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Central to the investigation of the biomechanics of traumatic brain injury (TBI) and
the assessment of injury risk from head impact are finite element (FE) models of the
human brain. However, many existing FE human brain models have been developed
with simplified representations of the parenchyma, which may limit their applicability
as an injury prediction tool. Recent advances in neuroimaging techniques and brain
biomechanics provide new and necessary experimental data that can improve the
biofidelity of FE brain models. In this study, the CAB-20MSym template model was
developed, calibrated, and extensively verified. To implement material heterogeneity,
a magnetic resonance elastography (MRE) template image was leveraged to define
the relative stiffness gradient of the brain model. A multi-stage inverse FE (iFE)
approach was used to calibrate the material parameters that defined the underlying
non-linear deviatoric response by minimizing the error between model-predicted brain
displacements and experimental displacement data. This process involved calibrating
the infinitesimal shear modulus of the material using low-severity, low-deformation
impact cases and the material non-linearity using high-severity, high-deformation cases
from a dataset of in situ brain displacements obtained from cadaveric specimens. To
minimize the geometric discrepancy between the FE models used in the iFE calibration
and the cadaveric specimens from which the experimental data were obtained, subject-
specific models of these cadaveric brain specimens were developed and used in the
calibration process. Finally, the calibrated material parameters were extensively verified
using independent brain displacement data from 33 rotational head impacts, spanning
multiple loading directions (sagittal, coronal, axial), magnitudes (20–40 rad/s), durations
(30–60 ms), and severity. Overall, the heterogeneous CAB-20MSym template model
demonstrated good biofidelity with a mean overall CORA score of 0.63± 0.06 when
compared to in situ brain displacement data. Strains predicted by the calibrated model
under non-injurious rotational impacts in human volunteers (N = 6) also demonstrated
similar biofidelity compared to in vivo measurements obtained from tagged magnetic
resonance imaging studies. In addition to serving as an anatomically accurate model for
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further investigations of TBI biomechanics, the MRE-based framework for implementing
material heterogeneity could serve as a foundation for incorporating subject-specific
material properties in future models.

Keywords: traumatic brain injury, material properties, magnetic resonance elastography, image registration,
morphing

INTRODUCTION

Traumatic brain injury (TBI) is a significant source of
injury, disability, and death. Recent epidemiological studies
have estimated that TBI’s account for approximately one-third
of all injury-related deaths in the United States (Faul and
Coronado, 2015). In 2010, the Centers for Disease Control
(CDC) estimated that TBIs resulted in 2.5 million emergency
department (ED) visits (87%), hospitalizations (11%), and deaths
(2%) (Centers for Disease Control and Prevention, 2015).
Finite element (FE) models of the brain have rapidly become
indispensable tools for investigating TBI mechanisms, assessing
new protective technology, and developing injury risk criteria
(Kleiven and von Holst, 2002; Giordano and Kleiven, 2014;
Gabler et al., 2018). FE models of the brain are typically used
to investigate the dynamic 3D deformation of the human brain
under simulated head impacts relevant to sports, automotive
crashes, and falls. While FE models have been instrumental
to furthering our understanding of TBI biomechanics, many
FE brain models have been developed to represent the brain
as a simplified physical system, both in their representation
of the anatomy and material properties, thus limiting their
accuracy and utility in predicting deformations experienced due
to head impacts.

Perhaps the most significant differences across brain models
in the field relate to the constitutive laws and material parameters
chosen to represent the material behavior of the simulated brain
tissue (Jin et al., 2013; Dixit and Liu, 2017; Fahlstedt et al.,
2021). At the simplest level, the brain is modeled as a single
isotropic and homogeneous material (Kleiven and von Holst,
2002; Takhounts et al., 2008; Ji et al., 2015). However, unique
material properties can be assigned to different parts of the
brain, which typically represent tissue types with different cellular
composition or segmented anatomical labels, and many FE
models include differences in material properties between white
and gray matter (Horga and Gilchrist, 2003; Kimpara et al., 2006;
McAllister et al., 2012; Panzer et al., 2012; Mao et al., 2013; Miller
et al., 2016, 2017). At the most complex level, the brain has been
modeled as an anisotropic, heterogeneous structure by explicitly
modeling axonal fiber tracts by embedding 1D elements in the
brain mesh (Garimella et al., 2019; Hajiaghamemar et al., 2019;
Wu et al., 2019). While the embedded axon approach provides
a more biofidelic structural representation of the axonal tissue,
which is known to exhibit anisotropy and regional variations in
tissue material properties (Jin et al., 2013; Budday et al., 2015,
2017a, 2019; Weickenmeier et al., 2016), the embedding of 1D
axonal tract elements can significantly increase computational
cost. A potential alternative for modeling brain heterogeneity is
to model the brain with material stiffness varying throughout the

brain regardless of the tissue classification of each element, which
can be obtained using magnetic resonance elastography (MRE).

Recently, MRE has been utilized to non-invasively measure
in vivo material properties of the human brain in healthy
volunteers (Weaver et al., 2012; Johnson et al., 2013a,b; Hiscox
et al., 2016). In MRE, an external transducer (commonly a head
pillow) mechanically vibrates the head (10–100 Hz) to induce
micron-level displacements in the brain that can be measured
and used to estimate elastic and viscous material properties
throughout the brain with high spatial resolution (Hiscox et al.,
2016). To date, MRE has been used to investigate global
brain material properties with voxel-level resolution, regional
variations in tissue stiffness, and material properties associated
with brain pathology (Hiscox et al., 2016; Johnson and Telzer,
2018; Murphy et al., 2019). While stiffness measurements vary,
most studies agree that the measured brain stiffness is dependent
on the actuation frequency (due to viscoelasticity), and that white
matter regions are stiffer than gray matter regions (Hiscox et al.,
2016). However, since the measured properties are dependent
on the actuation frequency and obtained from micron-level
displacements of the brain, additional work is needed to apply
the MRE-derived stiffness maps to a FE brain model.

The goal of this study is to calibrate and verify a heterogenous
FE brain model by leveraging experimental datasets reporting
(1) MRE-derived material properties (Hiscox et al., 2020), (2)
high rate, in situ, brain displacements measured from human
cadaveric specimens using sonomicrometry (Alshareef et al.,
2020a), and (3) low rate, in vivo, brain strain measured from
human volunteers using tagged magnetic resonance imaging
(tMRI; Knutsen et al., 2020). Material parameters for the model
were developed in three phases. First, stiffness data from an
MRE template image (average of 134 subjects; Hiscox et al.,
2020) was used to define the relative stiffness gradient throughout
the brain model. Second, the linear stiffness parameter was
calibrated using low-displacement cases from the Alshareef
et al. (2020a) dataset and verified using brain strain data
from the in vivo tMRI dataset. Finally, the non-linear stiffness
parameter was calibrated using high-deformation cases from the
Alshareef et al. (2020a) dataset. To verify that the calibrated
material parameters were physically reasonable, a comprehensive
verification was performed using the remaining rotational cases
from these datasets that were not used for calibration. The
response of the calibrated material used in the model was
also compared to experimental in vitro material test data
available in the literature (Jin et al., 2013) to ensure that the
median stiffness response was within the range of experimental
data. In addition to serving as a model for investigating
TBI biomechanics, the technique for implementing MRE-
derived heterogeneous material properties can be adapted to
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implement subject-specific material properties in future subject-
specific brain models.

MATERIALS AND METHODS

Development of CAB-20MSym Template
Model
The mesh of the CAB-20MSym template model was chosen
to represent the anatomy of the CAB-20MSym template image
developed by Giudice et al. (2020). This template was constructed
from T1-weighted MRI scans obtained from 20 young, healthy
adult males (22 ± 3 years). Details regarding these images are
provided elsewhere (Giudice et al., 2020; Reynier et al., 2020).

The CAB-20MSym template image was segmented to identify
the brain parenchyma, peripheral cerebrospinal fluid (CSF),
internal CSF, and ventricles. To generate the template model
mesh, each 1 mm isotropic voxel in the segmentation image
was directly converted into a cubic hexahedral (i.e., voxel)
element and assigned to a part based on its segmentation
label. This approach was selected as voxel meshes have the
accuracy and stability benefits of hexahedral elements and
can capture complex anatomical features at the native spatial
resolution (in this case, 1 mm) of the MRI images used
to construct them (Miller et al., 2016; Ghajari et al., 2017).
To include the sagittal sinus, falx cerebri, and tentorium
cerebelli, the voxels surrounding these regions were manually
delineated and two-dimensional shell elements were generated
at the corresponding mid-surfaces. Finally, a layer of rigid
shell elements surrounding the outermost surface of the
peripheral CSF part was generated to represent the dura,
which was assumed to be rigidly connected to the inner
surface of the skull (Miller et al., 2016). The selection of
the numerical implementation approach was informed by an
analytical review of the numerical methods utilized by the TBI
modeling community performed by Giudice et al. (2019b) and is
summarized in the Supplementary Material. All interfaces were
continuous and connected through shared nodes.

The material properties for the CSF (peripheral and internal),
ventricles, skull, sagittal sinus, falx, and tentorium were adapted
from previous brain models (Takhounts et al., 2008; Mao et al.,
2013; Miller et al., 2016). To account for the nominal stiffness
provided by the trabeculae and bridging vessels located within
the subarachnoid space, the peripheral CSF was modeled using
a linear viscoelastic material with very low stiffness (G0 = 0.5 kPa;
G∞ = 0.1 kPa). As these properties do not exist for CSF,
an elastic fluid (bulk modulus, K = 2.1 GPa) was assigned
to the ventricle and internal CSF parts. The sagittal sinus,
falx, and tentorium were modeled as elastic materials (Young’s
modulus, E = 31.5 MPa; Poisson’s ratio, ν = 0.45). Finally,
the skull was modeled as rigid to allow the implementation
of 6 degree-of-freedom head kinematic boundary conditions
for all analyses (Gabler et al., 2016). Further details regarding
these material properties are available in the Supplementary
Material. The material implementation of the brain parenchyma
is described in Sections “Implementation of Brain Heterogeneity”
and “Constitutive Modeling of Brain Parenchyma.”

