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Abstract: In the Crawford–Sobel (uniform, quadratic utility) cheap-talk model, we consider a simple
mediation scheme (a communication device) in which the informed agent reports one of the N
possible elements of a partition to the mediator and then the mediator suggests one of the N actions to
the uninformed decision-maker according to the probability distribution of the device. We show that
no such simple mediated equilibrium can improve upon the unmediated N-partition Crawford–Sobel
equilibrium when the preference divergence parameter (bias) is small.

Keywords: cheap talk; mediated equilibrium
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1. Introduction

We consider the (uniform, quadratic utility) cheap-talk model of [1] (hereafter referred
to as the CS model) to study the effect of mediation in comparison to unmediated cheap-
talk communication. In this game, the strategic interaction and information transmission
between an uninformed decision-maker (called the receiver) and an informed agent (called
the sender) has been studied, and what can be achieved by unmediated cheap-talk com-
munication is well established. CS have proved that any (Bayesian–Nash) equilibrium in
this cheap-talk game is equivalent to a partition equilibrium where the informed agent
reveals one of the finitely many elements of the partition in which the true state of nature
lies. The number of elements, N, in the most informative partition equilibrium in the CS
model depends on the value of the preference divergence parameter, b.

Ref. [2] introduced an unmediated communication protocol which improved the
welfare of two players relative to the CS equilibrium. Krishna and Morgan also constructed
an example of mediated communication in the CS model, demonstrating the possibility of
Pareto improvement.

Ref. [3] consider the effect of adding noise to the sender’s message in the Crawford–
Sobel model. The noise can be interpreted as communication error. In addition, one can
think of their communication scheme as a special kind of a mediator who passes on mes-
sages from the sender to the receiver with some exogenous noise added on. Specifically,
with some probability, the mediator passes on the sender’s message to the receiver un-
changed; otherwise, independent of the message sent by the sender, the mediator passes
on a random message from some fixed error distribution. They show that for a sufficiently
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small amount of noise, it is possible to improve upon the N-partition CS equilibrium as
long as b 6= 1

2N2 for any integer N and b < 1
2 .

Ref. [4] subsequently analysed the general form of mediation in the cheap-talk frame-
work of CS. They derive the optimal unconstrained mediated mechanism and an upper
bound on the receiver’s payoff that can be achieved by any mediated equilibrium. This
upper bound is achieved by the construction of [3] when the level of noise is chosen appro-
priately.1 This bound is also the same as the value of the expected payoff to the receiver
that is achieved by the equilibrium of the modified CS game constructed by Krishna and
Morgan when b < 1

8 .
Here, we should point out that in all the above three models, welfare-improving medi-

ation or noise involves a larger number of messages compared to the minimal number of
messages required in the most informative CS equilibrium. None of the papers mentioned
above addresses this issue of whether welfare-improving (non-strategic) mediation must
necessarily involve additional messages and more actions induced in equilibrium.

We, in this paper, consider mediation schemes2 in which the informed agent reports
one possible element of a partition to a mediator (a communication device) and then the
mediator suggests an action to the uninformed decision-maker according to the probability
distribution of the device. We ask the question whether it is sufficient to use simple schemes
(involving the same number of messages, N, as in the most informative CS equilibrium) for
mediation to be Pareto superior to the CS equilibrium.3

In particular, we concentrate on a specific form of mediated equilibria, that we call
N-simple mediated equilibria, in which the mediator is restricted to use the same number (N)
of inputs and outputs as the number of elements of the N-partition CS equilibrium. This
clearly imposes a restriction on the mediated mechanisms that one may consider; however,
this restriction is made in order to enable us to answer the above question. The mediator,
associated with a specific probability distribution, can be interpreted as a communication
scheme that the players mutually agree to use. In this scheme, the possible number of
elements the sender is allowed to use and the receiver is expected to receive via the mediator
is restricted to N, as in the most informative CS equilibrium. Note that b, and hence N, is
commonly known to the players.

The terminology “simple mechanism” also arises elsewhere in the context of mecha-
nism design. An interesting strand of this literature studies “robust mechanisms” which
relax some of the common-knowledge assumptions about beliefs, priors or functional
forms of preferences (see [10]). The objective is to identify “simple” mechanisms which
are reasonably detail-free compared to traditional Bayesian mechanisms and hence robust
to structural uncertainty about the environment. Simple mechanisms and rules that give
simple predictions are also appealing as they are more realistic and easily understandable.
Although the motivation of this literature is somewhat different from our paper, it helps to
justify our focus on the “simplicity” of the language or message space used by a mediator
in our model.4

Our setup of cheap talk and mediation can be used to understand real-world scenarios,
for example, one involving a politician (an uninformed decision-maker), a civil servant (a
mediator), and an expert scientist (an informed agent). We should point out that we are not
formally modelling such a situation here, in particular, the role of a civil servant. However,
one can certainly consider a situation in which the expert meets the civil servant and reports
(stochastically) the true state of the nature, and the civil servant in turn suggests an action
(again, probabilistically) to the politician. In such a setup, it is natural to presume that
the civil servant would use a message space that is not richer or more complex than what
would be used in direct communication between the expert scientist and the politician. The
main question of this paper can be interpreted as asking whether such a “simple” civil
servant is worth having as a mediating channel in a conversation between an uninformed
politician and an informed expert.

The main result of our paper (Theorem 1) is that the N-partition CS equilibrium
cannot be improved upon by the corresponding N-simple mediated equilibrium when
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the preference divergence parameter b is small (less than 1
2N2 ). In other words, when b is

small, mediation needs to use more messages (relative to the minimal number of messages
that can be used in the best CS equilibrium) in order to improve upon the N-partition CS
equilibrium. If mediation or noise is simply a randomisation over the messages that the
sender would have reported in an original unmediated CS equilibrium, then it cannot
improve information transmission when the degree of preference misalignment is small.

Mediation can usually improve on the cheap talk outcome because the mediator
introduces noise in the communication between the informed agent and the decision-maker
(see [11]). By randomising over the actions recommended to the receiver, mediation makes
it easier to satisfy the incentive compatibility constraints. However, in our setup where the
message space is restricted, there is no such additional benefit from mediation when the
interests of the sender and the receiver are sufficiently closely aligned.

Although [4] provided a necessary and sufficient condition for an incentive compatible
mediation rule to be optimal and showed that two specific mediation rules proposed in the
literature (that of [3] and by [2]) are indeed optimal for certain values of b, we do not know
what the structure of other optimal mediation rules might be.

