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The LIGO-Virgo Collaboration utilises nested sampling to infer the source prop-
erties of compact binaries, computing Bayesian evidences and posterior distribu-
tions. With poor sampling from the constrained prior, nested sampling algorithms
may misbehave and fail to sample the posterior distribution faithfully. Fowlie et
al. (2020) outlines a method of identifying pathologies such as plateaus in the pa-
rameter space, using likelihood insertion order statistics. We apply this method to
nested sampling analyses of all events in the first and second gravitational wave
transient catalogs. With a few exceptions that have negligible effect on the final pos-
teriors, the data is consistent with uniform insertion order statistics and unbiased
prior sampling. There is, however, weak evidence against uniformity at the catalog-
level meta-test.

With improvements to the LIGO-Virgo-Kagra detector network and future
gravitational-wave interferometers planned, the demand for accurate and efficient
numerical relativity codes becomes more pressing. Black hole binaries (BBHs) with
very asymmetric mass ratios create a significant speed bottleneck, requiring a small
grid spacing to resolve. In the moving-puncture formalism of numerical relativity,
black holes are represented by trumpets, with an asymptotically flat exterior sur-
rounding an infinitely long cylinder. While there is an analytic expression for the
stationary trumpet spacetime, its behavior in a realistic BBH simulation scenario–
i.e., a Lorentz boosted trumpet in 1+log slicing–is less well understood. We derive
and sketch the numerical solution of a two-dimensional boundary value problem for
the boosted 1+log trumpet coordinates. Such a solution could be subtracted from bi-
nary data to capture the strong field features of the low-mass partner, allowing for
lower resolution and faster evolution.
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Chapter 1

Introduction

1.1 Gravitational-Wave Astronomy and Parameter Estimation

In 2015, the LIGO-VIRGO collaboration (LVC) observed the first gravitational wave
signal from a black hole binary, ushering in a new era of gravitational wave astron-
omy [38, 1, 7]. This discovery–and about 80 more gravitational-wave detections that
followed in the first three observing runs–enabled new measurements of the astro-
physical population of compact objects [4, 25, 26], general relativity [46, 39], and
cosmology [25]. For a comprehensive review of gravitational wave astronomy’s ap-
plications to fundamental physics, see [16].

One of the most important techniques used by the LVC to find gravitational-
wave signals in detector output is matched filtering, a statistical technique that iden-
tifies signals of known shape in noisy data by correlation with templates. For compact
binaries, these waveform templates are constructed with post-Newtonian theory in
early inspiral and full numerical relativity in late inspiral and merger, where the
strong-field behavior is needed. Once a candidate signal has been identified with
matched filtering, the next stage is parameter estimation.

In principle, the trigger and parameter estimation could be unified into one pro-
cess, since the underlying physics models are the same. However, the most efficient
computational methods for detection and parameter estimation are different, mak-
ing a two-pass approach more effective. Parameter estimation uses Bayesian infer-
ence to produce confidence intervals for the parameters of the signal, including both
extrinsic parameters, such as the distance from Earth to the source, and intrinsic pa-
rameters, such as the masses and spins of the two compact objects.

Since these parameters have so many scientific implications, ranging from the
astrophysical population of compact objects to tests of general relativity, it is partic-
ularly important to make sure parameter estimation is not biased. To that end, we
have implemented a statistical cross-check for one of the methods used in parameter
estimation, nested sampling. Chapter 2 and Chapter 3 outline the nested sampling al-
gorithm and the nature of the cross-check, and our results are presented in Chapter 4.
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1.2 Numerical Relativity and the Boosted Trumpet Solution

Over the next several decades, many upgrades are planned to the LIGO-VIRGO-
Kagra network, which has just expanded to include the Kagra interferometer. En-
tirely new gravitational-wave observatories are planned as well, including the Ein-
stein Telescope and LISA, a space-based detector whose longer interferometer arms
will allow for observation of lower frequency gravitational waves [41][9]. Interpret-
ing these observations will require a wider range of templates and waveform mod-
els, so the influx of new experimental data intensifies the need for more efficient
black hole binary simulations.

A significant bottleneck is the difficulty of modeling binaries with highly asym-
metric mass ratios (written, by LVK convention, as the lower mass divided by the
higher mass.) In numerical relativity, the size of the smallest grid cell determines the
time step required to evolve the system. For low-mass-ratio binaries, a very dense
grid is required to resolve the lighter partner’s strong-field features. The LVK has al-
ready observed a potential event with a mass ratio of about 1/30–outside the range
its waveform models were even calibrated for–and future detectors will raise this
limit [24]. In particular, the LISA detector’s low frequency range will allow it to ob-
serve events with total mass up to 107, allowing for extreme mass ratios.

With an exact solution for the spacetime around each black hole in the binary–or
a very good guess–far lower resolution may be required, allowing for rapid evolu-
tion of low-mass-ratio inspirals. A starting point for this approach is the spacetime
of the single black hole alone–an unexpectedly complicated problem after taking
certain nuances of numerical relativity into account.

In numerical relativity codes using the moving-puncture method, each black
hole is represented not by Schwarzschild coordinates, but rather by "trumpet coordi-
nates," which represent a Schwarzschild black hole as an asymptotically flat space-
time funneling into a cylinder of finite radius and infinite length. Furthermore, the
trumpet spacetime would have to be Lorentz boosted to capture the movement of
the binary. Finally, the boosted trumpet would need to match the gauge conditions
used for the evolution of black-hole binaries–in this case, 1+log slicing.

By allowing for motion and using the same gauge choice as numerical relativity
codes, a solution for the boosted trumpet in 1+log slicing would provide insight into
the moving puncture in its natural habitat. Currently, the trumpet spacetime is only
well understood for stationary, non-spinning black holes, which fails to capture the
intricacies of black hole binary inspirals. We provide one step toward a look under
the hood of numerical relativity. Furthermore, this solution could be applied to fast
and efficient evolution of asymmetric mass ratio binaries. After subtracting out an
analytic solution for the lighter black hole, the remainder, encompassing weak-field
features of the binary system, will likely be smooth enough to capture accurately at
far lower resolution, ultimately leading to much faster evolutions.
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Chapter 2

Nested Sampling and the Order
Statistics Cross-Check

The research presented in this and the following two chapters has been published
in Annalen der Physik, in collaboration with Dr. Michalis Agathos [35]. While the
concept of this project was developed before October 2021, including a preliminary
presentation of O1 and O2 results to the LIGO Parameter Estimation call, the O3
data and significant changes to the analysis were added over the past year during
my studies at Cardiff University. All of the insertion order statistics, graphics, and
meta-p-values presented here are new, and I was the primary data analyst on this
project.