Implementation of Brain Heterogeneity
The implementation of brain material heterogeneity in the CAB-
20MSym template model was derived from the MRE134 template
image (Hiscox et al., 2020). This template was constructed
using MRE data from 134 healthy, young adults (18–35 years,
78F/56M) using common MRE acquisition and data processing
protocols (Hiscox et al., 2020). To adapt the MRE134 template,
originally defined in MNI152 space with 2 mm isotropic voxels,
it was first non-linearly registered to the CAB-20MSym template
space using ANTs non-linear registration (Avants et al., 2008).
To eliminate stiffness measurements potentially influenced by
numerical artifacts or edge effects, stiffness values beyond the
98th percentile were excluded. In the CAB-20MSym template
model, CSF spaces were modeled using CSF-specific constitutive
models, however, in the MRE134 template image, CSF spaces
were not differentiated from the brain tissue. Therefore, stiffness
values below the 15th percentile, which corresponded to the
approximate stiffness in the MRE134 template in CSF areas
(approximately 0–1.5 kPa; Hiscox et al., 2020), were excluded.
From this truncated distribution, the stiffness value of each
voxel was normalized by the median stiffness and binned into
10 groups. Voxels that had original stiffnesses below the 15th
and above the 98th percentile were assigned to the lowest
and largest normalized stiffness bins, respectively. This process
yielded a normalized stiffness label image where voxels were
categorized by their relative stiffness, and not according to
an anatomical segmentation label. In doing so, this approach
accounts for stiffness variations present within tissue groups,
such as white and gray matter. Normal variations in the material
properties of various tissue groups are reported in the literature
(Hiscox et al., 2020).

Constitutive Modeling of Brain
Parenchyma
The 10 parts comprising the brain parenchyma, using the binned
groups from the previous section, were modeled using a quasi-
linear viscoelastic (QLV) model (Fung, 1993). In Fung’s QLV
theory, it is assumed that the response of a material can be
separated into a normalized function of time only, g (t), and an
elastic function of strain only, Te(ε) (Fung, 1993). For a QLV
model, the stress relaxation function, R (ε, t), is:

R (ε, t) = g(t) · Te(ε)

In this study, the instantaneous elastic response function, Te(ε),
was derived from an Ogden strain energy density (Ogden and
Hill, 1972).

W (λ1, λ2, λ3) =
µ

α

(
λα

1 + λα
2 + λα

3 − 3
)

Where λj are the three principal stretches, µ is the shear modulus,
and α is a unitless non-linearity coefficient. The infinitesimal
shear modulus (i.e., initial slope of the non-linear shear stress-
strain curve), µ0, can be obtained as a function of the material
parameters.

µ0 =
1
2
µα
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Finally, four Prony terms (N = 4) were included in the reduced
relaxation function.

g (t) = g∞ +
N∑
i=1

gie−βit

βi =
1
τi

g∞ +
N∑
i=1

gi = 1

Where, g∞ and gi are normalized coefficients associated with
the long-term response and each time constant, τi. The
density, ρ, and Poisson’s ratio, ν, of the brain parenchyma
material were 1.123 × 10−6 kg/mm3 (Miller et al., 2016) and
0.499999, respectively.

The reduced relaxation function was fit to experimental tan(δ)
data obtained from studies that characterized the viscoelastic
properties of brain tissue over wide ranges of input frequencies
(Fallenstein et al., 1969; Shuck and Advani, 1972; Arbogast
et al., 1997; Bilston et al., 1997, 2001; Arbogast and Margulies,
1998; Brands, 2000; Darvish and Crandall, 2001; Lippert et al.,
2004; Nicolle et al., 2004; Hrapko et al., 2006; Shen et al.,
2006; Garo et al., 2007). The tan(δ) response represents material
damping as a function of frequency, and is independent of the
material stiffness, making it suitable for calibrating the reduced
relaxation function. Optimization of gi and τi was performed
using a least squares optimization. The Ogden parameters
defining the median deviatoric response of the brain, to which
the brain parenchyma heterogeneity was applied relative to, was
calibrated using an iFE calibration scheme and is described in the
following sections.

Calibration Objective and Approach
To reduce the number of optimized parameters and simplify the
calibration process, it was assumed that the damping of the brain
and hyperelastic non-linearity were homogeneous throughout
the brain. As such, the reduced relaxation function parameters
were assigned to all brain parenchyma parts. Therefore, the
objective of this inverse FE approach was to calibrate two
parameters:

1. The median stiffness of the brain, µmed, that defined the
material heterogeneity.

2. The non-linearity coefficient, α, that defined the
hyperelastic non-linearity.

Material parameters were calibrated using an iFE approach
in which parameters were optimized to minimize the error
between model and experimental results. In this case, a subset
of the impact cases in the in situ brain displacement dataset
(Alshareef et al., 2018, 2020a,b) were simulated using subject-
specific models and the error between nodal displacements and
the corresponding experimental displacements were minimized.
In this dataset, in situ brain deformation was measured at discrete
locations using sonomicrometry sensors (i.e., “receivers”),

distributed throughout the brain parenchyma of cadaveric head-
neck specimens. Three subject-specific models were generated
to represent the anatomies of subjects SONO-896, SONO-900,
and SONO-904 (Table 1; Alshareef et al., 2020a). Further details
regarding this experimental dataset and the corresponding model
setup are provided in the Supplementary Materials.

To minimize the likelihood of obtaining a non-unique
solution, µmed and α were optimized independently by leveraging
specific cases in the in situ brain displacement database. To
optimize µmed a low severity case (Axial 20 rad/s, 60 ms)
was used to optimize the median infinitesimal quasi-static
shear stiffness (a function of µmed). This case was selected
as preliminary simulations indicated that the deformations
induced in this case were not sensitive to the material non-
linearity coefficient. A higher severity case (Coronal 40 rad/s,
30 ms) was used to optimize α while maintaining the optimized
infinitesimal quasi-static shear stiffness. This coronal rotation
case was selected as preliminary simulations indicated that
the deformations predicted in this case were sensitive to the
material non-linearity coefficient and avoided calibrating the
material parameters under a single loading direction. Finally,
the calibrated heterogeneous material parameters were verified
using the remaining cases in the in situ brain deformation
database, as well as low severity in vivo brain strain data obtained
using the in vivo tMRI database (Knutsen et al., 2020). This
final verification included 39 simulations; 11 simulations for
each SONO subject-specific model (not including case used
for calibration) and 6 simulations for the tMRI cases. Details
regarding these experimental datasets and the respective model
setups are provided in the Supplementary Materials. As a
final check, the material response was assessed in tension,
compression, and simple shear loading over strain rates of 0.5, 5,
and 30 1/s and compared to experimental data (Jin et al., 2013).

The material calibration process is summarized below:

1. Optimize µmed under low severity rotational impacts.
2. Intermediate verification to assess calibrated µmed under

independent low severity cases.
3. Optimize α under higher severity rotational impacts.
4. Comprehensive verification of calibrated material

parameters

TABLE 1 | Specimen information for subjects used to assess deformation
response (Alshareef et al., 2020a).

Specimen SONO-896 SONO-900 SONO-904

Axial MRI

Sex Female Female Male

Age (yrs) 57 66 67

Height (cm) 163 165 177

Body Mass (kg) 31.1 56.2 54.9

ICV (cm3) 1300 1406 1545
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All models used in this study were subject-specific,
constructed to represent the anatomies of the subjects from which
the experimental data were collected. As such, the deformation
response of each subject-specific model was compared to the
experimental data obtained from that subject only. This was
crucial to eliminate geometric effects from the calibration and
verification processes, ensuring that discrepancies between
simulation and experimental results, for each subject, were due
to variations in material parameters only. All subject-specific
models were generated using registration-based morphing
(RBM), which is a non-linear morphing technique that was
developed specifically for generating subject-specific models
of the brain by leveraging image registration transformations
(Giudice et al., 2020). Metrics of morphing accuracy and element
quality for all subject-specific models generated in this study are
provided in the Supplementary Materials.

Objective Rating and Optimization
Strategy
CORrelation and Analysis (CORA) scores were used to quantify
the error between the nodal displacements in the model
and the receiver displacements in the experimental dataset.
Since experimental displacements were 3D (i.e., x, y, and z
displacement time-histories for each receiver), a composite score
(cCORA) was calculated to obtain a single objective rating for
each receiver. cCORA was computed as the weighted average
of the CORA scores in each orthogonal direction, weighted
by the relative magnitude of the experimental signal in each
direction (Giudice et al., 2019a). Finally, the overall score for
each rotational case was computed as the weighted average of all
receiver cCORA scores, weighted by the experimental maximum
resultant displacement for each receiver (wcCORA). In this study,
the default CORA parameters were used (Gehre et al., 2009).

wcCORA =
N∑
i

αi × cCORAi

αi =
βi∑N
i βi

Where, βi is the experimental maximum resultant displacement
for the ith receiver and N is the number of receivers for
each rotation case. For the calibration of the Ogden material
parameters, wcCORA was used to quantify the error between the
nodal displacements and the experimental receiver displacements
for each rotation simulation. To obtain a set of parameters that
best represented the overall response of the three subjects used
for calibration, a joint optimization was performed where the
goal was to maximize the mean wcCORA score for subjects
SONO-896, SONO-900, and SONO-904.

f (x) =
wcCORA896 + wcCORA900 + wcCORA904

3

A golden ratio search algorithm was used to identify the
maximum mean overall wcCORA as a function of the material
parameter being optimized. In the first iteration, a series of

simulations were run to identify the bounds for the golden search
algorithm. For example, when calibrating α, three simulations
with α = 2, 6, and 10 were run to determine the bounds
for calibration. The parameters investigated in each subsequent
iteration, i (xi,1 and xi,2) were determined by the golden ratio
search algorithm.

xi,1 = ai + (1− ϕ)
(
bi − a

)
xi,2 = ai + ϕ

(
bi − a

)

ϕ =

√
5− 1
2

Where ai and bi are the lower and upper bounds for iteration,
i. The bounds were updated based on the mean wcCORA score
for each parameter investigated [f (x1) and f (x2)] in the previous
iteration (i – 1).

