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ABSTRACT Visual saliency prediction remains an academic challenge due to the diversity and complexity of
natural scenes as well as the scarcity of eyemovement data onwhere people look in images. Inmany practical
applications, digital images are inevitably subject to distortions, such as those caused by acquisition, editing,
compression or transmission. A great deal of attention has been paid to predicting the saliency of distortion-
free pristine images, but little attention has been given to understanding the impact of visual distortions
on saliency prediction. In this paper, we first present the CUDAS database - a new distortion-aware
saliency benchmark, where eye-tracking data was collected for 60 pristine images and their corresponding
540 distorted formats. We then conduct a statistical evaluation to reveal the behaviour of state-of-the-art
saliency prediction models on distorted images and provide insights on building an effective model for
distortion-aware saliency prediction. The new database is made publicly available to the research community.

INDEX TERMS Eye-tracking, saliency, distortion, image quality, deep learning.

I. INTRODUCTION
Visual attention is a primary mechanism of the human
visual system (HVS) that enables selecting the most rele-
vant information in a visual field [1], [2], [3], [4]. It allows
humans to focus their perceptual-cognitive capability on
certain important stimuli in the scene while ignoring irrel-
evant stimuli. Visual attention consists of both bottom-up
(content-driven, stimulus-driven) mechanism and top-down
(task-driven, experience-driven) mechanism [5], [6]. The for-
mer refers to the ability of the HVS to unconsciously detect
the salient stimuli in the visual scene, which potentially ben-
efits many research fields including multimedia, computer
vision, and healthcare [7], [8].

The associate editor coordinating the review of this manuscript and
approving it for publication was Long Xu.

The past few decades have witnessed significant progress
in visual saliency modelling. The advances in this field are
largely attributed to the creation of benchmark databases
for human eye movements, which provide insights on func-
tional mechanism of attention. Popular databases include
MIT300 [9], CAT2000 [10], and SALICON [11]. The
MIT300 dataset is widely used to benchmark the performance
of visual saliency models and contains 300 indoor and out-
door images. The CAT2000 dataset offers a diverse range
of image content, featuring 4,000 images across 20 scene
categories, such as action, art, and cartoon, with 200 images
per category. SALICON dataset uses mouse clicks rather than
eye trackers to collect human visual attention. SALICON is
one of the largest saliency datasets available in the literature,
comprising 10,000 training images, 5,000 validation images,
and 5,000 test images.
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Using these benchmark databases, many computational
models have been proposed to automatically predict visual
saliency [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34]. These models take various approaches to
model saliency and generate a saliency map that indicates
conspicuousness of different scene locations. The so-called
traditional method relies on extracting low-level visual fea-
tures, such as colour, intensity and orientation and combining
these features to form a saliency map. This method requires
modelling the functionality of the HVS, which remains a
challenging task. The other method is based on deep neural
networks, where models are trained to predict a saliency map.
Due to the advances of deep learning techniques, this method
can achieve good performance.

In many practical applications, images are inevitably sub-
ject to distortions such as those caused by acquisition, edit-
ing, compression and transmission. Previous research has
shown that the saliency map of a pristine image differs from
that of a distorted format of the image; and that the degree
of the difference depends on the type and level of distor-
tion [35], [36]. Modelling saliency in the context of image
distortion is highly beneficial for various vision computing
applications, e.g., image quality assessment (IQA) [37] where
an accurate saliency map of a distorted image is required
to optimise the objective IQA metrics [38]. Unfortunately,
there is still a lack of benchmark databases in the literature to
comprehensively address the problem of saliency modelling
for distorted images. Pioneering work was conducted in [39],
where the SIQ288 database was created using eye-tracking
to understand the impact of distortions on human gaze. This
work focused on developing an experimental methodology
for reliably collecting eye movement data for images of vary-
ing degrees and types of distortion. However, the database
remains limited in terms of diversity in image content, for
example.

In order to drive this line of research forward, we create
a new distortion-aware saliency benchmark, namely Cardiff
University Distortion-Aware Saliency (CUDAS) database.
Based on the new benchmark, we analyse the behaviour
of state-of-the-art saliency models in predicting saliency of
distorted images. The contributions of this work are detailed
below.

• We apply a reliable experimental methodology in [39]
to conduct a large-scale eye-tracking study on distorted
images, resulting in the largest-of-its-kind distortion-
aware saliency database, namely CUDAS. It consists
of 60 pristine (undistorted) high-quality and high-
resolution source images from 10 different categories
of visual content. These source images were degraded
using three types of distortion and each at three levels
of distortion. This gives a set of 600 stimuli including
originals. A total of 96 subjects were recruited to partic-
ipate in the eye-tracking study in a fully controlled lab
environment, which ensures the reliability of the ground
truth saliency maps of the CUDAS database.

• We conduct an exhaustive analysis on the behaviour of
20 state-of-the-art saliency models, including both tradi-
tional and deep learning-based models, on the CUDAS
database. We investigate the effect of distortion level
and distortion type on the performance of these saliency
model. This provides valuable insights for model selec-
tion in practical application scenarios.

• We investigate plausible solutions towards building
an effective deep learning-based model for predicting
saliency of distorted images. We provide quantitative
evidence on the impact of transfer learning as well as
different network architectures on themodel’s predictive
power. This provides a foundation for further research on
computational saliency modelling.

II. CUDAS: EYE-TRACKING STUDY
A. STIMULI
We use the same set of stimuli of the CUID database [40],
which contains both pristine images and their corre-
sponding distorted formats. There are 60 high-quality and
high-resolution (1920 × 1080 pixels) pristine images. One
important feature of the CUID database is that the stimuli
are content-rich and categorised into 10 different natural
scene categories, including ACT (Action), BNW (Black and
White), CGI (Computer-Generated Imagery), IND (Indoor),
OBJ (Object), ODM (Outdoor Manmade), ODN (Outdoor
Natural), PAT (Pattern), POT (Portrait), and SOC (Social).
The content and scene categories are illustrated in Fig. 1. The
distorted images are generated by simulating three different
types of distortion including contrast change (CC), JPEG
compression (JPEG), and motion blur (MB). By varying the
magnitude of distortion, three distinctive levels (i.e., Q1, Q2
and Q3) of perceived quality are created, representing low-
level perceptible but not noticeable distortion, medium-level
annoying distortion, and high-level very annoying distortion.
As a result, a set of 600 stimuli was yielded.

