic type of
polarization of CMB can only be generated by the tensorial
perturbations, and it thus provides another channel to

detect RGW on large scales via CMB detections besides
the direct detection by laser interferometers [18–21].

The power spectra of CMB polarizations can be calcu-
lated by numerical method [22,23], which gives rather
precise predictions. But the semianalytic method is also
very helpful in analyzing the underlying physics and in
revealing the dependence on the cosmological parameters
[24]. A common treatment uses the spherical harmonic
functions to expand the Boltzmann equation into a hier-
archical set of equations for the multipole moments, then
solves each of them step by step separately [22,25–27].
The other treatment was first suggested by Polnarev [14],
using a basis of polarization vectors to decompose the
Boltzmann equation, ending up with only two equations
for the two unknown distribution functions, � and �,
standing for the anisotropy and the polarization, respec-
tively. This treatment is simpler for analytic study and has
been further used [28–34]. In this paper, we study the
CMB polarizations caused by the RGW in the Polnarev
framework. We arrive at a set of analytic formulas for the
polarization power spectra, which depends explicitly on
the visibility function and on the spectrum of RGW at the
decoupling. In our treatment for the ionization history
through recombination we introduce a half-Gaussian visi-
bility function, which is more precise than the usual
Gaussian fitting. For a more precise description of the
evolution of RGW we adopt a WKB approximation for
the scalar factor a��� joining the radiation and matter*Electronic address: wzhao7@mail.ustc.edu.cn
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dominant eras. When integrating the Boltzmann equation,
we find that there are two kinds of damping mechanisms on
the CMB anisotropies and polarizations: one is due to the
visibility function, causing the so-called ‘‘Silk damping’’
on small scales, and the other is due to the second order
modifications in the tight-coupling limit. The latter will
result in an overall numerical factor of the spectra for all
scales, different from the first one. We also find that the
final power spectra depend sensitively on the details of the
ratio of the positive and negative modes of RGW at the
decoupling time. This complexity prevents one from get-
ting the exact analytic formulas for the power spectra. We
introduce a parameter � to describe the combination of the
phases from these complex functions.

The organization of this paper is as follows. In Sec. II, as
a setup, the framework for description of CMB anisotro-
pies and polarizations is given in Polnarev’s method, and
the Boltzmann equation for the photon distribution func-
tion f is decomposed into a set of two equations of evolu-
tion for the functions � and �. In Sec. III, the function �
and � are directly associated with the polarization tensor
Pab, that contains the Stokes’ parameter Q and U as the
elements. Employing the tensor spherical harmonic func-
tions YG

�lm�ab and YC
�lm�ab as a basis to expand the tensor Pab,

the expressions CGGl and CCCl for the electric and magnetic
type of polarizations are given in terms of the expansion
coefficients. Section IV is devoted to the solution of the
equation of RGW, both analytically and numerically.
Besides the usual sudden transition with the scale factor
a��� of the power-law form for each era, attention is payed
to a more smooth transition between the radiation and
matter dominant eras, where a WKB approximation on
a��� is used. In particular, the spectra h��d� and _h��d�
of RGW at the decoupling are given in both approximation
schemes. Section V addresses the decoupling process and
introduces a two half-Gaussian model for the visibility
function V���, which is more precise than the usual
Gaussian fitting. In Sec. VI, we integrate analytically the
Boltzmann equations up to the second order of the tight
coupling, leading to an improvement over the first order
calculation. In doing integration, the two pieces of half-
Gaussian fitting for the visibility function is used, and the
complex mixture of the mode functions from the _h and the
Bessel functions is treated with care. We arrive at the
analytic expressions for the polarization � and for the
spectra CGGl and CCCl . There appears a damping factor
D�k� containing two Silk-like terms with the parameter
�. In Section VII, we examine the resulting polarization
spectra, especially, the damping caused by the visibility
function, the height of the spectral amplitude, and the
location of peaks. Then we examine various cosmological
parameters that influence the spectra, such as the tensor-
scalar ratio r, the baryon �b, the dark energy �� and the
primordial spectrum index nT . Section VIII is the conclu-
sion that summarizes the main results.

II. BOLTZMANN EQUATION FOR CMB
POLARIZATIONS

The polarized distribution function of photons is gener-
ally represented by a column vector f � �Il; Ir; U; V�, and
its components are related to the Stokes parameters: I �
Il � Ir and Q � Il � Ir. An important property of the
Stokes parameters is that, under a rotation � about the
axis of propagation, the total intensity I and the parameter
V are invariant, but Q and U transform as [35]

 

Q0

U0

� �
�

cos2� sin2�
� sin2� cos2�

� �
Q
U

� �
:

So �Q;U� together form a spin-2 field according to the
coordinate transformation, and can be conveniently de-
scribed by a 2� 2 polarization tensor Pab. For actual
detections the photons come from the full sky of 2-sphere
with a metric

 gab �
1 0
0 sin2�

� �
; (1)

in the spherical coordinates ��;��, and the polarization
tensor is [31]

 Pab�n̂� �
1

2
Q�n̂� �U�n̂� sin�

�U�n̂� sin� �Q�n̂�sin2�

� �
; (2)

satisfying Pab � Pba, and gabPab � 0, where n̂ is a unit
vector in the direction ��;��.

During the era prior to the decoupling in the early
universe, the Thomson scattering of anisotropic radiation
by free electrons can give rise to the linear polarization
only, and does not generate the circular polarization V, so
we only consider the column vector f � �Il; Ir; U�. For the
trivial case of a homogeneous and isotropic unpolarized
radiation, the distribution is simply f � f0�	��1; 1; 0�,
where f0�	� �

1
eh	=kT�1

is the usual blackbody distribution
function with temperature T. The combined effects of the
Thomson scattering and the metric perturbations will yield
linear polarizations of photons. The time evolution of the
photon distribution function is determined by the equation
of radiative transfer, essentially the Boltzmann equation
[35],

 

@f
@�
� n̂i

@f
@xi
� �

d	
d�

@f
@	
� q�f� J�; (3)

where n̂i is the i-component of the unit vector in the
direction ��;�� of photon propagation, q � 
Tnea is the
differential optical depth and has the meaning of scattering
rate, a is the scale factor, 
T � 6:65� 10�25 cm2 is the
Thomson cross-section, ne is the number density of the free
electron, and
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 J �
1

4�

Z 1

�1
d�0

Z 2�

0
d�0P��;�;�0; �0�f��; xi; 	;�0; �0�; (4)

where � � cos�, �0 � cos�0 and

 P �
3

4

�2�02 cos2��0 ��� ��2 cos2��0 ��� �2�0 sin2��0 ���
��02 cos2��0 ��� cos2��0 ��� ��0 sin2��0 ���
�2��02 sin2��0 ��� 2� sin2��0 ��� 2��0 cos2��0 ���

