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Abstract
The application of the security region methodology in a practical distribution system with
large scale normally requires large computer memory and high computation time. To
overcome this problem, this article proposes a decoupling and dimension reduction
method, which can significantly accelerate the calculation of distribution system security
region (DSSR) and is important for the application of the DSSR theory in large‐scale
distribution systems. First, the definition of DSSR dimension reflecting the size of so-
lution space and the time complexity is proposed. And the solution algorithm for DSSR
dimension is also given. Second, a decoupling and dimension reduction method suitable
for the analysis of DSSR is proposed. Following the method, an incidence matrix can be
obtained from the DSSR expressions, which can be further divided into multiple block
matrices. According to the feeder combinations of the block matrices, the distribution
system can be decoupled into multiple sub‐networks for more efficient analysis. Finally, a
10kV distribution network is used in case study to validate the proposed method. The
results for a time‐consuming calculation, that is, TSC curve calculation, show that the
proposed method can reduce the computation time significantly, making the time‐
consuming calculation suitable for the analysis of large‐scale cases.
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1 | INTRODUCTION

The concept of security region originates from transmission
system. Since the static security region of transmission system
was proposed in 1975 [1], a series of relatively complete the-
ories of transmission system security region have been estab-
lished [2–5]. Some scholars have introduced the concept of
security region into distribution system and proposed distri-
bution system security region (DSSR). DSSR [6] is defined as a
set of operating points that satisfy the distribution system N‐1
secure. Furthermore, the model, topological characteristics [7],
simulation observation [8], and mathematical deduction [9] of
DSSR are also analysed.

Since the ‘region’ method has convincing advantages over
the ‘point‐wise’ method, some scholars use DSSR to develop
new analysis methods about distribution system. The static

voltage region of distribution system is proposed in ref. [10] to
solve the deficiency of simplifying the reactive power part in
original operation area. Based on ‘region’ method, the maximum
uncertainty of active distribution system is described by the
upper bound of operating points satisfying voltage and current
constraints [11]. The trend characteristics of power systems can
be obtained through situation awareness methods [12, 13]. The
minimum variance coefficient of security distance is taken as an
objective function in the new network reconfiguration model to
show that the model can satisfy N‐1 security [14]. In addition,
boundary supply capability (BSC) [15] and security distance [16]
for distribution systems are proposed based on DSSR. The
concept and method of DSSR have also been extended to areas
such as integrated energy systems [17, 18].

The scale of a power system depends on transforming
capacity, the number of substations, line‐length and the

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2023 The Authors. IET Energy Systems Integration published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Tianjin University.

IET Energy Syst. Integr. 2023;1–17. wileyonlinelibrary.com/journal/esi2 - 1

https://doi.org/10.1049/esi2.12105
https://orcid.org/0000-0002-9077-0601
mailto:jiangx28@cardiff.ac.uk
https://orcid.org/0000-0002-9077-0601
http://creativecommons.org/licenses/by/4.0/
https://ietresearch.onlinelibrary.wiley.com/journal/25168401


number of loops and so on [19]. Evaluation indicators and
analysis methods are proposed to reflect the sufficiency level of
the scale of networks [20]. For distribution system, a complete
evaluation indicator system and comprehensive model of dis-
tribution network scale are established based on the principle
of grey relational analysis and analytic hierarchy process [21].
The scale of DSSR is also a fundamental issue in the study of
the DSSR.

The scale of an object or system can be described as
dimension [22]. Dimension can be represented by the num-
ber of parameters required to describe an object [23]. Two
forms of DSSR dimension are proposed to describe the scale
of DSSR [24]. One is named binary dimension: it is defined
with two variables, the number of security boundaries (Qb)
and the number of variables (Qv) in them. The other is
named unary dimension: the number of equivalent feeders is
introduced, denoted as Ne, and the DSSR dimension is
donated as Du, which is expressed in the most commonly
used form of Ne � Ne.

The research of the DSSR dimension has a certain
foundation, but the large scale of the real distribution system
leads to a very high dimension of its security region. To
address this challenge, dimension reduction methods for
DSSR are required. Existing dimension reduction methods in
DSSR research are primarily employed for visualising DSSR.
In these methods, the power injections at two or three
important nodes in the distribution system are selected for
visualisation while keeping the power injections at other
nodes constant. The authors in refs. [10, 25], and [26]
visualised the static security region of the distribution
network in 2‐dimensional cross sections. Wan et al. [11] study
the high‐dimensional boundary by mapping the maximum
uncertainty boundary of distributed generators in active dis-
tribution networks to a 2‐dimensional plane. Effective
decoupling methods for DSSR have not been proposed in
existing studies. Therefore, this paper proposes a decoupling
and dimension reduction method for DSSR. The superiority
of the proposed method is in the dimension reduction of the
expression of DSSR, which can significantly improve the
calculation speed of DSSR‐associated calculations. The main
contributions of this paper include:

(1) A more effective definition of DSSR dimension comparing
to the existing relevant study is proposed for dimension
reduction of DSSR, which can further contribute to the
decoupling of distribution systems.

(2) A DSSR dimension calculation method based on DSSR
expressions and incidence matrix is proposed, which has
demonstrated its effectiveness in reducing the dimension
of DSSR.

(3) A decoupling and dimension reduction method for DSSR
is proposed to enable rapid security region‐based analysis
and accelerate the security analysis of the real‐world dis-
tribution systems. The effectiveness of the proposed
method has been validated by calculating Total Supply
Capability (TSC) curve. Compared to the existing method

for calculating TSC curve, the proposed method can
significantly increase the calculation speed while reducing
the memory requirement.

