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Focusing on the two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model, we
propose an additive rule between the real-space topological invariant s of
disclinations (related to the Burgers vector B) and the reciprocal-space
topological invariant p of bulk wave functions (the vectored Zak phase). The
disclination-induced bound states in the 2D SSHmodel appear only if (s + p/2π) is
nonzero modulo the lattice constant. These disclination-bound states are robust
against perturbations respecting C4 point group symmetry and other
perturbations within an amplitude determined by p. Besides the disclination-
bound states, the proposed additive rule also suggests that a half-bound state
extends over only half of a sample and a hybrid-bound state, which always have a
nonvanishing component of s + p/2π.
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1 Introduction

Topology studies the properties of a geometric or physical system under continuous
transformations in parameter spaces. Its application in condensed matter physics has, in the
past few years, renewed our understanding of energy band structures of crystalline systems
[1–4]. As a cornerstone, the so-called bulk-edge correspondence principle [5–9] requires that
robust quantum states appear at the boundaries of samples possessing topologically
nontrivial band structures [10–13]. This principle links the reciprocal-space topology
(i.e., energy band structure) to real-space profiles of quantum states. It provides a
foundation for potentially transformative applications in spintronics and other practical
areas. Recently [14–22], the bulk-edge correspondence has been extended to higher-order
topological phases, culminating in the discovery of topologically protected corner states
[23–28]. Applications such as laser cavity and quantum computation have been proposed
based on these corner states [29, 30].

Unlike edge states, topological corner states usually appear as bound states in the
continuum of bulk spectra, which complicates their experimental detection [31–34].
However, at a disclination center of crystallographic defects, nontrivial higher-order
topology induces bound states accompanied by fractional charges, which have been
experimentally observed in artificial crystalline systems recently [35–38].

The correlation between the appearance of fractional charges carried by bound states
at disclination centers and the reciprocal topological invariant of bulk wave functions is
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framed as the bulk-disclination correspondence, which offers us a
general principle of detecting higher-order topological phases
[39–45]. Inspired by these observations of bulk-disclination
correspondence, we look into the correlation between these
anomalous bound states and the real-space topology of
disclinations. Focusing on a typical higher-order topological
model–the two-dimensional (2D) Su-Schrieffer-Heeger (SSH)
model, we propose an additive rule between the real-space
topological invariant s and the reciprocal topological invariant
p. The SSH model is one fundemental model of topological
insulators, and its extension to higher dimensions has resulted
higher-order topological insulators. Especially, because the SSH
model is spinless, it is suitable for the realization of the 2D SSH
model and its higher-dimensional counterparts in various
artifical crystalline systems, which leads to fruitiful
experimental observations of topological corner states and
accompanying fractional charges. These higher-order
topological states are useful in fields such as laser cavity and
quantum computation [46–53]. Thus, focusing on the 2D SSH
model as an example, it would be helpful for understanding the
general relation between the real-space topological defects and
the reciprocal topological invariant. Furthermore, our proposal
gives a possible explanation for the emergence of disclination-
bound states, which may fertilize interesting physical phenomena
and applications in the interdisciplinary field of the classical real-
space topology of crystallographic defects and the reciprocal-
space topology of wave functions, especially in designing

disclination-induced bound states in artificial crystalline
systems, such as photonic, phononic crystals, and
metamaterials [54].

The remaining parts of the paper are organized as follows. In
Sec. 2.1, we introduce the topological defect–disclination, the 2D
SSH model, and their topological invariants s and p. In Sec.2.2 we
explain the proposed additive rule in terms of s and p. In Sec. 2.3, we
numerically show that when s + p/2π is nontrivial, bound states
appear at centers of disclinations and discuss the specific symmetry
protecting them for the 2D SSHmodel. In Secs. 2.4 and 2.5, we show
that half-bound states and hybrid-bound states appear in the centers
of disclinations that have s = (0, 1/2) and s = (1/2, 0). In Sec. 3, we
discuss the generalization of the additive rule to other lattices and
give conclusions of our study.