If f (x1) > f (x2) then ai = a(i−1) and bi = x(i−1),2

If f (x1) < f (x2) then ai = x(i−1),1 and bi = b(i−1)

This process was repeated until the termination criteria was
satisfied. The parameter that had the greatest mean wcCORA
was selected as the calibrated value. The first iteration and
termination criteria for the calibration of µmed and α are shown in
Table 2. These values were selected based on parameters reported
in the literature for human brain tissue (Miller and Chinzei, 2002;
Nicolle et al., 2004; Franceschini et al., 2006; Kleiven, 2007; Kaster
et al., 2011; Moran et al., 2014; Budday et al., 2017a).

Calibration and Verification of Median
Shear Modulus
In the first step of the material calibration process, µmed was
optimized by simulating the Axial 20 rad/s, 60 ms case (Z:
20–60). All simulations were run for 200 ms. Pilot simulations
indicated that the predicted deformations in this loading case
were not sensitive to material non-linearity that is governed
by α. Therefore, in this optimization the shear response of
the material was constrained to the linear response of a Neo-
Hookean solid (α = 2), where the shear modulus defined in the
Ogden model is identical to the infinitesimal shear modulus of
the material (µ0).

Since the model incorporates material heterogeneity relative
to the median stiffness of the brain, the stiffness of each of the 10

TABLE 2 | First iteration parameters and termination criteria for calibrated
material parameters.

Parameter 1st Iteration Termination Criteria

µmed µmed = 0.25, 0.7, 1.15, 1.6, 2.05, 2.6 kPa b(i+1) − a(i+1) < 0.1 kPa

α α = 2, 6, 10 b(i+1) − a(i+1) < 0.2
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parts was defined relative to the median stiffness defined for any
given optimization iteration.

µi = γiµmed = γiµ0,med

Where γi is the relative stiffness of the ith part and varies between
0.53 and 1.53. All stiffness values reported in this study refer to
quasi-static parameters (i.e., µmed and α represent the quasi-static
response of the material).

To verify the calibrated median shear stiffness (µ0,med =

µmed) the remaining 20 rad/s, 60 ms cases in the coronal (X:
20–60) and sagittal (Y: 20–60) directions were simulated and
compared to each specimen’s experimental data using wcCORA.
Verification of the strain response was performed by simulating
in vivo brain strain experiments (Knutsen et al., 2020). In
this dataset, three subjects (tM-3978, tM-4838, and tM-6176)
were subjected to sagittal rotations (ωmax = 1.4–1.6 rad/s) and
three subjects (tM-3978, tM-7126, and tM-9475) were subjected
to axial rotations (ωmax = 4–5.4 rad/s) of the head. This
verification step was performed to ensure that the calibrated
µ0,med was physically meaningful and resulted in biofidelic
deformation predictions under independent low-deformation
test cases. This also provided reassurance that the final set of
calibrated material parameters were unique, given the model’s
sensitivity to both µ and α.

To compare the predicted strain response of each subject-
specific model, the maximum principal strain (MPS) of each
element was computed and mapped to the corresponding voxel in
the subject image. As a global metric of strain, the 95th percentile
MPS value (MPS-95) predicted by the model was compared to
the equivalent experimental measures. In addition, the volume
fraction of elements exceeding 2% strain was compared between
the model and experimental data. These volume fractions were
computed globally, as well as regionally for the cerebral gray and
white matter and the cerebellum. These regions were identified
using a segmentation image provided in the tMRI database.
MPS-95 was also computed for the elements/voxels located
in these regions.

Calibration and Verification of Non-linear
Coefficient
In the previous steps, the median shear stiffness, which was
equivalent to the median infinitesimal shear modulus (µ0,med =

µmed) since the shear response was assumed to be linear
(α = 2), was determined and verified. In this step, the non-linear
coefficient (α) was calibrated by simulating the Coronal 40 rad/s,
30 ms rotation case. All simulations were run for 200 ms. To
preserve the previously calibrated µ0,med, µmed was also adjusted
such that µ0,med was equivalent to the value determined in the
first step of the optimization procedure. Therefore, for the ith part
in the heterogeneous CAB-20MSym template model the shear
modulus in the Ogden constitutive model, µi, was defined as a
function of µmed, α, and γi.

µi =
2γiµ0,med

α

To verify the calibrated heterogeneous material, the remaining
11 rotation cases for each subject were simulated (36 total

simulations including case used for calibration), and the nodal
displacements of the calibrated subject-specific models were
compared to the corresponding experimental brain displacement
data using wcCORA. To assess the calibrated model performance
relative to other state-of-the-art and widely used FE brain
models, wcCORA values obtained in this study were compared to
those reported for the Global Human Body Models Consortium
(GHBMC) brain model (Mao et al., 2013) and the UVA
embedded axon model (UVA-EAM) (Wu et al., 2019, 2020,
2021). These models were morphed to the anatomy of the three
subjects using surface-based morphing (Wu et al., 2019) and
simulated under identical boundary conditions, resulting in 36
simulations per model.

The set of tMRI simulations used to verify the calibrated
median infinitesimal shear stiffness were also simulated using
the final calibrated heterogeneous model to ensure that the
incorporation of material non-linearity did not influence the
model predictions. Since the brain strains in these simulations
were low (less than 6% MPS), material non-linearity was not
expected to influence the model results.

Finally, the calibrated Ogden material response was compared
to experimental material test data. To verify the optimized
parameters, the complex modulus of the derived model was
compared to the complex moduli reported in the rheological
characterization dataset. Furthermore, a series of single element
(1 mm × 1 mm × 1 mm) simulations were run with
the fit material parameters to verify the response of the
constitutive model as well as the Ogden QLV implementation
in LS-Dyna. These single element simulations were run in
tension, compression, and simple shear at loading rates of
0.5, 5, and 30 1/s to 50% engineering strain and the results
were compared to average response corridors constructed
from the material characterization data in the literature
(Jin et al., 2013).

RESULTS

Development of CAB-20MSym Template
Model
The CAB-20MSym template model had an intracranial volume
of 1439 cm3 and approximately 1.6 million elements, 1.5
million nodes, and 16 parts (Figure 1). Note that Figure 1
depicts the external surfaces of each of these parts and is
not representative of the entire volume of each part. All
interfaces (e.g., falx-brain) were continuous and defined using
shared nodes.

Implementation of Brain Heterogeneity
The original and truncated stiffness distributions from the
MRE134 template, mapped to CAB-20MSym space, are shown in
Figure 2. In the truncated distribution, the median stiffness was
2.53 kPa and the mean± standard deviation was 2.37± 0.99 kPa.
To convert the MRE134 template image into the CAB-20MSym
template model, the truncated distribution was grouped into 10
bins, which were used to classify the normalized stiffness of each
voxel in the CAB-20MSym model. The 10 relative stiffness groups
were 0.53, 0.64, 0.75, 0.86, 0.97, 1.08, 1.20, 1.31, 1.42, and 1.53,
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FIGURE 1 | Depiction of the parts of the CAB-20MSym mesh. Brain parenchmya parts are subdivided based on their stiffness relative to the median stiffness
(µ/µmed ) of the MRE134 template. The volume of each solid part is indicated in parentheses. The skull is shown in gray.

FIGURE 2 | (Left) original (blue) and truncated (orange) MRE134 stiffness distributions. Stiffness values in the original distribution were truncated between the 15th
and 98th percentile stiffness values. (Right) grouped normalized stiffness values (N = 10 bins).
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FIGURE 3 | Magnetic resonance elastography template (MRE134), normalized stiffness image, and normalized stiffness label image (used to construct
CAB-20MSym template model). Each of the 10 bins in the normalized stiffness label corresponded to an individual part in the template model.

FIGURE 4 | tan(δ) (left) and complex modulus (right) of the calibrated material parameters, demonstrating the median complex modulus of the brain (purple) as
well as the complex modulus for the softest (green) and stiffest (blue) relative stiffness parts. Note that tan(δ) is a function of damping only and not tissue stiffness.
Experimental data were obtained from the literature (see Section “Constitutive Modeling of Brain Parenchyma” for list of references).

which corresponded to the bin centers (Figure 2). The MRE134
template, normalized stiffness image, and normalized stiffness
label image are shown in Figure 3.

Constitutive Modeling of the Brain
Parenchyma
The reduced relaxation function parameters were obtained
by fitting gi and βi (i = 4) to match experimental tan(δ)
data (Figure 4). The fit reduced relaxation parameters are

shown in Table 3. These viscoelastic parameters were applied
homogeneously throughout the entire brain model.

Calibration and Verification of Median
Shear Modulus
The median shear stiffness of the material was calibrated
using the axial 20 rad/s, 60 ms rotation case in the in situ
brain displacement database. The calibrated value of µmed was
1.125 kPa. Since this initial constitutive model constrained
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TABLE 3 | Prony series parameters for the brain parenchyma.