B. EYE-TRACKING EXPERIMENT
As per the findings in [39], to ensure the reliability of
eye-tracking data collected for the co-occurrence of pris-
tine images and their distorted formats, a between-subjects
method [41] combined with appropriate control mechanisms
must be applied in the experiment. This is done to avoid sub-
ject biases [6] due to stimulus repetition - same scene content
(with varying degrees of quality) repeatedly shown to the
subject. By use of the experimental protocol proposed in [39],
we divided the stimuli into six partitions of 100 images each.
Each partition contained amixture of all types and all levels of
distortion, and at most two repeated formats of the same scene
content. Following the design concept of a between-subjects
experiment, we had to ask six different groups of subjects
to each view one of these partitions of stimuli. To this end,
96 subjects being 48 females and 48 males with ages ranging
from 19 to 55 years old were recruited (informed consent was
obtained) in our eye-tracking study. We divided the subjects
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FIGURE 1. Illustration of the 60 source images (6 pristine images × 10 scene categories) contained in the CUID database [40]. From
top to bottom, the categories are ACT (Action), BNW (Black and White), CGI (Computer-Generated Imagery), IND (Indoor), OBJ
(Object), ODM (Outdoor Manmade), ODN (Outdoor Natural), PAT (Pattern), POT (Portrait), and SOC (Social).

FIGURE 2. Illustration of an example of saliency data contained in the new CUDAS database.

into six groups of 16 subjects each (including 8 females and
8 males); and assigned one group to view one partition of

stimuli. This means each subject had to view 100 images
from the entire dataset. By doing this gives a sample size of
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FIGURE 3. Illustration of an example of saliency maps created for
9 different distorted formats of a pristine image (see Fig.2) contained in
the new CUDAS database. The database contains three different types of
distortion including contrast change (CC), JPEG compression (JPEG), and
motion blur (MB); and three distinctive levels (i.e., Q1, Q2 and Q3) of
perceived quality.

16 subjects per test image, which meets the requirement [39]
for generating a reliable saliency map for a natural image. For
each subject’s trial, we also broke the session into two sub-
sessions and added a ‘‘washout’’ period of 5 hours to reduce
the carry-over effects [39]. Each sub-session contained no
stimulus repetition and stimuli were presented to each subject
in a random order.

Following the International Telecommunication Union
(ITU) standards [42], we set up a standard office environment
at the Visual Computing Laboratory at Cardiff University
for the conduct of our eye-tracking experiment. The fully
controlled viewing environment e.g., constant ambient light
ensured consistent experimental conditions throughout the
entire experiment. A 19-inch LCD monitor (native resolution
1920 × 1080 pixels) was used to display stimuli to subjects.
The viewing distance was maintained approximately 60 cm.
Eye movements were captured using a non-invasive Sen-
soMotoric Instrument (SMI) Red-m advanced eye tracking
system with a sampling rate of 250 Hz. Subjects were asked
to view the stimuli in a natural manner using the instruction,
‘‘view the image as you normally would’’. In our study, each
image was displayed for five seconds, followed by amid-gray
screen of two seconds.

C. SALIENCY MAP GENERATION
We follow the standard approach [39] to generate saliency
maps from the eye-tracking data. In this study, a ground
truth fixation was rigorously defined by the SMI BeGaze
Analysis Software using an established dispersal and duration
based algorithm [43]. For each image, fixations extracted
from the raw eye-tracking data collected over all 16 subjects
are converted to a saliency map:

SM(x, y) =

N∑
i=1

exp

[
−

(xi − x)2 + (yi − y)2

σ 2

]
, (1)

where SM (x, y) represents the saliency map; (xi, yi) repre-
sents the coordinates of i-th fixation; N is the number of total
fixations; and σ is the standard deviation of the Gaussian
(σ = 45 pixels determined as per [44] in our study).
In creating a saliency map (also known as fixation density
map), a Gaussian patch is added to each fixation location
to simulate the foveal vision (i.e., 2◦ of visual angle) of the
human visual system (HVS). The intensity of the resulting
saliency map is linearly normalised to the range [0, 1]. Now,
the Cardiff University Distortion-Aware Saliency (CUDAS)
database is generated. Fig. 2 shows the fixation map and
saliency map (visualised as a heat map) for one of the pristine
images in the CUDAS database. Fig.3 illustrates the saliency
maps generated for 9 different distorted formats of the pristine
image.

III. CUDAS: PERFORMANCE BENCHMARKING AND
EVALUATION OF STATE-OF-THE-ART SALIENCY MODELS
A. EVALUATION FRAMEWORK
1) SALIENCY MODELS
In this study, we aim to benchmark the performance of
state-of-the-art saliency models and reveal their behaviour
on distorted images contained in the CUDAS database.
We selected 10 traditional models [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21] and 10 deep learning-based
models [22], [23], [24], [25], [26], [27], [28], [29], [30].
These models have been proven rather effective in predicting
saliency of pristine images [45]; however, their performance
on distorted images remains largely unexplored. To this end,
we evaluate (1) the overall performance of state-of-the-art
saliency models on the CUDAS database; (2) the impact
of distortion (both level and type) on the performance of
these saliency models. The brief descriptions of the selected
saliency models are included in Table 1. Note to make a fair
comparative study in this section, all models were imple-
mented without re-calibration (for traditional models) or re-
training (for deep learning-based models) with the CUDAS
database and they are assumed to be readily applicable for
saliency prediction.

