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Abstract

Modern fact verification systems have dis-
tanced themselves from the black box paradigm
by providing the evidence used to infer their
veracity judgments. Hence, evidence-backed
fact verification systems’ performance heavily
depends on the capabilities of their retrieval
component to identify these facts. A popular
evaluation benchmark for these systems is the
FEVER task, which consists of determining
the veracity of short claims using sentences
extracted from Wikipedia. In this paper, we
present a novel approach to the the retrieval
steps of the FEVER task leveraging the graph
structure of Wikipedia. The retrieval models
surpass state of the art results at both sentence
and document level. Additionally, we show that
by feeding our retrieved evidence to the best-
performing textual entailment model, we set a
new state of the art in the FEVER competition.

1 Introduction

The two-year Coronavirus pandemic and the recent
war in Ukraine have evidenced how easily disinfor-
mation spreads among the general public and the
social consequences this can have. In the informa-
tion era’s day-to-day, we live in a super-connected
media ecosystem that provides us with an endless
stream of facts and hoaxes alike but no immediate
tools to separate them (Olan et al., 2022; Barua
et al., 2020). Moreover, the rapid development of
larger and more capable language models has made
disinformation detection significantly harder since
traditional fact-verification systems, usually framed
as textual entailment classification problems, are
now vulnerable to synthetic disinformation attacks
(Du et al., 2022; Stiff and Johansson, 2022). There-
fore, modern high-performing fact-verification sys-
tems include a previous information retrieval step
to condition the posterior veracity judgment on the
extracted evidence (Lewis et al., 2020b; de Jong
et al., 2022; Glass et al., 2022).

The FEVER task (Thorne et al., 2018a) con-
sists in retrieving relevant evidence from Wikipedia
given a claim and labeling it as either Supports, Re-
futes, or Not enough info. Traditionally, systems
participating in the FEVER challenge have divided
the task into three steps (Thorne et al., 2018b), each
corresponding to a part of their pipeline: the docu-
ment retrieval step, the sentence retrieval step, and
the textual entailment step. In contrast with the last
two steps, for most top-performing systems, the
document retrieval module is directly inherited or
slightly modified from previous work (Hanselowski
et al., 2018; Nie et al., 2018). Therefore, for this
step, the majority of systems follow one of these
two strategies:

The MediaWiki API + span-matching system
(Hanselowski et al., 2018). Filtering relevant doc-
uments by querying the MediaWiki API for each
entity mentioned and discarding results if the en-
tity is not present in the page’s title.

Keyword matching + semantic similarity sys-
tem (Nie et al., 2018). Keyword matching search
for initial filtering and Neural Semantic Matching
Model (NSMN) for scoring candidate documents
using a concatenation of their title and first sen-
tence along with the claim.

These approaches, although proven effective,
pose three important limitations:

L1. The usage of MediaWiki API as a first docu-
ment retrieval step limits the usability of the
models outside Wikipedia’s scope.

L2. The precision of representing an entire docu-
ment using only its title and first sentence may
prove insufficient to correctly assess semanti-
cal relevance.

L3. Discarding a document based on exact key-
word matching can be excessively conser-
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vative considering query-reference flexibility
(e.g. Michael Jackson-The King of Pop).

Having identified the above research gaps, we pose
the following research hypotheses:

H1. An encoder used for asymmetric semantic
search eliminates the MediaWiki API depen-
dency and can more effectively represent se-
mantic relations between queries and docu-
ments.

H2. Considering parts of documents as a con-
nected network of path-related pieces of in-
formation improves the retrieval quality (spe-
cially on queries requiring evidence from
more than one document).

Hence, to test the above hypotheses, in this pa-
per we present a novel approach to the document
retrieval step for the FEVER task1; independent of
external resources and capable of retrieving multi-
hop evidence while handling partial and even mis-
spelled references in claims. Although our work is
mainly focused on the document retrieval step, we
also provide a complementary model for sentence
retrieval. Our approach establishes a new state of
the art in both information retrieval steps and the
textual entailment step.