One might ask if there exists an optimal mediation rule which is also an N-simple
mediated equilibrium. If the answer is yes, this could imply that a suitable randomisation
over the messages used in the original unmediated CS equilibrium could improve informa-
tion transmission and there would be no need to use additional messages. However, we
cannot deduce the minimal number of messages required in all such optimal mediation
rules from [4].

Theorem 1, in this paper, thus advances our understanding of the effect of mediation in
the CS model. It partially answers the question of whether the minimal size of the message
space needs to be larger for mediation to Pareto dominate the CS equilibrium. Although
we do not answer the question of whether or not an N-simple mediated equilibrium can
always improve on the CS equilibrium for large b, we provide a suggestive example.

2. The Model
2.1. Crawford–Sobel Game

Our setup is identical to the uniform-quadratic utility CS model, as presented in the
literature. Informed readers may wish to skip this subsection.

There are two agents. The informed agent, called the sender (S), precisely knows the
state of the world, θ, where θ ∼ U[0, 1], and they can send a message at no cost, based on
his private information, to the other agent, called the receiver (R). The receiver, however,
does not know θ but must choose some decision y based on the information contained
in the signal. The receiver’s payoff is UR(y, θ) = −(y− θ)2, and the sender’s payoff is
US(y, θ, b) = −(y − (θ + b))2, where b > 0 is a parameter that measures the ‘bias’ in
their preferences.

CS have shown that any equilibrium of this game is essentially equivalent to a partition
equilibrium where only a finite number of actions are chosen in equilibrium and each action
corresponds to an element of the partition. For b < 1

2N(N−1) , where N ≥ 2 is an integer,

there is a partition equilibrium5 in which the state space is partitioned into N elements,
characterised by 0 = a0 < a1 < a2 < . . . . . . < aN−1 < aN = 1, where ak =

k
N + 2bk(k− N);

in this equilibrium, S sends a message for each element [ak−1, ak), and given this message,
R takes the optimal action yk =

ak−1+ak
2 . We call this the N-partition CS equilibrium. For

1
2N(N+1) ≤ b < 1

2N(N−1) , the “best” equilibrium (the one that maximises the receiver’s

expected payoff, EUR) is the N-partition CS equilibrium6. For such an equilibrium, the

receiver’s expected payoff is EUR = − 1
12N2 −

b2(N2−1)
3 , while the sender’s expected payoff

is EUS = EUR − b2.
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2.2. Mediated Equilibrium

Within the CS framework, we now consider mediation, a possible structure of which
could be as follows: S sends a message based on his private information to the mediator; the
mediator then chooses an action according to a commonly known probability distribution
and recommends it to R. We here consider a specific form of direct mediation (in the spirit
of canonical mechanisms, as initiated and analysed extensively by [13–15]) and formally
define such a mediated talk below.

Definition 1. An N × M mediated talk is [{xk}N
k=0,

{
yj
}M

j=1,
{

pkj

}
k=1,...N;j=1,..M

] where

0 = x0 < x1 < x2 < . . . . . . < xN−1 < xN = 1, each yj ∈ [0, 1] for j ∈ {1, 2, . . . M},
each pkj ∈ [0, 1] for k ∈ {1, 2, . . . N}, j ∈ {1, 2, . . . M} with ∑M

j=1 pkj = 1.

In an N × M mediated talk, S reports one of the N possible elements, [xk−1, xk),
in which the true state θ may lie, to the mediator and given the report θ ∈ [xk−1, xk),
the mediator then recommends to R one action, yj, out of the M possible actions with
probability pkj.

Our mechanism7 (an N × M mediated talk) is said to be in equilibrium if it is in-
centive compatible for both players, that is, if (i) S has the incentive to be truthful to the
mediator given the probabilities pkj, and (ii) R has the incentive to obey the mediator’s
recommendation yj, given the posterior probabilities on the state of nature.

In what follows, we will focus only on N × N direct8 mediated equilibria. We will call
such an equilibrium an N-simple mediated equilibrium.

Let gk(θ) denote the difference in expected utility from inducing the distributions{
pk+1j

}N

j=1
and

{
pkj

}N

j=1
that a type θ sender would obtain. Formally,

gk(θ) = ∑N
j=1

(
pkj − pk+1j

)[
yj − (θ + b)

]2.

Definition 2. For any specific value of b, an N × N (or, N-simple) mediated equilibrium is an
N ×M (with M = N) mediated talk that satisfies

(i) incentive compatibility for S: for all k ∈ {1, 2, . . . , N − 1}, gk(xk) = 0 and g′k(θ) ≥ 0 ∀θ.
(ii) incentive compatibility for R: yj = argmax

y
− ∑N

k=1 qkj
1

(xk−xk−1)

∫ xk
xk−1

(y − θ)2dθ for

all j ∈ {1, 2, . . . , N}, where qkj, the posterior probability that θ ∈ [xk−1, xk), is given by

qkj =
(xk−xk−1)pkj

∑N
k=1(xk−xk−1)pkj

.

In (i), gk(xk) = 0 essentially corresponds to the “arbitrage condition” in the CS
equilibrium. The incentive compatibility for the sender requires that the xk type sender is

indifferent between inducing
{

pk+1j

}N

j=1
and

{
pkj

}N

j=1
. In addition, a sender with type

θ ∈ (xk, xk+1) should weakly prefer the distribution
{

pk+1j

}N

j=1
over

{
pkj

}N

j=1
and a sender

with type θ ∈ (xk−1, xk) should weakly prefer the distribution
{

pkj

}N

j=1
over

{
pk+1j

}N

j=1
,

implying that g′k(θ) ≥ 0. Note that g′k(θ) ≥ 0 at θ = xk and since g′k(θ) is constant, it has to
be non-negative everywhere.

In (ii), the incentive compatibility for R requires that when yj has been recom-
mended, R indeed chooses the action yj because it maximises his expected utility given his
posterior beliefs.
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2.3. Characterisation

An N-simple mediated equilibrium can be characterised easily. Incentive compatibility for
R, as in Definition 2(ii), requires for all j = 1, . . . , N, ∑N

k=1 pkj
[
(yj − xk−1)

2 − (yj − xk)
2] = 0.