2.1 Bayesian Inference in Parameter Estimation

The LVC relies on Bayesian inference methods to fit waveform models to observed
data, using algorithms designed for efficiently sampling high-dimensional param-
eter spaces. These parameter spaces encode all the astrophysical properties of the
source: the mass and spin of each component, the distance to the source, its sky-
location and orientation angles, time and phase of coalescence, orbital eccentricity,
and any additional matter properties if a neutron star is present. One parameter es-
timation algorithm is nested sampling, a method for efficiently computing Bayesian
evidences as well as posterior probability distributions, introduced by Skilling in
2006 [45] (for a review, see [14].) Here, we use a new method of statistically verify-
ing nested sampling output, the insertion order cross-check developed by Fowlie et al.
[29], to test for biased nested sampling in the LVC’s gravitational-wave data analysis
[35].

At time of writing, the LVC uses Nested Sampling alongside machine-learning
based methods, Markov Chain Monte Carlo (MCMC) and occasionally RIFT [36] to
obtain posterior distributions in parameter estimation. These algorithms serve nec-
essary and complementary purposes. While the LVC’s implementation of MCMC
and the machine learning methods used for systems involving neutron stars con-
verge faster for signals with long inspiral times, and RIFT allows for direct compar-
ison to numerical relativity, they do not directly compute evidence. These methods
deliver only the normalized posterior and require further calculations to estimate
the evidence, introducing significant statistical errors. Nested Sampling computes
the evidence directly, allowing for greater accuracy.

In the LSC Algorithm Library (LAL), nested sampling was originally imple-
mented in the LALInference package [37, 47]. During the third observing run (O3),
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the LVC (now LVK) Collaboration gradually shifted its main data analysis pipelines
to a newer Bayesian inference library bilby [12], a Python-based modular code which
combines LAL’s libraries for data infrastructure and waveform modelling with third-
party nested samplers. The insertion order cross-check defined later in this paper
has already been implemented in many Bilby samplers, including CPNest [48], nes-
sai [50], and UltraNest [23]. However, the first two observing runs, O1 and O2, and
the first half of the third observing run, O3a, were analyzed using LALInference
alone. In this thesis, we utilize the insertion order cross-check to perform a post-
mortem analysis on all nested sampling output for GW events in O1, O2, and O3a,
evaluating the validity of parameter estimation results for the LVC’s event catalogs
GWTC-1 and GWTC-2 [5].

For a GW event associated with the coalescence of a compact binary, the source
properties are described by a parameter vector θ ∈ Θ. Here, Θ denotes the cor-
responding parameter space, encompassing the astrophysical properties of the two
sources and the time and location of the event. Given the observed data D, we seek
to infer the parameters θ of the source, assuming certain background information I
about the nature of the source, the behaviour of the detectors and the validity of GR
as the underlying theory–that is, to estimate the posterior distribution P(θ|D, I).

We make use of Bayes’ theorem to update our prior expectations, P(θ|I):

P(D|θ, I)× P(θ|I) = P(D|I)× P(θ|D, I) (2.1)
L(θ)× π(θ) dθ = Z × p(θ) dθ.

L(θ) = P(D|θ, I), known as the likelihood function, and π(θ) = P(θ|I), give the de-
sired quantities Z = P(D|I), the evidence and p = P(θ|D, I), the posterior.

Computing the likelihood function (the probability density for observing data D,
given the model and the true values of the parameters) requires models for both the
detector signal and noise.

In LIGO’s case, the actual signal is the electrical current from a photodiode,
which can be converted to strain–the deformation of spacetime–via calibration. Cal-
ibration error is determined by marginalizing over calibration. LALSimulation can
generate a waveform model for the strain; these waveform models assume general
relativity is the correct underlying theory.

The noise for each detector is assumed to be Gaussian and is characterized by a
power spectral density (PSD) pre-estimated from a stretch of data around the time
of the event [5].

For strain data d and source parameters θ, the likelihood is

ln L(d|θ) = −1
2 ∑

k

(
[dk − µk(θ)]2

σ2
k

+ ln
(
2πσ2

k
))

(2.2)

where k is the frequency bin index, σ is the noise amplitude spectral density, and
µ(θ) is the waveform [13]. Information from all active detectors is combined into a co-
herent network likelihood by taking the product of individual detector likelihoods [47].
It is assumed that genuine astrophysical signals are coherent, that is, they are the
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same between different detectors except for the expected difference in direction, ar-
rival time, and noise. Since location-specific features such as seismic noise differ
between detectors, demanding coherence makes it possible to exclude them.

The evidence Z–the probability of observing the measured data, given the model–
is defined as

Z =
∫

L(θ)π(θ)dθ. (2.3)

This is an important quantity in Bayesian data analysis, as the evidences produced
by different models can be directly compared. Hence, the evidence can be used to
rank competing hypotheses and quantify how well a given model is supported by
the data.

dX = π(θ)dθ is known as the element of prior mass. If we have some way to
estimate the prior mass contained by a likelihood contour L(θ) > λ,

X(λ) =
∫

L(θ)>λ
π(θ)dθ (2.4)

, we can invert X(λ) to compute the likelihood L on the surface enclosing prior mass
X. Then, the evidence can be recast as a one-dimensional integral

Z =
∫ 1

0
L(X)dX. (2.5)

This 1D form is more computationally tractable than integrating across a high-dimensional
parameter space Θ.

Nested sampling is a method for computing evidence that takes advantage of
this formulation, relying on the statistical properties of prior sampling to provide a
fast and accurate estimate of the prior mass at each integration step.

2.2 Summary of the Nested Sampling Algorithm

Nested sampling relies on sampling from the constrained prior: points from the prior
with likelihood higher than some minimum value. As points from the constrained
prior are sampled and discarded throughout the algorithm, the samples used at each
step are called live points.

The nested sampling algorithm proceeds as follows:

1. Choose the number of live points nlive and sample nlive initial points from the
constrained prior. Also, set an evidence threshold ε.

2. Identify the live point with the lowest likelihood L∗i . Discard the live point and
record its likelihood.

3. Sample a new live point from π(θ) with L > L∗i . At this stage, the prior volume
compresses exponentially, giving prior volume Xi ≈ exp(−1/nlive) on the ith
step (the proof is nontrivial, see [45]).