2 Background

The vast majority of systems participating in the
FEVER task challenge divide their pipelines into
three steps and import their document retrieval step
from previous work (Zhou et al., 2019; Stamm-
bach, 2021; Krishna et al., 2022). It is worth
mentioning that although some systems (Liu et al.,
2020; Zhong et al., 2020; Soleimani et al., 2020)
have embedded the baseline document retrieval
strategies directly into their architectures, more
recent models (Stammbach, 2021; Jiang et al.,
2021b) have shown better results by concatenat-
ing the retrieved documents from the two base-
line models (i.e., Hanselowski et al. (2018); Nie
et al. (2018)) with other classical information re-
trieval techniques such as TF-IDF (Ramos, 2003)
or BM25 (Robertson and Zaragoza, 2009).

The second step of most FEVER pipelines con-
sists of performing sentence retrieval from the pre-
viously obtained documents. Unlike the previous

1Results, intermediary files and code will be released on
https://github.com/DanielGuzmanOlivares/fever-retrieval.

step, this task has been explored from various per-
spectives. In the early days of the FEVER task, sys-
tems used ESIM-based architectures (Hanselowski
et al., 2018; Nie et al., 2018). However, motivated
by maximizing recall, the research focus changed
to target the multi-hop evidence problem leading to
the first iterative sentence retrieval models (Stamm-
bach and Neumann, 2019; Subramanian and Lee,
2020). These models use transformers (Vaswani
et al., 2017) to fine-tune large pre-trained language
models (LM) used as backbone, such as BERT (De-
vlin et al., 2019), ALBERT, (Lan et al., 2020) or
RoBERTa (Liu et al., 2019). Specifically, to tar-
get the multi-hop evidence problem, these models
conceive the sentence retrieval step as an iterative
process in which they assess the importance of new
sentences by considering both the claim and the
relevant sentences already retrieved.

Parallel to the iterative retrieval models, another
variety of models leverage not only direct connec-
tions but the complete graph structure of Wikipedia
to rank sentences (Zhong et al., 2020; Liu et al.,
2020; Zhou et al., 2019) using graph neural net-
works (GNNs) (Scarselli et al., 2009). State-of-the-
art models (Jiang et al., 2021b; Stammbach, 2021;
Krishna et al., 2022) generally fall under one of
these categories but have pivoted to more refined
token-level representations or bigger LMs such as
BigBird (Zaheer et al., 2020), T5 (Raffel et al.,
2020) or DeBERTa (He et al., 2021). A recent
approach, Claim-Dissector (Fajcik et al., 2022) pro-
poses to divide the retrieved documents into blocks
instead of individual sentences and encode each
block individually.

The final step of the FEVER task involves rec-
ognizing textual entailment (TE). This subtask has
traditionally been treated as a multi-class classifi-
cation problem and tackled by fine-tuning from
scratch some LM making use of transformers,
alignment and concatenation of the retrieved ev-
idence (Zhou et al., 2019; Liu et al., 2020; Subra-
manian and Lee, 2020). Top-performing systems
in FEVER’s public leaderboard (Fajcik et al., 2022;
Stammbach, 2021) use DeBERTa-based models al-
ready trained over the Multi-Genre Natural Lan-
guage Inference (MNLI) task (Williams et al.,
2018) as backbone.

3 Formal task

The FEVER task consists in performing evidence-
backed claim verification. Formally, the knowledge
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base, D, is a collection of more than 5 million
documents each corresponding to a Wikipedia page,
D := {di}i, where each document di is itself a
variable-size collection of sentences, di := {sij}j .
Given the collection of documents D and a query
(a statement) q , a valid system S must return a
veracity assessment ṽ for q along with a subset Ẽ ,
of at most five sentences supporting or refuting q:

S(q;D) −→ (ṽ, Ẽ) s.t.





Ẽ ⊂ ⊔
D di

|Ê | ≤ 5

ṽ ∈ {Supports, Refutes, Not Enough Info}
Datasets. The FEVER task, as of today, has three
associated datasets: the training dataset, the shared
task dev dataset, and the shared task test dataset
(open competition) (Thorne et al., 2018b). The
training dataset is the largest of the three contain-
ing 145,449 claims and is unbalanced towards the
“Supports” class, which represents more than half
of the examples. The dev and test datasets are
widely used as the evaluation benchmarks for a
FEVER pipeline. They are equal in size (19,998)
and balanced between the three classes.

Metrics. Following previous work, for evaluating
performance we use accuracy (ACC) in the tex-
tual entailment step, the FEVER score (FS)2 for
the whole pipeline, and Recall@K (R@K) for the
retrieval steps. Additionally, we also consider the
Mean Reciprocal Rank (MRR) and the proportion
of claims where the system returns at least one
relevant item (AND) in the retrieval tasks.