This implies:

yj =
1
2

[
(1−∑k 6=j pjk)(x2

j − x2
j−1) + ∑k 6=j pkj(x2

k − x2
k−1)

(1−∑k 6=j pjk)(xj − xj−1) + ∑k 6=j pkj(xk − xk−1)

]
(1)

The incentive compatibility for S, as in Definition 2(i), requires

∑N−1
j=1 (pk+1j − pkj)

(
yj − yN

)
≥ 0 and ∑N

j=1(pkj − pk+1j)
[
yj − (xk + b)

]2
= 0 for all

k = 1, . . . , N − 1.
The latter implies for all k = 1, . . . , N − 1,

2(xk + b) =
∑N−1

j=1 (pkj−pk+1j)(y2
j−y2

N)

∑N−1
j=1 (pkj−pk+1j)(yj−yN)

=
(1−∑j 6=k pkj−pk+1k)(y2

k−y2
N)+(pkk+1−1+∑j 6=k+1 pk+1j)(y2

k+1−y2
N)+∑j 6=k,k+1(pkj−pk+1j)(y2

j−y2
N)

(1−∑j 6=k pkj−pk+1k)(yk−yN)+(pkk+1−1+∑j 6=k+1 pk+1j)(yk+1−yN)+∑j 6=k,k+1(pkj−pk+1j)(yj−yN)

(2)

Thus, an N-simple mediated equilibrium is characterised by [{xk}N
k=0,

{
yj
}N

j=1,{
pkj

}
k=1,...,N;j=1,..,N

] satisfying Equations (1) and (2) with the constraints that

∑N−1
j=1 (pk+1j − pkj)

(
yj − yN

)
≥ 0 for all k = 1, . . . , N − 1.

3. Results

To state and prove our results, we take b < 1
2N(N−1) , for which the N-partition CS equi-

librium exists. We first observe that the N-partition CS equilibrium is actually equivalent to
a particular N-simple mediated equilibrium, namely, one with
xk = ak = k

N + 2bk(k − N) for all k ∈ {1, . . . , N}; yj =
aj−1+aj

2 for all j ∈ {1, . . . , N}
and pkj = 0 for all k, j ∈ {1, . . . , N}, k 6= j.

Note that in the class of simple mediated equilibria, EUS = EUR − b2, that is, ex ante,
the sender’s and receiver’s welfare ranking agree. For any simple mediated equilibrium, it
is also clear that EUR = −∑N

k=1[(1−∑j 6=k pkj)
∫ xk

xk−1
(yk− θ)2dθ +∑N

j=1
j 6=k

pkj
∫ xk

xk−1
(yj− θ)2dθ],

which implies

EUR = −1
3 ∑N

k=1[(1−∑j 6=k pkj){(yk − xk−1)
3 − (yk − xk)

3}+ ∑N
j=1
j 6=k

pkj{(yj − xk−1)
3 − (yj − xk)

3}].

We are interested in the question of when can the N-partition CS equilibrium not be
improved upon by an N-simple mediated equilibrium, that is, when is the N-partition
CS equilibrium is indeed the best among the set of N-simple mediated equilibria. Our
main result answers the above question by solving the following constrained maximisation
problem that we call the final problem.

Final problem: Maximise EUR among the set of N-simple mediated equilibria (as
characterised in the previous section).

Before we state and prove our main result, as a first step, we consider the following
constrained maximisation problem that we call the initial problem:

Initial problem: Maximise
{xk}N−1

k=1 ,{pkj}k 6=j

EUR subject to Equations (1) and (2).

The difference between the final problem and the initial problem is simply the set of
restrictions that ∑N−1

j=1 (pk+1j − pkj)
(
yj − yN

)
≥ 0, for all k = 1, . . . , N − 1.

Our first lemma below proves that for b < 1
2N2 , a “corner” solution satisfies the

necessary first-order conditions of the initial problem.
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Lemma 1. For b < 1
2N2 , the necessary conditions for a solution of the initial problem are satisfied

at pkj = 0, for all k 6= j; k, j ∈ {1, . . . , N}.

Lemma 1 also characterises the values of {xk}N−1
k=1 at this solution of the initial problem.

They are indeed the CS values given by xk = xCS
k = k

N + 2bk(k−N), for all k ∈ {1, . . . , N− 1}.
The formal proof of Lemma 1 has been relegated to the Appendix A.

The following result shows that the N-partition CS equilibrium satisfies the first-
order conditions for a (local) optimiser of EUR among the set of N-simple mediated
equilibria. The result is an immediate consequence of Lemma 1, and thus, the formal proof
is postponed to the Appendix A.

Corollary 1. For b < 1
2N2 , the necessary conditions for a local maximum of the final problem are

satisfied at pkj = 0 for all k 6= j; k, j ∈ {1, . . . , N} and xk = xCS
k = k

N + 2bk(k − N) for all
k ∈ {1, . . . , N − 1}.

This corollary shows that the CS equilibrium values constitute a candidate solution to
the final problem.

We are now ready to state our main result.

Theorem 1. Consider b < 1
2N(N−1) , for which the N-partition CS equilibrium exists. If

b < 1
2N2 (< 1

2N(N−1) ), then no N-simple mediated equilibrium can improve upon the N-partition
CS equilibrium.

Our theorem above proves that for b < 1
2N2 , the N-partition CS equilibrium is actu-

ally a global maximum among the set of N-simple mediated equilibria. Furthermore, it
suggests that there may exist N-simple mediated equilibria that can improve upon the
N-partition CS equilibrium when b ∈ [ 1

2N2 , 1
2N(N−1) ), as we demonstrate using an example

in Section 4.1 below.
We first note that the global maximum exists by appealing to the Weierstrass Theorem,

since the objective function is continuous and is defined over a compact set.
To prove the theorem, we first reconsider EUR of any N-simple mediated talk and

write the following expression:

−3EUR = ∑N
k=1[(1−∑j 6=k pkj){(yk − xk−1)

3 − (yk − xk)
3}+ ∑N

j=1
j 6=k

pkj{(yj − xk−1)
3 − (yj − xk)

3}].