4. Integrate the evidence Zi using L∗i and Xi.
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5. Repeat steps (2)-(4) until a stopping condition is reached: LmaxXi/Zi < eε,
where Lmax is the highest likelihood discovered so far, Xi is the prior volume
inside the current iso-likelihood contour L∗i , and Zi is the current estimate of
the evidence. For LALInference, ε = 0.1; essentially, if all the live points were
to have the maximum discovered likelihood, the evidence would only change
by a factor of less than 0.1 [47].

Nested sampling requires faithful sampling from the constrained prior to pro-
duce accurate evidences and posteriors. In practice, sampling from the entire prior
and accepting only points with high enough likelihood is impractically slow, be-
cause the volume of acceptable points decreases exponentially in time. So, most
implementations of nested sampling sample from a restricted region of parameter
space drawn around the live points. LALInference, in particular, generates samples
by an MCMC chain from a randomly chosen previous livepoint, and choosing the
length of the MCMC chain is a tradeoff between speed and accuracy [47].

If the restricted region is too small or the MCMC chains too short, the constrained
prior may not fully cover the iso-likelihood contour, violating the fundamental as-
sumptions of nested sampling. Plateaus–regions of constant L(θ)–also violate the as-
sumptions of nested sampling, causing live points to be non-uniformly distributed
in X.

2.3 Insertion Order Cross-Check

The insertion index is the position where an element must be inserted in a sorted list
to preserve order. (We index lists starting from 1 rather than 0.) More concretely, if x
is a sorted list and there exists a sample y such that

xi−1 < y < xi, (2.6)

the insertion index of y in list x is i [29]. For example, in the list (1 3 5 7 9), y = 4
would have an insertion index of 3.

Fowlie et al. [29] noted that, if the assumptions of nested sampling are met, the
insertion index of new live points into the list of likelihoods of current live points
should follow a uniform distribution, i.e. new live points should have an arbitrary
likelihood, only constrained to be higher than the lowest likelihood. The prior mass
enclosed by a certain likelihood decreases monotonically as that likelihood increases,
so sorting live points by likelihood is equivalent to sorting by prior mass.

Therefore, non-uniformity of likelihood insertion indices serves as an early warn-
ing for any irregularities in sampling the prior. For example, a likelihood plateau in
the parameter space results in a stretch of repeated indices. Such a problem would
be visible in plots of the likelihood insertion index or detectable with statistical tests
of uniformity. Figure 2.1 illustrates what such non-uniformities might look like in a
plot of insertion order.

For our purposes, the insertion order cross-check is the simplest and most flexible
method for verifying nested sampling. Buchner’s "shrinkage test" is limited to toy
likelihood functions with certain analytic properties, and is designed for constrained
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FIGURE 2.1: These illustrations depict likelihood insertion order plots
from well-behaved (left) and pathological (right) nested sampling
runs. In the first plot, the points, each representing a likelihood in-
sertion index, are evenly distributed throughout the plane. In the sec-
ond plot, some regions are densely populated with points or almost
empty, signs of excessive sampling from a specific likelihood range.
There is also a run of repeated indices, resulting from a plateau in

prior space.

prior sampling using regions (such as ellipsoids) rather than LALInferenceNest’s
MCMC steps [22]. The diagnostic methods implemented in Nestcheck [32] are more
applicable to LIGO parameter estimation, but they require multiple runs. One of the
strengths of the insertion order crosscheck is that it can provide useful information
on any scale, from an individual chain to an entire observing run.
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Chapter 3

Performing the Cross-Check

3.1 Gravitational Wave Data

In this work, we analyse 45 events which were observed by two or more detectors,
as listed in Table 4.1 (with the exception of GW190424A, a single-detector event).
During the first three observing runs, two LIGO detectors (LIGO Hanford, LIGO
Livingston) and the Virgo detector participated in the network. During O1, only the
two LIGO detectors were operating, with Virgo beginning operation in August of
2017 during O2.

3.1.1 First observing run (O1)

In O1, the first observing run extending from 12 September 2015 to 19 January
2016, three GW events were detected with high confidence. All three were iden-
tified as signals from the coalescence of binary black holes (BBH): GW150914 (the
first gravitational-wave detection), GW151012 (which was initially detected with
low confidence and later passed the candidate threshold), and GW151226. For the
catalog paper [2], all O1 events were analyzed using two waveform models: IMR-
PhenomPv2 [33], a phenomenological model calibrated to numerical relativity for
gravitational waves from precessing BBH binaries, and SEOBNRv4, a model based
on the Effective One-Body formalism [44]. We have analyzed the nested sampling
results of all three events in O1.

3.1.2 Second observing run (O2)

O2 includes seven more BBH mergers and one binary neutron star (BNS) merger, all
observed between 30 November 2016 and 25 August 2017. Some significant mile-
stones from O2 are the first BNS event, GW170817, and the first GW signal to be
detected by both LIGO interferometers and the Virgo interferometer, GW170814.
The O2 events were also analyzed using IMRPhenomPv2 and SEOBNRv4, with a
few exceptions. GW170729 was also analyzed with IMRPhenomD (a model similar
to IMRPhenomPv2 for spinning but non-precessing binaries), and GW170809 was
analyzed using IMRPhenomD and multiple runs of IMRPhenomPv2 with different
priors.

The events from O1 and O2 together formed the first GW transient catalog GWTC-
1, the results of which are detailed in Ref. [3]. The data cross-check includes all
available output files for the primary nested sampling runs of the 10 binary black
hole mergers. We omit the binary neutron star merger since it was not analyzed
with nested sampling.
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3.1.3 First half of third observing run (O3a)

The next upgrade to the instrumentation of the LIGO and Virgo detectors further
improved their sensitivity, increasing the distance reach and event detection rate of
the three-detector network. In O3a, the first half of the third observing run between
1 April 2019 and 1 October 2019, 39 new GW events were detected with high con-
fidence. Of these, we consider the 35 that were analyzed with LALInferenceNest.
Among the most interesting events in O3a are a couple of highly asymmetric (in
mass) compact binaries, the first black-hole - neutron-star binary candidates and the
most massive black-hole binary observed to date, reaching a total mass of∼ 150M�.
Several different waveform models were employed in the analyses of these events,
particularly for those with highly asymmetric mass ratios or weak signs of spin-
induced precession. Both phenomenological (IMRPhenom) and effective-one-body
(SEOBNR) models were used in all cases. Here, we focus on the nested sampling
analyses with IMRPhenomPv2 as the underlying waveform model, since these are
found in almost all O3a events. Further details about the data, the detection statis-
tics and the properties of all O3a events can be found in Ref. [5]. The events from
O3a, together with the ones from O1 and O2, form the second gravitational wave
transient catalog, GWTC-2 1.