2) SALIENCY EVALUATION METRICS
To measure the performance of computational saliency
models against the ground truth saliency generated from eye-
tracking, some saliency evaluation metrics have been pro-
posed in the literature [46]. It should be noted that these
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TABLE 1. Descriptions of the selected saliency models and their predicted saliency maps. The saliency maps are generated by each model for a pristine
image (see ‘‘Pristine reference’’ in Fig.2) and a distorted image (see ‘‘Image CC_Q3’’ in Fig.3).

metrics capture different properties of saliency evaluation,
and ‘‘specific tasks and applications may call for a different
choice of metrics’’ [46]. In our study, we focus on saliency
in the context of image distortion, which is highly relevant
for applications such as image compression, transmission,
enhancement and re-targeting. It is suggested in [46] that in
those applications where it is important to evaluate the rela-
tive importance of different image regions, metrics like Cor-
relation Coefficient (CC) and Similarity (SIM) are the best fit.
The studies conducted by Yang et al. [47] and Li et al. [48]
suggest that CC and SIM are the only two metrics which
are in close agreement with human subjective assessments of
saliency maps; and that other metrics are not ‘‘perception-
based’’ and therefore cannot measure the perceptual rele-
vance of the computational saliency maps. Therefore, CC and
SIM metrics are used in our study to benchmark and evaluate
saliency models on the CUDAS database. Hereby we give
brief descriptions of CC and SIM metrics below, letting PM
and SM be the predicted saliency map and ground truth
saliency map, respectively.

Correlation Coefficient (CC): CC measures the linear cor-
relation between PM and SM:

CC(PM,SM) =
cov(PM,SM)
σPM × σSM

, (2)

where σPM, σSM denote the variance of PM and SM, and
cov(PM,SM) denotes the covariance of the two saliency
maps. The range of CC value is between −1 and 1. When
CC is close to 1 or −1, the two saliency maps PM and SM
are highly similar. When CC is close to 0, the two saliency
maps PM and SM largely differ.

Similarity (SIM): SIM is also called histogram intersec-
tion, which measures the similarity between the two saliency
maps PM and SM when they are rendered as a normalised
histogram of pixel intensities (i.e., denoted as PMi or SMi).
SIM is calculated as:

SIM(PM,SM) =

∑
i

min(PMi,SMi), (3)

and ∑
i

PMi =

∑
i

SMi = 1, (4)

where i represents the index of the histogram. The range of
SIM value is between 0 to 1. A higher SIM value indicates
a higher degree of agreement between the two saliency maps
PM and SM.

B. PERFORMANCE EVALUATION
1) OVERALL PERFORMANCE ON CUDAS
For each saliency model, its performance is quantified by
calculating CC (or SIM) between the predicted saliency map
PM and the ground truth saliency map SM over all stimuli
contained in the CUDAS database. Fig.4 shows the ranking
results of the models’ performance in terms of CC and SIM,
respectively. The baseline performance, as defined in [39],
is used to gauge the effectiveness of a saliency model. The
baseline assumes that the centre of an image is the most
salient region, which can be simply modelled by stretching
a symmetric Gaussian to fit the aspect ratio of the image.
It can be seen from Fig.4 that all deep learning-based models
are above the baseline performance and half of traditional
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FIGURE 4. Illustration of the performance of 20 state-of-the-art saliency models, including traditional and deep learning-based models on the
CUDAS database. The performance is measured by two saliency evaluation metrics, (a) CC and (b) SIM. The baseline assumes that the centre
of an image is the most salient region [45]. The error bars indicate a 95 % confidence interval.

FIGURE 5. Average performance of traditional versus deep
learning-based saliency models on the CUDAS database. The performance
is measured by two saliency evaluation metrics (a) CC and (b) SIM. The
error bars indicate a 95% confidence interval.

models are below the baseline performance; and that SAM-
ResNet, MSI-Net and SalGAN are consistently ranked top
3 in both CC and SIM rankings. To statistically verify whether
the performance of deep learning-based saliency models is
significantly higher than that of traditional models, we per-
form hypothesis testing by selecting CC (or SIM) as the
dependent variable and the categorical model type (traditional
versus deep learning) as the independent variable. TheMann-
Whitney U test [49] is performed (due to evidence of non-
normality as per the Shapiro-Wilk test), and the results (p <

0.05) show that CC (or SIM) of the deep learning-based
models is statistically significantly higher than that of the
traditional models. Fig.5 illustrates the mean CC and SIM for
traditional and deep learning-based saliency models.

2) IMPACT OF DISTORTION STRENGTH
In the CUDAS database, pristine images are degraded with
three distinctive distortion levels Q1, Q2 and Q3. We want to
evaluate whether and to what extent the strength of distortion

FIGURE 6. Average performance (measured by the CC metric) of all
models on different distortion levels including the pristine reference on
the CUDAS database. Ref, Q1, Q2 and Q3 represent reference, high
quality, medium quality, and low quality images, respectively. The error
bars indicate a 95% confidence interval.

can affect the performance of saliency models. Fig.6 shows
the average performance in terms of CC (note SIM exhibits
the same trend as CC, and therefore, is not shown here) of
all models on different distortion levels including the pristine
reference. It tends to indicate that the stronger the distortion
(i.e., the lower the image quality), the lower performance
of the saliency models. To statistically verify the impact of
distortion strength, we perform hypothesis testing by select-
ing the CC metric as the dependent variable and distortion
level as the independent variable. The Mann-Whitney U test
is performed, and the results show that the saliency models
perform significantly better on higher quality images than on
lower quality images. A statistical significance (p < 0.05)
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FIGURE 7. Average performance (measured by the CC metric) of
traditional versus deep learning-based saliency models on different
distortion levels including the pristine reference on the CUDAS database.
Ref, Q1, Q2 and Q3 represent reference, high quality, medium quality, and
low quality images, respectively. The error bars indicate a 95% confidence
interval.

is found between the following variables: Ref>Q3, Q1>Q3,
and Q2>Q3. The evidence suggests that predicting saliency
of distorted images is more challenging than pristine images
for current saliency models, especially there is a significant
drop in performance when the distortion becomes stronger
(i.e., at Q3 level).