We work with the above expression, involving the variables [{xk}N
k=0,

{
yj
}N

j=1,{
pkj

}
k=1,...N;j=1,..N

], satisfying Equation (1) from the previous section,

yj =
1
2

[
(1−∑k 6=j pjk)(x2

j−x2
j−1)+∑k 6=j pkj(x2

k−x2
k−1)

(1−∑k 6=j pjk)(xj−xj−1)+∑k 6=j pkj(xk−xk−1)

]
. We redefine the above expression as a func-

tion, f , explicitly as a function of the variables {xk}N−1
k=1 and {pkj}k 6=j such that the domain

satisfies Equation (1). Let us thus write

f (x1, . . . , xN−1; p12, p13, . . . , p1N ; p21, p23 . . . , p2N ; . . . . . . . . . ; pN1, . . . , pNN−1)
= ∑N

k=1[(1−∑j 6=k pkj){(yk − xk−1)
3 − (yk − xk)

3}+ ∑N
j=1
j 6=k

pkj{(yj − xk−1)
3 − (yj − xk)

3}].

The function, f , is therefore the negative of the original objective function with only
the constraint (1) incorporated but without taking into account the incentive compatibility
constraint for S.

Abusing notation, we treat f as a function of {pkj}j 6=k, for any fixed level of (x1, . . . , xN−1),
and also, as a function of {xk}N−1

k=1 , for fixed values of pkj, for all k 6= j. We first observe the
following result which characterises a property of the function, f .
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Lemma 2. For any (x1, . . . , xN−1),
∂ f

∂pkj
> 0, at pkj = 0, for all k 6= j; k, j ∈ {1, . . . , N}.

This means that at such a corner value of the probabilities where pkj = 0, for all k 6= j,
k, j ∈ {1, . . . , N}, there is locally an open neighbourhood around this corner value where
the value of the function f is larger than at the corner for any (x1, . . . , xN−1). So, Lemma 2
shows that f , as a function of {pkj}j 6=k, attains a local minimum at pkj = 0, for all k 6= j; k,
j ∈ {1, . . . , N}.

We then consider the global minimisation of f with respect to pkj for all k 6= j, and we
prove the following lemma.

Lemma 3. For any (x1, . . . , xN−1), f , as a function of {pkj}j 6=k, attains a (global) minimum at
pkj = 0 for all k 6= j; k, j ∈ {1, . . . , N}.

The next lemma indicates an important property of f as a function of (x1, . . . , xN−1),
for a particular value of {pkj}j 6=k.

Lemma 4. At pkj = 0, for all k 6= j, f , as a function of {xk}N−1
k=1 , is strictly convex.

The proof of Theorem 1 is now a direct consequence of the above lemmata. We
provide the formal argument in the Appendix. Theorem 1 proves that for b < 1

2N2 , a
global maximum among the set of N-simple mediated equilibria must coincide with the
N-partition CS equilibrium.

4. Remarks
4.1. Example

We provide here an example for N = 2 where simple mediation improves on the
corresponding CS equilibrium when the bias b is appropriately larger than the bound
mentioned in Theorem 1. Recall that a 2-partition CS equilibrium exists for b < 1

4 and for
1

12 ≤ b < 1
4 , the best CS partition equilibrium involves two elements. Theorem 1 confirms

that the 2-partition CS equilibrium cannot be improved upon by any 2-simple mediated
equilibrium when b < 1

8 . Our result also suggests that a 2-simple mediated equilibrium
may improve upon the 2-partition CS equilibrium when b is large enough, that is, for
1
8 ≤ b < 1

4 . We illustrate this comment for b = 1
6 . Here, the 2-partition CS equilibrium is

characterised by a = 1
6 , y1 = 1

12 , and y2 = 7
12 with utilities EUR = − 7

144 ' −0.0486 and
EUS = − 11

144 ' −0.0764.
From the characterisation presented in Section 2.3, a 2-simple mediated equilibrium is

given by9 (x, y1, y2, p11, p12, p21, p22), where x, y1, y2 ∈ (0, 1), p11, p12, p21, p22 ∈ [0, 1] and
p11 + p12 = 1, p21 + p22 = 1. The incentive compatibility constraints for S and for R can all

be combined into one equation given by (1−p12)x2+p21(1−x2)
4[(1−p12)x+p21(1−x)] +

p12x2+(1−p21)(1−x2)
4[p12x+(1−p21)(1−x)] − x = b.

Thus, a 2-simple mediated equilibrium in this setup can be characterised by three
variables (p12, p21, x), where x ∈ (0, 1) and p12, p21 ∈ [0, 1], satisfying the above equation.

It is now easy to check that for b = 1
6 , x = 0.2245201023, y1 = 0.1745967377,

y2 = 0.6077768002, p12 = 0.03, and p21 = 0.04 constitute a 2-simple mediated equi-
librium with utilities EUR ' −0.0483 and EUS ' −0.0760 and can improve upon the
corresponding 2-partition CS equilibrium.

The interpretation of the above example is as follows. One can see that the partitioning
point x and the two decisions y1 and y2 of the 2-simple mediated equilibrium are all larger
than the corresponding values of the 2-partition CS equilibrium. The fact that the lower
interval is bigger and the higher element of the partition is smaller in size means that
more information is being transmitted. This is possible because the mediator is allowed to
randomise between y1 and y2.
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4.2. Relationship with Goltsman et al. (2009)

One might be interested in knowing how our theorem compares with the correspond-
ing results in [4] and in particular, if there is a connection between our Theorems 1 and 2
of [4]. In Theorem 2 of [4], an optimal mediation rule is provided. One interesting corollary
of this theorem is that for b = 1

2N2 , this particular optimal mediation rule cannot improve
upon the N-partition CS equilibrium. This implies that the N-partition CS equilibrium is
optimal, irrespective of the number of messages that the players are allowed to use, when
b = 1

2N2 . However, since Theorem 2 of [4] is about a specific optimal mediation rule which
uses more messages than our N-simple mediated equilibrium and in general, there might
be a continuum of optimal mediation rules. We thus feel that this theorem is not useful in
answering the question posed in our paper.

A more meaningful approach might be to ask if the technique used by [4] to prove
their Theorem 2 can provide any insight or an alternative way of proving our result. Ref. [4]
introduced a lemma (Lemma 2 in their paper) to derive a necessary and sufficient condition
for an incentive compatible mediation rule to be optimal and to provide an upper bound
on the objective function using an incentive compatible mediation rule. One might try to
identify such a condition and an upper bound in the more constrained setting of N-simple
mediation rules. If the characterisation of optimal mediation rules in Lemma 2 of [4]
could be appropriately modified to derive a characterisation of optimal N-simple mediated
equilibria, then this would provide another method of proof of our Theorem 1. We would
like to point out that we do not derive such a characterisation in this paper and that such
an alternative proof is not straightforward, either.

