
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's
ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/16 0 3 4 1/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for
p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Hiscox, Lucy V. , M cG a r ry, M a t t h e w  D. J. a n d  Johns ton,  Cu r tis  L. 2 0 2 2.  Evalu a tion  of
c e r e b r al  co r t ex viscoela s tic  p ro p e r ty e s ti m a tion  wi th  no nline a r  inve r sion  m a g n e tic
r e so n a n c e  ela s tog r a p hy. P hysics  in M e dicin e  & Biology 6 7  , 0 9 5 0 0 2.  1 0.1 08 8/13 6 1-

6 5 6 0/ac 5fde  

P u blish e r s  p a g e:  h t t p s://doi.or g/10.1 08 8/13 6 1-6 5 6 0/ ac5fde  

Ple a s e  no t e:  
Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting
a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of
t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  
h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



Evaluation of cerebral cortex viscoelastic property estimation with nonlinear inversion 

magnetic resonance elastography 

 
Lucy V. Hiscox1, Matthew D.J. McGarry2, Curtis L. Johnson1 

1Department of Biomedical Engineering, University of Delaware; Newark, DE, USA 

2Thayer School of Engineering, Dartmouth College; Hanover, NH, USA. 

 
 

 

 

 

Keywords: magnetic resonance elastography, brain, mechanical properties, stiffness, high-

resolution, finite-element. 

Acknowledgements: This research was supported by grants from the National Institutes of 

Health R01-AG058853, R01-EB027577, and U01-NS112120. 

Competing interests: No competing interests to disclose. 

Author contributions: LV Hiscox: Conceptualization, Methodology, Formal Analysis, 

Investigation, Writing – Original Draft, Visualization, MDJ McGarry: Data Curation, Software, 

Supervision, Writing – Review & Editing. CL Johnson: Conceptualization, Supervision, Funding 

Acquisition, Writing – Review & Editing. 

Data availability: Simulated and inverted data from all experiments are available at: 

www.github.com/mechneurolab. 

Ethical statement: The study was approved by the Institutional Review Board of the University 

of Delaware and all participants provided written informed consent prior to participation. The 

research was conducted in accordance with the principles embodied in the Declaration of Helsinki 

and in accordance with local statutory requirements. 

http://www.github.com/mechneurolab


Abstract 

Objective: Magnetic resonance elastography (MRE) of the brain has shown promise as a sensitive 

neuroimaging biomarker for neurodegenerative disorders; however, the accuracy of performing 

MRE of the cerebral cortex warrants investigation due to the unique challenges of studying thinner 

and more complex geometries.  

Approach: A series of realistic, whole-brain simulation experiments are performed to examine 

the accuracy of MRE to measure the viscoelasticity (shear stiffness, , and damping ratio, ) of 

cortical structures predominantly effected in aging and neurodegeneration. Variations to MRE 

spatial resolution and the regularization of a nonlinear inversion (NLI) approach are examined. 

Main results: Higher-resolution MRE displacement data (1.25 mm isotropic resolution) and NLI 

with a low soft prior regularization weighting provided minimal measurement error compared to 

other studied protocols. With the optimized protocol, an average error in  and  was 3% and 11%, 

respectively, when compared with the known ground truth. Mid-line structures, as opposed to 

those on the cortical surface, generally display greater error. Varying model boundary conditions 

and reducing the thickness of the cortex by up to 0.67 mm (which is a realistic portrayal of 

neurodegenerative pathology) results in no loss in reconstruction accuracy.  

Significance: These experiments establish quantitative guidelines for the accuracy expected of in 

vivo MRE of the cortex, with the proposed method providing valid MRE measures for future 

investigations into cortical viscoelasticity and relationships with health, cognition, and behavior.  

  

 

 

 



Introduction 

The biomechanics of biological tissue show a close relationship with tissue health and function, as 

evidenced through ex vivo analysis of tissue samples and the remarkable clinical success of 

palpation in disease detection. Once not thought to be possible, the mechanical properties of the 

brain can now be visualized non-invasively and in vivo through the advent of magnetic resonance 

elastography (MRE) (Manduca et al., 2001; Muthupillai et al., 1995). MRE shows considerable 

promise as an imaging biomarker of neurodegenerative diseases as the derived measurements 

relate to the underlying complexity and organization of the neural tissue microstructure (Guo et 

al., 2019; Sack et al., 2013) and have shown high sensitivity to a number of pathophysiological 

processes including Alzheimer’s disease (Gerischer et al., 2018; Hiscox, Johnson, McGarry, 

Marshall, et al., 2020; Murphy et al., 2011; Murphy et al., 2015) and multiple sclerosis 

(Streitberger et al., 2012; Wuerfel et al., 2010), as well as degenerative effects incurred during 

healthy aging (Arani et al., 2015; Delgorio et al., 2021; Hiscox et al., 2021; Sack et al., 2011; 

Takamura et al., 2020). More recently, the emergence of viscoelastic structure-function 

relationships suggest that indices of brain mechanics are closely related to cognition and behavior 

with associations observed between MRE measurements and memory performance (Daugherty et 

al., 2020; Hiscox, Johnson, McGarry, Schwarb, et al., 2020; Schwarb et al., 2017; Schwarb et al., 

2016), fluid intelligence (Johnson, Schwarb, et al., 2018), rule learning (Schwarb et al., 2019), 

risk-taking behaviors (McIlvain et al., 2020), and variations in body-mass index (Hetzer et al., 

2020). 

 As tissue viscoelasticity cannot be measured directly in vivo, an MRE scan involves 

observing the propagation of mechanical vibrations through tissue and follows a three-step 

process: generating shear waves in the brain, imaging the resulting tissue displacements with a 



phase-contrast MRI pulse sequence, and processing these displacements with an inversion 

algorithm to infer mechanical property maps depicting both elastic and viscous tissue properties 

(Johnson & Telzer, 2018; Manduca et al., 2001). Methodological advances to both MRE pulse 

sequences and inversion schemes have resulted in the ability to generate regional property 

measures, with previous studies highlighting that MRE can reliably quantify the mechanical 

properties of lobar regions (Murphy et al., 2013), white matter tracts (Johnson et al., 2013), 

subcortical grey matter structures (Gerischer et al., 2018; Johnson et al., 2016) and, more recently, 

the hippocampal subfields (Delgorio et al., 2021), all of which have improved the ability to reliably 

characterize brain health and disease. 