2 | DSSR DIMENSION

2.1 | Background of DSSR dimension

The cardinality of a finite set represents the size of the set,
which is just the number of elements in the set. And if a vector
space V has a basis of cardinality K, we say that V is K‐
dimensional [23]. Similarly, the DSSR dimension describes the
size of DSSR space. Higher dimension requires more param-
eters to describe a DSSR, which indicates that the DSSR
problem has a larger scale.

Two forms of DSSR dimension are proposed to
describe the scale of DSSR [24]. One is defined with two
parameters, the number of security boundaries and the
number of variables in them. Although this definition can
represent the scale of the security region, there are short-
comings: firstly, the two‐parameter approach is not normal
for DSSR users to construct the problem space; secondly,
comparing the scale of two DSSRs is difficult when the
comparison results of these two parameters are not consis-
tent. Thus, another form of DSSR dimension is defined
with one parameter, that is, the number of equivalent
feeders, which is denoted as Ne. For the distribution
network with N feeders, after considering the feeder link, it
is equivalent to the full contact distribution system with Ne
feeders, and the dimension is Ne � Ne. This dimension
cannot completely distinguish feeders with links. For
example, the real dimension of a distribution network with n
single‐links is 2, but the result of unary dimension is
4nffiffiffiffiffiffiffiffi
9n−5
p � 4nffiffiffiffiffiffiffiffi

9n−5
p [24]. In ref. [24], the researchers clarify that a

distribution network with n single‐links is equivalent to a
virtual full‐link network with 4nffiffiffiffiffiffiffiffi

9n−5
p feeders. The unary

dimension is the square of the number of the feeders in the
equivalent full‐link network. The details on how to obtain
the number of the feeders of equivalent virtual full‐link
network can refer to [24]. The definition of DSSR dimen-
sion in ref. [24] is not convenient to use since it is
computationally complex and hard to be obtained from the
incidence matrix of the DSSR expressions.

2.2 | A new definition of DSSR dimension

In order to overcome the shortcomings of large computational
cost and difficult transformation of incidence matrix and to
conform to the traditional definition of dimension as well, an
integer responding to the number of parameters, a new DSSR
dimension is defined in this paper. The number of parameters
is the number of linked feeders, the maximum of which de-
termines the dimension of DSSR space.
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For a distribution network with N feeders, the DSSR
dimension Dm is denoted as

Dm ¼max m1;m2; :::;mi; :::;mkf g ð1Þ

k is the number of groups of feeder combinations. A feeder
combination is the combination of feeders linked with each
other through the tie switches [24].mi is the number of feeders
in the ith feeder combination. Physically, the DSSR dimension
Dm in this paper denotes the maximum number of feeders
which link with each other in a distribution system. This
dimension partly reflects the interdependence of the feeders in
the distribution system, which can be used for decoupling the
distribution system.

2.3 | Relationship between DSSR dimension
and time complexity of DSSR calculation
algorithms

Assuming that n is the size or number of input data, T(n) is the
execution times of a given code. Algorithms generally use a
simplified estimate O(f(n)) of T(n) to measure the execution
speed of the code, and this simplified estimate O(f(n)) is called
the time complexity [27]. The time complexity O(f(n)) is the
extent to which the solution time increases when the input
variable n increases.

The DSSR dimension expresses the scale of DSSR prob-
lem, thus determining the complexity of constructing DSSR or
searching optimal solutions in DSSR space by using a specified
algorithm. The DSSR dimension and the time complexity of
DSSR calculation algorithms have one‐to‐one correspondence.
For example, for the calculation of TSC curve [28], if the
dimension of the power grid is Dm, then the time complexity
of the conventional TSC curve algorithm is O(n Dm).

3 | DSSR DIMENSION CALCULATION
METHOD

The steps of the method for calculating the DSSR dimension
are as follows. For clarity, each step is explained with a five‐
feeder case network as shown Figure 1.

3.1 | DSSR expression

Step 1: Obtain the DSSR expression ΩDSSR based on detailed
feeder interconnection relationship and component parame-
ters (including the transformer and feeder capacities) of the
distribution system [7]. DSSR is defined as the set of all
operating points that satisfy N‐1 security constraints of the
distribution system. Therefore, the feeder load and trans-
former load should satisfy N‐1 security constraints including
feeder N‐1 security constraints and transformer N‐1 security
constraints.

1‐1: Feeder N‐1 security constraints indicate that the
power load at the feeder out of service can be transferred
to other connected feeders through tie switches, which do
not incur any overloading problem. Assuming feeder m is
out of operation after N‐1 contingency, the power load at
feeder m can be transferred to feeder n via the tie switch,
then the N‐1 constraint for feeder m can be expressed as
follows:

SF ;m þ SF ;n ≤ cF ;nð∀m; nÞ ð2Þ

where SF ;x (x = m, n) is the power load supplied by feeder x;
cF ;n is the capacity of feeder n. Equation (2) guarantees that
after load transfer from feeder m to feeder n, no overload
problems occur. N‐1 security constraints for other feeders can
follow the same principle as in Equation (2).

Take the N‐1 security constraint for feeder 1 of the case in
Figure 1 as an example, when feeder 1 is out of operation after
N‐1 contingency, the power loads SF ;1 at feeder 1 can be
transferred to feeder 2 via the tie switch. Then the N‐1
constraint for feeder 1 can be expressed as follows:

SF ;1 þ SF ;2 ≤ cF ;2 ð3Þ

In Figure 1, there is also a two‐supply‐one‐backup
connection mode containing feeder F3, F4, F5. For brevity,
feeder F3 is used as a backup for feeder F4 and F5.