It is also worth mentioning two recent papers on the connection between communica-
tion equilibrium and correlated equilibrium [5,18] that are relevant to our work. Ref. [18]
proved that (essentially) every communication equilibrium of any finite Bayesian game
with two players can be implemented as a strategic form correlated equilibrium of a game
extended by a cheap-talk phase before the original Bayesian game. On the other hand,
specific to the CS model, [5] constructed a strategy-correlated equilibrium, that sends
messages to both players before the sender sends any message to the receiver, to achieve
the best possible payoff from the mediated equilibrium of the CS model. Importantly, in
his construction, unlike our work, neither player needs to send messages to the device.
Following these new results, one may be interested to know whether our N-simple medi-
ated equilibrium can be obtained as a correlated equilibrium in the sense of [18], or as a
strategy-correlated equilibria, as in [5]. In particular, one may further ask whether or not
these new constructible correlated or strategy-correlated equilibria will involve only a few
(N many) messages. Clearly, these are important questions for future research.
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Appendix A

All the proofs of the results are collected in the appendix.

Proof of Lemma 1. It suffices to show that for b < 1
2N2 , the N-simple mediated equilibrium

corresponding to pkj = 0, for all k 6= j, k, j ∈ {1, . . . , N} provides a candidate solution for
the initial problem.

Let us first consider the Lagrangian:
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L = −∑N
k=1[(1−∑j 6=k pkj){(yk − xk−1)

3 − (yk − xk)
3}+ ∑N

j=1 pkj{(yj − xk−1)
3 − (yj − xk)

3}]

−∑N−1
k=1 λk[

(1−∑j 6=k pkj−pk+1k)(y2
k−y2

N)+(pkk+1−1+∑j 6=k+1 pk+1j)(y2
k+1−y2

N)+∑j 6=k,k+1(pkj−pk+1j)(y2
j−y2

N)

(1−∑j 6=k pkj−pk+1k)(yk−yN)+(pkk+1−1+∑j 6=k+1 pk+1j)(yk+1−yN)+∑j 6=k,k+1(pkj−pk+1j)(yj−yN)
]

+2 ∑N−1
k=1 λkxk + 2b ∑N−1

k=1 λk.

To prove the result, we just need to show that at the proposed candidate solution,
there exists {λk}N−1

k=1 such that ∂L
∂xk

= 0 for all k = 1, . . . , N − 1 and ∂L
∂pkj

< 0 for all k 6= j

when b < 1
2N2 .

First, at pkj = 0, for all k 6= j; k, j ∈ {1, . . . N}, it is easy to check that ∂yk
∂xk

= ∂yk
∂xk−1

= 1
2 ,

and ∂yk
∂xj

= 0 for all j 6= k, k− 1. In addition,
∂yj
∂pkj

=
(xk−xk−1)(xk+xk−1−xj−xj−1)

2(xj−xj−1)
for all k 6= j

and
∂yj
∂pkl

= 0 for all l 6= j for all k.

Subsequently, it can be shown that ∂L
∂xk

= −3[(yk − xk)
2 − (yk+1 − xk)

2] + λk −
λk+1

2 −
λk−1

2 for all k = 1, . . . , N − 1 (since λ0 and λN are not defined, define them to be equal
to zero).

Now, ∂L
∂xk

= 0 implies 12b(yk+1 − yk) + 2λk − λk+1 − λk−1 = 0 for all k = 1, . . . , N − 1.
This gives us a system of (N − 1) equations in (N − 1) variables, λ1, . . . λN−1, which

can be succinctly written in matrix form as

2 −1 0 0 . . 0
−1 2 −1 0 . . .
0 −1 2 −1 0 . .
0 0 −1 . . . 0
. . . . . . 0
. . . 0 −1 2 −1
0 . . 0 0 −1 2


(N−1)×(N−1)



λ1
λ2
λ3
.
.
.

λN−1


(N−1)×1

=



12b(y1 − y2)
12b(y2 − y3)
12b(y3 − y4)

.

.

.
12b(yN−1 − yN)


(N−1)×1

The (N − 1) × (N − 1) matrix above is symmetric and tridiagonal, the ij-th element of
the inverse of which is given by 1

4N (i + j− | j− i |)(2N− | j− i | −i− j) (using results
by [19,20]).

Thus, solving the equations, we obtain λk = − 2bk(N−k)
N [3− 2bN2 + 4bkN] (which is

< 0 for all k = 1, . . . , N − 1).
We are now ready to show that when b < 1

2N2 , ∂L
∂pkj

< 0 for all k 6= j, at the proposed
candidate solution (the CS equilibrium values of xks and yks) and with the above values λk,
for all k = 1, . . . , N − 1.

For all k 6= j, we have

∂L
∂pkj

= [(yk − xk−1)
3 − (yk − xk)

3]− [(yj − xk−1)
3 − (yj − xk)

3]− λk[
(yj−yk)(yj−yk+1)

(yk−yk+1)
]− λ

k−1[
(yk−yj)(yj−yk−1)

(yk−1−yk)
]− (λj + λj−1)[

∂yj
∂pkj

].

We first prove that ∂L
∂pkj

< 0, for k = 1, when b < 1
2N2 . Here,

∂L
∂p1j

=
(1− j)2(2bN2 + 1)(2bN2 − 2bjN − 1)(12b2 N4 − 12b2 N3 − 12jb2 N3 − 4b2 jN2 + 8b2 j2 N2 − 12bN2 + 6bN + 6bjN + 3)

N3(2bN2 + 2bN − 4bjN − 1)(2bN2 − 4bN − 1)
.

Clearly, (i) (1 − j)2 > 0; (ii) (2bN2 + 1) > 0; and (iii) N3 > 0. Note also that as
b < 1

2N(N−1) , we have 2bN2 − 2bN − 1 < 0. It is now easy to check that (iv) 2bN2 −
2bjN − 1 < 0; (v) 2bN2 + 2bN − 4bjN − 1 < 0, and (vi) 2bN2 − 4bN − 1 < 0.