0B@
1CA (5)

is the phase-matrix. The scattering term q�f� J� in Eq. (3)
describes the effect of the Thomson scattering by free
electrons, and the term � d	

d�
@f
@	 reflects the effect of varia-

tion of frequency due to the metric perturbations through
the Sachs-Wolfe formula [36]

 

1

	

d	
d�
�

1

2

@hij
@�

n̂in̂j:

In the presence of perturbations hij, either scalar or tenso-
rial, the distribution function will be perturbed and can be
generally written as

 f��;�� � f0

24 1
1
0

0@ 1A� f1��;��

35; (6)

where f1 represents the perturbed portion.
The perturbed flat Friedmann-Robertson-Walker (FRW)

metric is

 ds2 � a2����d�2 � ��ij � hij�dx
idxj	; (7)

where � �
R
�a0=a�dt is the conformal time, and hij are

the perturbations with jhijj 
 1. In our context, we con-
sider only the tensorial type perturbations hij, representing
the RGW. So they are symmetric hij � hji, traceless hii �
0, and transverse hij;j � 0. Therefore, there are only two
independent modes, corresponding to the � and �
gravitational-wave polarizations.

 hij � h�ij � h
�
ij � h��ij � h

��ij :

Taking the direction of propagation of the GW in the
direction of ẑ, i.e., k̂ � ẑ, then the polarization tensors
for the GW satisfy

 �ij n̂in̂j � sin2� cos2�; �ij n̂in̂j � sin2� sin2�:

In cosmological context, it is usually assumed that the two
components h� and h� have the same magnitude and are
of the same statistical properties. To simplify the
Boltzmann Eq. (3), for the hij � h��ij polarization, one
writes the perturbed distribution function f1 in the form
[14]

 f1 �
�
2
�1��2� cos2�

1
1
0

0@ 1A� �
2

�1��2� cos2�
��1��2� cos2�

4� sin2�

0B@
1CA:
(8)

For the hij � h��ij polarization, one writes f1 in the form

 f1 �
�
2
�1��2� sin2�

1
1
0

0@ 1A� �
2

�1��2� sin2�
��1��2� sin2�
�4� cos2�

0
B@

1
CA;
(9)

where � represents the anisotropy of photon distribution
since � / Il � Ir � I, and � represents the polarization of
photons since � / Il � Ir � Q. Both � and � are to be
determined by solving the Boltzmann equation. For the
hij � h��ij polarization, one substitutes f into Eq. (3).
Upon taking Fourier transformation, retaining only the
terms linear in the perturbation hij, and performing the
integration over d�, one arrives at a set of two differential
equations [14,33,34],

 

_� k � �ik�� q	�k �
d lnf0

d ln	
_h�k ; (10)

 

_�k � �ik�� q	�k �
3q
16

Z 1

�1
d�0

�
�1��02�2�k

�
1

2
�1��02�2�k

�
: (11)

For the hij � h��ij polarization, the resulting equations
are the same as the above with _h� being replaced by _h�. In
Eq. (10) and (11) �k � �k � �k, k is the wavenumber, �k,
�k, and h�k are the Fourier modes of �, �, and h�,
respectively, and the over dot ‘‘�’’ denotes d=d�. In the
following, for simplicity, we will omit the subindex k of the
function �k, �k and hk. Moreover, we also drop the GW
polarization notation, � or �, since both h� and h� are
similar in computations. From the structure of Eqs. (10)
and (11), one can see that the _h of GW in Eq. (10) plays the
role of a source for the anisotropies �, which in turn plays
the role of a source for the polarization � in Eq. (11). Our
work is to find the solution of �, then calculate the CMB
polarization power spectra.

As Eq. (10) and (11) contain the differential optical
depth q, a rather complicated, model-dependent function
of time, and the right hand side of Eq. (11) contains an
integral over d�0, thus it is difficult to give an exact
analytic solution. If � and � are obtained, one may expand
them in terms of the Legendre functions
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 ���;�� �
X
l

�2l� 1��l���Pl���; (12)

 ���;�� �
X
l

�2l� 1��l���Pl���; (13)

with the Legendre components

 �l��� �
1

2

Z 1

�1
d����;��Pl���; (14)

 �l��� �
1

2

Z 1

�1
d����;��Pl���: (15)

The differential equations Eqs. (10) and (11) for ���;��
and ���;�� then become an infinite set of coupled differ-
ential equations for �l��� and �l���.

III. ELECTRIC AND MAGNETIC TYPES OF CMB
POLARIZATIONS

From Eq. (8) for the definition of � and� for the h� GW
polarization , it is seen that the two Stokes parameters Q
and U can be constructed as the following [31,33],

 Q��;�� �
T
4

X
l

�2l� 1�Pl�cos���1� cos2�� cos2��l;

(16)

 U��;�� �
T
4

X
l

�2l� 1�Pl�cos��2 cos� sin2��l: (17)

For scalar functions defined on the 2-sphere, such as the
temperature anisotropies �T, one commonly uses the
spherical harmonic functions Y�lm� as the complete ortho-
normal basis. But for the 2� 2 tensors defined on the 2-
sphere, such as Pab in Eq. (2), the following complete
orthonormal set of tensor spherical harmonics can be em-
ployed [31]:

 YG
�lm�ab � Nl

�
Y�lm�: ab �

1

2
gabY�lm�: c

c�; (18)

 YC
�lm�ab �

Nl
2
�Y�lm�: accb � Y�lm�:bc

c
a�; (19)

where ‘‘:’’ denotes covariant derivative on the 2-sphere,
Nl �

�������������������������������������
2�l� 2�!=�l� 2�!

p
, and

 ab �
0 sin�

�1= sin� 0

� �
: (20)

They satisfy

 

Z
dn̂YG

�lm�ab�n̂�Y
Gab
�l0m0��n̂� �

Z
dn̂YC

�lm�ab�n̂�Y
Cab
�l0m0��n̂�

� �ll0�mm0 ; (21)

 

Z
dn̂YG

�lm�ab�n̂�Y
Cab
�l0m0��n̂� � 0: (22)

By construction one sees that YG
�lm�ab is the gradient (elec-

tric type) and YC
�lm�ab is the curl (magnetic type) of the

ordinary spherical harmonics. The polarization tensor can
be expanded in this basis as:

 

Pab�n̂�
T

�
X1
l�2

Xl
m��l

�aG
�lm�Y

G
�lm�ab�n̂� � a

C
�lm�Y

C
�lm�ab�n̂�	;