Material Parameters

g1 = 0.8619 β1 = 10 ms

g2 = 0.0383 β2 = 1 ms

g3 = 0.0412 β3 = 0.1 ms

g4 = 0.0249 β4 = 0.01 ms

g∞ = 0.0337

the non-linear coefficient to 2 (representing a Neo-Hookean
solid), µmed was equivalent to the infinitesimal quasi-static
shear modulus, µ0,med. Six iterations (12 simulations) were
required to satisfy the termination criteria specified in
Table 2, resulting in an optimal mean wcCORA of 0.62
(Figure 5). The calibrated value was within the range of
other Ogden rubber infinitesimal quasi-static shear moduli
reported in the literature for the brain (Miller and Chinzei,
2002; Nicolle et al., 2004; Franceschini et al., 2006; Kleiven,
2007; Kaster et al., 2011; Moran et al., 2014; Budday et al.,
2017a), which varied from 0.27 to 1.49 (mean ± standard
deviation = 0.92± 0.38).

Using the jointly calibrated µmed = µ0,med value, the Coronal
and Sagittal 20 rad/s, 60 ms cases for the same specimens were
simulated to verify the subject-specific model responses. The
wcCORA scores for the coronal, sagittal, and axial simulations
were between 0.66–0.72, 0.50–0.67, and 0.58–0.69, respectively
(Table 4). In general, wcCORA scores were greatest in the coronal
rotation, and across the three subjects, the SONO-900 model
yielded the highest wcCORA scores using the jointly calibrated
µmed value.

A series of tMRI experiments were simulated using subject-
specific models to verify the calibrated value of µmed = µ0,med.
The strain response of subject tM-9475 during the axial rotation
is shown in Figure 6. Qualitatively, the tM-9475 subject-specific
model demonstrated a similar deformation pattern compared
to the experimental data. In general, MPS was largest in the
cortex and smallest in the cerebellum (Figure 6). Additionally,

in both simulation and experiment, larger strains were observed
at the apexes of the ventricles (i.e., frontal and occipital horns)
which propagated through the cerebrum. This can be seen in
slices z = 20–40 in Figure 6. However, in the experimental
data cortical strain was consistently asymmetric, with the largest
strains observed in the right hemisphere of the brain, whereas
in the simulation the MPS distribution was relatively symmetric.
These trends were similar for all subjects tested in the axial
rotation protocol.

These trends were salient in the MPS-95 and strain volume
fraction metrics used to quantify brain deformation globally
and regionally. For subject tM-9475, global and regional MPS-
95 values were similar to the experimental data, with absolute
differences between 0.0025 and 0.0084 strain. However, while
regional MPS-95 values were similar between the model and
experiment, larger differences in the volume fraction of voxels
that exceeded 2% strain was observed, particularly in the
cerebellum (simulation: 0.15; experiment: 0.33) and gray matter
(simulation: 0.34; experiment: 0.61). Figures showing MPS-95
and volume fraction results for the axial and sagittal tMRI cases
are included in the Supplementary Materials.

The strain response of subject tM-4838 during the sagittal
rotation is shown in Figure 6. Qualitatively, the tM-4838 subject-
specific model demonstrated a similar MPS pattern compared
to the experimental data with the largest MPS values observed
at the periphery of the brain, including the cortex, base of the
cerebrum, and anterior surface of the brainstem, and lowest in
the midbrain (Figure 6). However, strains in the cerebellum and
brainstem were larger in the experimental data than predicted by
the simulation. This is particularly evident in slices x = −15–5
in Figure 6. In general, global and regional MPS-95 metrics were
similar between the subject-specific model and experimental data
with absolute differences in MPS-95 between 0.0003 and 0.0067
for subject tM-4838. The volume fraction of voxels that exceeded
2% strain was also similar, except for the cerebellum, where the
experimental volume fraction was 0.16 compared to only 0.06 in
the simulation. These trends were similar for all subjects tested in
the sagittal rotation protocol.

FIGURE 5 | Calibration results for µmed (left) and α (right). Parameters were calibrated to maximize the mean wcCORA score (black) across subjects SONO-896
(blue), SONO-900 (red), and SONO-904 (yellow). wcCORA for each subject was obtained by comparing nodal displacements from corresponding subject-specific
models and experimental data.
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Calibration and Verification of Non-linear
Coefficient
The non-linearity parameter of the Ogden constitutive model, α,
was calibrated using the Coronal 40 rad/s, 30 ms rotation case
in the in situ brain deformation database. The calibrated value
of α was 6.67, which yielded a mean wcCORA of 0.67 across
subjects SONO-896, SONO-900, and SONO-904 (Figure 5).
Eight iterations (12 simulations) were required to satisfy the
termination criteria specified in Table 2. The final calibrated
material parameters for each brain parenchyma part (grouped by
stiffness relative to the median stiffness) are shown in Table 5. The
viscoelastic parameters for the brain parts are shown in Table 3.

To verify the calibrated material parameters, all 12 impact
cases for subjects SONO-896, SONO-900, and SONO-904 were
simulated and assessed using wcCORA. The three subject-
specific models demonstrated good biofidelity with a mean
wcCORA of 0.63 ± 0.06 for all 36 simulations (range: 0.50–
0.74). Across the three subjects, SONO-900 demonstrated
the highest wcCORA scores (0.68 ± 0.03) and wcCORA
was similar for SONO-896 (0.61 ± 0.07) and SONO-904
(0.61 ± 0.06). In general, wcCORA scores were highest in
the coronal impacts (0.68 ± 0.04) and similar in the sagittal
(0.61 ± 0.06) and axial (0.61 ± 0.06) impacts. A summary
of the wcCORA scores for all three subjects is shown in
Figure 7. Exemplary nodal displacement-time histories for
subject SONO-904 in the 40 rad/s, 60 ms cases are shown in the
Supplementary Materials.

The tMRI simulations were run with the final calibrated
material model to ensure that the addition of material
non-linearity did not influence the strain prediction. As
expected, the brain strain response in these simulations was
dominated by the infinitesimal shear stiffness, which was
optimized in the first stage of material calibration. The
incorporation of material non-linearity had negligible effect
on the MPS distribution since this second optimization was
performed while maintaining the infinitesimal shear modulus
previously calibrated.

The complex modulus, as a function of frequency, for the
median stiffness response and softest (µ/µmed = 0.53) and stiffest
(µ/µmed = 1.53) relative stiffness parts are shown in Figure 4.
All three responses were within the range of experimental
data. Finally, the median, softest (µ/µmed = 0.53), and stiffest
(µ/µmed = 1.53) material responses were assessed in tension,
compression, and simple shear loading at strain rates of 0.5, 5,

TABLE 4 | wcCORA scores for µ0,med joint optimization and verification.

Subject wcCORA

X: 20–60 Y: 20–60 Z: 20–60*

SONO-896 0.67 0.67 0.58

SONO-900 0.72 0.63 0.69

SONO-904 0.66 0.50 0.60

SONO-Mean 0.68 ± 0.03 0.60 ± 0.09 0.62 ± 0.06

*Axial 20 rad/s, 60 ms (Z: 20–60) case used for calibration.

and 30 1/s and compared to experimental data (Figure 8; Jin
et al., 2013). At the highest strain rate (30 1/s) and intermediate
(5 1/s), the three material responses were like the experimental
corridors for all three loading modes, simultaneously. At the
lowest strain rate (0.5 1/s), the three material responses were
similar to the experimental in compression but were stiffer in
tension and shear.

DISCUSSION

In this study the heterogeneous CAB-20MSym template model
was developed, calibrated, and extensively evaluated using
a comprehensive set of experimental data that included
measurements of material properties using in vivo MRE
experiments (Hiscox et al., 2020), in situ brain displacement
measured using sonomicrometry (Alshareef et al., 2020a), in vivo
brain strain measured using tagged MRI (Knutsen et al., 2020),
and in vitro material response (Jin et al., 2013; Meaney et al.,
2014). In all assessments of model biofidelity, the CAB-20MSym
template model demonstrated a high fidelity to the experimental
data which represented a spectrum of TBI severity, ranging
from non-injurious (tMRI cases) to moderate-to-severe TBI
(sonomicrometry cases).

Our approach to implement heterogeneity using MRE data
was selected for several reasons. This technique implemented
material heterogeneity without significantly increasing
the computational cost. Other studies have implemented
heterogeneity using embedded beam elements to explicitly
model the structural contributions of axonal fiber tracts
(Garimella and Kraft, 2017; Garimella et al., 2019; Wu et al.,
2019). However, this technique has been reported to increase the
computational cost by a factor of 2.4. For the models developed
to calibrate the material parameters, this would have increased
the computational time for each simulation from approximately
15 to 36 h (simulating 200 ms of response). As such, the
computational time required to run the battery of the 36 in situ
brain deformation simulations (Alshareef et al., 2020a) would
have increased from approximately 540 to 1300 h.

The relative stiffness approach was also chosen with
consideration of effects specific to the MRE data. The MRE
stiffness measurements we used were determined at a single
frequency of 50 Hz, though brain tissue properties from MRE
have been shown to be dependent on the actuation frequency
due to the viscoelasticity of the brain (Sack et al., 2013). Thus, the
specific shear stiffness values recovered at this frequency may not
be most relevant for a TBI model. Furthermore, MRE measures
tissue stiffness under micron-level displacements. Since the brain
is a highly non-linear material, these stiffness results may not be
applicable at the finite levels of deformation associated with TBI.
Using relative stiffness minimizes any contributions these factors
may have had on the absolute stiffness measurements.