2 Results

2.1 Disclinations and 2D SSH model

Being global crystallographic defects, local operations cannot
remove disclinations [55]. One may use the Volterra method [56] to
construct a disclination. An example is depicted in Figure 1A, where
a sample is cut into a few identical wedge portions, and one (marked
in yellow) is removed to form a disclination after gluing the
remaining sections without lattice mismatch. According to the
homotopy theory, a disclination is characterized by two

FIGURE 1
Construction and characteristic of a disclination. (A). Schematic of Volterra process for constructing a disclination. A wedge part spanning angle |Ω|
is cut off from a symmetric sample, and the remaining sections are glued without any lattice mismatch. The wedge center is located at the point of
rotation symmetry of the sample. The resulting disclination has a negative Frank angle Ω =−|Ω|. Alternatively, one may insert an extra wedge instead of
removing the wedge, resulting in a disclination with positive Ω =|Ω|. (B). Sample of the 2D SSH model in the case of |γ|<|γ′| that respects C4 point
group symmetry, where solid/dashed line indicates the intra/inter-cell hopping of strength γ/γ′, and square/shade indicates the unit/dimerized cell. (C).
Two types of disclinations withΩ=−π/2 allowed for samples withC4-point group symmetry characterized by s. Each square represents a unit cell, and the
lighter ones are the wedges being removed. s is determined by the parity of the numbers of unit cells on the x- and y-boundaries as s � 1

2 [(Γx , Γy) mod 2],
which forms a bijection of the homotopy group of the Burgers vectors.
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parameters (Ω, B). Here Ω is the Frank angle, whose magnitude is
the wedge angle and whose sign indicates adding or removing a
wedge, and B is the Burgers vector, which measures the lattice
distortion induced by the defect [57, 58]. Choosing a start point, B
can be evaluated by comparing the loop path around the disclination
core and the loop path in a defect-free sample. For more details of
the calculation of the Buregers vector, please refer to the
Supplementary Material. For a square lattice respecting C4 point
group symmetry,Ω can only be a multiple of π/2. The group of non-
equivalent classes of B is isomorphic to the discrete group Z2 and Z2
⊗ Z2 for Ω = ±π/2 and ± π, respectively [42]. The details of
equivalenece classes of B is discussed in the Supplementary Material.

To concrete our study, we consider the 2D SSHmodel [59, 60], one of
the typical models that admit topological corner states [26, 27, 60–62]. A
sample of the 2D SSH model is depicted in Figure 1B, where the unit cell
consists of four sub-lattices forming a square Bravais lattice. There are two
types of hopping, namely, the intra-cell hopping γ and the inter-cell
hopping γ′. Depending on the ratio of |γ/γ′|, the 2D SSHmodel can be in
the atomic insulator phase or the atomic-obstructed phase. For the atomic
insulator phase, itsWannier center coincideswith the atomic lattice, for the
atomic-obstructed phase, its Wannier center locates at the middle of two
unit-cells. It is noted that for the atomic-obstructed phase, the Wannier
center cannot be changed untill the band gaps close. For the detials of the
band structure and fractional charge of the 2D SSHmodel, please refer to
the Supplementary Material. For |γ| < |γ′| as in Figure 1B, the lowest
energy band is inverted at (π/a, 0) and (0,π/a) in the reciprocal-space (with
a the lattice constant) and becomes topologically nontrivial accompanying
with corner states [59]. The appearance of topological corner states in the
2D SSH model is owing to the shift of dimerized cells as displayed by the
light magenta square in Figure 1B, whose centers are related to the
vectored Zak’s phase p = (px, py) by a factor of a

2π [63–66]. Constrained by
the periodicity of Bravais lattice, px/y is definedwithin 0, 2π and becomes a
quantization of π when inversion symmetry is present, as determined by
the parity of the bulk wave function at (0,0) and (π/a, 0)/(0, π/a) in the
reciprocal space. Upon shifting the center of dimerized cells as well as
Wannier states, the lowest energy band accommodates less than one
electron in the unit cells located at the edges and corners, known as the
filling anomaly that results in topological edge and corner states carrying 1/
2 and 1/4 fractional charges, respectively [7].

Figure 1C displays two distinct disclinations with Ω = −π/2 for
the 2D SSHmodel, where the square represents the unit cell, and the
intra-cell and inter-cell hoppings are omitted. Depending on the
unfolded Burgers vector B in undistorted space (indicated by red
vectors in Figure 1C), the disclinations ofΩ = −π/2 are classified into
two topologically distinct types as labeled by s = (0, 0) and s = (1/2, 1/
2), respectively. The relation between B and s is given as
s � 1

2 [(2B) mod 2], which forms a bijection to the homotopy
group of B and thus is a real-space topological invariant. For a
finite sample with full point-group symmetry, s can also be
determined by counting the number of unit cells along the
boundaries of the sample, i.e., s � 1

2 [(Γx, Γy) mod 2], where Γx
and Γy denote the numbers of unit cells on x- and y-boundaries,
respectively. It is noted that s forms a one-to-one mapping to
nonequivalent disclination centers. For well-localized bound
states without resonance, we focus on the cases that |γ − γ′| >
min (|γ|, |γ′|), i.e., γ, γ′ = 1.0, 3.0 and γ, γ′ = 3.0, 1.0, where band gaps
form between the first and the second bands, and the third and the
fourth bands.