 While several MRE studies have begun to report results derived from specific regions of the 

cortex (Hiscox, Johnson, McGarry, Marshall, et al., 2020; Johnson, Schwarb, et al., 2018; 

McIlvain et al., 2020; Schwarb et al., 2019) there have been no studies which have systematically 

evaluated the accuracy of performing cortical MRE, despite its predominant role in cognition and 

high incidence of pathology in neurological disorders. With an overall average thickness of 

approximately 2.5 mm (Fischl et al., 2000), cortical tissue consists of a highly folded sheet of 

neurons which possess an unusually complex geometry with the presence of the folds and creases 

of the gyri and sulci. These more unusual characteristics present additional challenges in obtaining 

accurate measurements, and factors such as the imaging spatial resolution and adopted inversion 

algorithm are expected to be particularly important in their recovery. Moreover, it would be 

reasonable to assume that these challenges may predominately impact cortical measurements in 

the elderly and patients with neurodegenerative disorders involving cortical tissue loss and a 

concomitant increase in cerebrospinal fluid (CSF).  



Therefore, the purpose of this study was to assess the accuracy of cortical MRE through a 

series of realistic, whole-brain simulation experiments. Assessment of the performance of cortical 

MRE has not been demonstrated rigorously and understanding the impact of different imaging and 

inversion strategies will both inform best practices and future research directions. We used a finite 

element model of the brain with realistic material properties of the cortex to generate simulated 

displacement data akin to information captured during an in vivo MRE experiment. We then 

designed three experiments to investigate how accurately cortical regions of interest (ROIs) were 

recovered by a nonlinear inversion (NLI) MRE algorithm (McGarry et al., 2012; Van Houten et 

al., 1999), which is a common inversion pipeline used in clinical brain MRE studies. Experiment 

1 investigated the performance of cortical MRE using displacement data acquired at a 1.25 mm 

isotropic resolution, and compared results with downsampled 2.0 mm data, to determine whether 

smaller voxel sizes are needed to accurately reconstruct small cortical areas. Experiment 2 

investigated whether incorporating a priori anatomical information within NLI, i.e. through soft 

prior regularization (McGarry et al., 2013), significantly improved the accuracy of the 

reconstructed property maps in the complex cortical geometries. Finally, Experiment 3 examined 

the performance of cortical MRE in a separate simulation model built from the MRI data of an 

older participant with mild cognitive impairment (MCI), who displayed greater gyral atrophy and 

CSF spaces on structural MRI images. The purpose of this final experiment was to determine 

whether cortical thinning would impact the accuracy of the reconstructed mechanical property 

outcomes with implications for conducting cortical MRE in patients with more severe 

neurodegeneration.   

 

 



Methods 

Mechanical properties of the cerebrum and cortical regions of interest (ROIs) were obtained from 

in vivo MRE examinations of 20 cognitively healthy older adult participants (mean age: 695.9 

years) to provide physiologically realistic ground truth mechanical properties for simulation 

experiments. The imaging and inversion protocols to obtain these data are described in the 

following sections. For the simulation experiments, a nearly incompressible viscoelastic finite-

element (FE) model was built from in vivo datasets from representative cases of one of the healthy 

older adults initially examined (65 years/female) (Experiments 1 and 2) as well as a participant 

with a diagnosis of mild cognitive impairment (MCI) and who displayed significant signs of 

cerebral atrophy (75 years/female) (Experiment 3). The study was approved by the Institutional 

Review Board of the University of Delaware and all participants provided written informed 

consent prior to participation. The research was conducted in accordance with the principles 

embodied in the Declaration of Helsinki and in accordance with local statutory requirements. 

 

2.1 Imaging protocol 

Imaging data were collected on a Siemens 3T Prisma MRI scanner with a 64-channel head coil 

(Siemens Healthineers; Erlangen, Germany). Tissue displacements for MRE were generated at 50 

Hz (314.16 rad/sec) by the pneumatic Resoundant actuator and head pillow device (Resoundant; 

Rochester, MN, USA). A 3D multiband, multishot spiral MRE imaging sequence was used to 

capture displacement data at an isotropic 1.25 mm resolution. Imaging parameters included: 

repetition time (TR)/echo time (TE) = 3360/70 ms, 240 x 240 mm2 field-of-view (FOV); 192x192 

matrix; 8 in-plane constant-density spiral shots (Glover, 1999); 96 axial 1.25 mm thick slices (24 

volumes of 4 simultaneously excited slices each); undersampling both in-plane (4 kxy-shots 



acquired, Rxy = 2) and through-plane (2 kz -planes acquired, Rz = 2), with an encoding efficiency 

of 1.233 µm/rad. We have recently used this sequence to generate high-quality displacement data 

at a 1.25 mm resolution in older adults (Delgorio et al., 2021). The T1-weighted MPRAGE 

(magnetization-prepared rapidly acquired gradient echo) scan was acquired at a 0.9 mm isotropic 

resolution (TR/TI/TE = 1900/900/2.32 ms). 

 

2.2 MRE reconstruction 

Nonlinear inversion (NLI) is an iterative technique that minimizes an objective function which 

compares a heterogeneous nearly incompressible viscoelastic computational model with the 

measured displacement data of tissue under external harmonic excitation (McGarry et al., 2012; 

Van Houten et al., 1999; Van Houten et al., 2000). NLI inversions reported here applied the same 

parameters commonly used for in vivo brain imaging (Delgorio et al., 2021; Hiscox, Johnson, 

McGarry, Marshall, et al., 2020; McIlvain et al., 2020; Schwarb et al., 2019). The assumption of 

near incompressibility is implemented through a mixed u-p formulation with the bulk modulus 

fixed at K = 1000 kPa to provide a Poisson ratio of 0.49 (Zienkiewicz et al., 1977). The material 

property mesh resolution was equal to the measurement resolution (1.25 mm) and smoothing was 

applied between global iterations. NLI parameter updates involved two conjugate gradient 

iterations with two-line search iterations per subzone, 25 mm subzones with 15% overlap, and 100 

global iterations were allowed for convergence. Inversions were executed on a quadratic 27-node 

hexahedral finite element mesh which was generated from a 3D mask created from the acquired 

displacement data with nodal spacing equal to the measurement resolution. The unknown G' and 

G'' values were supported on an 8-node hexahedral mesh at the same resolution (McGarry et al., 

2012). After convergence, G' and G'' values were converted to quantitative maps of shear stiffness, 



 = 2 |G*|2/ (G' + |G*|), and damping ratio,  = G''/2G'. The shear stiffness describes the resistance 

of the material to shear deformation, which is a function of frequency. The specific stiffness values 

provided throughout this study determine the propagation speed of a shear wave at the frequency 

of measurement, 𝑣𝑠(𝜔) = √𝜇𝜌  . The damping ratio is a dimensionless quantity that indicates the 

level of attenuation in viscoelastic materials (for  > 1, motion decays rapidly without oscillation). 