(23)

where expansion coefficients aG
�lm� and aC

�lm� represent the
electric and magnetic type components of the polarization,
respectively. Note that the sum starts from l � 2, since
RGW generates only perturbations of multipoles from the
quadrupoles up. The expansion coefficients are given by

 aG
�lm� �

1

T

Z
dn̂Pab�n̂�Y

G ab
�lm� �n̂�;

aC
�lm� �

1

T

Z
dn̂Pab�n̂�Y

C ab
�lm� �n̂�;

(24)

and calculation yields [31,33]1:

 

aG
lm �

1

8
��m;2 � �m;�2�

�����������������������
2��2l� 1�

p �
�l� 2��l� 1��l�2

�2l� 1��2l� 1�

�
6�l� 1��l� 2��l
�2l� 3��2l� 1�

�
l�l� 1��l�2

�2l� 3��2l� 1�

�
; (25)

 

aC
lm �

�i
4

�����������������
2�

�2l� 1�

s
��m;2 � �m;�2�

� ��l� 2��l�1 � �l� 1��l�1	: (26)

where the polarization � shows up explicitly in these
coefficients. Notice that �l in Eqs. (25) and (26) are
actually the Fourier mode with the subindex k having
been omitted for notational simplicity. Then for each
Fourier k-mode, the electric type of power spectrum
CGG
l �k� is2

2In the Ref. [31,33], the bracket of [ ] should be replaced by
the absolute value sign jj, in case of the values of � being
imaginary.

1There is a small mistake in the formulas (4.39),(4.40),(4.41)
and (4.42) in Ref. [31] and formulas (111),(114) and (115) in
Ref. [33], the coefficient of 6l�l�1�

�2l�3��2l�1� should be replaced by
6�l�1��l�2�
�2l�3��2l�1� .
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CGG
l �k� �

1

2l� 1

X
m

jaGlmj
2

�
�
16

���������l� 2��l� 1��l�2

�2l� 1��2l� 1�
�

6�l� 1��l� 2��l
�2l� 3��2l� 1�

�
l�l� 1��l�2

�2l� 3��2l� 1�

��������2
(27)

and similarly for the magnetic type CCC
l �k�. These expres-

sions are valid for both h� and h� polarizations. Summing
over all Fourier modes, and over both� and� polarization
states, one has the following expressions
 

CGG
l �

1

16�

Z ���������l� 2��l� 1��l�2

�2l� 1��2l� 1�
�

6�l� 1��l� 2��l
�2l� 3��2l� 1�

�
l�l� 1��l�2

�2l� 3��2l� 1�

��������2
k2dk; (28)

 CCC
l �

1

4�

Z ���������l� 2��l�1

2l� 1
�
�l� 1��l�1

2l� 1

��������2
k2dk: (29)

The cross-correlation power spectrum vanishes

 CGC
l �

Xm�l
m��l

aG
lma

C
lm

2l� 1
� 0; (30)

since aG
�lm� / ��m;2 � �m;�2�, while aC

�lm� / ��m;2 � �m;�2�.
This is expected since the electric type has an even parity
and the magnetic type has an odd parity.

IV. EVOLUTION OF GRAVITATIONAL WAVES

Since RGW term _h is the source of the CMB polariza-
tion in Eq. (10), before one can solve the Boltzmann
equation, he needs to know its time evolution, especially
around the decoupling time �d. For both � and � polar-
izations, the equation of motion for RGW of mode k is the
following:

 

�h� 2
_a
a

_h� k2h � 0; (31)

and the initial condition is taken to be

 h�� � 0� � h�k�; _h�� � 0� � 0; (32)

with

 

k3

2�2
jh�k�j2 � Ph�k� � AT

�
k
k0

�
nT
; (33)

where Ph�k� is the primordial power spectrum of RGW, AT
is the amplitude, k0 � 0:05 Mpc�1 is the pivot wavenum-
ber, and nT is the tensor spectrum index. Inflationary
models generically predict nT � 0, a nearly scale-invariant
spectrum. Later we will also see the influence of nT on the
CMB polarizations. We have ignored a suppressing effect
on RGW by the neutrinos free streaming [37,38], which
can slightly reduce the height of the peak at small scales
[27].

The Eq. (31) depends on the scale factor a���, which is
determined by the Friedmann equation

 _a 2 � H2
0��r � a�m � a

4��	; (34)

where H0 is the present Hubble parameter, �r, �m, and
�� are the present fractional densities for the radiation,
matter, and dark energy, respectively. Given these frac-
tional densities, say, taking �r � 8:36� 10�5, �m �
�b ��dm � 0:044� 0:226, �� � 0:73, we have solved
Eq. (34) numerically. Substituting the resulting a��� and
_a��� into Eq. (31), then the numerical solutions h��� and
_h��� are obtained straightforwardly. The resulting h��d�

and _h��d� at the decoupling time �d are given as function
of k in Fig. 1 and 2, respectively.

Besides the numerical solution, we may use the follow-
ing analytic expressions of a���, which is a simple ap-
proximation for a sudden transiting between two
consecutive stages,

 a��� �

8><
>:
ar�; � � �e �radiation dominant;
am�

2; �e < � � �E �matter dominant;
al��1; � > �E �� dominant�;

(35)

where ar, am, and al are constants, and can be determined
by joining a��� at �e and �E [39]. For instance, in the
�CDM model3 with �b � 0:044, �dm � 0:226, �� �
0:73, taking the redshift ze � 3234 at the equality of

FIG. 1. RGW h��d� at the decoupling time �d depends on the
wavenumber k. The solid line is the result of the sudden
transition approximation, the dash line is of that of the WKB
approximation, and the dot line is the numerical result. The latter
two lines are nearly overlapped. Here the initial amplitude is
rescaled with h�� � 0� � h�k� � 1 for demonstrational pur-
pose.

3Throughout this paper, we choose the present Hubble pa-
rameter h0 � 0:72.
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radiation-matter yields the conformal time �e=�0 � 0:007
(where �0 is the present conformal time), and taking zE �
0:39 yields �E=�0 � 0:894. Setting the decoupling time at
the redshift zd � 1089 yields �d=�0 � 0:0195. Then
Eq. (31) has the analytic solution [26,39,40]:

 h��� � A0j0�k��; �� � �e�; (36)

 h��� � A0��e=���A1j1�k�� � A2y1�k��	;

��e < � � �E�;
(37)

with the coefficient

 A0 �

�
2�2ATk

�3

�
k
k0

�
nT
�

1=2
; (38)

determined by the primordial power spectrum, and

 A1 �
3k�e � k�e cos�2k�e� � 2 sin�2k�e�

2k2�2
e

; (39)

 A2 �
2� 2k2�2

e � 2 cos�2k�e� � k�e sin�2k�e�

2k2�2
e

: (40)

Note that h��� and _h��� actually have a subindex k, so for
each fixed time � h��� and _h��� are functions of the
wavenumber k. At the decoupling time �d, the functions
h��d� and _h��d� are also plotted against k in Fig. 1 and 2.
These figures show that the simple approximation of sud-
den transition in Eq. (35) is good only in long wavelength
region, but in short wavelength (k�0 > 10) it differs from
the numerical one considerably. By the way, using the
above analytic expressions of h���, the amplitude of

RGW has been shown to depend explicitly on the dark
energy in such a way as h / �m=�� [39].

