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ABSTRACT 

Age-related memory loss shares similar risk factors as cardiometabolic diseases including 

elevated serum triglycerides (TGs) and low-density lipoprotein cholesterol (LDL-C) and reduced 

high-density lipoprotein cholesterol (HDL-C). The mechanisms linking these aberrant blood 

lipids to memory loss are not completely understood but may be partially mediated by reduced 

integrity of the hippocampus (HC), the primary brain structure for encoding and recalling 

memories. In this study, we tested the hypothesis that blood lipid markers are independently 

associated with memory performance and HC viscoelasticity – a noninvasive measure of brain 

tissue microstructural integrity assessed by high resolution magnetic resonance elastography 

(MRE). Twenty-six individuals across the adult lifespan were recruited (14M/12F; mean age: 

4215 y; age range: 22-78 y) and serum lipid profiles were related to episodic memory and HC 

viscoelasticity. All subjects were generally healthy without clinically abnormal blood lipids or 

memory loss. Episodic memory was negatively associated with the TG/HDL-C ratio. HC 

viscoelasticity was negatively associated with serum TGs and the TG/HDL-C ratio, independent 

of age and in the absence of associations with HC volume. These data, although cross-

sectional, suggest that subtle differences in blood lipid profiles in healthy adults may contribute 

to a reduction in memory function and HC tissue integrity.  
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INTRODUCTION 

Advancing age is the primary risk factor for Alzheimer’s disease (AD), which is the most 

common form of dementia and is characterized by neurodegeneration and irreversible memory 

loss. As the number of older adults in developed societies continues to increase, the number of 

AD cases is projected to triple by 2050 if preventive measures are not undertaken 1. Age-related 

cognitive decline shares many of the same modifiable risk factors as cardiometabolic diseases, 

especially when they emerge earlier in life, prior to the development of clinically relevant 

memory loss 2. In this regard, elevated blood triglycerides (TGs) and low-density lipoproteins 

(LDL-C) and reduced high-density lipoprotein cholesterol (HDL-C) are established clinical risk 

factors and independent predictors of ischemic heart disease 3–9 and have been associated with 

cognitive impairment and late-life risk for AD 10–14. Despite their association with cognitive aging, 

the underlying mechanisms linking aberrant lipid profiles to neurodegeneration and memory loss 

in humans are not fully understood. 

 Insight into the mechanisms of cognitive aging can be gained by studying the 

viscoelastic mechanical properties of the hippocampus (HC), a brain structure essential for 

memory encoding and performance 15. In this regard, magnetic resonance elastography (MRE) 

is a novel and noninvasive imaging modality for measuring brain viscoelastic mechanical 

properties in humans 16,17 and reflects the distribution and organization of neurons, axons, and 

glial cells 18–20. Indeed, alterations in neuronal microstructure via measures of viscoelastic 

properties have been demonstrated in neurodegenerative diseases including AD 21–23, 

Parkinson’s disease 24,25, multiple sclerosis 26,27, and amyotrophic lateral sclerosis 28, as well 

under conditions of increased inflammation 18,29. Changes to brain tissue viscoelastic properties 

assessed using MRE also occur during normal healthy aging, and properties of the HC 

specifically have been strongly associated with memory performance 30–32 such that they are 

potentially more predictive of episodic memory than traditional clinical measures of HC volumes 

33. As such, MRE-based assessments of HC tissue integrity in healthy adults could provide 



important insight into pre-clinical associations between blood lipids and age-related memory 

loss that precede HC atrophy. Therefore, in this study we determined if blood lipids are 

independently associated with HC viscoelastic properties and memory function in healthy 

individuals across the adult lifespan. We hypothesized that elevated serum TGs, elevated LDL-

C and reduced HDL-C would be independently associated with lower memory performance. We 

also hypothesized that aberrant serum lipids would be associated with reduced HC integrity - 

defined as either a higher HC damping ratio () or lower HC shear stiffness () – and that these 

associations would occur independent of age, sex and other cardiometabolic risk factors. We 

further predicted that these associations would occur in the absence of an association with HC 

volume. 