 

2.3 Cortical regions of interest 

Masks for cortical regions of interest (ROIs) were obtained via automatic segmentation of the 

subject-specific T1-weighted images using Freesurfer v.6.0 (Fischl et al., 2002) with anatomical 

boundaries based on the Desikan-Killiany cortical parcellation atlas (Desikan et al., 2006). Six 

cortical regions of interest (ROIs) were investigated based on their vulnerability to cortical atrophy 

due to aging, mild cognitive impairment (MCI), or Alzheimer’s disease (AD). The ROIs included 

the middle temporal gyrus (MTG), parahippocampal gyrus (PHC), posterior cingulate cortex 

(PCC), precentral gyrus (PCG), precuneus cortex (PNS), and superior temporal gyrus (STG) (Du 

et al., 2007; Hiscox, Johnson, McGarry, Marshall, et al., 2020; Krumm et al., 2016; Salat et al., 

2004). These selections were also based on neuroanatomical location for investigation into the 

variability of results due to ROIs positioned either on the cortical surface, next to the 

interhemispheric (longitudinal) fissure, or within the medial temporal lobe. Advanced 

normalization tools (ANTS) (Avants et al., 2011) was used to co-register the cortical masks from 

MPRAGE space to MRE native space and were thresholded at 50% to create binary masks.  

 

2.4 Measured realistic material properties  



Results from the 20 participants are provided in Table 1. All measurements were computed from 

the whole brain property maps and without erosion of voxels from the cortical masks. Most cortical 

ROIs are softer than the cerebrum, which is consistent with both in vivo and ex vivo reports that 

the cortex is softer than the global cerebrum and white matter (Braun et al., 2014; Budday et al., 

2015; Hiscox, McGarry, et al., 2020). From these measurements, we calculated the mean ± two 

standard deviations for each cortical ROI for both  and  and used the randomize function within 

MATLAB to obtain 20 random measures from a uniform distribution within this range. 

 
Table 1. Measurements obtained from in vivo MRE data of 20 healthy older adult participants that 
were assigned to the cerebrum (background) and cortical ROIs for simulation of displacement 
fields. 
Region  (M±SD)  (Range)  (M±SD)  (Range) 

Cerebrum (CE) 2.57±0.16 2.26-2.88 0.256±0.009 0.238-0.273 

Middletemporal gyrus (MTG) 2.31±0.23 1.85-2.78 0.323±0.031 0.261-0.384 

Parahippocampus cortex (PHC) 2.70±0.27 2.17-3.24 0.156±0.021 0.113-0.198 

Posterior cingulate cortex (PCC) 2.61±0.29 2.02-3.19 0.143±0.058 0.027-0.260 

Precentral gyrus (PCG) 2.09±0.26 1.58-2.60 0.292±0.029 0.233-0.351 

Precuneus (PNS) 2.50±0.18 2.14-2.86 0.168±0.024 0.121-0.215 

Superiortemporal gyrus (STG) 2.26±0.22 1.82-2.71 0.341±0.031 0.279-0.403 

M = mean; SD = standard deviation. 

 

2.5 Simulation experiments  

To produce realistic wavefields, whole-brain FE models were built at the MRE resolution 

(1.25mm) and driving boundary conditions were taken from MRE displacement data on the brain 

surface. The bottom surface of the fixed boundary conditions remained stress free to avoid 



unrealistic dilatational stresses from fully constraining the boundaries with noisy experimental 

data. Anatomical regions were prescribed from the subject-specific high-resolution T1-weighted 

imaging data, after registration with ANTS to MRE native space (with nearest neighbor 

interpolation). The material property mesh resolution (McGarry et al., 2012) was set to half of the 

displacement mesh resolution to allow the highest property resolution possible to be supported. 

Random measurements within the range of values provided in Table 1 were prescribed as the 

"ground truth" for the cerebrum and each cortical ROI, with identical measurements prescribed in 

all models. As different sets of displacement boundary conditions have a limited effect on the 

accuracy of the inversions of simulated data, we limited the study to one representative set from 

each group due to the large number of simulations required in these experiments and heavy 

computational burden of 3D finite element solutions at high resolution. More details on the FEM 

simulation platform can be found in McGarry et al. (2021). 

 Fluid-solid interaction was not available in our simulation platform; therefore, fluid (CSF) 

spaces were modelled as a very soft solid to approximate the in vivo conditions. CSF maps were 

obtained via the segment tool in SPM (Statistical Parametric Mapping software, 

http://www.fil.ion.ucl.ac.uk/spm/) and co-registered to MRE space using the same ANTS 

transform (Section 2.3) and thresholded at 50%. A relatively low real shear modulus (0.3 kPa) and 

high loss modulus (0.3 kPa) was prescribed to fluid spaces, providing 8 nodes per shear wavelength 

to avoid excessive discretization errors (McGarry et al., 2012). Although this only provides an 

approximation of fluid behavior, the simulated low shear modulus and high damping ratio has been 

used to represent CSF in models of brain biomechanics (Giudice et al., 2021).  

The simulated datasets were then interpolated to the measurement resolution to simulate 

MRI measurement, and Gaussian noise (standard deviation equal to 2% of the mean absolute 



displacement values) was added to the synthetic data to simulate measurement uncertainty. 

Altogether, twenty separate simulations were generated with varying background (cerebrum) and 

cortical measurements. This simulated output from the FE model was then used as input for NLI 

to investigate performance in an idealized situation where "true" properties are known. NLI 

inversion parameters were the same as those applied in clinical brain studies, previously described 

in Section 2.2. A summary of the simulation procedure is provided in Figure 1.    

Figure 1. Summary of MRE simulation process. In Step 1, a nearly incompressible viscoelastic 
finite-element model is generated from the brain mask driven by realistic wavefield boundary 
conditions and mechanical properties from MRE data of a single subject. In Step 2, realistic 
material properties are assigned to each cortical ROI, such as the precentral gyrus (blue) and the 
middletemporal gyrus (green), and CSF is modelled as a very soft material. The background (i.e., 
other regions of the brain that are not one of the 6 cortical ROIs) are held constant (yellow) but 
vary between each simulation. In Step 3, simulated displacement fields in x, y, and z, are generated 
from the properties assigned in Step 2. Random Gaussian noise is applied to simulate measurement 
uncertainty, providing a realistic OSS-SNR comparable to that observed in in vivo MRE. The final 
step involves the reconstruction of material properties from the simulated displacement fields 
using the standardized parameters from NLI, unless otherwise stated. 