To improve (35) by a smoother transition between the
radiation and the matter dominant eras, one can adopt the
WKB approximation to a��� [27,41]. Since CMB anisot-
ropies and polarizations are mainly generated around the
decoupling, so we are only interested in RGW at time �d.
At this time the dark energy ��a

4 is negligibly small and
can be omitted. The scale factor can be approximated by

 a��� � ae���� 2�; (41)

where � � �
���
2
p
� 1��=�e, and ae is determined by

a0=ae � 1� ze. When �
 2, a��� ! �, the radiation
dominated stage, and when �� 2, a! �2, the matter
dominated stage. The transition between these two stages
is smooth. Then the evolution of RGW become

 h00 � 2
a0

a
h0 � r2h � 0; (42)

where r � k�e=�
���
2
p
� 1�, the prime denotes d=d�.

Although this equation has an analytic solution [27], it is
rather lengthy and complex. In this paper, we only employ
Eq. (41) as a better approximation of a��� to find the
numerical solution of Eq. (42). The resulting h��d� and
_h��d� in this WKB approximation are plotted with the

dashed lines in Fig. 1 and 2, the results are very good
compared with the numerical ones, and the difference
between them
 1%. The approximation of (41) is simpler
than the numerical a���, and has better precision than the
sudden approximation of (35), and will be used to calculate
the CMB polarization power spectra.

V. VISIBILITY FUNCTION FOR DECOUPLING

Consider the decoupling history of the universe. Before
the decoupling, the ionized baryons are tightly coupled to
photons by Thomson scattering. Once the temperature falls
below a few eV, it becomes favorable for electrons and ions
to recombine to form neutral atoms. As the number of
charged particles falls, the mean free path of a given
photon increases. Eventually, the mean free path becomes
comparable to the horizon size and the photon and baryon
fluids are essentially decoupled, and the CMB photons last
scatter. One can solve the ionization equations during the
recombination stage to obtain the visibility function V���,
which describes the probability that a given photon last
scattered from a particular time � [42,43]. (Here V���
should not be confused with the Stokes parameter V men-
tioned at the beginning of Sec. II.) The visibility function
depends on the cosmological parameters, especially the
baryons �b and the present Hubble parameter H0 [24].
In terms of the optical depth �, it is given by

 V��� � q���e����0;��; (43)

satisfying

 η
η 0

η

FIG. 2. The time derivative _h��d� depends on the wavenumber
k. The solid line is the result of the sudden transition approxi-
mation, the dash line is of that of the WKB approximation, and
the dot line is the numerical result. The latter two lines are nearly
overlapped. The rescaling h�k� � 1 is used as in Fig. 1.
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Z �0

0
V���d� � 1; (44)

where the optical depth function ���0; �� is related to the
differential optical depth q��� by q��� � �d���0; ��=d�.
Figure 3 shows the profile of V��� from the numerical
result by the cmbfast, which is sharply peaked around the
last scattering. In analytical calculation it is usually fitted
by a simple Gaussian function [25,27]

 V��� � V��d� exp
�
�
��� �d�2

2��2
d

�
; (45)

where V��d� is the amplitude at the the decoupling time
�d, and ��d is the thickness of decoupling. The analysis
of the WMAP data [3] gives the redshift thickness of
the decoupling �zd � 195� 2, which corresponds to
��d=�0 � 0:00143. Then, taking V��d��0 � 279 in
(45) yields a fitting shown in Fig. 3, which has large error
on both sides of �d, compared with the numerical one. To
improve the fitting of V���, we take the following analytic
expressions, which consists of two pieces half-Gaussian
functions,

 V��� � V��d� exp
�
�
��� �d�

2

2��2
d1

�
; �� � �d�; (46)

 V��� � V��d� exp
�
�
��� �d�2

2��2
d2

�
; ��> �d�; (47)

with ��d1=�0 � 0:00110, ��d2=�0 � 0:00176, and
���d1 � ��d2�=2 � ��d, satisfying the constraint of

(44). Figure 3 shows that our half-Gaussian model fits
the numerical one much better than the Gaussian fitting.
The area enclosed between the curves of the Gaussian and
the half-Gaussian is about�11% of the total area enclosed
under the curve V���. The half-Gaussian fitting improves
the description of decoupling, and, nevertheless, is also
manageable in analytical computations. As shall be seen
later, this different choice of V��� will subsequently cause
a variation in the height of the polarization spectra. The
expressions (46) and (47) will be used to calculate the
approximate analytic polarization power spectra. It turns
out that, among the two terms in Eqs. (46) and (47), the
result will depend more sensitively on the piece of Eq. (46)
with the smaller time interval ��d1.

VI. ANALYTIC SOLUTION FOR POLARIZATION

With the computation of _h��� and the prescription of
V��� above, we are ready to look for the analytic solution
of Eqs. (10) and (11). Since the blackbody spectrum f0�	�
in the Rayleigh-Jeans zone has the property d lnf0�	�

d ln	 � 1,
these equations reduce to

 

_�� �ik�� q	� � _h; (48)

 

_�� �ik�� q	� �
3q
16

Z 1

�1
d�0

�
�1��02�2�

�
1

2
�1��02�2�

�
: (49)

In Eq. (48) the _h plays the role of source for the anisotro-
pies �, while the term q� causes � to damp. The formal
solution of Eq. (48) is

 ���� �
Z �

0

_h��0�e����;�
0�eik���

0���d�0: (50)

In Eq. (49) the integration over �0 contains the integrand
functions � and �. Using the expansions for � and � in
Eqs. (12) and (13), and carrying out the�0 integration, then
Eq. (49) is

 

_�� �ik�� q	� � qG; (51)

where

 G��� �
3

35
�4 �

5

7
�2 �

7

10
�0 �

3

70
�4 �

1

7
�2 �

1

10
�0;

where �l and �l are defined in Eqs. (14) and (15). One
might write down a formal solution

 ���� �
Z �

0
G��0�q��0�e����;�

0�eik���
0���d�0; (52)

and set the time � in the above to be the present time �0,

 ���0� �
Z �0

0
G��0�V��0�eik���

0��0�d�0; (53)

where V��0� � q��0�e����0;�
0� is the visibility function as

η
η

η η

FIG. 3. The curves for the visibility function V��� by the
numerical result (solid), by the half-Gaussian fitting (dots) in
Eqs. (46) and (47), and by the usual Gaussian fitting (dash) in
Eq. (45), respectively. Here �d=�0 � 0:0195. Comparing with
the numerical result, the half-Gaussian fitting improves the
Gaussian fitting. Each curve satisfies

R
Vd� � 1, and the strip

area between the Gaussian and the numerical is ’ 0:115.
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defined in Eq. (43). However, the difficulty to integrate
(53) is that the integrand G contains �l and �l up to l � 4,
which themselves are not known yet.