 

MATERIALS AND METHODS 

This study was reviewed and approved by University of Delaware’s (UD) Institutional 

Review Board and all experimental procedures and protocols conformed to the standards 

outlined in the Declaration of Helsinki. The purpose of the study, along with the possible benefits 

and risks, was explained to all subjects and their written informed consent was obtained prior to 

participation.  All measurements were made in the Neurovascular Aging Laboratory and the 

Center for Biomedical and Brain Imaging at UD between August 2018 and December 2019. 

 

Study participants and recruitment 

Twenty-six healthy adult men and women (14M/12F) between the age of 22-78 years 

were recruited for this study from Newark, DE, and surrounding areas. All participants were non-

smokers and were apparently free from chronic clinical diseases and major psychological and 

neurological disorders as assessed by medical history and baseline blood chemistries. 

Participants were excluded if they exhibited clinically abnormal blood chemistries such as a 

GFR < 60 ml/min/1.73m2 and values that were ±2.5 x the upper or lower limit of the normal 



range. Participants taking any statin medications and medications acting on the central nervous 

system (CNS) were excluded as well. Participants were also excluded if they were unable or 

unwilling to participate in an MRI scan (e.g. metal implants, pacemaker, claustrophobia). 

Women of childbearing age were tested for possible pregnancy (hCG Pregnancy Test Kit, 

McKesson Consult) before entering the MRI. Subjects refrained from all over-the-counter 

medications for 48 h prior to the experimental visits and refrained from alcohol and vigorous 

exercise 24 h prior to experimental visits. Height and weight were measured during the initial 

screening. BMI was calculated as weight in kilograms over square of height in meters. Physical 

activity was obtained from the Modifiable Activity Questionnaire and was measured as 

metabolic equivalents (METs) in hours per week during leisure time activity 34. 

 

Blood lipid analysis 

A standard blood lipid panel (Quest Diagnostics, USA) was performed at the time of 

initial screening following a 12 h overnight fast. Measured lipid markers included serum 

triglycerides (TGs), total blood cholesterol (TC), and high-density lipoprotein cholesterol (HDL-

C). Low-density lipoprotein cholesterol (LDL-C) concentrations were calculated from the Martin-

Hopkins equation. Generally, the Friedewald calculation (LDL-C = TC - HDL-C - TG/5) is 

commonly used to obtain blood LDL-C concentrations in which TG/5 is used to represent very 

low-density lipoprotein cholesterol (VLDL-C) 35. However, Martin et al. (2013) derived a more 

accurate factor that calculates VLDL-C from TGs, ranging from 3.1 to 11.9 depending on 

individual TG and non-HDL-C concentrations 36. We also calculated an index of atherogenic risk 

that includes TG/HDL-C ratio 37,38. 

 

Memory function 

Episodic memory was assessed using the California Verbal Learning Test (CVLT-III) 39. 

The CVLT-III consists of the examiner reading a pre-recorded list of 16 words (List A) with four 



items belonging to each of four categories (e.g. vegetables, animals, modes of transportation, 

and furniture). Participants are asked to recall as many items as possible, in any order, over five 

trials. Another list of 16 words (List B) is administered after List A for one trial as an interference. 

After List B, participants are asked to freely recall words in any order from List A and then 

categorize List A into their four semantic categories (cued recall), without the examiner re-

reading the list. Following a 20-minute delay, free and cued recall of words from List A is 

assessed followed by a Yes/No recognition from List A. For this study, raw scores from the 

delayed recall portion of the test were used, as robust associations between HC structural 

changes and delayed recall memory exist both in healthy aging as well as in AD patients 40–42. 

 

Magnetic Resonance Elastography (MRE) 

All participants completed a 50-min scanning session at the UD Center for Biomedical 

and Brain Imaging on a 3T Siemens Magnetom Prisma whole-body MRI scanner with a 64-

channel head coil (Siemens, Erlangen, Germany). MRE images were acquired using a 3D 

multiband, multishot spiral sequence at 1.25 mm3 isotropic resolution (240 x 240 mm2 field of 

view (FOV), 96 slices, repetition time (TR)/echo time (TE) = 3360/70 ms) in order to capture 

high-resolution displacement data with an acquisition time of 10 minutes and 45 seconds 43. The 

sequence was synchronized with an external 50Hz vibration frequency delivered to the head by 

a pneumatic actuator system and soft pillow driver (Resoundant Inc., Rochester, MN, USA) that 

has already been reported to be acceptable over a wide age range 30 as depicted in Figure 1. 