2.2 Proposed additive rule

Considering that the removal or addition of the wedge part
resolves the filling anomaly at the disclination center, we expect a
concurrent action of the real-space topological invariant s and the
reciprocal topological invariant p, which we propose as an additive
rule between them. In Table 1, s is tabulated for all possible values of
Ω for the 2D SSH model. The integers inside Table 1 are the
numbers of bound states at the different types of disclination
centers for both trivial and nontrivial reciprocal topologies. From
Table 1, we see that even for the trivial reciprocal topology, bound
states exist as s + p/2π is nontrivial, whereas for the nontrivial p
bound state is missing if s + p/2π is trivial. We define the net
topology of real-space and reciprocal topology as
P � (s + p/2π) mod 1, and discuss three unique manifestations
of the proposed additive rule in the follows, which embody the
content in Table 1. Extending the additive rule to other lattice
models is possible, and we discuss it in the latter part.

Previous studies suggest that the relationship between real and
reciprocal spaces should be multiplicative [21, 36, 67, 68]. We obtain
the additive rule because we focus on the bound states rather than
the fractional charge. As discussed in Ref. [36], the fractional charge
at the disclination core is given by the formula
Q � Ω

2π (nb + 2nc) + T · p, where Q is the fractional charge at the
disclination center, nb, nc are the numbers of the inverted band at
high symmetric k points, and T = a1d1 + a2d2 with di ·ej = δij. As
suggested by the formula, Q always appears as finite no matter the
real-space topology if nontrivial p exists, which is considered the
bulk-disclination correspondence. As demonstrated below, the
bound state can appear at the disclination core even for trivial p
and disappear for nontrivial p. In other words, the disclination-
bound states and trapped fractional charge are dissociated.

2.3 Bound states and fractional charges

The first phenomenon of the proposed additive rule is the
dissociation of fractional charges from bound states. The
construction of disclination lattices and the caculation of
fractional charge is discussed in the Methods section. We
consider the samples with (−π

2)-disclinations. Figures 2A–C show

TABLE 1 Number of bound states for different disclination types and reciprocal
topology. The disclination is characterized by the real space topological
invariant s and the Frank angle Ω. Ω takes the value of −π, −π

2,
π
2 and π. The

reciprocal topological invariant, namely, the vectored Zak phase p, is (0,0) for
the trivial topological phase and (π, π) for the nontrivial topological phase.
“0.5” indicates a half-bound mode. “—” indicates such a type of disclination
does not exist.

S \ Ω p = (0, 0) p = (π, π)

−π −π
2

π
2 π −π −π

2
π
2 π

(1/2, 1/2) 2 2 2 4 0 0 0 0

(0, 1/2) 0.5 — — 4 0.5 — — 4

(1/2, 0) 0.5 — — 4 0.5 — — 4

(0,0) 0 0 0 0 2 2 2 4
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the fractional charges and bound states for the (−π
2)-disclinations

with three distinct additive conditions between the real and
reciprocal topological invariants s and p. In the left panels of
Figures 2A–C, each unit-cell’s numerical datum of charge
distribution are written as digits. The bound states are indicated
by the dark magenta shades (circles and triangles), and the fractional
charges with ±1/4 are marked with the cyan crescents. In the middle
panels of Figures 2A–C, we have also displayed the numerical datum
of eigenfunctions when electrons are mostly localized for the
corresponding left samples at disclination centers. In the right
panels of Figures 2A–C, the eigenenergies distributions for
samples of left panels are displayed.