1‐2: Transformer N‐1 security constraints express the se-
curity after N‐1 contingency at each transformer, in a similar
way as feeder N‐1 security constraints. When transformer i is
out of operation after N‐1 contingency, all its feeder loads are
transferred to other transformers via the tie switches. The
security constraint regarding transformer i should guarantee
that no overloading problems occur in all the transformers
after N‐1 contingency at transformer i, which is expressed in
Equation (4),

Si;jT ;tr þ ST ;j ≤ cT ;jð∀i; jÞ ð4Þ

where Si;jT ;tr is the load transferred from transformer i to
transformer j; cT ;j is the rated capacity of transformer i.

Take the N‐1 constraint for transformer T1 of the case in
Figure 1 as an example, when transformer T1 is out of

F I GURE 1 A five‐feeder case network for illustrating the calculation
steps of distribution system security region (DSSR) dimension.
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operation after N‐1 contingency, its power load SF,1 at feeder
F1 should be transferred to transformer 2 via the tie switch,
and the power load SF,3 at feeder F3 should be transferred to
transformer T3. The N‐1 constraint for transformer T1 can be
expressed as follows:

SF ;1 þ SF ;2 ≤ cT ;2
SF ;3 þ SF ;4 þ SF ;5 ≤ cT ;3

�

ð5Þ

In summary, the DSSR expression ΩDSSR consisting of the
above constraints can be formulated as

ΩDSSR ¼ W

�
�
�
�
�
�

SF ;m þ SF ;n ≤ cF ;nð∀m; nÞ

Si;jT ;tr þ ST ;j ≤ cT ;jð∀i; jÞ

8
<

:

9
=

;
ð6Þ

For the case in Figure 1, the DSSR expression ΩDSSR can
be formulated as

ΩDSSR ¼ W

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

SF ;1 þ SF ;2 ≤ cF ;2
SF ;2 þ SF ;1 ≤ cF ;1
SF ;3 þ SF ;4 ≤ cF ;4
SF ;4 þ SF ;3 ≤ cF ;3
SF ;5 þ SF ;3 ≤ cF ;3
SF ;1 þ SF ;2 ≤ cT ;2
SF ;3 þ SF ;4 þ SF ;5 ≤ cT ;3
SF ;2 þ SF ;1 þ SF ;3 ≤ cT ;1
SF ;4 þ SF ;5 þ SF ;1 þ SF ;3 ≤ cT ;1

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>;

ð7Þ

3.2 | Incidence matrix

Step 2: Generate the incidence matrix from the DSSR
expression.

The incidence matrix [24] is used to store the linking
relationship between feeders in a distribution system, which is
denoted as A as follows:

A¼ aij
� �

ð8Þ

where aij is the link between feeder i and feeder j. When feeder
i and feeder j are linked, aij ¼ 1; otherwise aij ¼ 0

The key to the incidence matrix is the linking relationship
between each of the two feeders in a distribution system,
which can be identified from the DSSR expressions. The
identification process can be summarised in the following two
situations.

First, if the variables of power loads at two feeders (e.g.
feeder i and feeder j) appear in the same constraint as in
Equation (4) or Equation (6), these two feeders are directly
linked with each other and the corresponding matrix element
a(i,j) is set as 1. This can be illustrated by the example of the
first constraint in Equation (7) (i.e. SF ;1 þ SF ;2 ≤ cF ;2) Since
the constraint contains the power loads SF,1 and SF,2, their
associated matrix element a(1,2) is set as 1, indicating that
feeders F1 and F2 are directly linked and the power loads
under these feeders should not exceed the capacity of the
transferred feeder F2.

Second, if the variables of power loads at feeder i and
feeder j appear in different DSSR constraints, but these
constraints are dependent in terms of these two variables, the
two feeders are indirectly linked. Under this situation, the
matrix element a(i,j) should also be set as 1. This is because if
constraints associated with two variables are not independent,
a change of one variable will affect the range of the value for
the other variable. Therefore, the two variables (or the two
feeders) are indirectly linked with each other. Take the fourth
and the fifth constraints of (7) (i.e. SF,4 + SF,3 ≤ cF,3 and SF,5 +
SF,3 ≤ cF,3) as an example. From these constraints, the allow-
able transferred power loads SF,4 and SF,5 are both influenced
by the power load SF,3, which indicates the indirect linking
relationship between feeders F4 and F5. Therefore, their
associated matrix element is recorded as 1.

Following the generation process of the incidence matrix
above, the whole incidence matrix for the case network in
Figure 1 is shown in Figure 2 for reference.

3.3 | Block matrix

Step 3: Divide the incidence matrix into block matrices [29]. If
a matrix is partitioned by sequential partitions of its rows and
columns, the resulting partitioned matrix is called a block
matrix.

The obtained incidence matrix in Step 2 can be further
divided into block matrices by identifying non‐zero elements
following two ways.

F I GURE 2 The incidence matrix and the results of block matrices of
the five‐feeder case network.
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3‐1: Obtain the diagonal block matrices (Di). For the
generation of block matrix D1, firstly use a11 as the first
element, then find the largest all‐ones square matrix as D1.
The generation of other block matrices follows the similar
way. The difference is the first element for Di (i≠1) uses the
first element of the remaining diagonal elements after gen-
eration of D1‐Di‐1. The generation of the block matrices
stops when ann is included. Following the generation process
of the block matrices, the scale of Di is di � di, and the
dimension of Di is di.

3‐2: Obtain the non‐diagonal block matrices (Ei), all with
non‐zero elements. The scale of Ei is ei � ej, and the
dimension of Ei is ei + ej. Due to the symmetry of the
incidence matrix, a more efficient way is to obtain the non‐
diagonal block matrices in the upper‐triangular part of the
incidence matrix. And the diagonal block matrices in the
lower‐triangular part is symmetric with those in the upper‐
triangular part.

The division of the incidence matrix and the results of the
block matrices of the case network are shown in Figure 2.