There are also several limitations associated with the
MRE-based approach. Firstly, although brain heterogeneity was
represented as a function of tissue stiffness and not tissue type, the
implementation was still isotropic as brain MRE measurements
typically assume material isotropy, though methods for
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FIGURE 6 | Comparison of maximum principal strain distribution for subject tM-9475 under axial rotation (top) and tM-4838 under sagittal rotation (bottom).

extracting anisotropic properties are being developed (Romano
et al., 2012; Tweten et al., 2015; McGarry et al., 2020; Smith
et al., 2020). Secondly, it was assumed that the relative stiffnesses
obtained from the micron-level displacements used in MRE
were linear with strain, and that the heterogeneity observed in
MRE was applicable for higher levels of deformation. While the
validity of these assumptions is unclear, the verification of the
brain response with these material parameters over a wide range
of rotational loading conditions minimizes their significance.

An inverse FE approach was used to calibrate the material
parameters of the heterogeneous CAB-20MSym template model
using subject-specific models. However, three challenges faced by
any iFE calibration problem are overfitting, obtaining a unique
solution, and computational cost. The likelihood of overfitting
and obtaining non-unique solutions in an optimization problem
is typically increased by using an excessively complicated model
(i.e., optimizing many material parameters) and an imbalance
between the amount of data used to fit the model and the
data used to validate the model (i.e., excessive training data).
Furthermore, since one simulation is required for each test
case, the computational cost of calibrating a material model
increases significantly with the number of parameters included.
Given that each simulation in this study took approximately
15 h to run, a robust and efficient approach to material
calibration was required.

In the heterogeneous CAB-20MSym template model, each
brain parenchyma material requires two parameters to describe

bulk properties (density, ρ and Poisson’s ratio, ν), two parameters
to describe deviatoric elastic properties (µ and α), and eight
parameters to describe viscoelastic properties (g1–g4 and β1–
β4), for a total of 12 parameters per material. Without further
reduction, a full material calibration would require optimizing
120 parameters, which would likely result in non-unique
solutions and the computational cost would be prohibitive.
In this study, several assumptions were made to reduce the

TABLE 5 | Calibrated Ogden material parameters for each brain parenchyma part,
grouped by stiffness relative to the median value.

Relative Stiffness µ (kPa) α

µmed
a 0.337 6.67

µ/µmed = 0.53 0.179

µ/µmed = 0.64 0.216

µ/µmed = 0.75 0.254

µ/µmed = 0.86 0.291

µ/µmed = 0.97 0.328

µ/µmed = 1.08 0.366

µ/µmed = 1.20 0.403

µ/µmed = 1.31 0.441

µ/µmed = 1.42 0.478

µ/µmed = 1.53 0.515

aNot physically represented in model.
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FIGURE 7 | Comparison of wcCORA scores for the calibrated heterogeneous model developed in this study, the GHBMC brain model (Mao et al., 2013), and the
anisotropic UVA-EAM model (Wu et al., 2019).

number of material parameters included in the optimization
problem. First, all brain tissues were assumed to have the same
density and Poisson’s ratio, which is consistent with the TBI
biomechanics literature and is common practice in FE brain
modeling (Takhounts et al., 2008; Mao et al., 2013; Wu et al., 2019;
Alshareef et al., 2020a). This reduced the number of material
parameters from 120 to 100. By assuming homogeneous damping
and non-linearity, the total number of variables calibrated in this
study was reduced to 11 (µ for each material, and a single non-
linearity coefficient, α). For the stiffness variables, each material
was defined relative to the median value using experimental MRE
data, further reducing the total number of calibrated parameters
to 2 (µmed and α). While non-linearity and viscoelastic properties
of the brain have been shown to vary spatially throughout
the brain (Johnson et al., 2016; Budday et al., 2017a,b, 2019;
Hiscox et al., 2018), these are more challenging measurements
and the extent to which viscoelasticity and elastic non-linearity
vary remains an open question. These disparities are likely
attributed to differences in experimental protocols, including
tissue harvest sites, tissue hydration, and loading conditions

(Budday et al., 2019). The membranes implemented in the model
(falx and tentorium) and CSF parts were not included in the
optimization, as a preliminary sensitivity study indicated that the
influences of the stiffness and damping of these structures on
the deformation response was negligible, compared to the brain
parenchyma parts.

We used a combined optimization to calibrate the median
shear stiffness and non-linear coefficient, as opposed to an
individual calibration for each of the three subjects. The objective
of the study was to obtain a singular set of optimal material
parameters to be used in the CAB-20MSym template model.
Subject-specific material properties could have been combined
(e.g., averaged), however, due to the highly non-linear nature of
this optimization problem this may not have yielded an optimal
solution for the CAB-20MSym template model. Nonetheless, the
calibration process indicated that the three subjects likely had
different underlying material properties (Figure 5). For example,
the estimated optimal median shear moduli for subjects SONO-
896, SONO-900, and SONO-904 were approximately 0.70, 1.18,
and 2.05 kPa, respectively. A simple average of these values
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FIGURE 8 | Calibrated material response in tension, compression, and simple shear at rates of 0.5, 5, and 30 1/s compared to experimental material
characterization data (Jin et al., 2013). The median (purple), softest (green), and stiffest (blue) response of the brain are shown.

would have resulted in an “optimal” shear modulus of 1.31 kPa,
compared to 1.13 kPa determined by the optimization which
maximized wcCORA. An important limitation was that only
three elderly (57–67 years), cadaveric subjects were used in the
optimization process due to the availability of experimental brain
deformation data. However, the calibrated model demonstrated
a biofidelic response when verified using the in vivo tMRI
dataset, which included younger, living subjects between 21 and
42 years of age (Knutsen et al., 2020). Nonetheless, the calibrated
material parameters may not be representative of the general
population and this calibration should be repeated once brain
deformation data for more specimens is available. It should also

be noted that since these material parameters were obtained
using an inverse FE process, they are model specific and cannot
be arbitrarily applied to other models (Giudice et al., 2019b).
However, given that the calibrated materials have been verified
using experimental material characterization data, it is very likely
that they represent the underlying material response, and not the
contributions of the numerical implementation. Nonetheless, if
implemented in another model, the deformation response should
be thoroughly investigated prior to model deployment.

The final calibrated material model was verified by its response
to experimental tissue data from multiple sources. The complex
modulus of the calibrated materials and the response in tension,
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compression, and simple shear were compared to experimental
material characterization data for cortical tissue. In both
assessments, the median, softest, and stiffest material responses
in the calibrated CAB-20MSym template model were similar
the experimental data, verifying that the material parameters
obtained from the iFE calibration were physically meaningful and
representative of the underlying tissue. In these comparisons, the
full range of material response was compared to the experimental
data to account for the fact that the experimental data may not
necessarily represent the median response of the brain.

The biofidelity of the calibrated CAB-20MSym template
model was assessed using brain deformation data from the
experiments conducted by Alshareef et al. (2018, 2020a) and
Knutsen et al. (2020). Collectively, these datasets encapsulated
various magnitudes (2.5–40 rad/s), durations (30–60 ms),
and directions of rotational loading (coronal, sagittal, axial).
The model demonstrated biofidelic responses under the test
conditions used by Alshareef et al. Interestingly, differences in
wcCORA scores across subjects reflected the subject-specific
relationships between material properties and wcCORA scores
in the optimization process. For example, wcCORA scores for
SONO-900 were generally greater than those for SONO-896. In
the material calibration process, the estimated optimal material
properties for SONO-900 were similar to the joint optimal value
(µ0,med = 1.18 kPa), whereas the estimated optimal material
properties for SONO-896 were softer (µ0,med ≈ 0.7 kPa). The
opposite was true for SONO-904 (µ0,med ≈ 2.0 kPa). These
differences in calibrated parameters likely reflect variability in
material properties between these specimens. While variation
in material parameters is to be expected, future work is
required to quantify this variability across larger populations.
This may be an important factor as subject-specific models
of the brain become more prominent in research and clinical
applications. Moving forward, the MRE-based framework used
to implement material heterogeneity in this study will be adapted
to incorporate subject-specific material properties in future
models that consider the entire subject-specific brain structure.
While the CAB-20MSym template model demonstrated a
biofidelic response under the loading conditions investigated
in this study, additional verification is required if the model
is exercised under loading conditions that deviate from those
used in the current study (e.g., blast loading or micron-level
harmonic displacements).

While a high-resolution measurement of brain strain at
injurious loading conditions is not available, assessing the
biofidelity of a brain model’s strain prediction using low severity,
non-injurious loading conditions can improve the confidence
of a model’s strain response. In general, the CAB-20MSym
demonstrated good biofidelity under the axial and sagittal
tMRI cases compared to the experimental data. However, there
were some discrepancies between the model and experimental
results, particularly in the volume fraction exceeding 2% strain.
These differences could have been attributed to several factors.
Firstly, in the experimental tMRI data set, only resultant head
cradle kinematics were recorded. Therefore, to simulate these
experiments it was assumed that the head was perfectly coupled
to the head cradle and that the applied rotational head kinematics

were perfectly uniaxial (either axial or sagittal). While the head
was tightly coupled to the head cradle, it is possible that there
were slight discrepancies between the head kinematics in the
experiments and simulations. Secondly, the brain-skull interface
was implemented by modeling the CSF layer between the brain
and skull. While many approaches have been investigated to
model this interface (Wang et al., 2018), the relative motion
between the brain and skull is not well characterized and
there is no consensus on best modeling practices for this
interface. Therefore, discrepancies between the relative skull-
brain motion in the simulations and experiments could have
contributed to the observed differences in volume fraction and
deformation fields, especially in these low deformation impacts.
Furthermore, the brainstem of the CAB-20MSym template model
was truncated at the foramen magnum due to a lack of MRE
data in the inferior portions of the brainstem and superior
portions of the spinal cord. This may have attributed to some
of the observed differences, especially in the inferior regions of
the brain. However, since the deformations induced in these
experiments were small, it is possible that these factors had
an exaggerated effect on the predicted strains, and it is not
clear how these effects translate to larger deformation cases.
Finally, while tMRI is a well-established imaging technique,
it can be susceptible to experimental error (approximately
0.7% strain, introduced during filtering or interpolation), which
could affect these low strain measurements and the resulting
2% strain volume fractions (Gomez et al., 2019). Nonetheless,
the overall biofidelity of the CAB-20MSym template model’s
strain prediction under these low severity loading conditions
was satisfactory.