 

 



2.6 Summary of experiments 

Experiment 1: Effect of displacement data spatial resolution 

In this experiment, we assessed the impact of spatial resolution (smaller voxel sizes) on the 

accuracy of the recovered properties. In addition to the creation of simulated displacement fields 

based on 1.25 mm isotropic MRE data (see Section 2.5), we also downsampled the same simulated 

data to a 2.0 mm isotropic resolution by truncation in frequency space and compared the accuracy 

of the two measurements to the prescribed truth. Although in practice higher resolution data often 

comes with an SNR penalty, the same amount of Gaussian noise (standard deviation equal to 2% 

of the mean absolute displacement values) was applied to both 1.25 mm and the downsampled 2.0 

mm data to isolate the effect of higher resolution input data from the effects of noise — i.e., input 

data regardless of resolution is assumed to be high quality with sufficient SNR. The resulting 

octahedral shear strain signal-to-noise ratios (OSS-SNRs) for simulated 1.25 mm datasets was 4.67 

± 0.12 and for the 2.0 mm datasets was 8.34 ± 0.22. These OSS-SNR values are above the 

minimum of 3.0 considered necessary for stable inversion (Hannum et al., 2021; McGarry et al., 

2013). All NLI parameters were set to the default settings, except for alterations to the spatial filter 

width (SFW) which is dependent on the imaging resolution. SFW in NLI controls how much 

smoothing is applied between subzones during a global iteration to regularize the solution. In most 

published literature, SFW has been set to 1.5 mm to maintain consistency between studies, 

regardless of the nominal imaging spatial resolution. However, as higher resolution displacement 

data becomes available, decreasing SFW is an attractive option as it will reduce smoothing and 

regularization of the solution to sharpen MRE property maps (Delgorio et al., 2021), and the higher 

density of measured data points will help to maintain the stability usually provided by larger SFW 

(McGarry et al., 2017). For this work, we maintained the SFW at 1.5 mm for 2.0 mm MRE data 



and reduced the SFW to 0.9 mm for the higher resolution 1.25 mm displacement data. We 

hypothesized that higher spatial resolutions would lead to more accurate mechanical property 

reconstruction with recovered measures closer to those prescribed in simulation. Soft prior 

regularization (SPR) was not applied in this first experiment.  

 

Experiment 2: Impact of soft prior regularization (SPR) 

SPR is a technique that incorporates a priori spatial information from an anatomical MRI scan 

within the inversion to penalize variation in properties within prescribed regions. SPR is often used 

in conjunction with NLI and has previously been shown to improve measurement accuracy in 

simulations (McGarry et al., 2013) and repeatability in in vivo studies of smaller structures 

(Delgorio et al., 2021; Johnson et al., 2016). SPR is controlled by a scalar weighting, , which 

balances a regularization term in the NLI objective function that penalizes intra-region 

heterogeneity to prefer homogeneous property solutions against reduction in the displacement 

error and potentially reduces influence from neighboring tissues or CSF. In this experiment, the 

performance of three different SPR  weightings ( = 10-10, 10-11, and 10-12) were investigated to 

determine the optimal  weighting for the cortex, which are all within the range used in previous 

literature (Hiscox, Johnson, McGarry, Marshall, et al., 2020; Johnson, Schwarb, et al., 2018). 

When SPR is active, no smoothing across regional boundaries was allowed during the spatial 

filtering process to potentially further improve regional property estimates. 

 

Experiment 3: Effect of cortical atrophy 

Aging and neurodegenerative disorders are well-documented causes of cortical thinning (Kemper, 

1994; Salat et al., 2004); as a result, accurate recovery of mechanical properties with MRE may 



be particularly challenging in smaller tissues due to gyral atrophy and fluid (CSF) spaces. We built 

a further separate FE model based on MRE and anatomical information from a participant with 

MCI that displayed cortical atrophy relative to the healthy adult participant previously described; 

this model will be subsequently referred to as the atrophy model throughout the rest of the paper. 

Prescribed mechanical properties for simulation of displacement fields were identical to those 

prescribed in the healthy model, as shown in Table 1, to ensure that only the variation in geometry 

and boundary conditions were examined. Simulated displacement fields were then analyzed with 

the optimized NLI protocol (based on the outcomes from Experiments 1 and 2) and accuracy in 

recovered properties was compared with results from the healthy brain model. 

 

2.7 Statistical analyses  

To determine the accuracy of cortical MRE, analyses included assessing the mean absolute 

error (MAE) between the true prescribed simulated measurements versus the NLI reconstructed 

inverted measurements, MAE = |inversion-truth|. Paired samples t-tests (two-tailed) were used to 

determine if MAE differed according to the spatial resolution (Experiment 1), whereas one-way 

ANOVAs with Bonferroni corrected post-hoc comparisons were used to investigate the impact of 

SPR  weighting on MAE scores (Experiment 2). Independent samples t-tests were also used to 

assess mean differences between the healthy vs atrophy model using the optimized protocol 

(Experiment 3). Statistically significant effects were determined at p < 0.05. Linear regression was 

also applied to examine the slope (y) from each method, comparing y with the slope from the true 

results (IV = outcome; DV = simulated ground truth) holding the intercept at 0. All Statistical 

analyses were conducted using Stata, version 17.0 (Statacorp, College Station, TX).  

 



3. Results 

Experiment 1: Effect of displacement data spatial resolution 

In the first experiment, we examined the effect of the MRE displacement spatial resolution on the 

accuracy of the recovered properties from NLI by comparing MAE scores between 1.25 mm and 

2.0 mm motion data (Table 2). For reference, all MRE measurements (quantitative values of  

and ) are provided in the Supplementary Material (Table S1). 

 Overall, imaging spatial resolution had a moderate impact on the accuracy of the recovered 

properties. A higher spatial resolution of 1.25 mm reduced the average  MAE by nearly 30% 

when compared with 2.0 mm MRE data (: 0.18 kPa vs. 0.23 kPa, respectively). This corresponds 

to an average error of 9.4% for 2.0 mm, and 7.2% for 1.25 mm data. Notably, PHC had the largest 

MAE for 2.0 mm simulations (17.3%) which may be related to the smaller number of voxels 

encompassed within the mask (n = 615); error was reduced to 13.2% at a 1.25 mm voxel size 

(number of voxels, n = 1843).  

 Similarly, MAE for  was reduced by 21% with higher spatial resolution simulations 

compared to 2.0 mm data (: 0.043 v. 0.055, respectively). This corresponds to an average error 

of 28.7% and 22.9% for 2.0 mm and 1.25 mm data, respectively. Statistical tests showed how 

higher resolution simulations significantly reduced MAE for all cortical ROIs for both properties 

(p < 0.001), except for PCG,  (p = 0.24).  

 Figures 2 illustrates the comparison between the ground truth and example MRE maps from 

both imaging resolutions, for  and , respectively. Figure 3 shows scatter plots illustrating the 

relationship between the simulated (truth) and recovered (inverted) properties, according to MRE 

imaging spatial resolution, for  and , respectively. Notably, the slope of the recovered vs ground 

truth stiffness of all structures were positive, but less than 1 due to incomplete contrast recovery 



in the regularized inversion process. A comparison between the ground truth and example MRE 

maps from both imaging resolutions are also presented. 