One uses the Legendre expansion and write Eqs. (48)
and (49) as the following hierarchical set of equations:

 

_� 0 � �q�0 � ik�1 � _h; (54)

 

_�0 � �
3

10
q�0 � ik�1 � q

�
3

35
�4 �

5

7
�2 �

3

70
�4

�
1

7
�2 �

1

10
�0

�
; (55)

 

_� l � �q�l �
ik

2l� 1
�l�l�1 � �l� 1��l�1	; for l � 1;

(56)

 

_� l � �q�l �
ik

2l� 1
�l�l�1 � �l� 1��l�1	; for l � 1:

(57)

Note that the parameter 1=q has the meaning of the mean

free path of photons. In the tight-coupling limit with q!
1, the equations reduce to

 

_� 0 � q�0 � _h; (58)

 

_� 0 �
3

10
q�0 � �

1

10
q�0; (59)

 �l � �l � 0; l � 1: (60)

Then the source function G��� reduces to G �
�7�0 � �0�=10, and satisfies the equation:

 

_G�
3

10
qG � �

1

10
_h; (61)

and the formal solution is

 G��� � �
1

10

Z �

0

_h��00�e��3=10����;�00�d�00: (62)

Substitute this expression of G into Eq. (53), yields the
formal solution for the polarization in the tight-coupling
limit:

 ���0� �
Z �0

0
V��0�

�
�

1

10

Z �0

0

_h��00�e��3=10����0;�00�d�00
�
eik���

0��0�d�0

� �
1

10

Z �0

0
d�0V��0�eik���

0��0�
Z �0

0
d�00 _h��00�e��3=10����00���3=10����0�; (63)

where ���0; �00� � ���00� � ���0� and ���� � ���0; ��
have been used.

However, this result of the tight-coupling limit applies
only on scales much larger than the mean free path of
photons. On smaller scales the photon diffusion does take
place and will cause certain damping in the anisotropies
and polarizations. To take care of this effect, we need to
expand Eqs. (54)–(57) to the second order of the small
coupling parameter 1=q
 1, and arrive at,

 

_� 0 � �q�0 � ik�1 � _h; (64)

 

_� 1 � �q�1 �
ik
3
�0; (65)

 �l � 0; for l � 2: (66)

Putting �0 / e
i
R
!d� and �1 / e

i
R
!d� and substituting

into Eqs. (64) and (65), ignoring variations of ! on the
expansion scale _a=a, neglecting _h which is nearly zero at
low frequency, shown in Fig. 2, one gets

 ! � �
k���
3
p � iq:

Thus �0 will acquire an extra damping factor e�
R
qd�,

independent on the wavenumber k. This feature is different

from the case of the scalar perturbations, where the damp-
ing is strong on the small scales [44]. For the polarization
�, we only keep the tight-coupling limit with the equation,

 

_� 0 � �
3q
10
�0 �

q
10
�0;

and �0 also gets the factor e�
R
qd�. Thus, taking into

account of this effect of the second order of coupling, G
in (62) will acquire the extra damping factor exp�������,
and, consequently, (63) is modified to

 

���0� � �
1

10

Z �0

0
d�0V��0�eik���

0��0�

�
Z �0

0
d�00 _h��00�e��3=10����00���7=10����0�; (67)

where exp�� 7
10���

0�	 has replaced exp� 3
10���

0�	 in
Eq. (63). In the above the function exp�� 7

10���
00�� ’ 0

for �00 <�d, and exp�� 7
10���

00�� ’ 1 for �00 >�d, so it
can be approximated as a step function exp�� 7

10���
00�� �

���00 � �d�, and moreover, the visibility function V��0� is
also peaked about the decoupling �d. Therefore, as an
approximation, one can pull the _h��00� out of the integra-
tion

R
d�00,
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 ���0� � �
1

10

Z �0

0
d�V���eik�����0� _h���

�
Z �

0
d�0e��3=10����0���7=10�����: (68)

Define the integration variable x � ���0�=���� to replace
the variable �0. One can take d�0 � dx

x ��d as an approxi-
mation, since V��� is peaked around the �d with a width
��d. Then

 ���0� �
1

10
��d

Z �0

0
d�V���eik�����0� _h���

�
Z 1

1

dx
x
e��3=10�����xe��7=10�����: (69)

Comparing this expression with Eq. (15) and using the
expansion formula

 eikr� �
X1
l�0

�2l� 1�iljl�kr�Pl���;

one reads off the expression for the Legendre component of
the polarization

 �l��0� �
1

10
��dil

Z �0

0
d�V��� _h���jl�k��� �0��

�
Z 1

1

dx
x
e��3=10�����xe��7=10�����: (70)

The integration
R
d� involves V���, _h���, and jl�k���

�0��. The visibility function V���, either in Eq. (45), or in
Eqs. (46) and (47), has generically a factor of the
form e������d�

2
, where � is a constant. As a stochastic

quantity, the time-derivative _h��� contains generally a
mixture of oscillating modes, such as eik� and e�ik�, and
so does the spherical Bessel function jl�k��� �0��. Thus
_h���jl�k��� �0�� generally contains terms / e�ibk����0�,

where b 2 ��2; 2	. Substituting the half-Gaussian visibil-
ity function V��� of Eq. (46) and (47) into the integrationR
d� of Eq. (70), using the formula

 

Z 1
�1

e��y
2
eibkydy � e���bk�

2=4��
Z 1
�1

e��y
2
dy;

the integration is approximated by

 

Z �0

0
d�V��� _h���jl�k��� �0��

� D�k� _h��d�jl�k��d � �0��
Z �0

0
d�V���: (71)

where

 D�k� �
1

2
�e���k��d1�

2
� e���k��d2�

2
	: (72)