Motion from the actuator was sampled with flow-compensated motion encoding gradients to 

generate full vector displacement fields, following iterative image reconstruction, as described 

previously by our collaborators 44. 

Bilateral HC masks were obtained from a T1-weighted magnetization-prepared rapid 

gradient echo (MPRAGE) structural scan at 0.9 mm3 resolution (240 x 240 mm2 FOV, 192 



slices, TR/TE = 2300/2.32 ms) and segmented using FreeSurfer 6.0. They were then registered 

from the anatomical T1 image space to MRE space using the FLIRT tool in FSL (FMRIB 

Software Library v. 6.0.0) 45. Bilateral HC volumetric measures were determined from Freesurfer 

outputs and were normalized using estimated total intracranial volume (eTIV) to correct for 

participant head size 46.  

MRE data quality was assessed using octahedral shear-strain based signal-to-noise 

ratio (OSS-SNR) and a cut-off of OSS-SNR > 3 was considered as acceptable data for stable 

inversion 47. A nonlinear inversion algorithm (NLI), combined with soft prior regularization (SPR), 

was used to estimate the viscoelastic complex shear modulus (G*=G’+iG”) of the HC 48,49. SPR 

employs prior anatomical information to reduce regional variability and promote mechanical 

homogeneity in regions of interest (ROI) 50; SPR weighting of 10-12 was applied in this study. 

Maps of the complex shear modulus were used to calculate viscoelastic parameters, shear 

stiffness (=2(|G|2)/(G′ + |G|)) and damping ratio (=G”/2G’), which are commonly reported in 

brain MRE literature 30,51–54. Shear stiffness  is a property of viscoelastic tissue that describes 

resistance to deformation due to applied loading. Stiffness is related to the speed of shear wave 

propagation where waves will propagate more quickly through a stiff material and have a longer 

wavelength, as opposed to a softer material, where waves are slower and have a shorter 

wavelength 55. Damping ratio  is a dimensionless quantity that refers to the relative attenuation 

level in a material. Higher  values indicate that the material attenuates rapidly, exhibiting 

behavior of a more viscous fluid while lower  values indicate a more elastic solid. Higher  also 

suggests a less densely connected solid phase, allowing for more viscous and frictional losses, 

which is an indicator of poorer tissue integrity 20. 

 

 

 



Statistical Analyses 

Normality of residuals of each variable was assessed using the Shapiro-Wilk test 56. 

Bivariate correlation analyses (Pearson correlations) were used to identify whether blood lipid 

markers and potential covariates were associated with any of the dependent variables. The 

Spearman rank correlation test was performed on variables that were not normally distributed 

(BMI, TG, and CVLT Delayed Recall scores). Because age is a strong predictor of both HC 

integrity and memory 57, it was included in the bivariate correlation analysis. Sex, habitual 

physical activity, and BMI are also associated with brain viscoelasticity 31,53,58 and blood lipid 

profiles 59,60; therefore, these variables were included as potential covariates. Multiple linear 

regressions were performed to identify the association between each covariate and independent 

variable of interest from the bivariate correlation analyses and the primary dependent variables. 

Any variable that was not normally distributed was log transformed prior to being entered into 

the regression models. Inferences from simple linear regressions were age-adjusted data based 

on residuals of the independent and dependent variables; however, for simplicity, figures are 

presented with raw data. Statistical significance was set at P < 0.05. All analyses were 

performed with RStudio v.1.2.1355 (RStudio Inc., Boston, MA, USA) and GraphPad Prism 8.0 

(GraphPad Software Inc., San Diego, CA, USA). 

 

RESULTS 

Participant characteristics 

Twenty-six adult men and women between the age of 22-78 years were included in this 

study. Basic characteristics and clinical laboratory values are presented in Table 1. Participants 

were generally healthy and free of overt cardiovascular diseases or other chronic conditions and 

the group mean laboratory values were within normal clinical ranges.  