3.2 Implementation

3.2.1 Data Parsing

The likelihood insertion indices defined in Sec. 2.3 can be computed either from the
nested sampling iteration i and likelihood, or birth and death contours (initial and
final likelihood), of each point. LALInference stores both the contours and the like-
lihoods themselves, but this information is distributed across 2 different types of
output files. Log files contain the nested sampling iteration i, birth and death con-
tours, and likelihood of each point. Since the likelihood is stored to higher precision
than the birth and death contours, we use the likelihood and iteration to compute
insertion indices. However, the initial pool of Nlive (typically 1024 or 2048) points
is missing from the log files, so it is impossible to compute the insertion indices of
early live points from the logs alone.

On the other hand, the main data product of LALInferenceNest, the chain files,
contain the initial live points but not the nested sampling iteration, making it im-
possible to compute insertion order from these files alone. Whenever possible, we
match each log file with the associated chain file to find the initial live points, then re-
play the algorithmic process to compute the insertion indices exactly. In the absence
of a match, we attempt to minimize the effect of the missing initial Nlive live points
by removing the first 5 ∗ Nlive points from our reconstructed chain (a cutoff which
removed missing-point effects from insertion order plots effectively), then compute
the insertion indices for the remaining points.

Log files have less strict I/O specifications than chain files and occasionally have
some duplicate blocks of points, resulting from resubmitted jobs. When this is the
case, we identify and remove the older duplicate live points.

1An extended and improved version of this catalog, known as GWTC-2.1, was more recently pre-
sented in Ref. [6]
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3.2.2 Measuring Uniformity

To interpret the computed insertion order statistics, we must measure how uni-
formly they are distributed between 1 and Nlive. Several statistical tests exist to
determine whether two (or more) samples are drawn from the same underlying
probability distribution, or compare a sample to a reference probability distribu-
tion. In particular, we use the Kolmogorov-Smirnov (KS) test [42], as implemented
in scipy [49].

The KS test measures the distance between two cumulative distribution func-
tions (CDFs). More precisely, for empirical CDF Fdata(x) and CDF of the uniform
distribution FU , the Kolmogorov-Smirnov statistic is defined as

Dn = sup
x
|Fdata(x)− FU(x)| (3.1)

The KS test produces a test statistic between 0 and 1, with higher values cor-
responding to more distinct distributions. The KS statistic is independent of the
number of samples, so the number of samples must be taken into account separately
when interpreting the test results.

In the context of hypothesis testing, the p-value of a measurement or test statistic
x is the probability of obtaining the observed value, or a more extreme value (for
uniformity testing, a test statistic associated with a larger difference between the
two distributions), assuming that the null hypothesis is correct. The KS test can be
converted to p-values through the Kolmogorov-Smirnov distribution, which associates
probabilities with test results for the hypothesis that two samples are drawn from
different distributions. In cases where nested sampling has proceeded correctly, the
insertion order distribution is uniform and the null hypothesis is true, leading to
a uniform distribution of p-values over different runs. In isolation, small p-values
do not necessarily mean that an entire nested sampling run is compromised, but if
small p-values predominate, that could be a sign of systematic problems.

A seemingly insignificant subtlety that turns out to be important is that the stan-
dard KS test implementation is designed for comparing distributions of continuous
variables. However, in this case our insertion order data is discrete [23]. The impact
of this effect is discussed in Ch. 4. There are two ways of resolving the problem:
we can either transform the data into an equivalent continuous distribution ranging
in [1, Nlive + 1) by adding a random number in [0, 1) to each insertion index (which
will respect uniformity if the underlying discrete distribution is uniform); or we can
implement a discrete version of the KS test or variations thereof, as described in [11,
28]. For simplicity, we have chosen to do the former.

3.2.3 Performing Insertion Order Crosscheck

LALinference is heavily parallelized, with each event’s nested sampling analysis
split into several parallel chains. The top and bottom panels of Figure 3.1 showcase
two examples of the insertion order distribution of single chains, one very uniform,
one less so.

For each event, we compute insertion orders and KS statistics over each individ-
ual chain. To assess the overall quality of nested sampling in each event, we perform
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FIGURE 3.1: Top: Example of the insertion order distribution from
a single chain from GW150914 analyzed with IMRPhenomPv2. The
flat distribution of insertion indices is typical for our dataset, and
indicates that no major errors in prior sampling occurred in this
chain. Bottom: A less uniform-looking example of a single chain
from GW170823 analyzed with SEOBNRv4. The histogram shows
one very frequent value, potentially indicating a plateau. However,
in this case, the fluctuations are most likely due to the small-sample
statistics of this shorter chain. The deviation from uniformity can be
quantified using the KS-statistic and the significance of such a devia-
tion can be assessed by calculating the corresponding p-value, which

takes into account the sample size.
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a KS test on the combined insertion orders from all parallel chains which we will re-
fer to as the “event-level meta test."

In each chain, we also perform “rolling tests:" a series of tests on each sequen-
tial stretch of 2 ∗ Nlive points. An example rolling test is shown in Figure 4.3. These
rolling test values can be used to examine and compare the severity of local anoma-
lies. In particular, we report the minimum p-value from all rolling tests of each
event. To assess the uniformity of the entire GWTC-1 and GWTC-2 dataset, we per-
form a final KS test on the KS p-values from each individual rolling test, known as
the “catalog-level meta test."
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Chapter 4

Results

For each event in Table 4.1, we reconstruct the insertion index data and apply the
insertion order cross-check. First, we perform rolling KS tests for each chain and
verify that no individual chain shows significant bias in its insertion order statistics.
For each of the events, we then pool together the insertion indices from all parallel
chains and perform a single event-level KS test, by calculating the KS-statistic for
that event and the corresponding p-value. The p-values for all the events analysed
are given in Table 4.1. We find a seemingly healthy distribution that spans the entire
range between 0 and 1, whose uniformity we will examine with a meta-p-value test
for the entire catalog of events.

Before describing the final catalog-level results, we first discuss the impact of two
subtle effects introduced in Sec. 3.2: the effect of the discrete nature of the insertion
index and its “continuification," and the effect of missing data and the recovery pro-
cess.