3.4 | DSSR dimension

Step 4: Calculate the DSSR dimension.
As with Section 2.2, the DSSR dimension is defined as the

maximum value of the number of feeders with links in this
paper. Since one block matrix represents a group of feeder
combination (i.e. the combination of feeders linked with each
other through the tie switches), the DSSR dimension in
Equation (1) is equal to the maximum value of the block matrix
dimension as follows:

Dm ¼max di; ei þ ej
� �

ð9Þ

di is the number of rows and columns of the diagonal block
matrix; ei and ej is the number of rows and columns of the
non‐diagonal block matrix respectively. For the case in
Figure 1, at most three feeders (i.e. F1, F2, F3 or F1, F4, F5 or
F3, F4, F5) are directly or indirectly linked. Therefore, the
dimension of the network is 3, which can be obtained from the
diagonal block matrix D1 with the maximum rows/columns
(or the non‐diagonal matrix E1 or E2 with the maximum sum
of rows and columns) in Figure 2.

4 | DECOUPLING AND DIMENSION
REDUCTION METHOD OF DSSR

Based on the DSSR dimension calculation method, this section
provides the decoupling and dimension reduction method for
DSSR. From the obtained block matrices, the distribution
network can be decoupled as follows. The remaining steps are
as follows.

Step 5: Extract the feeder combinations corresponding to
the diagonal block matrix Di and the non‐diagonal block
matrix Ei. The feeders associated with the row and column
elements of a block matrix can form a group of feeder
combinations.

Step 6: Divide the distribution network into several sub‐
networks according to the feeder combinations. The feeders
in each group of feeder combinations can form a sub‐network.
In this regard, feeders without electrical connections after
N‐1 fault are decoupled. In other words, a large‐scale
distribution network can be divided into several smaller‐
scale sub‐networks. Accordingly, the corresponding high‐
dimensional security region of the network can be divided
into several lower‐dimensional security regions, which achieves
the dimension reduction for the high‐dimensional security
regions.

5 | CASE STUDY

5.1 | Overview

The 10 kV distribution network case in Figure 3 [24] is used for
the case study. This case has 4 substation transformers and 28
feeders. The capacities of transformers and feeders are 80MVA
and 10MVA respectively.

The calculations of DSSR are carried out on a 64‐bit
Window 10 with Intel(R) Core(TM) i5‐10200H @ 2.40 GHz
CPU, 8 GB RAM.

5.2 | Calculation of DSSR dimension

5.2.1 | DSSR expressions

Step 1: Obtain the expression of DSSR for the case network.
The power load should satisfy N‐1 security constraints.

The DSSR expression for the 28‐feeder case (denoted as
ΩDSSR) is established as below:

F I GURE 3 28‐feeder case.
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ΩDSSR ¼ W

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

SF ;4 þ SF ;18 ≤ min cF ;4; cF;18
� �

SF ;5 þ SF ;19 ≤ min cF ;5; cF;19
� �

SF ;6 þ SF ;9 ≤ min cF ;6; cF ;9
� �

SF ;7 þ SF ;8 ≤ min cF ;7; cF ;8
� �

SF ;20 þ SF ;23 ≤ min cF ;20; cF ;23
� �

SF ;21 þ SF ;22 ≤ min cF ;21; cF ;22
� �

SF ;13 þ SF ;27 ≤ min cF ;13; cF ;27
� �

SF ;14 þ SF ;27 ≤ min cF ;14; cF ;27
� �

SF ;14 þ SF ;28 ≤ min cF ;14; cF ;28
� �

SF ;1�5 þ SF ;15�21 ≤ cT ;3
SF ;6�14 ≤ cT ;2
SF ;1�9 ≤ cT ;1
SF ;10�14 þ SF ;22�28 ≤ cT ;4
SF ;1�7 þ SF ;15�19 ≤ cT ;1
SF ;20�28 ≤ cT ;4
SF ;15�23 ≤ cT ;3
SF ;8�14 þ SF;24�28 ≤ cT ;2
ΩDSSR1

ΩDSSR2

ΩDSSR3

ΩDSSR4

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð10Þ

SF ;i�j means the sum of SF ;i to SF ;j . For instance, SF ;1�5 is
SF ;1 þ SF;2 þ SF ;3 þ SF ;4 þ SF ;5.

ΩDSSRx (x = 1,2,3,4) are the N‐1 security constraints of the
four two‐supply‐one‐backup connection modes in the case.
For each two‐supply‐one‐backup connection, one feeder is
used as a backup for two other feeders. For clarity, ΩDSSRx

(x = 1,2,3,4) are written separately as follows:

ΩDSSR1 ¼ W

�
�
�
�
�
�
�
�

−
SF ;1 þ SF ;15 ≤ min cF ;1; cF;15

� �

SF;2 þ SF ;15 ≤ cF;15

8
>>><

>>>:

9
>>>=

>>>;

∪

W

�
�
�
�
�
�
�
�
�

SF ;1 þ SF ;2 ≤ min cF ;1; cF ;2
� �

−
SF ;2 þ SF ;15 ≤ cF ;2

8
>>><

>>>:

9
>>>=

>>>;

∪

W

�
�
�
�
�
�
�
�
�

SF ;1 þ SF ;2 ≤ min cF ;1; cF ;2
� �

SF ;1 þ SF ;15 ≤ cF ;1
−

8
>>><

>>>:

9
>>>=

>>>;

ð11Þ

ΩDSSR2 ¼ W

�
�
�
�
�
�
�

−
SF ;3 þ SF ;17 ≤ min cF ;3; cF ;17

� �

SF ;16 þ SF ;17 ≤ CF ;17

8
>><

>>:

9
>>=

>>;

∪

W

�
�
�
�
�
�
�
�

SF ;3 þ SF;16 ≤ min cF ;3; cF ;16
� �

−
SF ;16 þ SF ;17 ≤ cF ;16

8
>><

>>:

9
>>=

>>;

∪

W

�
�
�
�
�
�
�
�

SF ;3 þ SF;16 ≤ min cF ;3; cF ;16
� �

SF ;3 þ SF ;17 ≤ cF ;3
−

8
>><

>>:

9
>>=

>>;

ð12Þ

ΩDSSR3 ¼ W

�
�
�
�
�
�
�

−
SF ;10 þ SF ;24 ≤ min cF ;10; cF ;24

� �

SF ;11 þ SF ;24 ≤ CF;24

8
>><

>>:

9
>>=

>>;

∪

W

�
�
�
�
�
�
�
�

SF ;10 þ SF;11 ≤ min cF ;10; cF;11
� �

−
SF ;11 þ SF;24 ≤ cF ;11

8
>><

>>:

9
>>=

>>;

∪

W

�
�
�
�
�
�
�
�

SF ;10 þ SF;11 ≤ min cF ;10; cF;11
� �

SF ;10 þ SF ;24 ≤ cF ;10
−

8
>><

>>:

9
>>=

>>;

ð13Þ

ΩDSSR4 ¼ W

�
�
�
�
�
�
�

−
SF ;12 þ SF ;26 ≤ min cF ;12; cF ;26

� �

SF ;25 þ SF ;26 ≤ cF ;26

8
>><

>>:

9
>>=

>>;

∪

W

�
�
�
�
�
�
�
�

SF ;12 þ SF ;25 ≤ min cF ;12; cF ;25
� �

−
SF ;25 þ SF ;26 ≤ cF ;25

8
>><

>>:

9
>>=

>>;

∪

W

�
�
�
�
�
�
�
�

SF ;12 þ SF ;25 ≤ min cF ;12; cF ;25
� �

SF ;12 þ SF ;26 ≤ cF ;12
−

8
>><

>>:

9
>>=

>>;

ð14Þ

5.2.2 | Incidence matrix

Step 2: Generate the incidence matrix from the DSSR
expression. The identification process can be summarised in
the following two situations.

First, if the variables of two power loads at two feeders (e.g.
feeder i and feeder j) appear in the same constraints as in
Equation (10), the corresponding matrix element a(i,j) is set as
1. For example, SF ;1�5 þ SF ;15�21 ≤ cT ;3, power loads such as
SF,1, SF,2, SF,3 are in this formula, then a(1,2), a(1,3) and a(2,3) are
recorded as 1.
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Second, if the variables of power loads at feeder i and feeder
j appear in different DSSR constraints, but these constraints are
dependent in terms of these two variables, the matrix element
a(i,j) should also be set as 1. For example, SF ;13 þ SF ;27 ≤
min cF ;13; cF ;27
� �

and SF ;14 þ SF ;27 ≤ min cF ;14; cF ;27
� �

, the
a(13,14) is recorded as 1.

5.2.3 | Block matrix

Following the step 3 in Section 3.3, the divided results of block
matrices are shown in Figure 4.

From Figure 4, the incidence matrix can be divided into
four diagonal block matrices (i.e., D1‐D4 marked in yellow) and
six non‐diagonal block matrices (i.e. E1‐E6 marked in blue).
D1‐D4 and E1‐E6 are numbered from the top‐left to the
bottom‐right.

Following the definition of DSSR dimension in Section 3.4,
the dimensions of the block matrices for the 28‐feeder case are

summarised in Table 1. The scales of these block matrices are
also shown for reference.

5.2.4 | DSSR dimension

From Table 1, the DSSR dimension is 12, which corresponds
to the largest dimension among the block matrices, that is, the
dimension of E1, E2 or E5. Therefore, the time complexity of
DSSR calculation algorithms is O(n12).

5.3 | Decoupling and dimension reduction
of DSSR

5.3.1 | Feeder combination

Corresponding to the diagonal and non‐diagonal block matrices
in Table 1, 10 feeder combinations are obtained in Table 2.

F I GURE 4 Incidence matrix blocking.
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Take E1 as an example: E1 contains the elements at the
intersection of rows 1‐5 and columns 15–21, so the feeders
associated with 1‐5 rows and 15–21 columns elements can
form a group of feeder combination, that is, (F1‐F5, F15‐F21).

5.3.2 | Decoupling and dimension reduction

The obtained feeder combinations can decouple the distribu-
tion network into ten sub‐networks with no more than 12
feeders.

The 4 sub‐networks obtained from the feeder combina-
tions of diagonal block matrices are shown in Figure 5, while
the 6 sub‐networks obtained from the feeder combinations of
non‐diagonal block matrices are shown in Figure 6. Accord-
ingly, the corresponding 28‐dimensional security region of the
network is divided into 10 lower‐dimensional security regions,
which achieves the dimension reduction for the high‐
dimensional security region of the original distribution
network.

5.4 | Application: TSC curve calculation

TSC refers to the maximum load supply capability of a dis-
tribution network when it meets the N‐1 security criterion [30].
Since the load information is contained in the boundary points
of the security region of the distribution network, the TSC can
be obtained by summing the loads at the boundary points [15].
The TSC curve can be obtained by arranging the TSC values
corresponding to the respective boundary points in order.
Compared with TSC, the TSC curve fully describes the
extreme load‐carrying capability of a distribution network [15].

The proposed decoupling and dimension reduction
method in this paper is applied to accelerate the calculation of
TSC curve [28], which is a typical DSSR‐associated calculation.
To verify the effectiveness of the proposed method, the result
is compared with that calculated by using the existing algo-
rithm in ref. [28]. It should be mentioned that the algorithm in
ref. [28] is also used to calculate the TSC curve after using the
proposed method to decouple the case network into multiple
sub‐networks.