Finally, the factor,
(vii) 12b2N4 − 12b2N3 − 12jb2N3 − 4b2 jN2 + 8b2 j2N2 − 12bN2 + 6bN + 6bjN + 3
= 3(2N2b− 1)2 + 6Nb(1 + j)(2Nb + 1− 2N2b) + 4N2b2[(j− 2)2 − 7 + j2],
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which we need to show is > 0 for all j ≥ 2. Clearly, it is so for all j ≥ 3. For j = 2, the factor
is equal to 3(2N2b− 1)2 + 18Nb(2Nb + 1− 2N2b)− 12N2b2, which can be shown to be
> 0 whenever b < 1

2N2− 4N
3

. Since 1
2N2− 4N

3
> 1

2N2 , we have that the factor is for > 0, for all

j ≥ 2, when b < 1
2N2 . Hence, ∂L

∂p1j
< 0, for all j ≥ 2, when b < 1

2N2 .

We now show that ∂L
∂pkj

< 0 for all k > 1 when b < 1
2N2 . Substituting the values for the

xks, yks and λks, we have

∂L
∂pkj

=
(k− j)2(2bN2 − 1)(2bN2 + 1)(2bN2 + 2bN − 2bjN − 2bkN − 1)

N3(2bN2 + 2bN − 4bjN − 1)(2bN2 + 4bN − 4bkN − 1)(2bN2 − 4bkN − 1)
A,

where

A = 12b2N4 − 36b2kN3 − 12jb2N3 + 24b2N3 + 32b2k2N2 + 8jb2N2k + 4b2N2 − 36b2N2k− 12b2 jN2

+8b2 j2N2 − 12bN2 + 18bkN + 6bjN − 12bN + 3.

Here, clearly, (i) (k− j)2 > 0; (ii) (2bN2 + 1) > 0; and (iii) N3 > 0. Once again, as
b < 1

2N(N−1) , we have 2bN2 − 2bN − 1 < 0. Thus, one can verify that (iv) 2bN2 + 2bN −
2bjN − 2bkN − 1 = 2bN2 − 2bN − 1 + 2bN(2− j− k) < 0; (v) 2bN2 + 2bN − 4bjN − 1 =
2bN2 − 2bN − 1 + 4bN(1− j) < 0; (vi) 2bN2 + 4bN − 4bkN − 1 = 2bN2 − 2bN − 1 +
2bN(3− 2k) < 0 as k ≥ 2; and (vii) 2bN2− 4bkN− 1 = 2bN2− 2bN − 1+ 2bN(1− 2k) < 0.

Finally, note that the factor,

A = 12b2N4 − 36b2kN3 − 12jb2N3 + 24b2N3 + 32b2k2N2 + 8jb2N2k + 4b2N2 − 36b2N2k− 12b2 jN2

+8b2 j2N2 − 12bN2 + 18bkN + 6bjN − 12bN + 3
= 12N4b2 − 12N3b2(3k + j− 2) + 4N2b2[8k2 + 2jk + 1− 9k− 3j + 2j2]− 12N2b + 6Nb(3k + j− 2) + 3
= [12N4b2 − 12N2b + 3] + (3k + j− 2)[6Nb− 12N3b2] + 12N2b2(3k + j− 2)
+4N2b2[8k2 + 2jk + 1− 9k− 3j + 2j2]− 12N2b2(3k + j− 2)
= 3(2bN2 − 1)2 + 6bN(3k + j− 2)

[
1 + 2bN − 2bN2]+ 4N2b2[(k + j− 3)2 + 7k(k− 2) + 2(k− 1) + j2],

is > 0 as 1 + 2bN − 2bN2 > 0 (as b < 1
2N(N−1) ) and k ≥ 2.

Hence, ∂L
∂pkj

< 0 for all k 6= j and for all k > 1 when (2bN2 − 1) < 0, i.e., when

b < 1
2N2 .

Proof of Corollary 1. Note that in the initial problem, we have dropped the constraints that
∑N−1

j=1 (pk+1j − pkj)
(
yj − yN

)
> 0 for all k = 1, . . . , N − 1, be satisfied and found candidate

solutions of this modified constrained maximisation problem with a larger “feasible set”.
We add the constraints that ∑N−1

j=1 (pk+1j − pkj)
(
yj − yN

)
≥ 0 for all k = 1, . . . , N − 1 to the

above problem. However, notice that the above candidate solution, namely, the CS N-
partition equilibrium, does satisfy these constraints and hence will be a candidate solution
of the desired maximisation problem.

Proof of Lemma 2.

f (x1, . . . , xN−1; p12, p13, . . . , p1N ; p21, p23, . . . , p2N ; . . . . . . ; pN1, . . . , pNN−1)
= (1−∑j 6=1 p1j)

[
(y1)

3 − (y1 − x1)
3]+ ∑j 6=1 p1j

[
(yj)

3 − (yj − x1)
3]

+(1−∑j 6=2 p2j)
[
(y2 − x1)

3 − (y2 − x2)
3]+ ∑j 6=2 p2j

[
(yj − x1)

3 − (yj − x2)
3]

+(1−∑j 6=3 p3j)
[
(y3 − x2)

3 − (y3 − x3)
3]+ ∑j 6=3 p3j

[
(yj − x2)

3 − (yj − x3)
3]

+ . . . . . . + (1−∑j 6=k pkj)
[
(yk − xk−1)

3 − (yk − xk)
3]+ ∑j 6=k pkj

[
(yj − xk−1)

3 − (yj − xk)
3]

+ . . . . . . + (1−∑j 6=N pNj)
[
(yN − xN−1)

3 − (yN − 1)3]+ ∑j 6=N pNj
[
(yj − xN−1)

3 − (yj − 1)3].
Note that ∂yi

∂pkj
= 0 for all i 6= k, j. Thus,
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∂ f
∂pkj

= p1k
[
3(yk)

2 − 3(yk − x1)
2] ∂yk

∂pkj
+ p1j

[
3(yj)

2 − 3(yj − x1)
2] ∂yj

∂pkj

+p2k
[
3(yk − x1)

2 − 3(yk − x2)
2] ∂yk

∂pkj
+ p2j

[
3(yj − x1)

2 − 3(yj − x2)
2] ∂yj

∂pkj

+ . . . . . . +
(
−
[
(yk − xk−1)

3 − (yk − xk)
3])+ (1−∑j 6=k pkj)

[
3(yk − xk−1)

2 − 3(yk − xk)
2] ∂yk

∂pkj

+
[
(yj − xk−1)

3 − (yj − xk)
3]+ pkj

[
3(yj − xk−1)

2 − 3(yj − xk)
2] ∂yj

∂pkj

+ . . . . . . + pNk
[
3(yk − xN−1)

2 − 3(yk − 1)2] ∂yk
∂pkj

+ pNj
[
3(yj − xN−1)

2 − 3(yj − 1)2] ∂yj
∂pkj

.