As can be seen in the left panel of Figure 2A, fractional charges
appear at the disclination center and the sample corners, but bound
states are absent at the center (see also the right panel of Figure 2A)
even with the nontrivial reciprocal topology p. This result can be
intuitively understood using the dimerization of sites as shown by
lighter magenta squares in the left panel of Figure 2A. As explained
earlier, the corner state accompanying with 1/4 fractional charge
appears due to dimerized cells shifting from the original Bravais
lattice and the resulting filling anomaly. However, here in Figure 2A,
the filling anomaly at the disclination center that is supposed to be
induced by nontrivial p is canceled out by the nontrivial real-space
topological invariant s. As a result, no fractionally filled dimerized

FIGURE 2
Fractional charge and bound state dissociation for (−π

2)-disclinations. In left panels, a unit cell consists of 4 sites joined by thin lines, and a dimerized
cell consists of sites in the same shade. A crescent indicates unit cells carrying 1/4 fractional charge; the number indicates the numerical results of charge
distribution in each unit cell. The charge is calculated with the lowest energy band filled. Middle panels are the most concentrating four eigenstates at the
disclination center, with their eigenenergies indicated on the left corners. The right panels are the eigenenergies distribution, where a dashed line
indicates the eigenenergy of disclination-bound states. (A). s =(1/2,1/2) and p =(π, π), andP is trivial. Hence, no bound state exists, while fractional charge
appears at the disclination center due to nonvanishing p. (B). s =(0,0) and p =(π, π), giving a nontrivialP. As a result, bound states appear at the disclination
center along with fractional charges. (C). s � (12, 12) and p =(0,0), and hence, P is also nontrivial, leading to both bound state and fractional charge at the
disclination center like in (B).
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cell is isolated from the bulk states, as suggested by the additive rule
between s and p.

Figure 2B shows the disclination with trivial s = (0, 0) but non-
trivial p = (π, π). Since the additive rule gives nontrivial P, both the
bound states and fractional charges simultaneously appear at the
disclination center together with the corner state, as seen in
Figure 2B. The eigenenergies distributions are gapless in Figures
2A, B owing to the nontrivial p, where edge states appear within the
band gaps. Figure 2C shows a complementary example, where the
real-space topology is nontrivial, and the reciprocal space topology is
trivial. The additive rule gives nontrivial P. Thus, the bound state
appears at the center of disclination without corner states, as shown
in Figure 2C. A pseudo fractional charge is just located at the
disclination center. We shall note that this fractional charge at
the disclination center is further smeared out beyond the
fractionally filled dimerized cell as seen in the left panel of
Figure 2C, unlike those in Figures 2A, B. It is also noted that in
the right panel of Figure 2C, the disclination-bound state appears in
the middle of the first energy band gap.

As the emergence of disclination-bound states is due to the
dimerization at the disclination core, it is worth discussing the
robustness of these bound states. Here we consider two types of
perturbations. One is the perturbation without respecting the C4

point group symmetry, and another is the perturbation respecting
the C4 point group symmetry. For the first type of perturbation, we
consider three possibilities: onsite potential on the disclination
center sites, a dangling bond in the disclination center, and inter-
cell hopping connecting sites belonging to the same sub-lattice. As
detailed in the Supplementary Material, for the perturbations
without C4 point group symmetry, the amplitude of
perturbations cannot go beyond |γ − γ′|; otherwise, the

disclination-bound states disappear. For the second type of
perturbations respecting C4 point group symmetry, the amplitude
of perturbations can go beyond |γ − γ′|. This is because of the unique
real-space structure in the disclination core, where one sublattice is
missing in the central dimer of disclinations that disclination-bound
states cannot mix with bulk states respecting C4 point group
symmetry. It is noted that the disclination-bound states are not
located at zero energy, which suggests the absence of chiral
symmetry in the formation of disclination-bound states [45, 69, 70].

2.4 Half-bound states

The second phenomenon of the proposed additive rule is the
formation of half-bound states, which decay on one side of the
sample but extend over the other. Here we consider a disclination
structure with a unsymmetric s index, i.e., (sx, sy) = (0, 1/2) for
Ω = −π as displayed in Figure 3. A bound state can be viewed as a
wave function with a purely imaginary wavenumber for all
independent real-space directions. Because of the unsymmetric
disclination structure between kx and ky directions, a half-bound
state can be expected. As displayed in Figures 3A, B, we find such
half-bound states in our numerical calculations. Interestingly, the
decaying direction for the half-bound states depends on
the summation value of s + p/2π. As displayed in Figure 3A,
when sy + py/2π is nontrivial, the half-bound state decays along
the x side. While sx + px/2π is nontrivial, the half-bound state decays
along the y side, as displayed in Figure 3B. This is perhaps because of
the spatial distortion induced by the disclination structure.