 



Bivariate correlation between serum lipids and hippocampal structure and function 

Bivariate correlations of serum lipid markers and their relation to memory and HC 

viscoelastic properties are presented in Table 2. HDL-C was significantly associated with 

delayed recall memory (rs=0.48, P=0.01) and HC stiffness (r=0.43, P=0.03), while serum TGs 

were strongly associated with HC damping ratio (rs=0.63, P=0.0005). Total cholesterol (TC) was 

also significantly associated with HC stiffness (r=0.42, P=0.03); however, we observed no 

significant relation between LDL-C and HC stiffness (r=0.25, P=0.22), suggesting that this 

association was solely due to the influence of HDL-C. Hence, TC was not included in 

subsequent multiple linear regressions to avoid overfitting the models. Although not statistically 

significant, we also observed negative associations between delayed recall memory with both 

TGs (rs=-0.37, P=0.06) and LDL-C (rs=-0.36, P=0.08) as well as a negative association between 

HDL-C and HC damping ratio (r=-0.34, P=0.09). Collectively, these results support an 

association between serum lipid profiles and HC function (i.e., memory) and integrity. 

Because serum lipids, HC structure, and memory are potentially influenced by age and 

other cardiometabolic risk factors or lifestyle behaviors, we next determined whether any of our 

independent or dependent variables were influenced by other covariates including age, sex, 

BMI, and physical activity (Table 2). Age was significantly associated with delayed recall 

memory (rs=-0.48, P=0.01) and nearly associated with HC damping ratio (r=0.39, P=0.05), 

therefore we included age as a covariate in all subsequent models. There were no associations 

between any of the other covariates with our independent or dependent variables.  

 

Independent association between serum lipids and hippocampal structure and function 

 Next, we performed multiple linear regressions to determine the independent 

associations between serum lipid markers of interest and HC viscoelastic properties or memory 

performance while correcting for age and other lipids of interest (Table 3). Because we 

observed no significant associations between LDL-C and HC viscoelastic properties, we only 



included TGs and HDL-C in our models. Consistent with our bivariate correlations, we observed 

a significant association between TGs and HC damping ratio (=0.54, P=0.012) while correcting 

for age and HDL-C (Table 3). We no longer observed a significant association between HDL-C 

and HC stiffness after correcting for age and TGs; however, the effect size remained strong and 

was close to significant (=0.43, P=0.066). Finally, after correcting for blood lipid markers of 

interest, only age was independently associated with delayed recall memory (=-0.45, P=0.02); 

however, the explained variance (R2=0.28) was larger than that explained by age alone 

(R2=0.23), suggesting at least some contribution of blood lipids to the total variance in cognitive 

function. 

 

Association between TG/HDL-C ratio and hippocampal structure and function 

Because serum TGs and HDL-C emerged as the blood lipid markers most associated 

with HC viscoelastic properties, we next assessed the association between the TG/HDL-C ratio 

(an established clinical marker of atherogenic risk) and HC viscoelastic properties and memory 

while correcting for age. Consistent with our findings in the previous analyses, we observed a 

significant association between the TG/HDL-C ratio and HC damping ratio (Figure 2A; r=0.54, 

P=0.005) and a close association with HC stiffness, although not significant (Figure 2B; r=0.36, 

P=0.07). Interestingly, we also observed a significant association between the TG/HDL-C ratio 

and delayed recall memory, even when corrected for age (Figure 2C; r=0.47, P=0.02). 

Representative images depicting a lower HC damping ratio in a participant with lower TG/HDL-

C ratio characterized by a low serum TG concentration and high HDL-C concentration (Figure 

2D) compared to a higher HC damping ratio in a subject with higher TG/HDL-C ratio 

characterized by a high serum TG concentration and low HDL-C concentration (Figure 2E) are 

also presented. 

 



Serum lipids and HC volumes 

Finally, to investigate whether serum lipids were associated with standard volumetric 

measures of the HC, we examined their association with HC volumes. These associations 

between HC volume and serum TGs (r=0.01, P=0.96), HDL-C (r=0.10, P=0.61), and TG/HDL-C 

ratio (r=0.02, P=0.92) were not significant after correcting for age (data not shown). 

 

DISCUSSION 

The primary finding of this study is that serum concentrations of TGs and the TG/HDL-C 

ratio are associated with memory performance and HC viscoelastic properties in healthy, 

cognitively normal adults, independent of age. Importantly, these associations exist in the 

absence of any relation with HC volumes suggesting a potential mechanistic role of serum lipids 

in the loss of HC viscoelastic properties in the absence of HC atrophy or clinically relevant 

memory loss. Collectively, our results may provide important insight into the early events linking 

cardiometabolic risk factors to late life memory impairment. 