 
Table 2. Mean absolute error (MAE) of recovered cortical properties depending on the spatial 
resolution of simulated MRE displacement data.  

 2.0 mm  1.25 mm  

 MAE % Error No. of voxels MAE % Error No.  of voxels 

MTG 0.12±0.09 5.3% 2942 0.10±0.07 4.1% 9095 

PHC 0.46±0.27 17.3% 615 0.35±0.23 13.2% 1843 

PCC 0.22±0.24 8.6% 945 0.19±0.21 7.7% 2887 

PCG 0.16±0.14 7.8% 3963 0.13±0.11 6.2% 12462 

PNS 0.26±0.13 10.2% 2833 0.19±0.10 7.6% 8899 

STG 0.16±0.10 6.9% 3501 0.10±0.08 4.5% 10861 

Average 0.23±0.16 9.4% - 0.18±0.13 7.2% - 

       

MTG .032±.024 9.9% - .021±.015 6.4% - 

PHC .073±.022 47.2% - .055±.018 35.2% - 

PCC .077±.037 56.8% - .067±.033 49.3% - 

PCG .044±.027 14.3% - .041±.023 13.4% - 

PNS .045±.017 27.4% - .036±.014 21.6% - 

STG .058±.043 16.6% - .041±.033 11.8% - 

Average .055±.028 28.7% - .043±.023 22.9% - 

 

 



 

Figure 2: Illustration of MRE maps due to the imaging spatial resolution for (a) shear stiffness, μ, 
and (b) damping ratio, ξ. Reconstructed images show the benefits of higher spatial resolutions, 
with evidently sharper property maps, that more closely resemble the simulated ground truth. In 
the first row, the parahippocampal gyrus (PHC) is outlined on the anatomical T1-weighted image; 
stiffness of the PHC obtained at a 1.25 mm resolution more closely matches the prescribed material 
properties, i.e., “truth”, when compared with 2.0 mm data. In the second row, the precuneus (PNS) 
is outlined on the anatomical T1-weighted image. The low damping ratio of the PNS relative to 
the background (cerebrum) is more clearly displayed at a 1.25 mm resolution. Note that ξ is a 
dimensionless quantity.  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Simulated (truth) versus reconstructed (inverted) measurements for (a) MRE shear 
stiffness, μ and (b) damping ratio, ξ. For all six cortical ROIs, increasing the spatial resolution 
from 2.0 mm to 1.25 mm reduced MAE scores, with measurements being closer to the truth (black 
dotted line).  

 



Experiment 2: Impact of soft prior regularization (SPR) 

In the next experiment, we investigated whether incorporating prior spatial information further 

improved measurement accuracy of 1.25 mm displacement data and compared the effect of three 

 weightings that have been used in published studies ( = 10-10, 10-11, and 10-12).  

 In general, SPR improved accuracy of both  and  parameters (Table 3; Figure 4). The 

lowest MAE between the simulated truth and reconstructed inversion measures was observed for 

SPR  = 10-12. On average, MAE for  significantly decreased from 0.18 kPa (without SPR) to 

0.08 kPa with SPR  = 10-12 (p < 0.001), corresponding to an average error of 7.02% and 3.09% 

for no SPR and SPR  = 10-12, respectively.  

 MAE for  also decreased from 0.043 (without SPR) to 0.021 with SPR  = 10-12 (p < 0.001), 

which reduced the average error from 22.9% to 11.2%. Comparable error scores were observed 

for  = 10-11 for both parameters, although slightly higher average MAE values across all ROIs 

are reported (Table 3). While  = 10-10 showed improved scores relative to inversion without SPR 

(: 0.13 kPa; : 0.032), the reduction in error was not statistically significant for either measure 

(: p = 0.44; : p = 0.09) and MAE for both parameters were significantly larger than those 

reported for both  = 10-12 and  = 10-11. An illustration of MRE property maps according to  

weighting is provided in Figure 5.  

 

 

 

 

 



Table 3. Mean absolute error (MAE) of recovered cortical properties dependent on soft prior 
regularization (SPR) α weighting.  

 SPR  = 10-12 SPR  = 10-11 SPR  = 10-10 

 MAE % Error MAE % Error MAE % Error 

MTG 0.04±0.02 1.61% 0.04±0.03 1.79% 0.06±0.04 2.59% 

PHC 0.14±0.10 5.32% 0.13±0.10 4.93% 0.13±0.11 4.80% 

PCC 0.15±0.07 5.89% 0.16±0.07 6.23% 0.36±0.25 14.51% 

PCG 0.04±0.03 2.16% 0.06±0.03 2.78% 0.11±0.06 5.46% 

PNS 0.05±0.03 2.18% 0.06±0.04 2.42% 0.05±0.04 2.18% 

STG 0.03±0.03 1.40% 0.04±0.03 1.59% 0.06±0.04 2.43% 

Average 0.08±0.05 3.09% 0.08±0.05 3.29% 0.13±0.09 5.33% 

       

MTG .009±.006 2.63% .009±.006 2.91% .017±.014 5.33% 

PHC .011±.006 6.85% .010±.006 6.54% .011±.006 7.34% 

PCC .041±.021 30.3% .046±.024 34.03% .077±.038 56.65% 

PCG .018±.010 5.80% .020±.012 6.63% .017±.012 5.39% 

PNS .023±.008 14.07% .026±.008 15.74% .032±.010 19.07% 

STG .026±.015 7.45% .026±.017 7.46% .039±.023 11.14% 

Average .021±.011 11.18% .023±.012 12.25% .032±.017 17.49% 

 

 

 

 

 



 

  

 

Figure 4. Mean absolute error (MAE) according to SPR  regularization weighting for MRE 
parameters (a) shear stiffness, , and (b) damping ratio, . For both measures, post-hoc 
comparisons from a one-way ANOVA revealed that MAE results from SPR  = 10-12 and = 10-

11 were significantly lower compared to when SPR wasn’t applied (no SPR). SPR  = 10-12 and  
= 10-11 also yielded significantly lower MAE scores compared to  = 10-10.  
 

 

 

 

 



 

Figure 5. Illustration of MRE maps according to SPR  regularization weighting for MRE 
parameters (a) shear stiffness, , and (b) damping ratio, . The benefits of SPR with a lower 
regularization weighting ( = 10-12) are apparent when considering the reconstruction of the 
posterior cingulate cortex (PCC); MRE values are similar to the simulated ground truth. Greater 
measurement error is evidently higher for the PCC with the application of  = 10-10; in this case, 
both stiffness and damping ratio properties are overestimated. Note that ξ is a dimensionless 
quantity.  
 