Also, the impact of distortion strength holds the same
trend when separating the saliency models into traditional
and deep learning-based types. Fig.7 illustrates the aver-
age performance (measured by the CC metric) for all deep
learning-based models and all traditional models separately
at four levels of image quality (i.e., reference, Q1, Q2 and
Q3). The results of hypothesis testing (i.e., Mann-Whitney U
test) show that saliency models perform significantly better
(p < 0.05) on higher quality images than on lower quality
images, regardless of whether it is a deep learning-based
model or a traditional model.

3) IMPACT OF DISTORTION TYPE
In addition, we evaluate whether and to what extent distor-
tion type including contrast change (CC), JPEG compres-
sion (JPEG), and motion blur (MB) has an impact on the
performance of saliency models. Fig.8 shows the average
performance in terms of CC (note SIM exhibits the same trend
as CC, and therefore, is not shown here) of all models on
different distortion types. Hypothesis testing was performed
by selecting CC as the dependent variable and distortion type
as the independent variable. TheMann-Whitney U test results
show that the performance of saliency models for contrast
change (CC) is significantly lower (p < 0.05) than the
pristine reference. However, the impact of JPEG compres-
sion (JPEG) and motion blur (MB) on the performance of
saliency models is negligible (p > 0.05). By separating deep
learning-based models from traditional models, as shown in
Fig.9, we have found that there is no significant differ-
ence (p > 0.05 by Mann-Whitney U test) in performance
when using deep learning-based models to predict saliency
of images with different distortion types. This suggests that

FIGURE 8. Average performance (measured by the CC metric) of all
models on different distortion types on the CUDAS database. Ref, MB,
CC and JPEG represent reference, motion blur (MB), contrast change (CC),
and JPEG compression (JPEG), respectively. The error bars indicate a 95%
confidence interval.

FIGURE 9. Average performance (measured by the CC metric) of
traditional versus deep learning-based saliency models on different
distortion types on the CUDAS database. Ref, MB, CC and JPEG represent
reference, motion blur (MB), contrast change (CC), and JPEG compression
(JPEG), respectively. The error bars indicate a 95% confidence interval.

traditional models are more sensitive to different types of
distortion, such as contrast change in images; however, the
performance of deep learning-based saliency models is con-
sistent over all distortion types.

In summary, deep learning-based models give significantly
better performance than the traditional models independent
of distortion strength and distortion type. For deep learning-
based models, the current challenge lies in handling varying
degrees of distortion in a consistent manner.

IV. INSIGHTS ON DEEP LEARNING MODELLING
The evidence above shows the potential of deep learning-
based models in solving the problem of saliency prediction in
the context of image distortion. Now, we provide further prac-
ticalities towards a deep learning-based solution for saliency
modelling.

A. IMPACT OF TRANSFER LEARNING
Unlike traditional models, deep learning-based models are
data-driven and can readily benefit from fine-tuning on
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FIGURE 10. Illustration of the performance (measured by the (a) CC and (b) SIM metrics) of deep learning-based saliency models before and after
fine-tuning on the CUDAS database. The error bars indicate a 95 % confidence interval.

the target data. To solve our specific problem of predict-
ing saliency of distorted images, one way is to investigate
whether fine-tuning the existing models on the new CUDAS
database will give good results. To this end, we conduct
experiments using the deep learning-based models (in Sec-
tion III) that are fine-tunable, including ML-Net, SalGAN,
DVA, EML-NET, SAM-VGG, SAM-ResNet, and MSI-Net.
More specifically, these models were first loaded with the
pre-trained parameters on SALICON dataset (note this is a
conventional operation for all deep learning-based saliency
models), then fine-tuned on the CUDAS dataset. The hyper-
parameters in fine-tuning for each model were set based on
the recommendations in the literature and our empirical evi-
dence of achieving the lowest loss value in the validation set
during fine-tuning. To obtain comprehensive results, k-fold
cross-validation (k = 6) is applied for each model’s fine-
tuning trial, where the CUDAS dataset is divided into six
non-overlapping sets of equal size. To prevent data leakage,
we ensure that there is no shared scene content between sets:
(1) first, the 60 source images (see Fig. 1) are divided into
six sets of 10 images each (i.e., each set contains one of the
columns of the 10 × 6 grid gallery as illustrated in Fig.1);
(2) second, within each set, its 10 source images and their
corresponding 90 distorted images (10 scenes × 3 distortion
types × 3 distortion levels) form the samples. At each run of
the k-fold cross-validation, one set is kept as a test set, one
as a validation set, and the remaining four sets altogether are
used as the training set. By doing so, the model is evaluated
on the test set of unseen samples. It should be noted that
each run of the k-fold cross-validation is independently con-
ducted, without parameter sharing between runs. We report
the average performance of k=6 times test results. Fig. 10
illustrates the performance (measured by CC and SIM) of

saliency models before and after fine-tuning on the CUDAS
database. It can be seen from Fig. 10 that fine-tuning deep
learning-based models on the CUDAS dataset can signif-
icantly boost (i.e, p < 0.05 by Wilcoxon signed-rank test)
their performance. This implies that when predicting saliency
of distorted images, fine-tuning models on the ground truth
saliency data of distorted images is essential and that training
models on the pristine image saliency data only will not
provide optimal solution. This means collecting more eye-
tracking databases in the context of image distortion will
facilitate research in this area.

Now, we have produced a new leaderboard on the CUDAS
database, showing the ability of saliency models in han-
dling distorted images. On the other hand, the leaderboard
of MIT benchmark [50] shows the ability of saliency models
in handling pristine images. It is valuable to cross com-
pare the two leaderboards to guide the selection of mod-
els for specific applications. To this end, we calculate the
Kendall rank correlation coefficient (KRCC) between two
different performance leaderboard rankings. Note since the
variant of EML-NET implemented by the MIT Benchmark
is different from the variant (provided in the original pub-
lication) applied in our study, EML-NET is excluded from
this comparison. The KRCC is 0.07 for the CC metric and
0.47 for the SIM metric, indicating a weak correlation and
the performance of saliency models on these two application
domains is inconsistent. Table 2 shows the comparison of
performance rankings for the CUDAS and MIT benchmarks.
It can be seen that models that perform well on the MIT
benchmark are not necessarily good models for predicting
saliency of distorted images in the CUDAS benchmark, and
vice versa. This implies that the selection of saliency models
in the context of image distortion cannot rely on the existing
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TABLE 2. Comparison of performance rankings of deep learning-based
models on the CUDAS (distortion-aware image saliency) and MIT (pristine
image saliency) benchmarks.