A novel aspect of our study is the use of high-resolution MRE to characterize HC 

structure and integrity. MRE has recently emerged as an important imaging modality for 

assessing brain tissue viscoelasticity 16,17,55,61 and reflects the microstructural composition and 

organization of neural structures 18–20. Two important properties can be derived from MRE that 

provide important insight regarding the structural integrity of the brain. Damping ratio, or the 

relative viscous-to-elastic behavior of tissue, has been correlated with the density of solid phase 

connections of soft tissues in animal models 18,19 and has been proposed to reflect neuronal 

microstructural tissue organization in vivo 20. Accordingly, a lower HC  indicates a more elastic 

solid likely with densely packed neuronal connections, whereas a higher  reflects a more 

viscous tissue, likely with fewer neuronal connections 20. In contrast, brain tissue stiffness 

assessed by MRE has been correlated with neuronal density, myelin content, and neural 



network strength in mouse and bovine animal models, respectively 20,62,63; thus, a higher HC  

has been suggested to reflect an increased number of neurons within a stronger cellular matrix 

20. In this regard, normal aging is characterized by an increase in HC  and a decrease in HC , 

with a change in either property suggested to represent a loss of brain tissue integrity 20, which 

in turn is associated with memory impairment 51,54 and potentially the transition from mild 

cognitive impairment to AD 64.  

Our results provide important mechanistic insight into early events linking changes in 

blood lipids to the loss of HC integrity and function and may help explain why cardiometabolic 

risk factors during midlife predict memory loss later in life. The most striking observations were 

positive, independent associations between serum TGs and the TG/HDL-C ratio with HC 

damping ratio suggesting that even mildly aberrant blood lipids may disrupt existing neuronal 

connections and organization prior to any clinically detectable HC atrophy. Though not 

significant after correcting for age and other lipids, we also observed an association between 

HDL-C and HC stiffness that may suggest an important independent role of HDL-C in 

maintaining neuronal composition and integrity and is worthy of future investigation.  

 Although previous studies have demonstrated a similar link between serum lipids and 

memory function 11,13,14, our study is the first to relate these important cardiometabolic risk 

factors to markers of HC tissue integrity in otherwise healthy humans. Reductions in brain tissue 

viscosity (loss modulus G”) and elasticity (storage modulus G’) have been observed in mice 

following acutely induced neuroinflammation 18 and may mimic the effects of chronic 

neuroinflammation that occurs in the HC of older adults 65. In this regard, TG transport occurs 

within very low-density lipoprotein (VLDL) particles which can bind to toll-like receptors on 

vascular endothelial cells leading to the release of pro-inflammatory cytokines and the 

development of vascular endothelial dysfunction 66–69. Although VLDL and LDL particles 

themselves are not known to be present in the CNS, there is some evidence that lower-density 



lipoproteins may penetrate the blood-brain barrier (BBB) during conditions of increased 

inflammation 70. Thus, elevated serum lipids may contribute to a loss of HC integrity either 

directly, or through a mechanism involving reduced cerebral perfusion, which is an established 

early clinical feature of AD 71–73.  

 TG-rich lipoproteins (VLDL and LDL) exchange their TGs with cholesterol esters from 

HDL-C via cholesteryl ester-transfer protein 68,74; thus, higher levels of HDL-C facilitate removal 

of harmful lipids which may explain why we also observed an association between the TG/HDL 

ratio and HC damping ratio. A major component of plasma HDL is apolipoprotein-A-I (ApoA-I), 

which has been shown to be protective against cognitive decline and AD 14,75,76. HDL/ApoA-I 

inhibits expression of pro-inflammatory cytokines by suppressing expression of adhesion 

molecules such as VCAM-1 and ICAM-1 77. Accordingly, the mechanistic role of HDL-C and its 

associated lipoproteins on HC integrity and function needs to be explored further. 