4 Model

Following the traditional pipeline organization, we
propose a three-step architecture (see Figure 1)
where: i) The document retrieval step uses par-
tial references in the claim and document-level
encoding to select an initial collection of docu-
ments that is later expanded (if necessary) for ad-
dressing the multi-hop evidence problem; ii) The
sentence retrieval step combines the sentence re-
trieval part of LF2-iter +DXL model (Stammbach,
2021) which is the current best-performing system
with a DeBERTa-based cross-encoder (Reimers
and Gurevych, 2019); iii) The textual entailment

2FS is the central metric for the FEVER task. A prediction
is only deemed correct if the label is correct and the evidence
is sufficient.

step uses the MNLI-trained DeBERTa model used
in LF2-iter +DXL with our retrieved evidence.

4.1 Data processing

The whole data ecosystem associated with our pro-
posed system is graph-based3 and consists of:

A reference lookup table. Where all the refer-
ences to documents are stored, the indexing for-
mat is (document title -> list of references) (e.g.,
Obama -> [Barack Obama, President Obama ...]).

A graph database. Implemented as a Neo4J
database, mimics the graph structure needed to
get neighbours and references from the given col-
lection of documents.

An embedding database. Pre-computed doc-
ument embeddings indexed by title to ease the
workload of GPU computations.

A sentence database. Containing all the sen-
tences for each document in the provided collec-
tion.

We implement the data interface transforming the
given Wikipedia dump. This process can be sum-
marized in the following steps for every record in
the dump: i) Extract all relevant information from
plain-text Wikipedia entry, this includes separated
sentences, and the links to external articles; ii) The
second step is querying the reference lookup table
(initially empty) to check if the linked references
already exist in the table. Should any of the ref-
erences not be present in the table, we query the
WikiMedia API to update the records; iii) Once
the references are updated in the lookup table, the
connections are added to the graph database as new
edges; iv) The embedding database is updated with
the embedding obtained from the encoder model;
v) The sentence database is updated as well with
the associated article sentences. This process is
represented in Figure 2. In Figure 1, the data inter-
face that the pipeline uses consists of all the afore-
mentioned parts and is represented as Graph-ref
database.

4.2 Document Retrieval

To the best of the authors’ knowledge, the top-
performing architectures use a baseline model
(Hanselowski et al., 2018) approach combined with

3The system expects a graph of interconnected documents
where connections represent references between documents.
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Figure 1: Full proposed pipeline. The pipeline is divided into the three traditionally used sub-architectures. The
acid yellow components have been implemented from scratch for this work, whereas the salmon ones are imported
from previously existing architectures. Note that each developed component has an index [x] later referenced in the
corresponding module description and ablation study.

Figure 2: Data processing for the proposed solution.
The green components have been implemented from
scratch for this work whereas the salmon ones are im-
ported from previously existing architectures.

TF-IDF or BM25 to return an average of 20 docu-
ments. On the other hand, the document retrieval
part of our architecture consists of various modules
sequentially interconnected to output a selection of
document paths associated with the input query. In
order, these components are the following:

Name Entity Recognition [box [1] in Figure 1].
We have trained a token-level classification mod-
ule using BERT (base) as backbone, for balance
between complexity and performance (F1=0.95).
Specifically, we have framed this task as a three-
class classification problem (see Appendix A) us-
ing BIO labels (Ramshaw and Marcus, 1995) fol-

lowing the traditional approach in NER architec-
tures (Li et al., 2020; Jiang et al., 2021a; Xia et al.,
2022).

Although many existing pre-trained models exist
to perform this particular task, after trying some
publicly available models in random samples for
NER, we found that some entities were missed.
Therefore, we have opted for training our own
model since a considerable number of entities in
Wikipedia differ from the classical form of an
entity (e.g., a country, a person, a place, a work
of art). Such Wikipedia entities usually resemble
something like history of something, presidency of
someone, or even concepts that are not considered
as entities per se like water or banana.

Closest Match [box [2] in Figure 1]. This module
is motivated by observed annotation errors in the
FEVER dataset (e.g., Mellila - Melilla). Since
the document retrieval pipeline uses the reference
lookup table for finding documents indexed by
references, if one of these is not grammatically
correct, it would not yield any matches. To avoid
this particular case, a conditional path bifurcation
has been added in between the NER module and
the Noun Phrases selection (see Figure 1). In case
a reference yields no results, the closest-match
search triggers. The closest-match search takes as
input the retrieved sequence from the NER step
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and finds the closest (normalized edit distance)
reference to it, effectively ensuring there is al-
ways at least one associated reference for every
sequence4.