TABLE 2 Block matrices and its corresponding feeder combinations.

Block matrix Feeder combination

D1 F1‐F9

D2 F10‐F14

D3 F15‐F23

D4 F24‐F28

E1 F1‐F5, F15‐F21

E2 F6, F7, F10‐F19

E3 F8‐F14

E4 F8, F9, F24‐F28

E5 F10‐F14, F22‐F28

E6 F20‐F28

F I GURE 5 Sub‐networks obtained from the feeder combinations of
diagonal block matrices.

F I GURE 6 Sub‐networks obtained from the feeder combinations of
non‐diagonal block matrices.

TABLE 1 The scale and dimension of block matrices of the 28‐feeder
case.

Block matrix Scale Dimension

D1 9 � 9 9

D2 5 � 5 5

D3 9 � 9 9

D4 5 � 5 5

E1 5 � 7 12

E2 2 � 10 12

E3 2 � 5 7

E4 2 � 5 7

E5 5 � 7 12

E6 4 � 5 9
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Since the existing algorithm in ref. [28] is based on sam-
pling the state space of security region, this DSSR‐associated
calculation is very time‐consuming when applying to large‐
scale distribution networks. By using the method proposed
in this paper, the dimension of DSSR is reduced from 28 to 12.
Therefore, the time complexity of DSSR calculation algorithm
is also reduced from O(n28) to O(n12), which reduces more
than 50%.

The sampling step s when sampling the strict boundary is
10MVA. The number of sampling points is denoted as
10
s þ 1
� �N , where 10

s þ 1
� �

is the number of points that can be
sampled on each boundary andN is the number of feeders [28].

The calculation process and computation time of a 36‐
feeder case are given in the Appendix A.

The results of TSC curve of the 28‐case network before
and after using the proposed method in this paper are
compared, which are shown in Table 3.

After sampling the strict boundary, TSC curve is plotted by
taking the sampling number as abscissa and the total feeder load
as ordinate [28]. The TSC curves of sub‐networks were calcu-
lated; then the TSC curve “summary after decoupling” was ob-
tained, the detailed data and process is in Appendix B. After
summary, the TSC curve is exactly the same as that before
decoupling, which verifies the effectiveness of the proposed
method. The reason why the TSC curve with the use of decou-
pling is the same as the one without decoupling is as follows:

Firstly, the upper and lower limits of the TSC curve before
and after decoupling are the same. There are no overlap
feeders in which there are tie switches connected between
different sub‐networks after decoupling, which ensures inde-
pendent analysis of the sub‐networks. In this regard, the range
of the feeder load that satisfy N‐1 security constraints stays the
same after decoupling. Secondly, since the sampling step is
constant, the sampling values of the feeder loads before and
after decoupling are the same. These two factors result in the
fact that the range of the total load of each boundary point of
DSSR (i.e. the TSC value) remains unchanged.

Secondly, the shape of the TSC curve stays the same after
the decoupling of the distribution network. The shape of the
TSC curve is determined by the proportion of different TSC
values on the TSC curve. Since the ranges of different feeder
load and the sampling values are unchanged after decoupling,
the distribution and proportion of feeder loads in each sub‐
network are the same as those before decoupling. The sum-
mary of TSC curve after decoupling aims at obtaining the
Cartesian product of the vectors of the points on the security
boundary, and each element of the Cartesian product is
composed of the feeder variables selected from each vector of
the points on the security boundary in order. Therefore, the
distribution and proportion of the feeder loads after summa-
tion are the same as those before decoupling. Since the pro-
portions of different TSC values on TSC curve before and
after decoupling are the same, the shape of the TSC curve
keeps the same.

In summary, the upper and lower limits and the shape of
the TSC curve before and after decoupling are the same, hence
the TSC curve with the use of decoupling is the same as the
one without decoupling.

The computation time and memory are compared in
Table 4.

The total time of calculating TSC curve after decoupling is
7.842 ms, which comprises 6.348 ms for the establishment and
decoupling of the incidence matrix and 1.494 ms for the TSC
curve calculation. The total time for calculating TSC curve
using the proposed method in the paper is only approximately
0.05% of the time before decoupling. This shows that the
proposed method can significantly accelerate the calculation of
TSC curve especially in large‐scale distribution networks. With
a fixed sampling step, the number of sampling points for
calculating the TSC curve grows exponentially with the num-
ber of feeder lines. By using the method proposed in this paper
to split the incidence matrix of the security region into blocks,
the distribution network can be decoupled into multiple sub‐
networks with fewer feeder lines, thereby significantly

TABLE 3 Total Supply Capability (TSC)
curves before and after decoupling.

Network TSC curve

Before decoupling

Summary after decoupling
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reducing the number of sampling points and improving the
performance of TSC curve calculation.

The condition of the acceleration is that the distribution
network can be decoupled and the DSSR dimension can be
reduced. The onlyone exception is that the network is fully linked
between feeders, which is explained in Appendix C. Since a real
distribution network contains many substations, of which the
feeders are normally not fully linked as the case in Appendix C.
The methodology in this study can be applicable in most cases.

The computation time and memory are compared in Ta-
ble 4. The memory during the calculation process is mainly
used for storage of the vectors of sampling points on the se-
curity boundary. (i.e. the feeder load information contained in
the points on the TSC curve). Considering we create int8
variable in MATLAB that takes up 1 byte, the memory usage
can be expressed as x*N ÷ 1024(kb), where x represents the
number of sampling points on the security boundary and N
represents the number of feeders. As an illustration, consider
the first row of Table 4, which corresponds to the network
prior to decoupling. With 28 feeders, a total of 2048 TSC curve
points are obtained, yielding a memory usage of 56(kb).