Although the insertion index is a discrete variable, it is possible that its wide
range (Nlive is typically 2048) would effectively make it continuous in practice. How-
ever, due to the very large number of data points, the underlying discreteness is
significant from the perspective of a KS test. The KS statistic tests uniformity by
measuring the maximum deviation of the empirical CDF from the diagonal. The
empirical CDF of any discrete variable has a staircase-like structure, leading to some
deviation from uniformity, and the ability of the KS test to discern this depends on
the range of the discrete variable (Nlive ∼ O(103)) and the sample size. For large
sample sizes (here O(105)), our results, illustrated in Figure 4.2, demonstrate that the
discreteness has a significant impact. When treating the insertion index as a contin-
uous variable, without transforming it to one, we found that there was a clear deficit
at high p-values, with no event in the range [0.8, 1.0] and a very high excess in the
low p-value range [0, 0.2]. Accounting for the discrete nature of the variable signifi-
cantly reduces this bias.

Next, we examine whether our attempt to correct for missing data, either in the
initial Nlive points or in mid-run, has significantly impacted the overall insertion or-
der statistics. On a per-chain basis, the removal of 5 ∗ Nlive samples on either side
of the gap seems to suppress the bias completely (even for a small number of miss-
ing chain points, the chain-level p-value is typically corrected by several orders of
magnitude, back to O(0.1)). However, the catalog-wide statistics point in a differ-
ent direction: in the population of all chains in the catalog, a residual bias remains.
The size of this effect can be estimated by completely removing all chains that had
missing data from the catalog-level analysis. Although these make up a small frac-
tion of the total number of chains, we find that their removal leads to a systematic
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FIGURE 4.1: Cumulative plot of the event-level meta p-values associ-
ated with each event in the GWTC-1 and GWTC-2 dataset. Each point
in this plot results from combining insertion orders of all chains from
a single event and performing a KS test. If all insertion order data
were completely uniform, the p-values would fall along a straight

line from 0 to 1. The meta-p-value for this distribution is 0.00144.

improvement of the meta-p-value by a factor of ∼ 4. A possible compromise would
be to increase the number of points we truncate around missing data, however, in
practice, this would render the heavily truncated chains virtually uninformative.

After removing all chains with missing data and transforming the insertion in-
dex to a continuous variable, we can now perform the final meta-test at the catalog
level. Figure 4.1 shows the results of the event-level p-value test, each conducted
over all insertion index samples for each event, arranged in increasing order of KS
p-value. The event names and their test results are listed in chronological order in
Table 4.1. If the insertion order data were uniform, the p-values would also follow
a uniform distribution, and the points in Figure 4.1 would fall along a straight line
from 0 to 1. However, we still observe an excess of low p-values, particularly among
events from O1 and O2. A final test comparing the meta p-values to the uniform
distribution results in a KS p-value of 1.44× 10−3.

We also perform a meta-p-value test on the rolling test results. Figure 4.3 shows
the distribution of all rolling test p-values. The catalog-level meta-p-value, includ-
ing all rolling tests and adjusted for the number, is 0.871, indicating no significant
divergence from the uniform distribution and an overall healthy performance across
all three runs.
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Event IFOs #chains Nlive Meta p-value
GW150914 HL 12 2048 0.2953
GW151012 HL 12 1024 0.0973
GW151226 HL 12 2048 0.1207
GW170104 HL 12 1024 0.1047
GW170608 HL 12 1024 0.0333
GW170729 HLV 20 2048 0.2519
GW170809 HLV 32 2048 0.0212
GW170814 HLV 26 2048 0.1603
GW170818 HLV 16 1024 0.1419
GW170823 HL 18 2048 0.0317

GW190408A HLV 4 2048 0.5709
GW190412A HLV 4 2048 0.8341
GW190413A HLV 4 2048 0.4058
GW190413A HLV 4 2048 0.0387
GW190421A HL 8 2048 0.2037
GW190424A L 4 2048 0.3008
GW190503A HLV 4 2048 0.1350
GW190512A HLV 4 2048 0.2218
GW190513A HLV 16 2048 0.4650
GW190514A HL 4 2048 0.2093
GW190517A HLV 4 2048 0.5249
GW190519A HLV 4 2048 0.6515
GW190521A HL 4 2048 0.3208
GW190521B HLV 4 2048 0.6330
GW190527A HL 4 2048 0.0330
GW190602A HLV 4 2048 0.9461
GW190620A LV 4 2048 0.0321
GW190630A LV 4 2048 0.5345
GW190701A HLV 4 2048 0.0849
GW190706A HLV 7 2048 0.1111
GW190707A HL 4 2048 0.3056
GW190708A LV 4 2048 0.1964
GW190719A HL 4 2048 0.1297
GW190720A HLV 4 2048 0.1349
GW190727A HLV 4 2048 0.3458
GW190728A HLV 4 2048 0.7932
GW190731A HL 4 2048 0.4246
GW190803A HLV 4 2048 0.8563
GW190828A HLV 5 2048 0.1731
GW190828B HLV 4 2048 0.5201
GW190909A HL 4 2048 0.1586
GW190910A LV 4 2048 0.4375
GW190915A HLV 4 2048 0.6632
GW190929A HLV 4 2048 0.6984
GW190930A HL 4 2048 0.1731

TABLE 4.1: Event-level meta-p values for each event in chronological
order, together with the set of interferometric detectors (IFOs) that
participated in the detection, the number of chain files per event and

number of live points used in the analysis.
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FIGURE 4.2: A version of Figure 4.1–the cumulative plot of event-
level meta p-values associated with each event in the GWTC-1 and
GWTC-2 dataset–created without transforming the insertion index to
a continuous variable. Compared to the “continuified" plot, there is a
clear deficit at high p-values, with no event in the range [0.8, 1.0] and

a very high excess in the low p-value range [0, 0.2].
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FIGURE 4.3: Top: Typical example of a KS-statistic sequence obtained
from rolling tests on data from GW190408, performed on chunks of
2× nlive points; data from each chain and log file is drawn in a dif-
ferent colour. Bottom: Histogram showing the distribution of the p-
values of all rolling tests, conducted over all events and chains. Per-
forming a catalog-level meta-test to compare this distribution to uni-

formity, we obtain a KS p-value of 0.871.
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Chapter 5

Trumpet Coordinates in Numerical
Relativity

5.1 3+1 Numerical Relativity

The original, 4-dimensional formulation of Einstein’s Equations is extremely diffi-
cult to solve for an arbitrary astrophysical system without much symmetry. Sev-
eral different formalisms for numerical relativity have been developed to tackle
this problem; the 3+1 formalism is a common approach used by codes including
BAM [21], SPEC [34] (for initial conditions), GRChombo [10], and Einstein Toolkit [40].

3+1 numerical relativity relies on foliation: slicing the 4-dimensional spacetime
into three-dimensional, spacelike hypersurfaces. Thus, the Einstein equations can be
reformulated as an initial value problem with dynamical evolution between the 3d
slices.