Once references have been associated to se-
quences of tokens, there are various plausible can-
didates for relevant pages. At this point, the ap-
proximate position of the entities within the claim
is known thanks to the token-level classification
of the NER module. However, detecting the enti-
ties’ extension can be especially problematic for
the cases in which an entity includes a modifier,
which makes it hard for the NER system to fully
recognize it as part of the relying entity. For ex-
ample, in ‘Charles II of England was born on
Thursday 29 May 1630,’ the II directly impacts
the evidence that should be retrieved.

Noun-phrases selection [box [3] in Figure 1].
This module addresses this problem by using three
different language planes in order to capture enti-
ties:

The semantic plane. Uses the NER pipelines
from Flair (Akbik et al., 2019) and SpaCy (Hon-
nibal et al., 2020) since they are trained for a
wider variety of entities and can retrieve informa-
tion that the proposed NER system might miss.
The syntactical plane. Uses the AllenAI Open
Information Extraction (OEI) system (Stanovsky
et al., 2018) to extract the syntactical subject and
direct object of a claim. Relevant to the cases
that are not associated with an object or an event
(e.g. Water is part of the History of Earth.)
The ontology plane. Rule-based parsing built on
top of SpaCy’s dependency parsing. Essentially
retrieves modifiers not included in the entities
provided by the NER module.

Finally, the information retrieved by the three
planes and the already predicted references (from
the NER module) are combined and later joined
with the lemmatized version of the NER refer-
ences (see Figure 3). This process allows us to ac-
curately extract multiple candidate entities given
a claim, mitigating the WikiMedia dependence
from previously proposed solutions (see L1 in
Section 1).

Encoding. At this point, the complete set of refer-
ences is available, and, by using the lookup table,

4This makes the system more flexible than those discarding
non-exact matches (see L3 in Section 1).

Claim
[1] & [2]

Anchors

Open 
Information 
Extraction

SpaCy dependency 
parser

Anchor + subj

Anchor + DO

Extra entities

Anchor ± prepositions

Anchor ± determinants

Anchor ± adverbs

NER Union + Lemmatized
Claim refs

Figure 3: The Noun Phrase module internally. We use
green for custom architectures and salmon for imported
ones. Anchors represent the references obtained by the
pipeline till this point since it obtains the probable points
of the claim where entities are.

the associated documents are retrieved. Since, on
average, there are too many documents to move on
to the next step of the FEVER pipeline, the system
uses semantic relatedness to assess the importance
of documents conditioned to the claim. In prac-
tice, this means encoding the claim (Hofstätter
et al., 2021) to obtain the query vector −→q . Then
the vectors associated with the selected documents
are retrieved from the embeddings database5 and
stacked in a matrix M . Finally, we multiply
M · −→q T obtaining the vector of semantic close-
ness for every query-document pair. We select
the top K = 20 documents corresponding to the
largest entries of the vector.

Document

…

sentence 1
sentence 2
sentence 3

sentence 4

sentence K

…

DeBERTa 
v3

…

Expand

Don’t 
expand

yes

no

sentence 2
sentence 3

sentence 1

sentence 3
sentence 4

sentence 2

sentence K-1
sentence K

sentence K-2

Attention Layer 
Norm MLP

Figure 4: The Expansion model. Note the expansion
window sliding (in purple).

Expansion and Rerank [box [4] in Figure 1].
This module consists of a two-step architecture
that leverages the graph structure of the built
database to improve recall. While the previous
modules provide twenty documents directly re-
lated to the references in the claim, this module
goes one step further and explores the neighbours
of the provided documents (expansion) to estimate
the importance of the second-order documents

5Note that the full documents are pre-encoded in contrast
with just the title and first sentence (see L2 in Section 1).
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(neighbours) given the claim and the first-order
documents.

In the expansion stage, instead of considering ev-
ery neighbour of every document provided by the
previous component in the pipeline, a model has
been developed to decide which documents are
worth expanding to optimize performance and
ease the workload in the sentence retrieval step
(since we only expand relevant parts of the ini-
tial document). For training this model we divide
a document in consecutive overlapping (context)
windows and treat the problem as a 3-way classi-
fication in which each window’s class correspond
to the amount of relevant information contained
on it (none, some, or all) (see Appendix B).