Using the incentive compatibility condition for R (Equation (1) in the paper), we have

∂ f
∂pkj

= −
[
(yk − xk−1)

3 − (yk − xk)
3
]
+
[
(yj − xk−1)

3 − (yj − xk)
3
]
.

For pkj = 0 for all k 6= j, yk =
xk+xk−1

2 , yj =
xj+xj−1

2 and

∂ f
∂pkj

= −
[(

xk−xk−1
2

)3
−
(
−
(

xk−xk−1
2

))3
]
+

[( xj+xj−1−2xk−1
2

)3
−
( xj+xj−1−2xk

2

)3
]

= 3
4 (xk − xk−1)

(
xk − xj + xk−1 − xj−1

)2
> 0.

Proof of Lemma 3. We consider the first-order conditions for minimisation of f with re-
spect to pkj, k 6= j for any (x1, . . . , xN−1).

For all k, j ∈ {1, . . . , N} such that k 6= j, we have

∂ f
∂pkj

= −
[
(yk − xk−1)

3 − (yk − xk)
3]+ [(yj − xk−1)

3 − (yj − xk)
3]

= 3
(
yk − yj

)
(xk − xk−1)

(
xk − yk − yj + xk−1

)
.

Thus, ∂ f
∂pkj

= 0 =⇒ xk − yk − yj + xk−1 = 0, or, yk + yj = xk + xk−1. This means that if
∂ f

∂pkj
= 0, then ∂ f

∂pkl
6= 0 for all l 6= j, because yl 6= yj. In addition, if ∂ f

∂pkj
= 0, then ∂ f

∂pjk
6= 0.

This proves that for a fixed (x1, . . . , xN−1), there cannot be a minimum of f at a strictly
interior point (i.e., 0 < pkj < 1 for all k, j ∈ {1, . . . , N} such that k 6= j).

We now check that for a fixed (x1, . . . , xN−1), there is no other minimum of f at
boundary points (i.e., where some of the pkjs are equal to 0 or 1) which is strictly lower
than the value of f at pkj = 0 for all k 6= j.

Case 1. Suppose that pil = 0 for all (i, l) 6= (k, j) and 0 < pkj < 1. Then, yk =
xk+xk−1

2

and yj =
1
2

[ (
x2

j−x2
j−1

)
+pkj(x2

k−x2
k−1)

(xj−xj−1)+pkj(xk−xk−1)

]
, in which case ∂ f

∂pkj
= 0 =⇒ yk + yj = xk + xk−1 =⇒

xj + xj−1 = xk + xk−1, which is not possible.

So, if pil = 0, for all (i, l) 6= (k, j), then ∂ f
∂pkj
6= 0. In fact, by continuity of f , ∂ f

∂pkj
must

be > 0 (since, from Lemma 2, we have ∂ f
∂pkl

> 0, for pkl = 0, for all k 6= l). This shows that
0 < pkj ≤ 1 and pil = 0 for all (i, l) 6= (k, j) cannot be a minimum of f .

Case 2. Suppose that 0 < pkj < 1 for some k 6= j, k ∈ {k1, k2, . . . , kl}, l ≥ 2, where
{k1, k2, . . . , kl} ⊆ {1, 2, . . . , N} and pkj = 0, k 6= j, k /∈ {k1, k2, . . . , kl} satisfy the first-order
conditions for the minimisation of f . Note from above that if 0 < pkj < 1 for some k 6= j,

then ∂ f
∂pkj

= 0 and ∂ f
∂pkl
6= 0 for all l 6= j, k, implying that pkl = 0 for all l 6= j, k.

Since ∂ f
∂pkj

= −
[
(yk − xk−1)

3 − (yk − xk)
3] + [

(yj − xk−1)
3 − (yj − xk)

3] = 0, if

0 < pkj < 1, it is easy to check that the value of f (evaluated at the above pkjs) is the
same as the value of f evaluated at pkj = 0 for all k 6= j.

Case 3. Suppose now that pkj = 1 for some k 6= j, k ∈ {k1, k2, . . . , kl} where
{k1, k2, . . . , kl} ⊂ {1, 2, . . . N} and pkj = 0, k 6= j, k /∈ {k1, k2, . . . , kl}. We now check if
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such a configuration is compatible with a global minimum of f . Without loss of generality,
let pk1 j1 = 1 and pj1l = 0 for all l 6= j1 ∈ {1, . . . , N}. Let us denote by ∆ the following
components in f , which are given by

∆ = (1−∑l 6=k1
pk1l)

[
(yk1 − xk1−1)

3 − (yk1 − xk1)
3]+ ∑l 6=k1

pk1l
[
(yl − xk1−1)

3 − (yl − xk1)
3]

+(1−∑l 6=j1 pj1l)
[
(yj1 − xj1−1)

3 − (yj1 − xj1)
3]+ ∑l 6=j1 pj1l

[
(yl − xj1−1)

3 − (yl − xj1)
3].

Note that in this particular case, ∆ becomes[
(yj1 − xk1−1)

3 − (yj1 − xk1)
3]+ [(yj1 − xj1−1)

3 − (yj1 − xj1)
3],

which will always be greater than the value of ∆ evaluated at pkj = 0, for all k 6= j, given by[
(yk1 − xk1−1)

3 − (yk1 − xk1)
3]+ [(yj1 − xj1−1)

3 − (yj1 − xj1)
3].

Case 4. Suppose now that pkj = 1 for some k 6= j and k ∈ {k1, k2, . . . , kl} and that 0 <
pkj < 1 for some k 6= j, k ∈ {kl+1, kl+2, . . . , kM} where {k1, k2, . . . , kl , kl+1, kl+2, . . . , kM} ⊂
{1, 2, . . . N} and pkj = 0 for all k 6= j, k /∈ {k1, k2, . . . , kl , kl+1, kl+2, . . . , kM}. Combining
the arguments in Cases 2 and 3 above, it can be shown that this configuration cannot
correspond to a global minimum of f .

Case 5. Finally, suppose for every k, pkj = 1 for some k 6= j and also, for every k, if
pkj = 1 then pl j = 0 for all l 6= k. In this case, it is easy to check that the value of f is
equal to the value of f when pkj = 0 for all k 6= j. This is because such a configuration is
equivalent to assigning a permutation of {y1, . . . , yN} to each element of the partition.