If the Gaussian fitting (45) was used, one would have
D�k� � e���k��d�2 . In the above � can take values in
[0,2], depending on the mixed modes of the stochastic

quantity _h���jl�k��� �0��. Here we will take � as a
parameter. Roughly speaking, the function D�k� formally
looks like a Fourier transformation of the visibility func-
tion and, as a function of ��d and k, represents the damp-
ing caused by photon streaming. This can be interpreted as
follows. During the recombination around the last scatter-
ing, the visibility function V��� is narrowly centered
around the time �d with a time width ��d, thus the last
scattering of photons also occur within this time interval
statistically. So the smoothing of CMB anisotropies by
Thomson scattering is effectively limited within the inter-
val ��d. Thus a wave of anisotropies eik� will be damped
in this interval by a factor e��k��d�2 . The longer the time
interval ��d is, the more damping the wave suffers. In fact,
��d can be also viewed as the thickness of the last scat-
tering surface. Those waves with a wavelength � shorter
than the thickness ��d will be effectively damped by a
factor e��2���d=��2 . Thus the shorter the wavelength is, the
more damping the wave experiences. It is the factor D�k�
that brings down the amplitudes of the spectra on small
scales.

The remaining integrations
R
d�

R
dx for �l in Eq. (70)

are easily carried out

 

Z �0

0
d�V���

Z 1
1

dx
x
e��3=10�����xe��7=10�����

�
Z 1

0
d�e��17=10��

Z 1
1

dx
x
e��3=10��x �

10

17
ln

20

3
: (73)

We like to point out that this numerical factor is the out-
come from the second order of the tight-coupling, while
the first order (the tight-coupling limit) with G being given
in (62) would yield a result 10

7 ln10
3 [27]. Thus, putting all

these calculations together, the integration (70) for the
polarization is finally given by the following concise ex-
pression

 �l��0� �
1

17
ln

20

3
il��d _h��d�jl�k��d � �0��D�k�: (74)

Substituting this back into Eqs. (28) and (29) yields the
final formulas for the polarization spectra
 

CXXl �
1

16�

�
1

17
ln

20

3

�
2 Z

P2
Xl�k��d � �0��

� j _h��d�j2��2
dD

2�k�k2dk; (75)

where the superindex ‘‘X’’ labels either ‘‘G’’, or ‘‘C’’, the
type of of the CMB polarization, for the electric type
 

PGl�x� �
�l� 2��l� 1�

�2l� 1��2l� 1�
jl�2�x� �

6�l� 1��l� 2�

�2l� 1��2l� 3�
jl�x�

�
l�l� 1�

�2l� 3��2l� 1�
jl�2�x�; (76)

and for the magnetic type
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 PCl�x� �
2�l� 2�

2l� 1
jl�1�x� �

2�l� 1�

2l� 1
jl�1�x�: (77)

The result (75) is similar to the result in Ref. [27] if we
identify CGGl � CEl=2 and CCCl � CBl=2. But here the
numerical coefficient is 1

17 ln20
3 , smaller than that in

Ref. [27], since we have included the diffusion effect on
the source G. The reduction of the amplitude is about
�58% due to the the second order of the tight-coupling.
Another difference is the damping factor D�k� having two
terms in Eq. (72). Besides, the parameter � is taken to be in
the range [0, 2], instead of a fixed � � 1=2 as in Ref. [27].

To completely determine CXXl , we need to fix the nor-
malization of the initial amplitude _h��d� in Eq. (75). What
has been observed is the CMB temperature anisotropies,
which generally receives contributions from both the scalar
and tensor perturbations. The ratio of the contributions

 r �
Ph�k0�

PR�k0�
(78)

has not been fixed observationally, and only some obser-
vational constraints have been given. Based upon the ob-
servations of Ly-� forest power spectrum from the SDSS,
of the 3-year WMAP, of supernovae, and of galaxy cluster-
ing, one can give a constraint of r < 0:22 at 95% C.L., or
r < 0:37, at 99.9% C.L. [45]. We take the ratio r as a
parameter in our calculations. WMAP observation [4] in-
dicates that the power spectrum of scalar perturbations has
a value

 PR�k0� � 2:95� 10�9A�k0�; (79)

with the pivot wavenumber k0 � 0:05 Mpc�1 and the
amplitude A�k0� ’ 0:8. Taking the RGW spectrum index
nT � 0 in Eq. (33) (scale-invariant), then the amplitude of
Eq. (33) is given by AT � 2:95� 10�9A�k0�r, depending
on r. For instance, if r � 1 is taken, then AT � 2:36�
10�9, and smaller r will yield smaller AT accordingly.

VII. RESULTS AND DISCUSSIONS

A. Damping effects due to visibility function

The power spectra of CGGl and CCCl , calculated from our
analytic formulas (75) and from the numerical cmbfast,
have been shown in Fig. 4 and 5, respectively. Both the
spectra have the prominent first peak around l� 100. The
approximate analytic result is quite close to the numerical
one, especially, for the first three peaks of the spectra that
are observable. One sees that CGGl and CCCl at large l
sensitively depend on the visibility function V���, that is,
on the factor D�k�. In particular, for the electric polariza-
tion spectrum, our half-Gaussian fitting with � � 1:7 gives
a very good result. The third peak is very close to the
numerical one, and the second peak is a little higher. For
� � 2 the second peaks of the spectra are good, but the
third peaks are a bit too low. On the other hand, the

Gaussian fitting with � � 2 yields a power spectrum too
low. This is because ��d > ��d1, and the Gaussian damp-
ing factor D�k� � e���k��d�2 reduces the spectrum more
than the half-Gaussian factor D�k� � 1

2 �e
���k��d1�

2
�

e���k��d2�
2
	 does. Similar situation is also found for the

magnetic polarization in Fig. 5.

α

α

α

FIG. 5 (color online). The magnetic polarization spectrum CCCl
with the ratio r � 1. The solid line is the numerical spectrum
from the cmbfast, the upper dot line is from the half-Gaussian
fitting with � � 1:7, the middle dot line is from the half-
Gaussian fitting with � � 2, and the lower one is from the
Gaussian fitting with � � 2. The half-Gaussian model is better
than the Gaussian as a fitting formula.