Preliminary experiments showed that context win-
dows of three consecutive sentences offer the best
performance. For each of these, the sentences are
concatenated (separated by the [SEP] special to-
ken) along with the document’s title for helping
coreference disambiguation (Malon, 2018). Then
for every concatenation, the DeBERTa V3 model
is used to obtain the context embedding from both
concatenation and claim. Afterward, both embed-
dings are concatenated and fed to a custom atten-
tion head (see Figure 4). Finally, the document is
expanded if any of the context-concatenations is
evaluated as SOME INFORMATION PRESENT. Fol-
lowing the expansion, we group the resulting col-
lection of documents in paths according to expan-
sion results (i.e. for a given document d1, if d1 is
expanded obtaining neighbours n1, n2, ..., nm we
group paths (d1, n1), (d1, n2), ..., (d1, nm), other-
wise if d1 is not expanded, only (d1) is considered
as a single path).

Doc 1

sentence K-1
sentence K

sentence K-2

sentence M
sentence M+1

sentence M-1

Doc 2

…

sentence 2
sentence 3

sentence 1

Doc paths

(          )

[SEP]

[SEP]

…

BART    
Cross 

Encoder

Claim

BART    
Cross 

Encoder

Claim

Max 
Pooling

Score

Figure 5: The Rerank model. For a case with a path of
length 2, the first-order document’s context window (in
green) is used as a complement to every context window
(sliding) for the second-order document (in purple)

Following the above module we have to assess the

semantic relatedness to the query of a rather large
set of interlinked documents. The Rerank model is
an efficient way to accomplish this task. Internally,
the model modifies the classical cross-encoder ar-
chitecture to use a linked source. We can distin-
guish two cases regarding the input path’s length:

Path of length 2. First, we start by using the
context windows again, fully sliding for the sec-
ond order document and just using the context
window that originated the expansion in the first
order document. We concatenate the sentences
from the first order window with every sentence
of the second order window and create a large
concatenation of sentences (see Figure 5).
Path of length 1. In this case, we only have one
document, so we separate every sentence from
the document instead of creating concatenations.

We then feed the concatenations, along with the
claim to a BART-based6 (Lewis et al., 2020a)
cross-encoder that outputs a score. We take the
maximum score from all concatenations and out-
put it as the relevance score. Finally, we sort
the document paths by given score and take the
maximum number of paths possible, ensuring that
the total number of documents does not exceed
K = 20.

4.3 Sentence Retrieval

The sentence retrieval step of our pipeline uses a
combination of the current state-of-the-art model,
LF2-iter + DXL (Stammbach, 2021), and a sim-
ple DeBERTav3-based cross-encoder combining
all possible sentences from first and second order
context windows for every path. For the input of
both models, we use the document path collec-
tion outputted from our document retrieval pipeline.
Originally, the LF2-iter +DXL model uses UKP’s
(Hanselowski et al., 2018) document retrieval step
combined with TF-IDF and a (query, sentence) pair
evaluation based on a token-level BigBird (Zaheer
et al., 2020) model for the sentence retrieval step.
Particularly, the LF2-iter +DXL sentence retrieval
architecture works in two stages. On the first one,
the query and all the sentences from first-order doc-
uments are evaluated and given a score. Every pair
given a score greater than 0 is expanded. Finally,
every expanded sentence is evaluated conditioned
not only on the query but also on the first-order

6Preliminary tests showed that BART offered the best re-
sults among several LMs.
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sentence from which it comes from (again using
the BigBird model).

Although using the documents retrieved from
our solution in LF2-iter + DXL performs reason-
ably well on its own, we found that combining
the sentence rankings from this model with the
rankings from our own cross-encoder boosts global
performance (see Table 4). Directly combining the
rankings from both models is possible since both
are based on retrieving connected (first-second or-
der) sentences. Formally, given the definition of a
ranking:

R̃ := {pi}i

pi =

{
(sik, s

j
m), if dj expanded from di.

(sik) if di has no expansion.

We can define the order of pi, a path in ranking R̃,
as

φR̃(pi) =

{
i if pi ⊂ R̃
0 otherwise

In this context, the combination of the rank-
ings R̃LF and R̃CE corresponding to the LF2-iter +
DXL system and our cross encoder respectively, is
defined as:

Ẽ = argmax
A⊂R̃LF∪R̃CE

∑

A

φR̃CE
(p) + φR̃LF

(p) s.t.