TABLE 3. Comparison of performance of deep learning-based models
with versus without a machine attention mechanism (i.e., attentive versus
non-attentive) on the CUDAS database. The p-value represents the results
of the Mann-Whitney U test for statistical significance.

saliency benchmarks which were developed for pristine
images.

B. IMPACT OF NETWORK ARCHITECTURES
1) THE USE OF MACHINE ATTENTION MECHANISM
As shown in Table 2, the Top2 fine-tuned deep learning-
based models on both CC and SIM metrics are SAM-VGG
and SAM-ResNet. Unlike other models, they both utilise
the machine attention mechanism in their decoders. More
specifically, SAM-VGG and SAM-ResNet combine a fully
convolutional network with a recurrent convolutional net-
work (i.e., long short-term memory network), endowed with
a spatial attention mechanism. We compare the models with
versus without a machine attention mechanism (i.e., attentive
versus non-attentive), as the results shown in Table 3. The
hypothesis testing (i.e., Mann-Whitney U test) results show
that the average performance of attentive models is signifi-
cantly higher (p < 0.05) than that of non-attentive models.
This may be attributed to the fact that attentive models use
network modules with long-range modelling capabilities to
better simulate the processes of the human visual system, and
that this mechanism could be especially beneficial for tasks
closely related to human perception, e.g., viewing natural
scenes in the occurrence of image distortions.

2) THE USE OF DIFFERENT BACKBONES
The choice of backbone formation for deep learning-based
models determines the effectiveness of the image feature
extraction for saliency prediction. There are two differ-
ent types of backbone formations used in the selected
deep learning-based saliency models, being single-stream
encoder and two-stream encoder. EML-NET uses a two-
stream encoder consisting of two deep backbones; while
other models adopt a single-stream CNN-based backbone.

TABLE 4. Comparison of performance of deep learning- based models
using single-stream encoder versus two-stream encoder on the CUDAS
database. The p-value represents the results of the Mann-Whitney U test
for statistical significance.

We compare the use of these two different backbone for-
mations in predicting saliency of distorted images. Table 4
shows the performance of single-stream encoder versus two-
stream encoder on the CUDAS database. Hypothesis testing
(i.e., Mann-Whitney U test) results show that saliency models
based on a two-stream encoder achieve significantly better
(p < 0.05) performance than models based on a single-stream
encoder. This suggests that using backbones with strong
representation capabilities is highly beneficial for saliency
prediction in the context of image distortion.

V. DISCUSSION
It should be noted that in this paper we focus on the analysis of
saliency in the context of image distortion and the perceptual
relevance of computational saliency models. For our specific
application, CC and SIM are the most appropriate saliency
evaluation metrics, as elaborated in Section III-A.2). How-
ever, the CUDAS database can also be used as a standalone
saliency benchmark, evaluating saliency models for various
applications using different saliency evaluation metrics. For
example, CUDAS can be used to benchmark models for
salient object detection in a noisy environment, where AUC,
KL-Div, and IG (centerbias as the baseline map [45]) are
appropriate metrics for detection applications as they penalise
target detection failures [46]. To facilitate benchmarking,
we hereby provide the results of evaluating state-of-the-art
saliency models (i.e. models used in Table 2) based on widely
used saliency metrics including CC (Correlation Coeffi-
cient), SIM (Similarity), AUC-Judd (Area under ROCCurve-
Judd) [51], AUC-Borji (Area under ROC Curve-Borji) [52],
KL-Div (Kullback-Leibler divergence) [45], NSS (Normal-
ized Scanpath Saliency) [53], and IG (InformationGain) [54].
Table 5 lists the model performance results on the CUDAS
database, where divergent rankings across metrics are evi-
dent. This further supports the earlier finding in the literature,
‘‘specific tasks and applications may also call for a different
choice of metrics’’ [46].

Also, it should be noted that in this paper we use the
same set of stimuli of the previously published image quality
assessment database CUID [40], where the distortion simula-
tion is limited to three different types. In the CUID database,
these distortion types were chosen to reflect three distinctive
image impairments commonly occurring in real-world appli-
cations: CC affects the colours of images, JPEG yields local
artifacts, and MB causes global distortions. As illustrated in
Fig. 2 and 3, different distortion types tend to impact the
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TABLE 5. Performance of state-of-the-art saliency models measured by CC, SIM, AUC-Borji, AUC-Judd, KL-Div, NSS, and IG metrics on the CUDAS
database. The best result for each metric is highlighted in bold.

saliency distribution in different ways. However, as already
thoroughly discussed in [39], the actual impact is a function
of image content, distortion type and distortion level. In this
paper, we focus on the impact of distortions on saliency
prediction models, as the findings revealed in Section III-B.
These advances call for larger benchmarks and more distor-
tion types.

VI. CONCLUSION
In this paper, we have presented a new distortion-aware
saliency benchmark - CUDAS database - to facilitate
saliency modelling in the context of image distortion. The
CUDAS database contains 60 high-quality, high-resolution,
and content-rich pristine images and their corresponding
540 distorted images of varying degrees of perceived quality.
We have conducted an exhaustive evaluation to benchmark
the performance of 20 state-of-the-art saliency models on the
CUDAS database. We have found that deep learning-based
models give significantly better performance than traditional
models; but there is still room for improvement in terms
of handing different degrees of distortion in images. Based
on the new benchmark, we shed light on deep learning-
based saliency modelling in the context of image distortion,
including the impact of transfer learning, use of machine
attention mechanism and choice of network backbone forma-
tion. Future work will focus on developing a deep-learning
based model which can reliably predict saliency of images of
varying degrees of perceived quality.