α

α

α

FIG. 4 (color online). The electric polarization spectrum CGGl
with the ratio r � 1. The solid line is the numerical spectrum
from the cmbfast code, the upper dot line is from the half-
Gaussian fitting with � � 1:7, the middle dot line is from the
half-Gaussian fitting with � � 2 and, and the lower dot line is
from the Gaussian fitting with � � 2. While at large scales these
models are close to each other, the half-Gaussian model is better
than the Gaussian.
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B. The height of the power spectra

The analytic expression of Eq. (75) shows that the height
of CXXl depends on the amplitude j _h��d�j of RGW at the
decoupling time, CXXl / j _h��d�j

2. As has been discussed
earlier, for the scale-invariant power spectrum nT ’ 0,
j _h��d�j is directly related to the tensor-scalar ratio r in
Eq. (78). A larger r yields a larger j _h��d�j and a higher
polarization. In Fig. 6 we have plotted the analytic formula
(75) for the magnetic type of the polarization spectrum
CCCl for three values r � 0:3, 0.1, 0.01, respectively,
whereby also plotted are the one-sigma sensitivity esti-
mates of the near-term projects, WMAP and Planck satel-
lites [46– 48]. The WMAP estimates are based on the
measured noise properties of the instrument for an 8-year
of operation, and the Planck estimates are based on the
noise measurements from the test-bed High Frequency
Instrument for a 1.2-year of operation. Figure 6 clearly
shows that the spectrum CCCl due to RGW for the infla-
tionary models with r > 0:1 could be detected by the
Planck, but would be difficult for the WMAP.

However, in this discussion of CMB polarizations, we
have not considered the effect of cosmic reionization pro-
cess, which may be directly associated with the the galaxy
formation. The reionization will deform the CMB polar-
ization spectra. The recent WMAP result [5] tends to give
the optical depth of reionization �r � 0:09� 0:03. Thus
the visibility function V��� will have another peak around
a late time �=�0 � 0:27 besides the cosmic decoupling �d,
and will give an extra contribution to CCCl , correspond-
ingly. At present, the reionization process is not well
understood yet, and it is difficult to give an analytic for-
mula for this process. Using the numerical cmbfast includ-
ing the reionization effect, we have plotted CCCl in Fig. 7,

where an extra peak of CCCl at l� 6 is seen. On the
observational side, a number of other projects are currently
being planned, such as CBI [49], DASI [50], CAPMAP
[51], BOOMERANG [52], emphasizing on the detections
of the CMB magnetic polarization. The future projects
CLOVER [53] and QUIET [54] are expected to detect
the magnetic polarization for r > 0:01, and the project
CMBPOL [55] even for r > 10�3.

C. The influence of the decoupling width

Besides the influences by RGW, the spectra CXXl in
Eq. (75) also directly depend on the thickness ��d of the
decoupling and on the damping factor D�k�: CXXl /
��2

dD�k�
2. On very large scales (very small l), a smaller

��d makes the spectra having smaller height. However, on
smaller scales (large l), the effect is complicated sinceD�k�
is also a function of ��d and will influence the spectra.
The expression D�k� � 1

2 �e
���k��d1�

2
� e���k��d2�

2
	 in

Eq. (72) shows that, for a fixed k, the smaller ��d leads
to a largerD�k�. The total effect of ��d on the spectra CXXl
will be determined by the combination / ��2

dD�k�
2. The

thickness ��d is mainly determined by the baryon density
�b of the universe. In the flat �CDM universe, increasing
�b will slightly enhance the decoupling speed, which will
make ��d becoming smaller [43]. For example, a fitting
formula can be used for the optical depth in the �CDM
universe [24]

 ��z� � �c1
b

�
z

1000

�
c2

; 800< z < 1200; (80)

where c1 � 0:43 and c2 � 16� 1:8 ln�b. This fitting
function only depends on �b. The visibility function
V��� � � d�

d� e
�� is peaked around at �d. A larger �b

FIG. 6. The WMAP and Planck satellite measurements on the
CMB magnetic polarization signal. The three solid curves show
the analytic polarization spectra CCCl for the tensor-scalar ratio
r � 0:3, 0.1, 0.01, respectively, in the �CDM universe with
�b � 0:044, �dm � 0:226, �� � 0:73.

FIG. 7. The WMAP and Planck satellite measurements on the
CMB magnetic polarization signal. Now the modifications of the
cosmic reionization are included with the reionization optical
depth �r � 0:09. The solid lines show the numerical results
using cmbfast. The parameters are the same as in Fig. 6.
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corresponds to a narrower V��� and smaller ��d, as shown
in Fig. 8, where three models �b � 0:02, 0.044, 0.09 are
given. However, the total effect turns out that a higher �b
leads to a lower CCCl , as shown in Fig. 9 for these three
values of �b.

D. The location of the peaks

From the analytic formula (75), we can also analyze the
location of peaks of the power spectra. The factor functions

P2
Gl�k��d � �0�� in Eq. (76) and P2

Cl�k��d � �0�� in
Eq. (77) are all combination of the spherical Bessel func-
tion jl�k��d � �0��, which is peaked at l ’ k��0 � �d� ’
k�0 for l� 1. In Fig. 10 and 11 PGl and PCl are plotted
with l � 100, where it is shown that PGl peaks at k�0 ’ l,
and PCl peaks at k�0 ’ 1:27l. So the peak location of the
power spectra are directly determined by

 CXXl / j _h��d�j2k2D2�k�jk�l=�0
; (81)

The factor D�k� has a larger damping at larger l, so the first
peak of the power spectra has the highest amplitude. Let us
look at the first peak of CXXl , where D�k� ’ 1. Equa-
tion (37) gives j _h��d�j2 � A2

0k
2��e=�d�2jA1j2�k�d��

A2y2�k�d�j2. Since j2�k�d� is the increasing mode and
the y2�k�d� is the decreasing mode for the waves insideΩ

Ω
Ω

FIG. 9. The magnetic polarization spectrum depends on the
baryon �b in �CDM universe with �� � 0:73, �dm � 1�
�� ��b, and r � 1. The baryon �b � 0:02, 0.044, 0.09, has
been taken, respectively, as in Fig. 8. A larger �b yields a lower
amplitude and shifts slightly the peaks to large scales.

FIG. 10. The factor P2
Gl�k� as given in Eq. (76) with fixed l �

100 as a function of the wavenumber k. Obviously it is peaked
around k�0 � 100, verifying the relation (82).

FIG. 11. The factor P2
Cl�k� as given in Eq. (77) with fixed l �

100 as a function of the wavenumber k. It is approximately
peaked around k�0 � 127, thus Eq. (82) holds as an estimate.