∑

A

|p| ≤ 5

5 Experimental Evaluation and Results

We present our results for the development dataset
at every stage and the FEVER challenge competi-
tion (test set) results:

Document retrieval. As previously commented,
some of the most recent approaches add the doc-
uments retrieved from classic techniques such as
TF-IDF and BM25 to the results retrieved from
their main document retrieval architectures. In
doing so, the retrieved documents lose the rank-
ing order, and it would be inaccurate to directly
compare recall@K since the results from these
combined systems are not rankings but rather col-
lections of documents. Therefore, we compare
our results with the unaltered baseline systems in
Table 1 and establish a new state of the art for
this stage, surpassing UKP’s results by 3.07%. A
comparison of our approach’s performance vary-
ing the number of documents can be found in

System R@10
UKP (Hanselowski et al., 2018) 93.55
UNC (Nie et al., 2018) 92.82
Ours 96.62

Table 1: Comparison of document retrieval system’s
recall with existing architectures

Table 2. We observe a high and steady MRR met-
ric, which means that in most cases, there is a
relevant document within the top 5 documents.
Hence, most of the recall errors are likely claims
that are not correctly interpreted (i.e., no relevant
document in all ranking) or multi-hop evidence
cases in which not all the evidence was retrieved.
Finally, we perform an ablation study regarding
all the modules in the document retrieval step of
our solution (see Table 3), from which it can be
inferred that the Noun Phrases (box [3] in Fig-
ure 1) and the Expansion & Rerank (box [4] in
Figure 1) modules are the parts that have a higher
impact on performance. Additionally, it is worth
noting that the Closest Match module (box [2] in
Figure 1) does not have a significant impact on
general performance, meaning that although some
examples exist, there are not many instances with
grammatical errors within the FEVER dev dataset.

Nº Docs Recall AND MRR
5 95.54 97.26 0.935
10 96.62 97.96 0.935
15 97.08 98.20 0.935
20 97.20 98.29 0.935

Table 2: Document retrieval metrics of our proposed
solution considering different number of documents.

Sentence retrieval. In Table 4, we report the re-
sults with and without combining the LF2-iter +
DXL system to our cross-encoder for this stage,
along with a performance comparison with the ex-
isting architectures. Our proposed solution outper-
forms the current state of the art by 1.05 %. Note
that LF2-iter+DXL system also surpasses the state
of the art when given the documents selected from
our document retrieval step. Indicating that our
document retrieval strategy potentially improves
the effectiveness of a sentence retrieval module.

Textual entailment. In the test set (competition),
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Combination R@20
[1] 94.50
[1] + [2] 94.74
[1] + [3] 95.03
[1] + [2] + [3] 95.27
[1] + [4] 95.30
[1] + [2] + [4] 95.80
[1] + [3] + [4] 97.01
[1] + [2] + [3] + [4] 97.20

Table 3: Ablation study for the proposed system. Note
that every component is referred to as an index [x] which
is depicted in Figure 1.

System R@5 Acc FS

D
ev

el
op

m
en

td
at

as
et

(Hanselowski et al.,
2018)

86.02 68.49 64.74

(Nie et al., 2018) 86.79 69.72 66.49
(Subramanian and Lee,
2020)

90.50 75.77 73.44

(Stammbach and Neu-
mann, 2019)

89.80 72.10 -

(Zhou et al., 2019) 86.72 74.84 70.69
(Liu et al., 2020)† 94.37 78.29 76.11
(Zhong et al., 2020) 90.50 79.16 -
(Jiang et al., 2021b) 90.54 81.26 77.75
(Krishna et al., 2022) - 80.74 79.07
(Stammbach, 2021) 93.62 - -
(Chen et al., 2022) 79.61 79.44 77.38
(Fajcik et al., 2022) 93.30 80.80 78.00
Ours [1-4] 93.93 80.03 78.36
Ours [1-5] (Full) 94.67 80.95 79.12

Te
st

da
ta

se
t

(Zhou et al., 2019) - 71.60 67.10
(Liu et al., 2020) - 74.07 70.38
(Zhong et al., 2020) - 74.64 71.48
(Jiang et al., 2021b) - 79.35 75.87
(Krishna et al., 2022) - 79.47 76.82
(Stammbach, 2021) - 79.16 76.68
(Chen et al., 2022) - 75.24 71.17
(Fajcik et al., 2022) - 79.27 76.45
(Izacard et al., 2022)‡ - 80.06 21.29
Ours[1-5] (Full) - 79.69 76.91