An overview of 3+1 numerical relativity can be found in Baumgarte and Shapiro [17],
and our notation follows their conventions. First, the metric is decomposed into spa-
tial hypersurfaces Σt. The simplest way to accomplish foliation is to choose spatial
basis vectors tangent to the slices. With such basis vectors, any metric can be written
in the form

ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt). (5.1)

On each time slice, the three-dimensional spacial metric is γij. (For clarity, when
γij appears with indices it refers to the 3-metric on a single slice, and when γ ap-
pears without indices, it refers to the Lorentz factor.) The lapse function α is the
proper time between time slices t and t + dt, and the shift vector βi determines how
the coordinates change between the two slices.

Together, the lapse, shift vector, and 3-metric suffice to describe the geometry
of a single hypersurface. γij and the extrinsic curvature constitute another complete
description of one hypersurface.The extrinsic curvature Kij, proportional to the Lie-
derivative of γij along the normal vector to the slices, is defined as

Kij = − 1
2α
Ln̂γij =

1√−g
(
√
−gnµ),µ. (5.2)

Using the 3+1 formalism, we have

Kij =
1

2α
(∇iβ j +∇jβi − ∂tγij) (5.3)
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where∇i is the covariant derivative with respect to the spatial metric γij. (Through-
out this text, trace(K) will be written as K.)

We also introduce a conformal factor ψ:

γij = ψ4γ̃ij (5.4)

K = K̃ (5.5)

βi = β̃i (5.6)
(5.7)

Despite gauge freedom, a thoughtful choice of coordinate gauge–known as the
slicing condition–is essential to the success of 3+1 numerical evolutions. The slicing
must avoid singularities and be reasonably fast to compute.

The simplest slicing condition is maximal slicing, tr(K) = 0. However, to preserve
maximal slicing during evolution, one must solve an elliptic equation at each step,
which is too computationally expensive to be practical.

Bona et. al. [18] determine that the most general slicing condition invariant
under any coordinate transformation on the slice is

Q− f (α) tr(K) = 0 (5.8)

where
Q = −1

α
(∂t − βi∂i) ln α (5.9)

Under harmonic slicing, which sets f = 1, Einstein’s equations become a First
Order, Flux Conservative, Hyperbolic (FOFCH) system, where spatial derivatives
occur only in the flux term, not the source term. Many numerical and mathematical
methods have been developed specifically for this form of partial differential equa-
tions in fluid dynamics, allowing for more flexible numerical relativity codes than
the problem-specific methods used before. However, the harmonic slicing condition
just barely avoids singularities, causing metric and curvature components to grow
out of control near the horizon without exactly the right boundary conditions.

The 1 + log slicing condition sets f = 1/α. 1 + log is also consistent with the
FOFCH formalism, but it behaves better near the horizon: as in maximal slicing, the
lapse α approaches zero.

All of these slicing conditions produce physically equivalent results, but some
are more suitable for numerical evolution than others. As all BBH codes in the
moving-puncture formulation use 1+log slicing (or variations on 1+log slicing), we
will ensure our boosted trumpet solution meets the following 1+log condition:

(∂t − βi∂i)α = −nαK (5.10)

equivalent to
Ln̂α = −nK (5.11)

where n̂ is the future-pointing normal vector.



Chapter 5. Trumpet Coordinates in Numerical Relativity 20

5.2 Trumpet Coordinates

The initial data for black hole binaries in numerical relativity must use coordinates
that do not reach the physical singularity. There are two methods for dealing with
what happens at the event horizon R = 2M: punctures and excision. In the punc-
ture approach, at the event horizon, the coordinates proceed through a wormhole to
an extra copy of the asymptotically flat exterior spacetime [19]. These extra copies,
each compactified to a single point in the grid, are referred to as the "punctures." The
wormhole is described by a conformal factor ψ, which was held constant during
evolution in early work with the "fixed-puncture" approach [8][20]. The "moving-
puncture" approach, first demonstrated by Baker et al. and Campanelli et al., evolves
ψ and allows the punctures to move across the grid [15][43]. Thus, the punctures are
able to orbit each other and inspiral like a black hole binary.

However, as the punctures evolve dynamically, they are not fixed in this worm-
hole form. It turns out that the grid points, rather than remaining as 2 copies of
an asymptotically flat spacetime, become infinitely long cylinders centered on each
puncture [30]. [31] uses the gauge conditions to find an analytic expression for
this spacetime–time-independent, asymptotically flat on one end, cylindrical on the
other–known as "trumpet coordinates." Furthermore, it is possible to simply con-
struct trumpet initial data, featuring only the region of spacetime relevant to numer-
ical evolution, rather than using the entire wormhole.

The maximal slice of Schwarzschild spacetime

γRR =
(

1− 2M
R

+
C2

R4

)−1
(5.12)

Ki
j = diag (2C/r3,−C/R3,−C/R3) (5.13)

βR =
αC
R2 (5.14)

α =

√
1− 2M

R
+

C2

R4 , (5.15)

(5.16)

with C = 3
√

3M2/4 and R ∈ [1.5M, ∞), produces a trumpet [31][27]. Each con-
stant coordinate time slice ends in a sphere of radius R0 = 3M/2. Since the spatial
metric diverges at R0, the proper time between a point on this sphere and any point
outside it is infinite. So, the data become an infinitely long cylinder with radius R0.
The lapse and βR go to 0 as R approaches R0.

5.3 1+log slicing

To use these trumpet initial conditions in numerical evolutions, they must be con-
verted to 1+log slicing so the lapse follows an evolution equation. We can introduce
a spherically symmetric height function h(R) into Schwarzschild spacetime with the
transformation,

t = T − h(R) (5.17)
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In these coordinates, the lapse, shift, and unit normal vector to the time slices are

α =

√
f

1− f 2h′2
(5.18)

βR =
f 2h

′

f 2h′2 − 1
(5.19)

nµ = (−α, 0, 0, 0) (5.20)

For a time-independent solution, the 1+log condition is

βR∂Rα = nαK. (5.21)

Combining this with the trace of the extrinsic curvature

K =
1√−g

(
√
−gnµ),µ, (5.22)

we obtain a first-order differential equation for the lapse (see [31] for details of
its solution):

α′ = − n(3M− 2R + 2Rα2)
R(R− 2M + nRα− Rα2)

(5.23)

This method of finding 1+log trumpet coordinates assumes that the trumpet met-
ric is spherically symmetric and stationary. After a Lorentz boost, the trumpet space-
time violates both these conditions, with time-dependent metric coefficients and a
direction of boosting. However, the basic method can be salvaged: with a two-
dimensional height function, the 1+log condition becomes a second-order bound-
ary value problem. In the next chapter, we derive a differential equation for the
2-dimensional height function and sketch its numerical solution.
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Chapter 6

Boosted Trumpet Coordinates

To accurately describe motion in binaries, the trumpet coordinates need to be boosted.
However, 1+log slicing is not preserved by a Lorentz boost. While either side of the
1+log equation Ln̂α = −nK may appear as an ordinary scalar, they are not in fact in-
variant; α and K are in fact made up of metric components and change under boost-
ing. Fig. 6.1 illustrates the discrepancy between the extrinsic curvature computed
from its definition and the 1+log condition. To reach the right trumpet coordinates,
we will start with stationary 1+log trumpet initial data, introduce a 2-dimensional
height function, and apply a Lorentz boost, before finally re-imposing 1+log slicing.