The maximum requested memory of the sub‐networks is
0.1875kB with only approximately 0.33% of the requested
memory before decoupling. This shows that the proposed
method can significantly reduce the computation memory of
TSC curve. The main memory is used for storing the vectors
of the sampling points on the security boundary. Since the
vectors of the sampling points on the security boundary is
constantly needed during the calculation of the TSC curve, the
memory cannot be freed during the calculation.

6 | CONCLUSION

For a large‐scale distribution system, the application of the
security region methodology normally requires large computer
memory and high computation time due to the high dimension

of DSSR. To overcome this problem, this paper provides a
decoupling and dimension reduction method for the practical
application of DSSR, which has significant implications for
applying security region analysis methods to large‐scale distri-
bution networks in practice. The main contributions are as
follows:

(1) DSSR dimension is defined as the maximum number of
feeders with links, which is more suitable for dimension
reduction compared to the existing definition of DSSR
dimension. This definition is able to overcome the short-
comings of large computational cost and difficult trans-
formation of incidence matrix and conform to the
traditional definition of dimension as well, an integer
responding to the number of parameters.

(2) A DSSR dimension calculation method is proposed, which
involves formulating the DSSR expressions associated
with the target distribution system, extracting the incidence
matrix from these expressions, and generating block
matrices based on the obtained incidence matrix. From the
case study, the method is easy to be implemented.

(3) A decoupling and dimension reduction method for DSSR
based on the dimension calculation method is proposed
for the first time. By utilising the method, a distribution
system can be decoupled into multiple smaller sub‐systems
with fewer feeders. Accordingly, this lowers the dimension
of the distribution system, facilitating more efficient se-
curity analysis of the distribution system.

A 28‐feeder case and a 36‐feeder case were used to verify
the effectiveness of the proposed method. For the calculation
of TSC curve (which is proved to be time‐consuming in pre-
vious studies), the decoupling and dimension reduction
method performs more efficiently than the previous studies.
For the two cases, the time complexity is reduced by more than
50%, increasing the computation speed by more than a thou-
sand times. Other cases also work well but the specific speedup

TABLE 4 Computation time and
memory before and after decoupling.

Network Time(ms)
Requested
memory(kB)

Number of
feeders

Number of
curve points

Before 14283.412 56 28 2048

After 1.494 — 28 8192

D1 0.121 0.0703 9 8

D2 0.112 0.0098 5 2

D3 0.138 0.0703 9 8

D4 0.095 0.0098 5 2

E1 0.274 0.1875 12 16

E2 0.126 0.0469 12 4

E3 0.129 0.0137 7 2

E4 0.106 0.0137 7 2

E5 0.277 0.0938 12 8

E6 0.116 0.0703 9 8
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depends on the specific case. The proposed method is of great
significance for applying DSSR‐associated calculations to large‐
scale distribution networks.

The decoupling method can not only be used in DSSR‐
associated calculation, but also be used to divide the large‐
scale distribution system into smaller‐scale sub‐systems,
which is worthy of further study in distribution system analysis.
In addition, distributed generators, grid‐connected energy
storage, and other components in smart distribution network
will also be considered in the future.
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APPENDIX A

Decoupling and dimension reduction calcula-
t ion for TSC cur ve of 36 ‐ feeder case
For the 36‐feeder case, in the computation environment
described in 5.1 of this paper, the TSC curve cannot be
calculated due to the lack of memory by using the method in
ref. [28]. After using the proposed method, the time for TSC
curve calculation is 4.946 ms and the maximum requested
memory is 1kB.

The computation process is given below.

A.1 | Overview
This case in Figure A1 has 4 substation transformers and 36
feeders. The detailed capacities of the transformers and feeders
can refer to Section 5.1.

A.2 | DSSR expressions

ΩDSSR ¼ W
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ΩDSSRx (x = 5,6,7,8) are written separately as follows:
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F I GURE A 1 36‐feeder case.
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ΩDSSR8 ¼ W
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A.3 | Incidence matrix blocking
The divided results of block matrices are shown in Figure A2.

A.4 | Feeder combination
The feeder combinations are obtained in Table A1.

F I GURE A 2 Incidence matrix blocking.

TABLE A1 Block matrices and its corresponding feeder
combinations.

Block matrix Feeder combination

D1 F1‐F11

D2 F12‐F18

D3 F18‐F28

D4 F30‐F36

E1 F1‐F7, F19‐F27

E2 F8, F9, F12‐F25

E3 F10, F11, F12‐F18

E4 F10, F11, F30‐F36

E5 F12‐F18, F28‐F36

E6 F26‐F36
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A.5 | Decoupling and dimension reduction
The 4 sub‐networks obtained from the diagonal block matrices
are shown in Figure A3.

The six sub‐networks obtained from the non‐diagonal
block matrices are shown in Figure A4.

A.6 | TSC cur ve
The TSC curve points of each sub‐network after decoupling
are summarised to obtain the TSC curve results of the whole
distribution network, as shown in Figure A5.

The computation time is shown in Table A2.

APPENDIX B

Process to obtain the “summary after decou-
pl ing” TSC cur ve of 28 ‐ feeder case
The TSC curves of the sub‐networks after decoupling are
shown in Table B1, which are obtained by the method in [28].

The sub‐networks whose TSC curves are not horizontally
straight, E1 and E5, are treated first. Considering the feeders in
which there are tie switches connected, E1 contains feeders F1‐
F5 and F15‐F19. The distribution of the supply capability of
(F1‐F5, F15‐F19) obtained by the method in [28] is shown in
Table B2.

E5 contains feeders F10‐F14 and F24‐F28. The distribu-
tion of the supply capability of (F10‐F14, F24‐F28) obtained
by the method in ref. [28] is shown in Table B3.

Summarising Table B2 with Table B3, the results are shown
in Table B4.