REFERENCES
[1] W. James, The Principles of Psychology. Cambridge, MA, USA: Harvard

Univ. Press, 1890.
[2] L. Itti, C. Koch, and E. Niebur, ‘‘Amodel of saliency-based visual attention

for rapid scene analysis,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 20,
no. 11, pp. 1254–1259, Dec. 1998.

[3] J. Wu, Y. Liu, L. Li, and G. Shi, ‘‘Attended visual content degradation
based reduced reference image quality assessment,’’ IEEE Access, vol. 6,
pp. 12493–12504, 2018.

[4] Y. Fang, W. Lin, B. Lee, C. Lau, Z. Chen, and C. Lin, ‘‘Bottom-up saliency
detection model based on human visual sensitivity and amplitude spec-
trum,’’ IEEE Trans. Multimedia, vol. 14, no. 1, pp. 187–198, Feb. 2012.

[5] C. E. Connor, H. E. Egeth, and S. Yantis, ‘‘Visual attention: Bottom-
up versus top-down,’’ Current Biol., vol. 14, no. 19, pp. R850–R852,
Oct. 2004.

[6] A. G. Greenwald, ‘‘Within-subjects designs: To use or not to use?’’ Psy-
chol. Bull., vol. 83, no. 2, pp. 314–320, Mar. 1976.

[7] A. Borji, D. N. Sihite, and L. Itti, ‘‘Quantitative analysis of human-model
agreement in visual saliencymodeling: A comparative study,’’ IEEE Trans.
Image Process., vol. 22, no. 1, pp. 55–69, Jan. 2013.

[8] L. Lévêque, H. Bosmans, L. Cockmartin, and H. Liu, ‘‘State of the
art: Eye-tracking studies in medical imaging,’’ IEEE Access, vol. 6,
pp. 37023–37034, 2018.

[9] T. Judd, F. Durand, and A. Torralba, ‘‘A benchmark of computational
models of saliency to predict human fixations,’’ MIT Comput. Sci. Artif.
Intell. Lab (CSAIL), Cambridge, MA, USA, Tech. Rep. MIT-CSAIL-TR-
2012-001, Jan. 2012.

[10] A. Borji and L. Itti, ‘‘CAT2000: A large scale fixation dataset for boosting
saliency research,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR) Workshop Future Datasets, Feb. 2015, pp. 1–4.

[11] M. Jiang, S. Huang, J. Duan, and Q. Zhao, ‘‘SALICON: Saliency in
context,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 1072–1080.

[12] J. Harel, C. Koch, and P. Perona, ‘‘Graph-based visual saliency,’’ in Proc.
19th Int. Conf. Neural Inf. Process. Syst. (NIPS), Cambridge, MA, USA:
MIT Press, 2006, pp. 545–552.

[13] A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, ‘‘Contex-
tual guidance of eye movements and attention in real-world scenes: The
role of global features in object search.,’’ Psychol. Rev., vol. 113, no. 4,
pp. 766–786, Oct. 2006.

[14] D. Walther and C. Koch, ‘‘Modeling attention to salient proto-objects,’’
Neural Netw., vol. 19, no. 9, pp. 1395–1407, Nov. 2006.

[15] N. Bruce and J. Tsotsos, ‘‘Attention based on information maximization,’’
J. Vis., vol. 7, no. 9, p. 950, Mar. 2010.

[16] H. Rezazadegan Tavakoli, E. Rahtu, and J. Heikkilä, ‘‘Fast and efficient
saliency detection using sparse sampling and kernel density estimation,’’
in Image Analysis (Lecture Notes in Computer Science), vol. 6688. Berlin,
Germany: Springer, 2011, pp. 666–675.

[17] X. Otazu, C. A. Parraga, and M. Vanrell, ‘‘Toward a unified chromatic
induction model,’’ J. Vis., vol. 10, no. 12, pp. 1–24, Oct. 2010.

[18] A. Garcia-Diaz, V. Leboran, X. R. Fdez-Vidal, and X. M. Pardo, ‘‘On
the relationship between optical variability, visual saliency, and eye
fixations: A computational approach,’’ J. Vis., vol. 12, no. 6, p. 17,
Jun. 2012.

[19] E. Erdem and A. Erdem, ‘‘Visual saliency estimation by nonlinearly inte-
grating features using region covariances,’’ J. Vis., vol. 13, no. 4, p. 11,
Mar. 2013.

[20] S. Fang, J. Li, Y. Tian, T. Huang, and X. Chen, ‘‘Learning discrim-
inative subspaces on random contrasts for image saliency analysis,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 5, pp. 1095–1108,
May 2017.

[21] R. Tavakoli and J. Laaksonen, ‘‘Bottom-up fixation prediction using unsu-
pervised hierarchical models,’’ in Computer Vision—ACCV, vol. 10116.
New York, NY, USA: Springer-Verlag, 2017, pp. 364–379.

[22] H. R. Tavakoli, A. Borji, J. Laaksonen, and E. Rahtu, ‘‘Exploiting inter-
image similarity and ensemble of extreme learners for fixation prediction
using deep features,’’ Neurocomputing, vol. 244, pp. 10–18, Jun. 2017.
[Online]. Available: https://arxiv.org/abs/1610.06449

[23] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, ‘‘A deep multi-level
network for saliency prediction,’’ in Proc. 23rd Int. Conf. Pattern Recognit.
(ICPR), Dec. 2016, pp. 3488–3493.

[24] M. Kümmerer, T. S. A. Wallis, L. A. Gatys, and M. Bethge, ‘‘Understand-
ing low- and high-level contributions to fixation prediction,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 4799–4808.

58034 VOLUME 11, 2023



X. Zhao et al.: CUDAS: Distortion-Aware Saliency Benchmark

[25] J. Pan, C. C. Ferrer, K. McGuinness, N. E. O’Connor, J. Torres, E. Sayrol,
and X. G. I. Nieto, ‘‘SalGAN: Visual saliency prediction with generative
adversarial networks,’’ 2018, arXiv:1701.01081.