Summary
In this study, the CAB-20MSym template model was
developed, calibrated, and extensively verified over a wide
range of rotational head kinematic loading conditions. This
model utilized a computationally efficient approach for
incorporating material heterogeneity that leveraged data
from a MRE template image that represented the average
brain stiffness of 134 healthy adult subjects. Overall, the
developed model demonstrated a biofidelic response for
both nodal displacement and element strain metrics. Moving
forward this template model will serve as the foundation
of the registration-based morphing pipeline developed by
Giudice et al. (2020) and can serve as an anatomically accurate
model for further investigations of TBI mechanisms and
to aid the development of novel protective equipment and
safety countermeasures. Furthermore, the framework for
implementing material heterogeneity using MRE data can be
adapted to incorporate subject-specific material properties in
future models of the brain.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this
study. This data can be found here: NKI-RS:

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 14 May 2021 | Volume 9 | Article 664268

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-664268 April 28, 2021 Time: 17:17 # 15

Giudice et al. Calibration of a Heterogeneous Brain Model

http://fcon_1000.projects.nitrc.org/indi/enhanced/; MRE-134
Template: https://github.com/mechneurolab/mre134; In Situ
Brain Deformation: https://www.nhtsa.gov/research-data/
databases-and-software.

AUTHOR CONTRIBUTIONS

All authors contributed to the conception, design, and
interpretation of results presented in this study and are
accountable for all aspects of this work.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Achievement Rewards
for Collegiate Scientists (ARCS) Foundation and the UVA Brain
Institute for supporting this research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2021.664268/full#supplementary-material

REFERENCES
Alshareef, A., Giudice, J. S., Forman, J., Salzar, R. S., and Panzer, M. B. (2018). A

novel method for quantifying human in situ whole brain deformation under
rotational loading using sonomicrometry. J. Neurotrauma 35, 780–789. doi:
10.1089/neu.2017.5362

Alshareef, A., Giudice, J. S., Forman, J., Shedd, D. F., Reynier, K. A., Wu, T., et al.
(2020a). Biomechanics of the human brain during dynamic rotation of the head.
J. Neurotrauma 37, 1546–1555. doi: 10.1089/neu.2019.6847

Alshareef, A., Giudice, J. S., Forman, J., Shedd, D. F., Wu, T., Reynier, K. A., et al.
(2020b). Application of trilateration and Kalman filtering algorithms to track
dynamic brain deformation using sonomicrometry. Biomed. Signal Process.
Control 56:10. doi: 10.1016/j.bspc.2019.101691

Arbogast, K. B., and Margulies, S. S. (1998). Material characterization of the
brainstem from oscillatory shear tests. J. Biomech. 31, 801–807. doi: 10.1016/
S0021-9290(98)00068-2

Arbogast, K. B., Thibault, K. L., Pinheiro, B. S., Winey, K. I., and Margulies,
S. S. (1997). A high-frequency shear device for testing soft biological tissues.
J. Biomech. 30, 757–759. doi: 10.1016/s0021-9290(97)00023-7

Avants, B., Epstein, C., Grossman, M., and Gee, J. (2008). Symmetric diffeomorphic
image registration with cross-correlation: evaluating automated labeling of
elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41. doi: 10.1016/
j.media.2007.06.004

Bilston, L. E., Liu, Z., and Phan-Thien, N. (1997). Linear viscoelastic properties
of bovine brain tissue in shear. Biorheology 34, 377–385. doi: 10.1016/s0006-
355x(98)00022-5

Bilston, L. E., Liu, Z., and Phan-Thien, N. (2001). Large strain behaviour of brain
tissue in shear: some experimental data and differential constitutive model.
Biorheology 38, 335–345.

Brands, D. A. (2000). The large shear strain dynamic behavior of in-vitro
porcine brain tissue and a silicone gel model material. Stapp Car Crash J. 44,
249–260.

Budday, S., Nay, R., de Rooij, R., Steinmann, P., Wyrobek, T., Ovaert, T. C.,
et al. (2015). Mechanical properties of gray and white matter brain tissue by
indentation. J. Mech. Behav. Biomed. Mater. 46, 318–330. doi: 10.1016/j.jmbbm.
2015.02.024

Budday, S., Ovaert, T. C., Holzapfel, G. A., Steinmann, P., and Kuhl, E. (2019). Fifty
shades of brain: a review on the mechanical testing and modeling of brain tissue.
Arch. Comput. Methods Eng. 27, 1187–1230. doi: 10.1007/s11831-019-09352-w

Budday, S., Sommer, G., Birkl, C., Langkammer, C., Haybaeck, J., Kohnert, J., et al.
(2017a). Mechanical characterization of human brain tissue. Acta Biomater. 48,
319–340. doi: 10.1016/j.actbio.2016.10.036

Budday, S., Sommer, G., Haybaeck, J., Steinmann, P., Holzapfel, G. A., and Kuhl,
E. (2017b). Rheological characterization of human brain tissue. Acta Biomater.
60, 315–329. doi: 10.1016/j.actbio.2017.06.024

Centers for Disease Control and Prevention (2015). “Report to congress on
traumatic brain injury in the united states: epidemiology and rehabilitation,”
in National Center for Injury Prevention and Control. Presented at the
Division of Unintentional Injury Prevention, (Atlanta, GA: Centers for Disease
Control and Prevention), 1–72. Available online at: https://www.cdc.gov/
traumaticbraininjury/pdf/TBI_Report_to_Congress_Epi_and_Rehab-a.pdf

Darvish, K. K., and Crandall, J. R. (2001). Nonlinear viscoelastic effects in
oscillatory shear deformation of brain tissue. Med. Eng. Phys. 23, 633–645.
doi: 10.1016/S1350-4533(01)00101-1

Dixit, P., and Liu, G. R. (2017). A review on recent development of finite element
models for head injury simulations. Arch. Comput. Methods Eng. 24, 979–1031.
doi: 10.1007/s11831-016-9196-x

Fahlstedt, M., Abayazid, F., Panzer, M. B., Trotta, A., Zhao, W., Ghajari, M.,
et al. (2021). Ranking and rating bicycle helmet safety performance in oblique
impacts using eight different brain injury models. Ann. Biomed. Eng. 49,
1097–1109. doi: 10.1007/s10439-020-02703-w

Fallenstein, G. T., Hulce, V. D., and Melvin, J. W. (1969). Dynamic mechanical
properties of human brain tissue. J. Biomechan. 2, 217–226. doi: 10.1016/0021-
9290(69)90079-7

Faul, M., and Coronado, V. (2015). Epidemiology of Traumatic Brain Injury, in:
Handbook of Clinical Neurology. Amsterdam: Elsevier, 3–13.

Franceschini, G., Bigoni, D., Regitnig, P., and Holzapfel, G. A. (2006). Brain tissue
deforms similarly to filled elastomers and follows consolidation theory. J. Mech.
Phys. Solids 54, 2592–2620. doi: 10.1016/j.jmps.2006.05.004

Fung, Y. (1993). Biomechanics: Mechanical Properties of Living Tissues. Berlin:
Springer Science & Business Media.

Gabler, L. F., Crandall, J. R., and Panzer, M. B. (2016). Assessment of kinematic
brain injury metrics for predicting strain responses in diverse automotive
impact conditions. Ann. Biomed. Eng. 44, 3705–3718. doi: 10.1007/s10439-016-
1697-0

Gabler, L. F., Crandall, J. R., and Panzer, M. B. (2018). Development of a second-
order system for rapid estimation of maximum brain strain. Ann. Biomed. Eng.
47, 1971–1981. doi: 10.1007/s10439-018-02179-9

Garimella, H. T., and Kraft, R. H. (2017). Modeling the mechanics of axonal fiber
tracts using the embedded finite element method: axonal fiber mechanics using
the embedded element method. Int. J. Numer. Methods Biomed. Eng. 33:e2823.
doi: 10.1002/cnm.2823

Garimella, H. T., Menghani, R. R., Gerber, J. I., Sridhar, S., and Kraft, R. H. (2019).
Embedded finite elements for modeling axonal injury. Ann. Biomed. Eng. 47,
1889–1907. doi: 10.1007/s10439-018-02166-0

Garo, A., Hrapko, M., Van Dommelen, J. A. W., and Peters, G. W. M. (2007).
Towards a reliable characterisation of the mechanical behaviour of brain tissue:
the effects of post-mortem time and sample preparation. Biorheology 44, 51–58.

Gehre, C., Gades, H., and Wernicke, P. (2009). “Objective rating of signals using
test and simulation responses,” in Proceedings of the 21st International Technical
Conference on the Enhanced Safety of Vehicles, (Stuttgart).

Ghajari, M., Hellyer, P. J., and Sharp, D. J. (2017). Computational
modelling of traumatic brain injury predicts the location of
chronic traumatic encephalopathy pathology. Brain 140, 333–343.
doi: 10.1093/brain/aww317

Giordano, C., and Kleiven, S. (2014). Evaluation of axonal strain as a predictor for
mild traumatic brain injuries using finite element modeling. Stapp. Car Crash J.
58:29.