Arrange Table B4 in the order of supply capability from
smallest to largest. The results are shown in Table B5.

The whole distribution network has a total of 28 feeders
(F1‐F28), and some feeders are still missing in Table B5. Then
look for the missing feeders from other sub‐networks.

D1 contains feeders F6‐F9. The distribution of the supply
capability of (F6‐F9) obtained by the method in [28] is shown
in Table B6.

Summarising Table B5 with Table B6, the results are shown
in Table B7.

D3 contains feeders F20‐F23. The distribution of the
supply capability of (F20‐F23) obtained by the method in [28]
is shown in Table B8.

Summarising Table B7 with Table B8, the results are shown
in Table B9.

F I GURE A 3 Sub‐networks obtained from diagonal block matrices.

F I GURE A 4 Sub‐networks obtained from non‐diagonal block
matrices.

F I GURE A 5 Total Supply Capability (TSC) curve of 36‐feeder case.

TABLE A2 Decoupling and dimension reduction to calculate Total
Supply Capability (TSC) curve time.

Sub‐network
Di/Ei Computation time(ms) Number of feeders

All networks 4.946 36

D1 0.112 11

D2 0.089 7

D3 0.106 11

D4 0.091 7

E1 2.634 16

E2 0.130 16

E3 0.096 9

E4 0.093 9

E5 1.492 16

E6 0.103 11
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TABLE B1 TSC curves of the sub‐networks after decoupling.

Sub‐networks TSC curve

D1

D2

D3

D4

E1

E2

TAB LE B1 (Continued)

Sub‐networks TSC curve

E3

E4

E5

E6

TABLE B2 Sequential distribution of the supply capability of (F1‐F5,
F15‐F19).

Serial number Supply capability/MVA Amount

1–4 40 4

5–12 50 8

13–16 60 4

TABLE B3 Sequential distribution of the supply capability of
(F10‐F14, F24‐F28).

Serial number Supply capability/MVA Amount

1–2 40 2

3–6 50 4

7–8 60 2
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This is the end. Table B9 has contained all 28 feeders. Using
the first 2 columns of Table B9, the TSC curve can be obtained
by a plot software (Microsoft Office Excel used in this paper).

APPENDIX C

Full ‐ l ink case network that cannot be decoupled
This full‐link case network in Figure C1 has 2 substation
transformers and 10 feeders.

The corresponding DSSR expression is shown in for-
mula C1.

ΩDSSR ¼ W

SF ;1 þ SF ;6 ≤ min cF ;1; cF ;6
� �

SF ;2 þ SF ;7 ≤ min cF ;2; cF ;7
� �

SF ;3 þ SF ;8 ≤ min cF ;3; cF ;8
� �

SF ;4 þ SF ;9 ≤ min cF ;4; cF ;9
� �

SF ;5 þ SF ;10 ≤ min cF ;5; cF ;10
� �

X10

i¼1
SF ;i ≤ min cT ;1; cT ;2

� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

8
>>>>>>>>>>><

>>>>>>>>>>>:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ðC1Þ

The corresponding incidence matrix is shown in Figure C2.

TABLE B5 Sequential distribution of the supply capability of (F1‐F5,
F10‐F19, F24‐F28).

Serial number
Supply
capability/MVA Amount

1–8 80 8

9–40 90 32

41–88 100 48

89–120 110 32

121–128 120 8

TABLE B6 Sequential distribution of the supply capability of
(F6‐F9).

Serial number
Supply
capability/MVA Amount

1–8 20 8

TABLE B8 Sequential distribution of the supply capability of
(F20‐F23).

Serial number
Supply
capability/MVA Amount

1–8 20 8

TABLE B7 Sequential distribution of the supply capability of
(F1‐F19, F24‐F28).

Serial number Supply capability/MVA Amount

1–64 80 + 20 = 100 8 � 8 = 64

65–320 90 + 20 = 110 32 � 8 = 256

321–704 100 + 20 = 120 48 � 8 = 384

705–960 110 + 20 = 130 32 � 8 = 256

961–1024 120 + 20 = 140 8 � 8 = 64

TABLE B4 Distribution of the supply capability of (F1‐F5, F10‐F19,
F24‐F28).

Supply capability/MVA Amount

40 + 40 = 80 4 � 2 = 8

40 + 50 = 90 4 � 4 = 16

40 + 60 = 100 4 � 2 = 8

50 + 40 = 90 8 � 2 = 16

50 + 50 = 100 8 � 4 = 32

50 + 60 = 110 8 � 2 = 16

60 + 40 = 100 4 � 2 = 8

60 + 50 = 110 4 � 4 = 16

60 + 60 = 120 4 � 2 = 8

TABLE B9 Sequential distribution of the supply capability of
(F1‐F28).

Serial number Supply capability/MVA Amount

1–512 100 + 20 = 120 64 � 8 = 512

513–2560 110 + 20 = 130 256 � 8 = 2048

2561–5632 120 + 20 = 140 384 � 8 = 3072

5633–7680 130 + 20 = 150 256 � 8 = 2048

7681–8192 140 + 20 = 160 64 � 8 = 512

F I GURE C 1 10‐feeder full‐link case.

F I GURE C 2 Incidence matrix.
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The incidence matrix of the full‐link case is an all‐one
matrix, which contains only one block matrix, that is, the
incidence matrix itself. Therefore, the full‐link case network
cannot be decoupled.

For real distribution networks with many substations, they
are normally not fully linked and can be decoupled even if the
structure of each substation is the same as in Figure C1. For
example, the two substations in Figure C3 follow the same
structure as in Figure C1, but there are no links between some
feeders (e.g. no link between F1 and F20). Therefore, the case
in Figure C3 can be decoupled.

F I GURE C 3 The case after replication of substations in Figure C1.
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