6.1 Initial Data

The initial data consists of a Schwarzschild black hole in trumpet coordinates and
1+log slicing. We generate this data following the approach used in [31] to put the
trumpet solution in isotropic coordinates. These initial data include α, βR, and the
conformal factor ψ, as well as Trace(K). Throughout the code, Mathematica’s Inter-
polation function is used to evaluate these quantities at a particular point.

We must choose the right 1+log coefficient (n in Eq. 5.10) to match the asymp-
totic behavior of the 1+log initial data with the asymptotic behavior of a boosted
Schwarzschild spacetime. Regardless of the slicing condition, the behavior of the
un-boosted solution should be the same for large r.

In this limit, starting from either Schwarzschild or isotropic coordinates, α ≈
1− m/r, ψ ≈ 1 + m/(2r), βi ≈ 0, and γij ≈ (1 + 2m/r)δij. The trace of the extrinsic
curvature is given by

K = − 1
2α

(γij∂tγij − 2∇iβ
i). (6.1)

After boosting in the z direction, z only appears in functions of z− vt, allowing
us to replace ∂t with −v∂z in derivatives of the boosted metric. Applying this to the
asymptotic 3-metric,

∂tγij = −v ∂z

(
1 +

2m
r

)
δij =

2mvz
r3 δij. (6.2)

Taking the trace with γij–which, to leading order is δij, we have

γij∂tγij ≈
6mvz

r3 . (6.3)
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FIGURE 6.1: K computed from its definition minus K computed from
the 1+log condition, i.e. (

√−gnµ),µ−
√−g

α (∂t− βi∂i)α, for v = 0.3. The
difference is particularly large near the origin; outside the pictured

range, it approaches 0.

Computing the shift vector of the boosted metric, we have

βz ≈ −v(α2 − ψ4) ≈ −4mv/r, (6.4)

giving us ∇iβ
i ≈ ∂iβ

i ≈ 4mvz/r3.

Adding these terms, we obtain

lim
r→∞

K =
mvz
r3 . (6.5)

The 1 + log equation is
− nαK = (∂t − βi∂i)α. (6.6)

Using the advection relation, we see that the term ∂tα = −v∂zα goes as z/r3.
However, βi goes as 1/r, suppressing the βi∂iα term to order z/r4. So, the time
derivative is the leading order term.

Dropping βi∂iα and substituting in the asymptotic α, β, and γ, we obtain

K ≈ 1
n

mvz
r3 (6.7)

6.5 and 6.7 are only consistent if n = 1, so we choose a 1+log constant of 1 to
generate initial data.
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6.2 Boosted Trumpet Spacetime

Several transformations of the initial data are required before solving for the boosted
trumpet system. First, we transform the Schwarzschild data from spherical to cylin-
drical coordinates.

In cylindrical coordinates, an arbitrary 3+1 spacetime with spherical symmetry
takes the form

−α(r)2 + ψ(r)4βr(r)2 ρ
r ψ(r)4βr(r) z

r ψ(r)4βr(r) 0
ρ
r ψ(r)4βr(r) ψ(r)4 0 0
z
r ψ(r)4βr(r) 0 ψ(r)4 0

0 0 0 ρ2ψ(r)4

 . (6.8)

We retain the functions α(r), βr, and ψ(r) from spherical coordinates since we
have numerical data for them.

As with the stationary trumpet, a height function can be introduced into a met-
ric with an arbitrary slicing condition to compute the correction to 1+log slicing.
However, this height function needs to be 2-dimensional due to the lack of spherical
symmetry. We apply the transformation t→ T− h(ρ, z), doing so before boosting to
avoid ambiguity between the two time coordinates and produce the simplest result.
This way, only derivatives of h, not h itself, appear in the differential equation for
the height function.

Finally, we apply a Lorentz boost along the ẑ direction, producing a boosted
trumpet metric. Since we will eventually set T = 0 for solution, and we can remove
time derivatives using the advection condition ∂t = −v∂z, we can simply apply the
transformation z → γz after contracting with the Lorentz transformation matrix
twice.

After including the height function and boosting, the expressions for the metric
components, α, and βi–let alone K–become extremely long, taking up several pages.
Throughout the process, we rely on Mathematica for symbolic calculations. Func-
tions like Simplify and Replace do not work on such long nested expressions and
can only be used on small pieces; inevitably further simplification is possible. Fur-
thermore, different methods of computing K produce simpler or more complicated
expressions. We found that

K =
1√−g

(
√
−gnµ),µ (6.9)

produced the best results, using the fact that in general
√−g = α

√
det
(
γij
)
.

6.3 Constructing the Boundary Value Problem

The definition of extrinsic curvature and the 1+log condition each produce a value
for K. We can bring these two values into agreement by computing them for the
boosted trumpet spacetime and iteratively solving for the height function. In partic-
ular, the equation to be solved is

(
√
−gnµ),µ −

√
−gK1+log = 0 (6.10)

where K1+log = 1
α (∂t − βi∂i)α.
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h and up to second derivatives of h with respect to ρ and z appear in this equa-
tion. Our approach will be to automatically extract coefficients for these second
derivatives, producing an equation of the form

aρρh,ρ,ρ + aρzh,ρ,z + azzh,z,z + aconst = 0 (6.11)

which can be addressed by finite differencing and root-finding.

Solving the second-order system requires boundary conditions for h and its first
derivatives, h,ρ and h,z. From asymptotic flatness, h = h,ρ = h,z = 0 for large ρ and
large z. Furthermore, h′ = 0 on the boundaries ρ = 0, z = 0 to ensure axisymmetry
and smoothness. These boundary conditions are confirmed by computing the dif-
ference from 1+log slicing seen in Fig. 6.1.