Giudice, J. S., Alshareef, A., Wu, T., Gancayco, C. A., Reynier, K. A., Tustison, N. J.,
et al. (2020). An image registration-based morphing technique for generating
subject-specific brain finite element models. Ann. Biomed. Eng. 48, 2412–2424.
doi: 10.1007/s10439-020-02584-z

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 15 May 2021 | Volume 9 | Article 664268

http://fcon_1000.projects.nitrc.org/indi/enhanced/
https://github.com/mechneurolab/mre134
https://www.nhtsa.gov/research-data/databases-and-software
https://www.nhtsa.gov/research-data/databases-and-software
https://www.frontiersin.org/articles/10.3389/fbioe.2021.664268/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2021.664268/full#supplementary-material
https://doi.org/10.1089/neu.2017.5362
https://doi.org/10.1089/neu.2017.5362
https://doi.org/10.1089/neu.2019.6847
https://doi.org/10.1016/j.bspc.2019.101691
https://doi.org/10.1016/S0021-9290(98)00068-2
https://doi.org/10.1016/S0021-9290(98)00068-2
https://doi.org/10.1016/s0021-9290(97)00023-7
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/s0006-355x(98)00022-5
https://doi.org/10.1016/s0006-355x(98)00022-5
https://doi.org/10.1016/j.jmbbm.2015.02.024
https://doi.org/10.1016/j.jmbbm.2015.02.024
https://doi.org/10.1007/s11831-019-09352-w
https://doi.org/10.1016/j.actbio.2016.10.036
https://doi.org/10.1016/j.actbio.2017.06.024
https://www.cdc.gov/traumaticbraininjury/pdf/TBI_Report_to_Congress_Epi_and_Rehab-a.pdf
https://www.cdc.gov/traumaticbraininjury/pdf/TBI_Report_to_Congress_Epi_and_Rehab-a.pdf
https://doi.org/10.1016/S1350-4533(01)00101-1
https://doi.org/10.1007/s11831-016-9196-x
https://doi.org/10.1007/s10439-020-02703-w
https://doi.org/10.1016/0021-9290(69)90079-7
https://doi.org/10.1016/0021-9290(69)90079-7
https://doi.org/10.1016/j.jmps.2006.05.004
https://doi.org/10.1007/s10439-016-1697-0
https://doi.org/10.1007/s10439-016-1697-0
https://doi.org/10.1007/s10439-018-02179-9
https://doi.org/10.1002/cnm.2823
https://doi.org/10.1007/s10439-018-02166-0
https://doi.org/10.1093/brain/aww317
https://doi.org/10.1007/s10439-020-02584-z
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-664268 April 28, 2021 Time: 17:17 # 16

Giudice et al. Calibration of a Heterogeneous Brain Model

Giudice, J. S., Park, G., Kong, K., Bailey, A., Kent, R., and Panzer, M. B. (2019a).
Development of open-source dummy and impactor models for the assessment
of american football helmet finite element models. Ann. Biomed. Eng. 47,
464–474. doi: 10.1007/s10439-018-02155-3

Giudice, J. S., Zeng, W., Wu, T., Alshareef, A., Shedd, D. F., and Panzer, M. B.
(2019b). An analytical review of the numerical methods used for finite element
modeling of traumatic brain injury. Ann. Biomed. Eng. 47, 1855–1872. doi:
10.1007/s10439-018-02161-5

Gomez, A. D., Knutsen, A. K., Xing, F., Lu, Y.-C., Chan, D., Pham, D. L.,
et al. (2019). 3-D measurements of acceleration-induced brain deformation via
harmonic phase analysis and finite-element models. IEEE Trans. Biomed. Eng.
66, 1456–1467. doi: 10.1109/TBME.2018.2874591

Hajiaghamemar, M., Wu, T., Panzer, M. B., and Margulies, S. S. (2019). Embedded
axonal fiber tracts improve finite element model predictions of traumatic brain
injury. Biomech.Model. Mechanobiol. 19, 1109–1130. doi: 10.1007/s10237-019-
01273-8

Hiscox, L. V., Johnson, C. L., McGarry, M. D. J., Perrins, M., Littlejohn, A., van
Beek, E. J. R., et al. (2018). High-resolution magnetic resonance elastography
reveals differences in subcortical gray matter viscoelasticity between young
and healthy older adults. Neurobiol. Aging 65, 158–167. doi: 10.1016/j.
neurobiolaging.2018.01.010

Hiscox, L. V., McGarry, M. D., Schwarb, H., Van Houten, E. E., Pohlig, R. T.,
Roberts, N., et al. (2020). Standard-space atlas of the viscoelastic properties of
the human brain. Hum. Brain Mapp. 41, 5282–5300. doi: 10.1002/hbm.25192

Hiscox, L. V., Johnson, C. L., Barnhill, E., McGarry, M. D., Huston, J. III, Van Beek,
E. J., et al. (2016) MRE of the human brain: technique, findings and clinical
applications. Phys. Med. Biol. 61:R401.

Horgan, T. J., and Gilchrist, M. D. (2003). The creation of three-dimensional
finite element models for simulating head impact biomechanics. Int. J.
Crashworthiness 8, 353–366. doi: 10.1533/ijcr.2003.0243

Hrapko, M., Van Dommelen, J. A. W., Peters, G. W. M., and Wismans, J. (2006).
The mechanical behaviour of brain tissue: large strain response and constitutive
modelling. Biorheology 43, 623–636.

Ji, S., Zhao, W., Ford, J. C., Beckwith, J. G., Bolander, R. P., Greenwald, R. M., et al.
(2015). Group-Wise evaluation and comparison of white matter fiber strain
and maximum principal strain in sports-related concussion. J. Neurotrauma 32,
441–454. doi: 10.1089/neu.2013.3268

Jin, X., Zhu, F., Mao, H., Shen, M., and Yang, K. H. (2013). A comprehensive
experimental study on material properties of human brain tissue. J. Biomech.
46, 2795–2801. doi: 10.1016/j.jbiomech.2013.09.001

Johnson, C. L., McGarry, M. D., Gharibans, A. A., Weaver, J. B., Paulsen, K. D.,
Wang, H., et al. (2013a). Local mechanical properties of white matter structures
in the human brain. Neuroimage 79, 145–152. doi: 10.1016/j.neuroimage.2013.
04.089

Johnson, C. L., McGarry, M. D., Van Houten, E. E., Weaver, J. B., Paulsen, K. D.,
Sutton, B. P., et al. (2013b). Magnetic resonance elastography of the brain using
multishot spiral readouts with self-navigated motion correction. Magn. Reson.
Med. 70, 404–412. doi: 10.1002/mrm.24473

Johnson, C. L., Schwarb, H., McGarry, M. D. J., Anderson, A. T., Huesmann, G. R.,
Sutton, B. P., et al. (2016). Viscoelasticity of subcortical gray matter structures.
Hum. Brain Mapp. 37, 4221–4233. doi: 10.1002/hbm.23314

Johnson, C. L., and Telzer, E. H. (2018). Magnetic resonance elastography for
examining developmental changes in the mechanical properties of the brain.
Dev. Cogn. Neurosci. 33, 176–181. doi: 10.1016/j.dcn.2017.08.010

Kaster, T., Sack, I., and Samani, A. (2011). Measurement of the hyperelastic
properties of ex vivo brain tissue slices. J. Biomech. 44, 1158–1163. doi: 10.1016/
j.jbiomech.2011.01.019

Kimpara, H., Nakahira, Y., Iwamoto, M., Miki, K., Ichihara, K., and Kawano,
S. (2006). Investigation of anteroposterior head-neck responses during severe
frontal impacts using a brain-spinal cord complex FE model. Stapp. Car Crash
J. 50:509.

Kleiven, S. (2007). Predictors for traumatic brain injuries evaluated through
accident reconstructions. Stapp. Car Crash J. 51, 81–114.

Kleiven, S., and von Holst, H. (2002). Consequences of head size following trauma
to the human head. J. Biomech. 35, 153–160. doi: 10.1016/s0021-9290(01)
00202-0

Knutsen, A. K., Gomez, A. D., Gangolli, M., Wang, W.-T., Chan, D., Lu, Y.-C.,
et al. (2020). In vivo estimates of axonal stretch and 3D brain deformation

during mild head impact. Brain Multiphysics 1:100015. doi: 10.1016/j.brain.
2020.100015

Lippert, S. A., Rang, E. M., and Grimm, M. J. (2004). The high frequency properties
of brain tissue. Biorheology 41, 681–691.

Mao, H., Zhang, L., Jiang, B., Genthikatti, V. V., Jin, X., Zhu, F., et al. (2013).
Development of a finite element human head model partially validated with
thirty five experimental cases. J. Biomech. Eng. 135:111002. doi: 10.1115/1.
4025101

McAllister, T. W., Ford, J. C., Ji, S., Beckwith, J. G., Flashman, L. A., Paulsen,
K., et al. (2012). Maximum principal strain and strain rate associated with
concussion diagnosis correlates with changes in corpus callosum white matter
indices. Ann. Biomed. Eng. 40, 127–140. doi: 10.1007/s10439-011-0402-6

McGarry, M. D., Van Houten, E., Guertler, C., Okamoto, R. J., Smith, D. R.,
Sowinski, D. R., et al. (2020). A heterogenous, time harmonic, nearly
incompressible transverse isotropic finite element brain simulation platform for
MR elastography. Phys. Med. Biol. doi: 10.1088/1361-6560/ab9a84 [Epub ahead
of print].

Meaney, D. F., Morrison, B., and Bass, C. D. (2014). The mechanics of traumatic
brain injury: a review of what we know and what we need to know for reducing
its societal burden. J. Biomech. Eng. 136:021008.