[26] S. Fan, Z. Shen, M. Jiang, B. L. Koenig, J. Xu, M. S. Kankanhalli, and
Q. Zhao, ‘‘Emotional attention: A study of image sentiment and visual
attention,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 7521–7531.

[27] W. Wang and J. Shen, ‘‘Deep visual attention prediction,’’ IEEE Trans.
Image Process., vol. 27, no. 5, pp. 2368–2378, May 2018.

[28] S. Jia and N. D. B. Bruce, ‘‘EML-NET: An expandable multi-layer NET-
work for saliency prediction,’’ Image Vis. Comput., vol. 95, Mar. 2020,
Art. no. 103887.

[29] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, ‘‘Predicting human
eye fixations via an LSTM-based saliency attentive model,’’ IEEE Trans.
Image Process., vol. 27, no. 10, pp. 5142–5154, Oct. 2018.

[30] A. Kroner, M. Senden, K. Driessens, and R. Goebel, ‘‘Contextual
encoder–decoder network for visual saliency prediction,’’ Neural Netw.,
vol. 129, pp. 261–270, Sep. 2020.

[31] J. Lou, H. Lin, D. Marshall, D. Saupe, and H. Liu, ‘‘TranSalNet:
Towards perceptually relevant visual saliency prediction,’’ Neurocomput-
ing, vol. 494, pp. 455–467, Jul. 2022.

[32] M. Tliba, M. A. Kerkouri, B. Ghariba, A. Chetouani, A. Çöltekin,
M. S. Shehata, and A. Bruno, ‘‘SATSal: A multi-level self-attention
based architecture for visual saliency prediction,’’ IEEE Access, vol. 10,
pp. 20701–20713, 2022.

[33] F. Qi, C. Lin, G. Shi, and H. Li, ‘‘A convolutional encoder–decoder net-
work with skip connections for saliency prediction,’’ IEEE Access, vol. 7,
pp. 60428–60438, 2019.

[34] A. Bruno, F. Gugliuzza, R. Pirrone, and E. Ardizzone, ‘‘A multi-scale
colour and keypoint density-based approach for visual saliency detection,’’
IEEE Access, vol. 8, pp. 121330–121343, 2020.

[35] X. Zhao, H. Lin, P. Guo, D. Saupe, and H. Liu, ‘‘Deep learning vs.
traditional algorithms for saliency prediction of distorted images,’’ in Proc.
IEEE Int. Conf. Image Process. (ICIP), Oct. 2020, pp. 156–160.

[36] L. Leveque, W. Zhang, and H. Liu, ‘‘Subjective assessment of image qual-
ity induced saliency variation,’’ in Proc. IEEE Int. Conf. Image Process.
(ICIP), Sep. 2019, pp. 1024–1028.

[37] L. Zhang, Y. Shen, and H. Li, ‘‘VSI: A visual saliency-induced index
for perceptual image quality assessment,’’ IEEE Trans. Image Process.,
vol. 23, no. 10, pp. 4270–4281, Oct. 2014.

[38] W. Zhang, A. Borji, Z. Wang, P. Le Callet, and H. Liu, ‘‘The application
of visual saliency models in objective image quality assessment: A statis-
tical evaluation,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 6,
pp. 1266–1278, Jun. 2016.

[39] W. Zhang and H. Liu, ‘‘Toward a reliable collection of eye-tracking data
for image quality research: Challenges, solutions, and applications,’’ IEEE
Trans. Image Process., vol. 26, no. 5, pp. 2424–2437, May 2017.

[40] L. Lévêque, J. Yang, X. Yang, P. Guo, K. Dasalla, L. Li, Y. Wu, and
H. Liu, ‘‘CUID: A new study of perceived image quality and its subjective
assessment,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Oct. 2020,
pp. 116–120.

[41] G. Keren and C. Lewis, A Handbook for Data Analysis in the Behavioral
Sciences: Volume 1: Methodological Issues Volume 2: Statistical Issues,
1st ed. London, U.K.: Psychology Press, 1993.

[42] Methodology for the Subjective Assessment of the Quality of Television
Pictures, document ITU-R BT.500-11, 1974.

[43] D. D. Salvucci and J. H. Goldberg, ‘‘Identifying fixations and saccades in
eye-tracking protocols,’’ in Proc. Symp. Eye Tracking Res. Appl. (ETRA).
New York, NY, USA: Association for Computing Machinery, 2000,
pp. 71–78.

[44] C.M. Privitera and L.W. Stark, ‘‘Algorithms for defining visual regions-of-
interest: Comparison with eye fixations,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 22, no. 9, pp. 970–982, Jan. 2000.

[45] Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva, and
A. Torralba. Mit Saliency Benchmark. Accessed: 2023. [Online]. Avail-
able: http://saliency.mit.edu/

[46] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand, ‘‘What do
different evaluation metrics tell us about saliency models?’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 41, no. 3, pp. 740–757, Mar. 2019.

[47] X. Yang, F. Li, and H. Liu, ‘‘A measurement for distortion induced
saliency variation in natural images,’’ IEEE Trans. Instrum. Meas., vol. 70,
pp. 1–14, 2021.

[48] J. Li, C. Xia, Y. Song, S. Fang, and X. Chen, ‘‘A data-driven metric for
comprehensive evaluation of saliency models,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 190–198.

[49] A. Field,Discovering Statistics Using IBM SPSS Statistics. Newbury Park,
CA, USA: Sage, 2013.

[50] M. Kümmerer, Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A.
Oliva, andA. Torralba.Mit/tübingen Saliency Benchmark. Accessed: 2023.
[Online]. Available: https://saliency.tuebingen.ai/

[51] N. Riche, M. Duvinage, M. Mancas, B. Gosselin, and T. Dutoit, ‘‘Saliency
and human fixations: State-of-the-art and study of comparison metrics,’’ in
Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 1153–1160.

[52] A. Borji, H. R. Tavakoli, D. N. Sihite, and L. Itti, ‘‘Analysis of scores,
datasets, andmodels in visual saliency prediction,’’ inProc. IEEE Int. Conf.
Comput. Vis., Dec. 2013, pp. 921–928.