6.4 Next Steps

With the coefficients pictured in 6.2, the next step is to solve the equation. While the
analytic methods used to solve for the height function and ultimately determine the
lapse in [31] do not apply anymore, the problem is better suited to relaxation meth-
ods, a class of iterative methods for solving differential equations. Essentially, the
equation can be linearized and discretized by finite differencing on a 2-dimensional
grid in ρ and z. Starting from some initial guess, the equation is repeatedly solved
to produce a correction to the current value of h(ρ, z). Since only a small correction
is expected, h = 0 everywhere is a suitable initial guess. On each step, we could
obtain h,ρ and h,z from finite differencing and treat their values on each grid point
as constants. Their values would then be used to compute the coefficients ai to solve
the second order equation.

The coefficients’ odd behavior near the origin could lead to potential problems
with numerical solution. In particular, aconst should go to 0 or some constant near
the origin, not blow up. This likely results from Mathematica incorrectly evaluating
the extremely complicated functions, and simplifying them further might help to
make the limits more explicit. Furthermore, even with the correct limiting behavior,
high resolution near the origin might be necessary for accurate strong field behavior.
This could be accomplished either analytically by compactifying the coordinates, or
numerically by adaptive mesh refinement.
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FIGURE 6.2: Coefficients for h,z,z, h,ρ,z, h,ρ,ρ, and the constant term in
Eqn. 6.10, evaluated with v = 0.1. Outside the pictured range, all of

these coefficients approach 0 as ρ, z→ ∞.

(A) Coefficient for h,z,z in the 1+log equation evaluated with v = 0.1.

(B) Coefficient for h,ρ,z in the 1+log equation evaluated with v = 0.1.



Chapter 6. Boosted Trumpet Coordinates 27

(C) Coefficient for h,ρ,ρ in the 1+log equation evaluated with v = 0.1.

(D) Constant term in the 1+log equation evaluated with v = 0.1. Some artifacts appear near
the origin that might be resolved with simpler expressions for the coefficients.
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Chapter 7

Conclusion

In Chapters 2, 3, and 4, we examined the hypothesis that the nested sampling anal-
yses performed in GWTC-1 and GWTC-2 are well-behaved and unbiased, at least
from the perspective of insertion order statistics. The event-level meta-p-values,
shown in Figure 4.1 and listed in Table 4.1, follow a slightly non-uniform distribu-
tion at p = 1.44× 10−3. In particular, although we could not identify an individual
pathological case, Figure 4.1 shows that there is a slight excess of lower p-values,
providing weak evidence for sampling misbehaviour. The vast majority of the pos-
terior samples is collected towards the final stages of sampling, with dense explo-
ration of the high-likelihood peak(s), so there is little reason to believe that weak
signs of misbehaviour at random intervals would significantly impact the posterior
distribution. However, such issues could effect evidence estimation.

While the few O1 and O2 events tend to have lower meta p-values, the events
from O3a cover the entire range from 0 to 1. This may be (weak) evidence that the
quality of nested sampling in LVC analysis has improved over time, with updates to
the sampling algorithms and more computational resources. In particular, increas-
ing the number of live points and the length of the MCMC chains used in prior
sampling leads to more uniform insertion order statistics and, consequently, to more
reliable nested sampling output.

The distribution of rolling test results pictured in Figure 4.3 is far more uniform
than distribution of event-level meta test results, which is skewed toward lower p-
values. The apparent contradiction between these results stems from the nature of
the KS statistic. The KS test measures the supremum of distances from uniformity,
so it measures whether any fault exists anywhere, not the average quality of sam-
pling. While most individual segments are essentially uniform, it is unlikely that
there would be no anomalies in multiple chains with tens of thousands of livepoints
each. p-value adjustment for multiple tests reduces the impact of this effect, but does
not eliminate it completely as long as the underlying distribution is non-uniform.

In combination, the rolling and meta tests indicate that sampling proceeds cor-
rectly in most small, local segments, but most events have at least one flaw in sam-
pling somewhere. Moreover, we find that, however tempting it is to use continuous
tests of uniformity (such as the Kolmogorov-Smirnov or Anderson-Darling tests)
without transforming discrete data, or to try and recover partial results from chains
with missing data points, these techniques lead to significant biases in the statistical
results and should be avoided.

The location and p-value of the minimum rolling test can be used to identify and
characterize these anomalous regions, and in practice, the combination of multiple
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chains and the supplementation of nested sampling with MCMC posteriors further
suppress their effects. Taking all complete parallel chains into account, the overall
results are consistent with unbiased nested sampling.

In Chapters 5 and 6, we introduce the boosted trumpet spacetime in the context
of moving-puncture numerical relativity. We began by generating 1+log sliced trum-
pet initial data, following the procedure outlined in [31]. By examining the leading-
order contribution to the trace of the extrinsic curvature, we showed that the boosted
1+log spacetime will only have the right asymptotic behavior with 1+log coefficient
n = 1.

We applied a Lorentz boost to the initial data and checked the 1+log condition.
We verified that, without a height function or any other attempt to change the slic-
ing, these boosted data do not satisfy the 1+log equation, as pictured in Fig. 6.1. At
T = 0, the difference is particularly large for small radius in general and especially
near the z-axis.

To remedy this disparity, we take a general spherically symmetric stationary
spacetime and apply an as-yet unknown transformation to the time coordinate: the
two-dimensional height function. We then boost in the ẑ direction, reducing the sys-
tem to axisymmetry. With these transformations, the 1+log condition becomes an
equation for the height function, containing up to its second derivative with respect
to ρ and z.

In terms of the lapse, shift, and conformal factor of the original spherical spacetime–
the variables required to plug in the stationary trumpet initial data eventually–these
expressions are extremely lengthy. However, the equation is linear in the second
derivatives of h, though far from it in the first derivatives. We extracted coefficients
for h,ρ,ρ, h,ρ,z, h,z,z, and a constant term pictured in Fig. 6.2.

We propose treating this equation as a two-dimensional boundary problem us-
ing the constraints of axisymmetry and asymptotic flatness and solving it using re-
laxation methods. One limitation of the approach is that first derivative or h terms
might turn out to be more important than expected, and computing them by finite
differencing, rather than relaxing every possible variable at once, would not be suf-
ficient. Another is the behavior near the puncture for ρ and z. Issues here could arise
from the range and resolution of initial data, from how Mathematica evaluates long
nested expressions, or the lack of compactification. With these matters resolved,
an exact 1+log solution for the boosted trumpet spacetime could allow for faster
evolution of asymmetric mass ratio binaries, ultimately expanding the horizons of
numerical relativity.
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