It is noted that the formation of half-bound states seems
analogous to edge states due to the second-order topology. In the

FIGURE 3
Existence of half-bound states. The disclinations have Ω =−π and s =(0,1/2). (A). p =(0,0), the state decays on the x-side but extends over the y-side.
(B). p =(π, π), it decays on the y-side but extends over the x-side on the other hand. A dashed line passes through the center of the disclination, which
divides the sample into x- (perpendicular to ky direction of the reciprocal space) and y- (perpendicular to kx direction of the reciprocal space) parts.
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2D SSHmodel, if the systems have pxpy = 0 but px + py ≠ 0, only edge
states exist but no corner state. In the present case, this may be
paraphrased: For two-sided systems with sxsy = 0 but sx + sy ≠ 0, only
a half-bound state exists but not a bound state. This half-bound state
can potentially control wave propagation using artificial crystalline
structures such as photonic crystals. These states are impervious to
the system size as shown in the Supplemntal Material. For the
practical realization of the half-bound state, the hopping amplitude
should depend on the distance between the two sites. In this case, the
lattice distortion induced by the disclination cannot be ignored. The
site’s position should be carefully tuned to achieve a situation similar
to the tight-binding model.

2.5 Hybrid-bound states

The third phenomenon of the proposed additive rule is the
hybrid-bound state, which can be numerically observed in any
disclination withΩ ≥ π and sx ≠ sy. Figure 4A shows a disclination
with Ω = π and s = (1/2, 0). This disclination is formed by
inserting two extra π/2 blocks into the sample. Considering there
are only two-independent directions in two dimensions, we can
regard there are three x-parts and three y-parts arranged
alternately in Figure 4A. For the sample of Figure 4A, we only
observe bound states rather than half-bound states. This is
because there are multiple x-parts, unlike the case in Figure 3,
which only has one x-part. Furthermore, P is nontrivial
regardless of p being trivial or nontrivial. We call this type of
disclination-bound state hybrid-bound states because of their
unsymmetrical s index. Figure 4B displays the energy spectrum
for the disclination in Figure 4A with p = (0, 0), where a doubly
degenerate bound state emerges within the band
gap. Interestingly, for p = (π, π), the bound state is robust to

the onsite potential perturbation as shown in the Supplementary
Material, which may be useful for constructing cavities. A full
spectrum of parameter pumping for such a hybrid-bound state is
also given in Supplementary Material.

3 Discussion

Finally, we discuss the generalization of the additive rule to
other lattices. As the real-space topological invariant s is injective
to nonequivalent disclination centers, and the reciprocal space
topological invariant p/2π yields the Wannier center, it is
intuitive to regard the additive rule as a result of the
combination of disclination centers and Wannier centers. For
example, for the C4-symmetric lattice, there are two and four
non-equivalent disclination centers for Ω = ±π/2 and Ω = ±π,
respectively, and two possible Wannier centers. Their
combinations give the afore-discussed dissociation of
fractional charges from bound states, half-bound states, and
hybrid-bound states in the 2D SSH model. Generalizing the
additive rule to other C4-symmetric is possible, which we
remain as a future study.

To summarize, we proposed an additive rule between the
real space and the reciprocal space topology by observing the
cancellation of charge filling anomaly at the disclination core
indicated by Burgers vector and the Zak phase. To support our
proposal, we consider a typical higher-order topological
model, the 2D SSH model, and show three pieces of
evidence by numerical calculations: the dissociation of
fractional charges from bound states, half-bound states, and
hybrid-bound states. All those numerical calculations
demonstrate the applicability of the proposed additive rule
for the typical 2D SSH model.

FIGURE 4
Real-space topology protected bound states and reciprocal-space topology protected ones. (A). The disclination has Ω = π and s =(1/2,0), and
hence a nontrivial s + p/2π irrespective of p. (B)–(C), Topologically stable bound states invariably emerge at the disclination center. The energy levels are
displayed for p =(0,0) in (B), where doubly degenerate in-gap bound states to appear. However, for p =(π, π), a symmetric charge distribution appears
inside the bulk band gaps, as shown in (C).
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4 Methods

For the disclination of −π/2, it can be constructed by removing
the quarter of the 2D SSH lattice that is spanned by θ ∈ [0, π/2], and
then changing the position of the remaining lattices according to θ

→ 4/3θ. The topological invariant s determines the center of the
removing section and the corresponding 2D SSH model sample as
displayed in Figure 1C, For otherΩ, the construction of disclinations
can be done following a similar process, i.e., for Ω = −π, the
removing section should be half of the 2D SSH lattice, and the
remaining lattices change position according to θ → 2θ. The
fractional charge is calculated by solving the tight-binding model
of the corresponding disclination lattice and integrating the charge
density |ψ|2 up to the first band gap and summing up in each unit
cell. The Python package KWANT does this numerical simulation of
tight-binding [71].
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