[53] R. J. Peters, A. Iyer, L. Itti, and C. Koch, ‘‘Components of bottom-up gaze
allocation in natural images,’’ Vis. Res., vol. 45, no. 18, pp. 2397–2416,
Aug. 2005.

[54] M. Kümmerer, T. S. A. Wallis, and M. Bethge, ‘‘Information-theoretic
model comparison unifies saliency metrics,’’ Proc. Nat. Acad. Sci. USA,
vol. 112, no. 52, pp. 16054–16059, Dec. 2015.

XIN ZHAO received the Bachelor of Science
degree from the School of Computer Science
and Informatics, Cardiff University, Cardiff, U.K.,
in 2019. She is currently pursuing the Ph.D. degree
with Cardiff University. She has been a Visiting
Scholar with Konstanz University, Konstanz, Ger-
many. Her research interests include eye-tracking,
image quality assessment, and human fixations on
distortion images.

JIANXUN LOU received the B.Eng. degree
from Central South University, Changsha, China,
in 2018, and the M.S. degree from Cardiff Univer-
sity, Cardiff, U.K., in 2020, where he is currently
pursuing the Ph.D. degree with the School of Com-
puter Science and Informatics.

XINBO WU received the B.Eng. degree from the
Chongqing University of Posts and Telecommuni-
cations, Chongqing, China, in 2018, and the M.S.
degree from Cardiff University, Cardiff, U.K.,
in 2020, where he is currently pursuing the Ph.D.
degree with the School of Computer Science and
Informatics.

YINGYING WU received the M.Sc. degree in
data science and analytics from Cardiff University,
U.K., in 2020, where she is currently pursuing the
Ph.D. degree with the School of Computer Science
and Informatics. Her research interests include
image data analysis, human visual perception, and
machine learning.

VOLUME 11, 2023 58035



X. Zhao et al.: CUDAS: Distortion-Aware Saliency Benchmark

LUCIE LÉVÉQUE received the M.Eng. degree in
cognitive engineering from the National Superior
School of Cognitics, Bordeaux, France, in 2015,
the M.Sc. degree in biomedical imaging from the
University of Angers, France, in 2015, and the
Ph.D. degree from the School of Computer Sci-
ence and Engineering, Cardiff University, U.K.,
in 2019. She is currently a Postdoctoral Researcher
with the Nantes Laboratory of Digital Sciences
(LS2N), Nantes University, France. Her research

interests include human–computer interaction, computer vision, visual per-
ception and attention, and medical imaging. She is also the Vice Chair
of the Video Quality Experts Group (VQEG) on Quality Assessment for
Health Applications, and part of the Organizing Committee of the ACM
International Conference on Interactive Media Experiences (IMX) 2023.

XIAOCHANG LIU is currently pursuing the bach-
elor’s degree with the School of Materials, Sun
Yat-sen University, China. Her research interests
include mathematical modeling and data analytics.

PENGFEI GUO (Member, IEEE) received the
Ph.D. degree from the South China University of
Technology, China, in 2015. He was a Visiting
Scholar with Cardiff University, U.K. He is cur-
rently an Associate Professor with the School of
Computing Science, Zhongkai University of Agri-
culture and Engineering, China. His research inter-
ests include computer vision and image quality
assessment.

YIPENG QIN received the B.Sc. degree in
electrical engineering from Shanghai Jiao Tong
University, China, and the Ph.D. degree from
the National Centre for Computer Animation
(NCCA), Bournemouth University, U.K. He was
a Postdoctoral Research Fellow with the Visual
Computing Center (VCC), King Abdullah Uni-
versity of Science and Technology (KAUST),
Saudi Arabia. He is currently a Lecturer with
the School of Computer Science and Informatics,

Cardiff University, U.K. His current research interests include deep learn-
ing, computer vision, computer graphics, and human–computer interaction
(HCI), with a focus on generative modeling and visual content creation.

HANHE LIN received the Ph.D. degree from the
Department of Information Science, University of
Otago, New Zealand, in 2016. From 2016 to 2021,
he was a Postdoctoral Researcher with the Depart-
ment of Computer and Information Science,
University of Konstanz, Germany, where he was
working on project A05 (visual quality assess-
ment) of SFB-TRR 161, funded by the German
Research Foundation (DFG). He is currently a
Lecturer in computing with the University of

Dundee, U.K. His research interests include image processing, computer
vision, machine learning, deep learning, and visual quality assessment.
He serves as a member for the technical program committee or a reviewer
for a number of conferences/journals, such as QoMEX, IEEE TRANSACTIONS

ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, and IEEE TRANSACTIONS ON

IMAGE PROCESSING.

DIETMAR SAUPE was born in Bremen, Germany,
in 1954. He received the Dr.rer.nat. degree inmath-
ematics from the University of Bremen, Germany,
in 1982. From 1985 to 1993, he was an Assistant
Professor with the Department of Mathematics,
first with the University of California at Santa
Cruz, Santa Cruz, CA, USA, and then with the
University of Bremen, resulting in his habilita-
tion. From 1993 to 1998, he was a Professor of
computer science with the University of Freiburg,

Germany. He was a Professor of computer science with the University of
Leipzig, Germany, until 2002. Since 2002, he has been a Professor of com-
puter science with the University of Konstanz, Germany. He is the coauthor
of the book Chaos and Fractals, which won the Association of American
Publishers Award for Best Mathematics Book of the Year, in 1992, and well
over 100 research articles. His research interests include image and video
processing, computer graphics, scientific visualization, dynamical systems,
and sport informatics.

HANTAO LIU received the Ph.D. degree from
the Delft University of Technology, Delft,
The Netherlands, in 2011. He is currently an
Associate Professor with the School of Com-
puter Science and Informatics, Cardiff University,
Cardiff, U.K. He is an Associate Editor of IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY and IEEE SIGNAL PROCESSING LETTERS.

58036 VOLUME 11, 2023