 

 

 

 

 

 

 

 

 

 



Experiment 3: Effect of cortical atrophy 

In the final experiment, the accuracy of cortical MRE in an atrophy model was examined using 

the optimized protocol as revealed through Experiments 1 and 2 (i.e., 1.25 mm displacement data, 

SPR = 10-12).  Cortical thickness estimates from Freesurfer are provided to illustrate how the two 

models differed (healthy vs. atrophy).  

Average cortical thickness was 2.28 mm for the atrophy model, and 2.60 mm for the 

healthy model (-0.32 mm thinner; 13% thinning in atrophy compared with healthy aging model). 

Additionally, reduced thickness in the atrophy model was confirmed in all six of the cortical ROIs: 

MTG: 2.58 mm vs. 3.04 mm (16% thinner); PHC: 2.52 mm vs. 3.08 mm (20% thinner); PCC: 2.31 

mm vs. 2.47 mm (7% thinner); PCG: 2.46 mm vs. 2.70 mm (9% thinner); PNS: 2.08 mm vs. 2.54 

mm (20% thinner); STG:  2.37 mm vs. 3.04 mm (25% thinner). The structural characteristics of 

the brain in both models is illustrated in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6. Structural anatomical T1-weighted images demonstrate variation in the levels of cortical 
thickness which set the boundary conditions for (A) the healthy 65-year-old aging model, and (B) 
the atrophy model which utilized MRE data from a 75-year-old participant with mild cognitive 
impairment (MCI); (C) cortical thickness maps from the two participants (scaled from 0-6 mm) 
clearly demonstrate distinctively different cortical thickness estimates throughout the brain. 
 

 A full summary of MAE results from the atrophy model (including statistical tests) are 

provided in the Supplementary Material (Table S2).  

 Overall, the average MAE for  across all ROIs in the atrophy model was 0.09 kPa ± 0.10 

kPa, which did not significantly differ from the results obtained from the healthy aging model 

(0.08 kPa ± 0.07 kPa; p = 0.17). Considering individual ROIs, higher error scores were obtained 

in the atrophy model for PHC (p = 0.041), PNS (p = 0.028), and STG (p = 0.004). Conversely, 

error for MTG was higher in the healthy model (p = 0.005). Surprisingly, results obtained for  

were slightly more accurate in the atrophy model compared to the healthy model (p = 0.022). 

Example MRE maps from both models are provide in Figure 7.  

 

 



 
 

Figure 7. A selection of images from one simulation, with 1.25 mm simulated displacement fields, 
showing mechanical property recovery based on either (a) the atrophy model, or (b) the healthy 
aging model. Regardless of the boundary and geometry conditions, identical stiffness 
measurements are obtained from each model. Note that the increase in fluid spaces in (a) does not 
appear to distort stiffness values recovered from NLI with SPR. 
 

Scatter plots illustrating the relationship between the simulated (truth) and recovered (inverted) 

properties, according to each FE model (HC = healthy; MCI = atrophy) are provided in Figure 8. 

As expected, the regression slopes for both models and for all structures are nearly identical. Some 

issues remain, such as the inability to recover higher stiffness measures, particularly within the 

PHC, regardless of the thickness of the cortical boundary conditions. Furthermore, there continues 

to be an overestimation of both MRE measures in midline structures (PCC and PNS), particularly 

at lower prescribed values.  

 MRE images of in vivo property maps estimated with the optimized NLI protocol from high-

resolution displacement data are provided in Figure 9. The images presented are from the original 

MRE experiments that were used to define the boundary conditions for the FE-models used 

throughout this study, including a healthy older adult and one with MCI. 

 

 

 



 

 

 

 

Figure 8. Simulated (truth) versus reconstructed (inverted) measurements for MRE (a) shear 
stiffness, μ, and (b) damping ratio, . For all six cortical regions of interest (ROIs), similar MAE 
scores were found for both the healthy aging model (HC) and atrophy model (MCI), with 
regression slopes both close to 1. 
 



 

Figure 9. Property maps from in vivo MRE estimated from displacement data at 1.25 mm isotropic 
resolution collected on (A) one healthy older adult (65 years/female) and (B) a participant with a 
diagnosis of mild cognitive impairment (MCI) (75 years/female). Both stiffness, μ, and damping 
ratio, , maps are estimated with the optimized NLI parameters from this study. Example cortical 
regions of the (top) precuneus and (bottom) middletemporal gyrus are outlined. 
 

4. Discussion 

This study represents a systematic investigation into the accuracy of using MRE to characterize 

the mechanical properties of the cerebral cortex in vivo. As determining the performance of MRE 

measurements is not possible in vivo, we performed a series of realistic, whole-brain simulation 

experiments. Here, we provide tentative evidence that MRE measures of the cortex are likely valid 

for use in both scientific and clinical investigations. We also demonstrate how variation of two 

methodological considerations on cortical property measures: spatial resolution of the simulated 

displacement fields and the regularization weighting of a priori anatomical information within the 

inversion, can further enhance the validity of these measures. Finally, we show how the adoption 

of the optimized protocol provides similar reconstruction accuracy in an atrophy model, in which 



the thinning of cortical tissue (i.e., the set geometry and boundary conditions), could reasonably 

be expected to impact the accuracy of mechanical property recovery.  

 The principal finding from these experiments is that MRE of thin and irregular structures, 

such as those observed in the cortex, is feasible with recovered measurements similar to the 

prescribed ground truth in simulation. Overall, the error margins between the truth and recovered 

measurements for cortical stiffness are less than 0.08 kPa, which is on the order of 3% total 

measurement error. Clinical studies have previously reported group differences in global brain 

stiffness of at least 7% or more (Gerischer et al., 2018; Huston et al., 2016; Murphy et al., 2011; 

Murphy et al., 2015), with a recent study demonstrating that cortical stiffness can differ in patients 

with Alzheimer’s disease by well over 20% (Hiscox, Johnson, McGarry, Marshall, et al., 2020). 

As such, the current study reports margins of error lower than published study effects. While in 

vivo MRE experiments contain additional sources of error from known and unknown sources that 

are not captured through simulation, measuring accuracy in vivo is not possible at this time. Thus, 

the current simulation experiment provides the most robust evidence currently available to 

illustrate how cortical MRE measures are both valid and useful in scientific investigations.  

  Our initial analyses from in vivo MRE provided realistic material properties of the cortex to 

generate the simulated displacement fields, and all cortical stiffness values used here were 

generally lower than the cerebrum that primarily consists of white matter. This is consistent with 

several in vivo human brain MRE studies (Braun et al., 2014; Johnson et al., 2013; Kruse et al., 

2008) and is typically consistent with indentation experiments of ex vivo animal brains (Budday et 

al., 2015; Feng et al., 2013; van Dommelen et al., 2010) despite large variations in testing 

procedures. It is worth noting that only values that the inversion algorithm has previously reported 



were included as ground truth, meaning that they likely contain some bias; however, the range of 

values prescribed were within those reported across the brain MRE literature (Hiscox et al., 2016).  