FIG. 8. The dependence of the visibility function V��� on the
baryon �b in �CDM universe with �� � 0:73, and �dm �
1��� ��b. The baryon density has been taken to be �b �
0:02, 0.044, 0.09, respectively. A larger �b yields a larger �d and
a smaller ��d.
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the horizon, so j _h��d�j
2 / jA1j2�k�d�j

2. As j2�x� peaks at
nearly x ’ 3, so j _h��d�j2 peaks at k�d ’ 3. ThusCXXl peaks
around

 l ’ k�0 ’ 3�0=�d: (82)

For �CDM universe with �d=�0 � 0:0195, Eq. (82) gives
k�0 � 154. This estimate has been based on the analytic
solution h��� of the sudden transition of a���, which is an
approximation. If we use the WKB approximation, calcu-
lation shows that the factor function j _h��d�j2k2 in Eq. (81)

is peaked around k�0 � 127, shown in Fig. 12. Therefore,
the analytic estimate (82) holds approximately.

The value of �0=�d is basically determined by the dark
energy �� and the baryon �b. For instance, fixing �b �
0:044 and �dm � 1��� ��b, the three models with
�� � 0:65, 0.73, and 0.80 give �0=�d ’ 50:1, 51.3, and
53.6, respectively. Therefore, a larger �� yields a larger
�0=�d, i.e., a longer age of the universe, and l in Eq. (82) is
consequently larger. The time derivative of RGW _h��d�
also depends on ��, as shown in Fig. 13, where it is seen
that a larger �� will shift the peaks of _h��d� slightly to
smaller scales. Correspondingly, a larger �� will shift the
peaks of CXXl to smaller scales, as demonstrated in Fig. 14.
So the conclusion is that a higher dark energy �� makes
the peak of CXXl to locate at larger l. This suggests a way to
study the cosmic dark energy through CMB polarizations.

The baryon component also influences the decoupling
time �d. A larger �b has a larger decoupling time �d, and
therefore, a smaller l ’ 3�0=�d. For fixed �� � 0:73 and
�dm � 1��� ��b, the three models with �b � 0:02,
0.044, and 0.09, respectively, are given in Fig. 8. The
corresponding values are �0=�d � 54:9, 51.3, and 50.1,
respectively. So we have the conclusion that a higher
baryon density �b makes the peak to locate at smaller l,
as is demonstrated in Fig. 9.

E. The influence of the spectrum index nT of RGW
on CXXl

The spectrum index nT of RGW in (33) will influence
the CMB polarizations CXXl . In Fig. 15 three curves of CCCl
are plotted for nT � �0:1, 0.0, and 0.1, respectively, where
the parameters r � 1 and � � 2 are taken in the half-
Gaussian fitting. It is seen that a larger value of nT pro-
duces a higher polarization spectrum CCCl . The reason for

η
η

η

FIG. 12. In the WKB approximation of a��� the factor func-
tion j _h��d�j2k2�0=AT is peaked around k�0 � 127, validating
the relation (82) as a fairly good estimate. Here the factor
j _h��d�j

2k2 is multiplied by a factor �0=AT for a clear graphical
demonstration.

ΩΛ
ΩΛ
ΩΛ

η
η

η

FIG. 13. The dark energy �� affects the time derivative _h��d�
at the decoupling. A larger �� shifts the peaks of _h��d� to
smaller scales.

FIG. 14. The magnetic polarization spectrum CCCl depends
weakly on ��. A larger �� yields a lower amplitude and shifts
the peaks slightly to smaller scales.
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this feature is the following: CCCl / j _h��d�j2, and j _h��d�j
differs from 0 only at larger k�0 > 50, as in Fig. 2, and
j _h��d�j / kjh��d�j. Since k3jh��d�j

2 / knT , so in the range
of larger k a larger value nT will give a larger jh��d�j2 and a
larger CCCl . The similar behavior also occurs for the elec-
tric polarization CGGl .

VIII. CONCLUSION

In this paper we present a detailed, and comprehensive
study of the CMB polarizations generated by RGW in the
Polnarev’s method, and have arrived at the analytic for-
mulas of the polarization spectra CXXl . As approximate
analytic expressions, they are quite close to the numerical
result evaluated from the cmbfast code, especially, for the
first three peaks of the spectra that are observable. There
are several improvements in our approach over the pre-
vious results.

(1) The RGW h��� and its derivative _h��� as the source
directly affect the CMB polarization spectra CXXl . In
our calculations for h��� from its wave equation,
both the analytic and numerical treatments have
been carried out. In the analytic calculation, we
have modeled the scalar factor a��� for various
stages of expansion of the universe, including, in
particular, the current accelerating one. For the tran-
sition between the radiation and the matter dominant
eras, besides the sudden transition, we also adopted
a smoother description of WKB approximation.
While the latter yields the resulting RGW closer to

the numerical results, the former has the simpler
explicit expressions of h��� and _h���, which are
convenient to employ in analyzing certain physical
elements that affect RGW and CMB polarizations.
For instances, the location of the peaks of CXXl can
be analytically demonstrated with the first peak
being located at l ’ 3�0=�d, and the dependence
on the dark energy �� and the baryon �b, through
the decoupling time �d, is also clearly demon-
strated. A lower dark energy ��, and/or a higher
baryon density �b tend to shift the peak of CXXl to
smaller l.

(2) The CMB polarizations depend on the recombina-
tion process sensitively. We have given an explicit,
and improved expression for the visibility function
V��� around the decoupling time, which consists of
two pieces of half-Gaussian fitting. This fitting de-
scribes the actual decoupling process better than the
usual Gaussian one, and is also easy to use for
analytic calculations. For example, the damping
factor D�k� can be easily written down in the half-
Gaussian fitting, and, at the same time, it improves
the visibility function V by�11:5%, and the spectra
by �CXXl =CXXl � 30% around the second and the
third peaks. Moreover, the damping factor D�k�
contains a parameter � in a larger range [0, 2],
coming from the mixed modes of the stochastic
quantity _h���jl�k��� �0�� during the recombina-
tion. In particular, the half-Gaussian fitting with
� 2 �1:7; 2:0� gives a reasonably good fitting to
the first three peaks of the spectra CXXl .

(3) In dealing with the Boltzmann equations analyti-
cally, we have worked up to the second order of
1=q of the tight coupling, resulting in an amplitude
of CXXl smaller than that in the tight-coupling limit
by 58%.

(4) The influences of inflation on the CMB polariza-
tions have been examined, such as the tensor-scalar
ratio r and the spectrum index nT of RGW. It is
found that a larger value of nT produces higher
polarization spectra CCCl and CGGl . The possible
detections of RGW through CMB polarizations are
discussed.
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FIG. 15. The magnetic polarization spectrum CCCl depends on
the spectrum index nT of RGW. CCCl are plotted for three values
of nT � �0:1, 0.0, and 0.1, respectively. The parameters are
taken: r � 1, � � 2 in the half-Gaussian fitting. A larger nT
yields a higher spectrum CCCl .
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