Proof of Lemma 4. f (x1, . . . , xN−1; p12, p13, . . . , p1N ; p21, p23, . . . , p2N ; . . . . . . ; pN1, . . . , pNN−1)
evaluated at pkj = 0, for all k 6= j, becomes[

(y1)
3 − (y1 − x1)

3]+ [(y2 − x1)
3 − (y2 − x2)

3]
+ . . . . . . +

[
(yi − xi−1)

3 − (yi − xi)
3]

+ . . . . . . +
[
(yN − xN−1)

3 − (yN − 1)3]
=

x3
1

4 + (x2−x1)
3

4 + (x3−x2)
3

4 + . . . . . . + (1−xN−1)
3

4 .

Let A =
[
aij
]

i,j=1...N−1 denote the Hessian matrix for f , as a function of {xk}N−1
k=1 , at

pkj = 0 for all k 6= j.

A =
3
2



x2 −(x2 − x1) 0 0 . . . 0
−(x2 − x1) (x3 − x1) −(x3 − x2) 0 . . . 0

0 −(x3 − x2) (x4 − x2) −(x4 − x3) 0 . . .
0 0 . . . . . 0
. . . . . . . .
. . . . 0 . . 0
. . . . 0 0 . .
0 . . . . 0 . (xN − xN−2)


(N−1)×(N−1)

.

Let A1, A2 . . . , AN−1 denote the principal minors of A.
Clearly, |A1| = x2 > 0. In addition, |A2| = x2(x3 − x1) − (x2 − x1)

2 > 0 and
|A3| = (x4 − x2)|A2| − x2(x3 − x2)

2 > 0, because |A2| − (x3 − x2)|A1| > 0.
One can check that for k ≥ 3,
|Ak| = akk|Ak−1| − akk−1ak−1k|Ak−2| = (xk+1 − xk−1)|Ak−1| − (xk − xk−1)

2|Ak−2|.
Note that |Ak| > 0, if |Ak−1| − (xk − xk−1)|Ak−2| > 0.
We now prove by induction that |Ak−1| − (xk − xk−1)|Ak−2| > 0 for k ≥ 3.
We know that |A2| − (x3 − x2)|A1| > 0. Suppose that |Ak−1| − (xk − xk−1)|Ak−2| > 0

for k ≥ 3.
Then, |Ak| − (xk+1 − xk)|Ak−1| = (xk − xk−1)|Ak−1| − (xk − xk−1)

2|Ak−2|
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= (xk − xk−1)[|Ak−1| − (xk − xk−1)|Ak−2|] > 0 (by induction).
Therefore, |Ak| > 0 for all k. Hence, A is positive definite which implies that f , as a

function of {xk}N−1
k=1 , at pkj = 0, for all k 6= j, is strictly convex.

Proof of Theorem 1. We need to prove that for b < 1
2N2 , the N-partition CS equilibrium is

actually a global maximum among the set of N-simple mediated equilibria.
Lemma 3 shows that a global minimum of f exists at pkj = 0 for all k 6= j. In the final

problem, EUR can be viewed as a function that is equal to − 1
3 f with a further restriction

on the domain of the variables given by the incentive compatibility constraint for S. Since
the domain of f is less constrained than (and hence contains) the domain of the original
constrained optimisation problem given by the final problem, the values pkj = 0, for all k 6= j,
should correspond to an optimum of the original optimisation problem as well.

In addition, by Lemma 4, f , as a function of {xk}N−1
k=1 , is strictly convex at pkj = 0,

for all k 6= j, and hence has a unique global minimum in {xk}N−1
k=1 which will satisfy the

necessary conditions for optimality.
From Corollary 1, we know that the N-partition CS equilibrium, given by

xk = k
N + 2bk(k − N) for all k ∈ {1, . . . , N}; yj =

xj−1+xj
2 for all j ∈ {1, . . . , N} and

pkj = 0 for all k, j ∈ {1, . . . , N}, k 6= j, is a candidate solution to the final problem because it
satisfies the necessary first order conditions.

Thus, for b < 1
2N2 , the values of {xk}N−1

k=1 in the N-partition CS equilibrium given by
xk =

k
N + 2bk(k− N) for all k ∈ {1, . . . , N} is the unique global minimum of f in {xk}N−1

k=1 ,
at pkj = 0, for all k 6= j and hence, for b < 1

2N2 , the variables xk = k
N + 2bk(k− N) for all

k ∈ {1, . . . , N} and pkj = 0 for all k, j ∈ {1, . . . , N}, k 6= j must be a global minimum of the
more constrained optimisation problem given by the final problem.

Hence, among the set of N-simple mediated equilibria, the N-partition CS equilibrium
must attain the global maximum of EUR for b < 1

2N2 .

Notes
1 Ref. [5] subsequently showed that this upper bound can also be implemented without any communication via a device or without

any strategic mediator. Instead, it can be achieved by a strategy-correlated equilibrium of the game in which initially, both players
privately receive a signal from a correlation device, and then the CS game is played.

2 Ref. [6] considers the role of a strategic mediator in the CS framework. He shows that for any bias b, there exists a strategic
mediator who can help achieve the optimal payoffs obtained through a non-strategic mediator. Ref. [7] considered delegation
to an intermediary in the CS framework. However, the role of his “intermediary” is different from that of “mediation” in our
context. Ref. [8] studied the relative performance of noisy or stochastic mechanisms and deterministic mechanisms in a very
similar principal-agent setting.

3 Ref. [9] also investigates optimal mediation in sender–receiver games and establishes a bound on the number of messages that
the sender must convey to achieve the value of mediation.

4 We thank an anonymous referee for pointing this out.
5 For 1

4 ≤ b, babbling is the only equilibrium.
6 Note that for any b < 1

2N(N+1) , an N-partition CS equilibrium does exist. However, it is not the “best”. Ref. [12] provide a formal
selection argument for the “best” equilibrium.

7 This is the type of mechanism [2] also considered to construct an example in their paper. Ref. [16] used a “discrete” version of
such a mechanism.

8 We are using a suitable version of the revelation principle [14] here to characterise the set of N-simple mediated equilibria
involving direct messages only to cover all simple mediation schemes which can use any N inputs and any N outputs. As it turns
out, considering only such direct mechanisms is not restrictive, as a revelation principle type result does hold in this context and
can be proved using the methods constructed by [17].

9 We drop the subscript in x1 for presentational simplicity.
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