 Estimates of cortical  measurement error are similar to previous simulation (Delgorio et al., 

2021; McGarry et al., 2015; McGarry et al., 2021) and phantom studies (Arunachalam et al., 2017; 

Solamen et al., 2018). In similar simulation experiments, Delgorio et al., report an average error 

for the hippocampal subfields as -0.24 kPa, with stiffness typically underestimated (Delgorio et 

al., 2021), whereas McGarry et al., report errors between 0.7-6.9% for a range of brain structures 

in noise free conditions with no SPR (McGarry et al., 2021). In this study, we show how the 

stiffness of the cortex is typically underestimated due to incomplete contrast recovery. As a result, 

our data indicate how the errors in recovered properties are not random; that is, measurement errors 

do not always appear as noise, but rather can be affected by a uniform under or over-estimation of 

contrast. This indicates the error has the effect of reducing sensitivity, though not necessarily 

increasing uncertainty, and future studies may only be disadvantaged from a loss of statistical 

power and not by random noise or instabilities. While the use of SPR shows improved contrast 

recovery with appropriately higher stiffness measures (see Supplementary Material Table S1), 

future studies may benefit from considering the contrast of these structures with the surrounding 

tissue rather than the absolute recovered property values.  

 Parameters related to wave attenuation, such as the damping ratio, have been demonstrated 

to have clinical relevance in a growing number of studies (Chaze et al., 2019; Guo et al., 2013; 

Lipp et al., 2013; Sandroff et al., 2017; Sinkus et al., 2007). Average cortical  measurement error 

of 0.021 (11%) is proportionally larger to those reported for stiffness but is similar to previous 

results that show greater difficulty in estimating  (Delgorio et al., 2021; McGarry et al., 2021; 

Solamen et al., 2018). The extra challenge in recovering  in vivo may be due to the mismatch 



between the true mechanisms of energy loss in brain tissue and the simplified attenuation in the 

viscoelastic model, which may require additional regularization for stability (McGarry et al., 

2012). For example, a recent study of the small hippocampal subfields reports how a larger spatial 

filter width, even greater than the nominal imaging resolution, was needed to balance measurement 

accuracy, repeatability, and sensitivity (Delgorio et al., 2021). However, our simulated results also 

demonstrate greater errors in  which suggests numerical factors are also relevant. Although the 

absolute sensitivity of the displacements of a viscoelastic model to changes in the storage and loss 

modulus are identical, the loss modulus in the numerator for  is typically much lower than the 

storage modulus. Therefore, a similar absolute error in loss modulus produces a larger relative 

error compared to the storage modulus. Additionally,  is a ratio of two reconstructed parameters 

and thus expected errors in  are larger (Shackleford et al., 2016). In the current study, we adopted 

a spatial filter width appropriate for the nominal imaging resolution, though we also examined 

whether increasing the spatial filter width to 1.5 mm (from 0.9 mm) improved measurement 

accuracy of  as observed for the hippocampal subfields (see Supplementary Material Table S3). 

We instead found that measurement error in  increased, at a cost in resolution, and thus the greater 

spatial variation and sharper MRE property maps obtained from a lower spatial filter width was 

beneficial to  reconstruction in this application with the thinner, more finely detailed structures. 

On this note, NLI has the capability to employ other regularization techniques including total 

variation minimization and Tikhonov regularization, which were not adopted in this study as to 

date they have not been applied in clinical studies (McGarry et al., 2017). 

 As shear waves are used to image properties at sub-wavelength scales, there is likely to be a 

limit to where higher resolution can improve regional property estimates, meaning that higher 

resolution data will not necessarily impact outcomes. In the current study, we used simulations to 



investigate sub-wavelength resolution in a controlled environment where the ground truth is 

known. Measures from displacement data downsampled to the poorer 2.0 mm resolution exhibited 

increased error and smaller slopes indicating reduced sensitivity. Based on resolution alone 

(without SPR), these differences are modest—with average MAE measures increasing for stiffness 

by 0.05 kPa and damping ratio by 0.012. These findings support the idea that the greater 1.25 mm 

resolution improved our property measures, with the higher resolution and concurrent increase in 

measurement density allowing the use of a lower spatial filter to stabilize the inverse problem. The 

results provided by the lower 2.0 mm resolution, however, suggest that cortical MRE 

measurements are not precluded at lower resolution, although more participants would be needed 

to achieve the same statistical power. In other words, our study confirms both the benefits of higher 

spatial imaging resolution for quantifying cortical viscoelasticity, while at the same time 

illustrating how studies performed at lower spatial resolutions will still provide reasonable results.  

 We found that SPR provides a significant improvement in measurement accuracy, with the 

lowest regularization (SPR  =10-12) providing the overall greatest benefit for this application. 

Utilizing 1.25 mm motion data, we found that SPR 10-12 reduced error in both stiffness and 

damping ratio by over 50%, with similar SPR advantages having been reported for subcortical 

grey matter structures (Johnson et al., 2016) and hippocampal subfields (Delgorio et al., 2021). Of 

note, we found that the application of SPR  =10-12 provided a substantial benefit to the recovery 

of PHC, , which reduced measurement error from 35% to 7%. Our results suggest that SPR is 

particularly important for the cortex, as supplying spatial information will preserve the sharp 

discontinuities that arise from tissue boundaries lying adjacent to fluid filled spaces in which 

interfaces across tissue boundaries would otherwise become blurred (McGarry et al., 2013). We 

chose SPR weights within the range used in previous clinical brain MRE studies; if the 



regularization term was much lower, the regional heterogeneity will not be penalized, and the extra 

spatial information will provide no benefit. In contrast, if the SPR penalty term was much higher, 

the SPR penalty term in the objective function will overpower the term promoting displacement 

error reduction and iterative property updates will be very small. In the present study, we did not 

investigate the use of SPR with 2.0 mm motion data, but it is likely that applying SPR to poorer 

resolution data would provide similar benefits (Johnson et al., 2016). Another group has recently 

introduced inversion-recovery MRE (IR-MRE) in an attempt to suppress the CSF signal to provide 

sharper fluid-solid boundaries of surface areas (Lilaj et al., 2021). By suppressing the fluid 

oscillations through the imaging sequence, the resulting stiffness maps clearly better depict 

ground-truth anatomy. However, phase discontinuities across the sulci are still visible, and whether 

higher stiffness quantification provided by IR-MRE translates to improved accuracy compared 

with traditional MRE will need to be determined. 