Table 4: Performance for the second and third stages in
the development and test datasets. † The system uses
gold evidence when reporting these results. ‡ The sys-
tem was not specifically designed for FEVER, trained
with the whole Wikipedia for performing fact verifica-
tion, hence the disparity in Acc and FS.

regarding the Fever Score, our proposal achieves a
new state of the art by using our retrieved evidence

with the approach followed in LF2-iter+DXL. Ad-
ditionally, we report the second-highest accuracy
score, 79.69%, only surpassed by the Atlas system
(Izacard et al., 2022). In the development dataset,
we report a competitive 80.95% accuracy while
our Fever Score (FS), 79.12%, outperforms the
current state of the art.

6 Conclusions

In this paper, we have proposed a retrieval architec-
ture that combined with a textual entailment model
outperforms the state of the art in all stages of the
FEVER task. Our architecture starts by leveraging
document-level semantic representation to narrow
an initial collection of documents to 20 candidates.
Filtered results are later expanded using the graph
structure inherent to the built database. Once ex-
pansion is completed, our model scores the context
windows inside documents, ranks the link paths,
and takes the top elements from the ranking, ensur-
ing that no more than 20 documents are retrieved.
Then, the documents are passed on to the sentence
retrieval model that combines the prediction of the
LF2-iter+DXL system with a simple cross-encoder
to obtain a sentence-paths ranking. Finally, follow-
ing the approach in LF2-iter +DXL, a pre-trained
DeBERTa-based MNLI model is used and later
post-processed based on the output logits.

Regarding our initial research hypotheses; con-
sidering the results obtained in the ablation study
(see Table 3) and the sentence retrieval steps (see
Table 1, Table 4) we can conclude that: i) We can
use semantic encoding as an alternative to keyword
matching to build a retrieval system independent of
external resources (H1); ii) Expanding and rerank-
ing connected paths of information using small con-
text windows inside documents improve retrieval
quality (H2).

Limitations

The main limitation of our model concerns the ex-
pansion operation in the retrieval steps. In particu-
lar the system assumes a constant maximum length
of two hops. This decision leads to some recall er-
rors, however, in the FEVER development dataset,
more than 99% of the evidence can be retrieved
with at most two sentences. Another limitation
of our model is relying on a cascade-based archi-
tecture i.e., the performance of one step is always
bounded by the performance on the previous step.
Additionally, although not directly dependent on
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external resources, we expect a graph structure be-
tween documents for the model to work and this
could prove complicated to manage depending on
environments different than Wikipedia.

Ethics Statement

The presented work could help to more accurately
extract information to verify statements. However,
the system relies on contrasting facts using a "truth"
database. The existence of such a resource is not
a trivial assumption to make, especially if we con-
sider open sources of information such as social
networks in which virtually anyone can add con-
tent. Consequently, and in addition to the fact that
no system is perfect, we discourage the usage of
our work as any kind of ground truth for any fact
verification task if the reference database cannot be
checked by experts both in terms of accuracy and
possible biases.
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A Synthetic NER Dataset

The synthetic dataset for the NER problem has
been built as follows: i) Given a claim, separate it
by words and extract the associated pages from the
gold evidence; ii) Use edit distance at token level
to perform keyword matching with the previously
separated words; iii) Discard the matchings having
an edit distance smaller than a threshold (we used
.4); iv) Use a BERT-based tokenizer to separate the
sentence. For each matched sequence, label the
first belonging token as B (begin) and every other
as I (intermediary); v) Any token that is not either
I or B is labeled as O (Null).

B Synthetic Rerank Dataset

The rank dataset has been built as follows: i) Divide
the claims into two groups regarding the number
of evidence pieces (one or two) needed for the ve-
racity judgment to be valid; ii) Balance the groups
by under-sampling the group with only one piece
of evidence needed; iii) Join the groups and ran-
domly create sequences of context windows from
first and second-order documents; iv) Give these
sequences a score according to the information they
present regarding information completeness: 0 for
unrelated content, 0.5 for related but incomplete
(second-order case in which only one of the context
windows is correct), and 1 for complete evidence.
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