Miller, K., and Chinzei, K. (2002). Mechanical properties of brain tissue in tension.
J. Biomech. 35, 483–490. doi: 10.1016/S0021-9290(01)00234-2

Miller, L. E., Urban, J. E., and Stitzel, J. D. (2016). Development and validation of
an atlas-based finite element brain model. Biomech. Model. Mechanobiol. 15,
1201–1214. doi: 10.1007/s10237-015-0754-1

Miller, L. E., Urban, J. E., and Stitzel, J. D. (2017). Validation
performance comparison for finite element models of the human
brain. Comput. Methods Biomech. Biomed. Eng. 20, 1273–1288.
doi: 10.1080/10255842.2017.1340462

Moran, R., Smith, J. H., and García, J. J. (2014). Fitted hyperelastic parameters
for human brain tissue from reported tension, compression, and shear tests.
J. Biomech. 47, 3762–3766. doi: 10.1016/j.jbiomech.2014.09.030

Murphy, M. C., Huston, J. III, and Ehman, R. L. (2019). MR elastography of the
brain and its application in neurological diseases. NeuroImage 187, 176–183.
doi: 10.1016/j.neuroimage.2017.10.008

Nicolle, S., Lounis, M., and Willinger, R. (2004). Shear properties of brain
tissue over a frequency range relevant for automotive impact situations: new
experimental results. Stapp. Car Crash J. 48, 239–258.

Ogden, R. W., and Hill, R. (1972). Large deformation isotropic elasticity –
on the correlation of theory and experiment for incompressible
rubberlike solids. Proc. R. Soc. Lond. Math. Phys. Sci. 326, 565–584.
doi: 10.1098/rspa.1972.0026

Panzer, M. B., Myers, B. S., Capehart, B. P., and Bass, C. R. (2012). Development of
a finite element model for blast brain injury and the effects of CSF cavitation.
Ann. Biomed. Eng. 40, 1530–1544. doi: 10.1007/s10439-012-0519-2

Reynier, K. A., Alshareef, A., Sanchez, E. J., Shedd, D. F., Walton, S. R., Erdman,
N. K., et al. (2020). The effect of muscle activation on head kinematics during
non-injurious head impacts in human subjects. Ann. Biomed. Eng. 48, 2751–
2762. doi: 10.1007/s10439-020-02609-7

Romano, A., Scheel, M., Hirsch, S., Braun, J., and Sack, I. (2012). In vivo waveguide
elastography of white matter tracts in the human brain. Magn. Reson. Med. 68,
1410–1422. doi: 10.1002/mrm.24141

Sack, I., Jöhrens, K., Würfel, J., and Braun, J. (2013). Structure-sensitive
elastography: on the viscoelastic powerlaw behavior of in vivo human tissue in
health and disease. Soft. Matter. 9, 5672–5680. doi: 10.1039/c3sm50552a

Shen, F., Tay, T. E., Li, J. Z., Nigen, S., Lee, P. V. S., and Chan, H. K. (2006).
Modified Bilston nonlinear viscoelastic model for finite element head injury
studies. J. Biomech Eng. 128, 797–801. doi: 10.1115/1.2264393

Shuck, L. Z., and Advani, S. H. (1972). Rheological response of human brain tissue
in shear. J. Basic Eng. 94, 905–911. doi: 10.1115/1.3425588

Smith, D. R., Guertler, C. A., Okamoto, R. J., Romano, A. J., Bayly, P. V., and
Johnson, C. L. (2020). Multi-Excitation magnetic resonance elastography of
the brain: wave propagation in anisotropic white matter. J. Biomech. Eng.
142:071005.

Takhounts, E. G., Ridella, S. A., Hasija, V., Tannous, R. E., Campbell, J. Q.,
Malone, D., et al. (2008). Investigation of traumatic brain injuries using the next
generation of simulated injury monitor (SIMon) finite element head model.
Stapp. Car Crash J. 52, 1–31. doi: 10.1155/2015/837585

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 16 May 2021 | Volume 9 | Article 664268

https://doi.org/10.1007/s10439-018-02155-3
https://doi.org/10.1007/s10439-018-02161-5
https://doi.org/10.1007/s10439-018-02161-5
https://doi.org/10.1109/TBME.2018.2874591
https://doi.org/10.1007/s10237-019-01273-8
https://doi.org/10.1007/s10237-019-01273-8
https://doi.org/10.1016/j.neurobiolaging.2018.01.010
https://doi.org/10.1016/j.neurobiolaging.2018.01.010
https://doi.org/10.1002/hbm.25192
https://doi.org/10.1533/ijcr.2003.0243
https://doi.org/10.1089/neu.2013.3268
https://doi.org/10.1016/j.jbiomech.2013.09.001
https://doi.org/10.1016/j.neuroimage.2013.04.089
https://doi.org/10.1016/j.neuroimage.2013.04.089
https://doi.org/10.1002/mrm.24473
https://doi.org/10.1002/hbm.23314
https://doi.org/10.1016/j.dcn.2017.08.010
https://doi.org/10.1016/j.jbiomech.2011.01.019
https://doi.org/10.1016/j.jbiomech.2011.01.019
https://doi.org/10.1016/s0021-9290(01)00202-0
https://doi.org/10.1016/s0021-9290(01)00202-0
https://doi.org/10.1016/j.brain.2020.100015
https://doi.org/10.1016/j.brain.2020.100015
https://doi.org/10.1115/1.4025101
https://doi.org/10.1115/1.4025101
https://doi.org/10.1007/s10439-011-0402-6
https://doi.org/10.1088/1361-6560/ab9a84
https://doi.org/10.1016/S0021-9290(01)00234-2
https://doi.org/10.1007/s10237-015-0754-1
https://doi.org/10.1080/10255842.2017.1340462
https://doi.org/10.1016/j.jbiomech.2014.09.030
https://doi.org/10.1016/j.neuroimage.2017.10.008
https://doi.org/10.1098/rspa.1972.0026
https://doi.org/10.1007/s10439-012-0519-2
https://doi.org/10.1007/s10439-020-02609-7
https://doi.org/10.1002/mrm.24141
https://doi.org/10.1039/c3sm50552a
https://doi.org/10.1115/1.2264393
https://doi.org/10.1115/1.3425588
https://doi.org/10.1155/2015/837585
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-664268 April 28, 2021 Time: 17:17 # 17

Giudice et al. Calibration of a Heterogeneous Brain Model

Tweten, D. J., Okamoto, R. J., Schmidt, J. L., Garbow, J. R., and Bayly, P. V.
(2015). Estimation of material parameters from slow and fast shear waves in
an incompressible, transversely isotropic material. J. Biomech. 48, 4002–4009.
doi: 10.1016/j.jbiomech.2015.09.009

Wang, F., Han, Y., Wang, B., Peng, Q., Huang, X., Miller, K., et al. (2018).
Prediction of brain deformations and risk of traumatic brain injury due to
closed-head impact: quantitative analysis of the effects of boundary conditions
and brain tissue constitutive model. Biomechan. Model. Mechanobiol. 17, 1165–
1185. doi: 10.1007/s10237-018-1021-z

Weaver, J. B., Pattison, A. J., McGarry, M. D., Perreard, I. M., Swienckowski, J. G.,
Eskey, C. J., et al. (2012). Brain mechanical property measurement using MRE
with intrinsic activation. Phys. Med. Biol. 57:7275. doi: 10.1088/0031-9155/57/
22/7275

Weickenmeier, J., de Rooij, R., Budday, S., Steinmann, P., Ovaert, T. C., and Kuhl,
E. (2016). Brain stiffness increases with myelin content. Acta Biomater. 42,
265–272. doi: 10.1016/j.actbio.2016.07.040

Wu, T., Alshareef, A., Giudice, J. S., and Panzer, M. B. (2019).
Explicit modeling of white matter axonal fiber tracts in a
finite element brain model. Ann. Biomed. Eng. 47, 1908–1922.
doi: 10.1007/s10439-019-02239-8

Wu, T., Antona-Makoshi, J., Alshareef, A., Giudice, J. S., and Panzer, M. B. (2020).
Investigation of cross-species scaling methods for traumatic brain injury using
finite element analysis. J. Neurotrauma 37, 410–422. doi: 10.1089/neu.2019.
6576

Wu, T., Hajiaghamemar, M., Giudice, J. S., Alshareef, A., Margulies, S., and
Panzer, M. B. (2021). Evaluation of tissue-level brain injury metrics
using species-specific simulations. J. Neurotrauma Neu. 2020:7445.
doi: 10.1089/neu.2020.7445

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Giudice, Alshareef, Wu, Knutsen, Hiscox, Johnson and Panzer.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 17 May 2021 | Volume 9 | Article 664268

https://doi.org/10.1016/j.jbiomech.2015.09.009
https://doi.org/10.1007/s10237-018-1021-z
https://doi.org/10.1088/0031-9155/57/22/7275
https://doi.org/10.1088/0031-9155/57/22/7275
https://doi.org/10.1016/j.actbio.2016.07.040
https://doi.org/10.1007/s10439-019-02239-8
https://doi.org/10.1089/neu.2019.6576
https://doi.org/10.1089/neu.2019.6576
https://doi.org/10.1089/neu.2020.7445
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Calibration of a Heterogeneous Brain Model Using a Subject-Specific Inverse Finite Element Approach
	Introduction
	Materials and Methods
	Development of CAB-20MSym Template Model
	Implementation of Brain Heterogeneity
	Constitutive Modeling of Brain Parenchyma
	Calibration Objective and Approach
	Objective Rating and Optimization Strategy
	Calibration and Verification of Median Shear Modulus
	Calibration and Verification of Non-linear Coefficient

	Results
	Development of CAB-20MSym Template Model
	Implementation of Brain Heterogeneity
	Constitutive Modeling of the Brain Parenchyma
	Calibration and Verification of Median Shear Modulus
	Calibration and Verification of Non-linear Coefficient

	Discussion
	Summary

	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