 We purposely chose to investigate a range of brain structures that were located either on 

the cortical surface, next to the longitudinal fissure, or within the medial temporal lobe, all of 

which are known to be affected by aging and in neurodegenerative conditions. Midline structures 

such as the PCC and PNS showed generally greater error than other structures, particularly in the 

recovery of . Notably, both PNS and PCC were prescribed a low mean damping ratio and both 

were largely overestimated (Supplementary Material Table S1) even with the inclusion of the 

optimal SPR weighting. Low values for midlines structures from in vivo MRE may be influenced 

by data-model mismatch in the estimation of the neighboring falx cerebri. The falx cerebri is a 

large, crescent-shaped fold of dura mater that lies between the cerebral hemispheres in the 

longitudinal fissure. In effect it serves as both a strong discontinuity within the tissue mask 

(assumed to be a continuous solid) that also acts as a mechanical source (Clayton et al., 2012) 



which can impact surrounding property estimates. Furthermore, age-related calcification of both 

the falx cerebri and tentorium cerebellii can increase the wave reflection from these membranes 

(Daghighi et al., 2007; McGrath et al., 2016), which may further impact the accuracy of examining 

midline structures in older age. Work is ongoing to investigate how the falx cerebri should be 

modelled within MRE. Our simulation and MRE FE models support properties as C∞ continuous 

functions using the FE basis and property values are defined at the FE nodes. While this is useful 

for arbitrarily shaped structures which are larger than the mesh solution, modelling a thin, stiff, 

membrane like the falx cerebri would require very fine mesh resolution which makes computing 

a full brain model computationally challenging. As such, we suggest that MRE measurements of 

cortical regions on the midline can still be useful, but they should be used with caution. 

 The majority of post-mortem studies report that cortical thinning and gyral atrophy 

accelerate during the sixth and seventh decades of life (Kemper, 1994); thus, one of the prevailing 

concerns with cortical MRE is that the small and complex convolutions of cortical tissue may lend 

itself to atrophy-related error, thus neutralizing its utility in examining the cortex impacted in aging 

and dementia. Importantly, this work provides evidence for the contrary, highlighting that the 

average error for both MRE parameters in an atrophy model are nearly identical to those obtained 

from a healthy model. The average error of 0.09 kPa (4%) for stiffness is minimal and only 

marginally greater than the reported 0.08 kPa (3%) average error reported in the healthy model. 

As a result, we can conclude that cortical thinning, on the order of magnitude observed in age-

related neurological conditions, has little bearing on the accuracy of the optimized MRE 

reconstruction. These results are also supportive of several studies which conclude that anatomical 

volumes do not correlate with MRE measures (Johnson, Schwarb, et al., 2018; Schwarb et al., 

2017), and controlling for volume doesn't effect outcomes of statistical tests (Hiscox, Johnson, 



McGarry, Marshall, et al., 2020; Hiscox et al., 2018). A wide range of boundary conditions have 

also been investigated in previous simulations experiments, which have had minimal impacts on 

outcomes (McGarry et al., 2021; Tan et al., 2017). While we had access to n = 10 MCI and 

approximately n = 40 datasets from healthy older adults, initial experiments showed minimal 

differences in accuracy. Therefore, we selected a representative case that showed significant signs 

of atrophy for a more detailed examination. Surprisingly, we found that the aging model yielded 

greater error scores for  (11% vs. 9% error). An explanation for this finding is not immediately 

clear, but given the very small effect, the impact is unlikely to have any significant impact or 

clinical relevance. Simulation models from participants with more severe cortical degeneration, 

such as in the case of Alzheimer's disease were not available, and future work should ensure that 

simulation results remain consistently accurate to those presented here. Nevertheless, previous 

studies have reported how cortical thinning due to AD is most prominent in the medial temporal 

cortex, with a mean magnitude of thinning of 0.4 mm (14% thinning in AD compared with 

controls) (Dickerson et al., 2009). Thus, the thickness differences tested here (range: 0.16 - 0.67 

mm, mean: 0.32 mm) provide a reasonably accurate portrayal of AD atrophy. As a result, we 

conclude that future MRE studies and their discoveries in clinical populations are likely to be 

directly related to the intrinsic viscoelasticity of tissue as opposed to an unwanted geometric bias. 

 This study provides evidence for the accuracy of cortical MRE, although there are still 

unique challenges that have not been fully addressed. For example, simulation studies are unlikely 

to be truly representative of in vivo elastography due to the presence and constant circulation of 

CSF as well as internal pressure sources and patient motion. To account for these conditions, we 

approximated CSF and fluid spaces as a solid tissue continuum, though future work is needed to 

develop simulation platforms that can model fluid-solid interactions to more accurately represent 



in vivo tissue behavior. Similarly, a continuous solid material model was employed through NLI 

even though the cortex has discontinuous boundaries between the sulci and gyri. While we sought 

to minimize these effects by increasing spatial resolution and using anatomical information to 

promote homogeneity within cortical regions (and thus separating them from CSF), cortical MRE 

measures are likely to benefit from inversion techniques that instead include discontinuous 

material interfaces with fluid components that follow tissue boundaries. Finally, we applied 

random Gaussian noise to the motion data to generate measurement uncertainty, though noise in 

brain MRE, data contains non-Gaussian contributions from physiological sources. At higher OSS-

SNR levels, such as those used in this study, the impact of these different noise sources appears 

similar (Hannum et al., 2021; McIlvain et al., 2022), thus Gaussian noise is sufficient for the 

purposes of this study. Future work examining regional effects of local noise and other artifacts on 

cortical MRE regions is necessary. 

 

 

Conclusions 

Localizing mechanical property measurements to specific structures has improved the sensitivity 

of brain MRE to investigate brain regions that are differentially affected in disease. In this work, 

we examine the role of MRE spatial resolution, and an inversion scheme designed to improve 

property measures in pre‐defined regions in the ability to accurately recover material properties of 

the cerebral cortex. In a series of realistic, whole-brain simulation experiments, we found that, in 

general, the accuracy in the recovery of each cortical structure (middletemporal gyrus, 

parahippocampus, posterior cingulate, precentral gyrus, precuneus, and superiortemporal gyrus) 

benefit from higher spatial resolution motion data and nonlinear inversion with a low soft prior 



regularization weighting. Additionally, we report that cortical thinning (up to a -0.67 mm reduction 

in thickness, which is a realistic portrayal of AD-related atrophy) causes no loss in reconstruction 

accuracy. Taken together, this report of an accurate method to measure cerebral cortex 

viscoelasticity provides a framework for future MRE investigations to examine cortical 

degeneration and relationships with health and cognitive functioning. 
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