Lifestyle factors, such as consumption of an unhealthy diet, contribute to the increase of 

several cardiometabolic risk factors and may reduce HC integrity through the modulation of 

blood lipids. In this regard, dietary intake of added sugars (i.e., all caloric sweeteners added to 

food during processing) have been shown to increase production of blood TGs and lower 

concentrations of HDL-C, in large part via the metabolism of fructose by the liver 78,79. Several 

animal studies have linked a high-sugar (along with high-fat) diet to elevated blood TGs 80,81, 

increased inflammation 82–84, and reduced concentrations of the neuroprotective protein brain-

derived neurotrophic factor (BDNF) 85,86. Thus, it is possible that chronic consumption of sugar-

sweetened food and beverages, particularly those containing fructose, may contribute to age-

related memory loss by altering HC integrity; however, this hypothesis has not yet been tested 

in humans. Future randomized controlled trials examining the effects of a high added sugar diet 

(e.g., containing foods sweetened with high fructose corn syrup), on HC integrity and memory 

performance in humans are needed before changes to public health policy or nutritional 

guidelines can be made. 



It is important to note that our study was conducted in generally healthy individuals, most 

of whom had clinically normal serum concentrations of TGs and HDL-C suggesting that even 

modest, preclinical changes in lipid metabolism may be sufficient to evoke changes to HC 

structure and function. Importantly, we did not observe a significant association between blood 

lipids and HC volumes, even after correcting for age, suggesting that elevated TGs or reduced 

HDL-C can induce a loss of HC microstructural integrity at any age in the absence of clinically 

significant brain tissue atrophy. These observations from our study could have important 

therapeutic implications for slowing or reversing the progression of age-related memory loss 

prior to the development of irreversible neuronal tissue loss; however, it is important to note that 

the present study was cross-sectional and did not investigate a causal link between serum lipids 

and markers of HC structure or function. Longitudinal studies are needed to determine whether 

changes in blood lipids mediate the loss of HC integrity or memory performance with aging. 

Although the focus of our study was on healthy individuals, our findings have important 

implications for cognitive aging and dementia risk. Future studies should examine whether these 

associations are impacted by Apolipoprotein-E (ApoE) genotype, which not only plays a 

significant role in lipid metabolism, but is involved in brain amyloid-beta (A) transport and BBB 

integrity 87–89. Individuals with one or more copy of the E4 variant of ApoE are at greater risk for 

AD, while the E2 variant has been shown to be neuroprotective and is associated with 

increased HC volume and improved cognitive performance 90,91. Thus, it will be important to 

characterize the influence of ApoE genotype on the association between serum lipids and HC 

integrity in future studies to further elucidate the mechanisms underlying age-related memory 

loss. 

In summary, this is the first study to explore the relation between serum lipid markers 

and HC viscoelastic properties in healthy adults. We found that elevated serum TGs are 

associated with a reduction in HC integrity while HDL-C may help maintain HC integrity. 

Collectively, our findings suggest that the TG/HDL-C ratio is inversely associated with memory 



performance, even after correcting for age, and precedes any loss of HC volume which 

underscores the importance of cardiometabolic risk factors on memory function before any 

clinical changes of cognitive impairment can occur. Future research should explore how diet 

and other lifestyle factors that are known to modulate serum lipids affect HC integrity to delay or 

reverse cognitive aging. 
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 FIGURE LEGENDS 

 

 

Figure 1. MRE protocol. (A) Shear waves generated via external vibration at 50 Hz from an 

active driver to a head pillow-driver; (B) Shear waves imaged as tissue displacement in three 

directions; (C) Nonlinear inversion algorithm to determine shear stiffness () and damping ratio 

(). 



 

Figure 2. Serum lipids, memory function and brain mechanical properties, and 

representative images of hippocampal damping ratio. Linear regression analysis between 

TG/HDL-C ratio and (A) hippocampal damping ratio; closed downward facing triangle symbol 

represents individual in (Figure 2D) and closed upward facing triangle symbol represents 

individual in (Figure 2E) (B) hippocampal stiffness and (C) CVLT delayed recall score; r and P-

values are adjusted for age; Dashed lines represent 95% confidence interval; Statistical 

significance set at P < 0.05; N=26 in all panels. (D) Image of participant with a low TG/HDL-C 

ratio (TG = 79mg/dl; HDL-C = 76 mg/dl; TG/HDL-C = 1.04) and relatively low hippocampal 

damping ratio (0.13) compared with (E) Image of participant with high TG/HDL-C ratio (TG = 

222 mg/dl; HDL-C = 50 mg/dl; TG/HDL-C = 4.44) and relatively high hippocampal damping ratio 

(0.22).  

 

 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Table 1. Participant characteristics  

Characteristic Mean Range 

Sex (M/F) 14/12 N/A 

Age (years) 42 ± 15 22-78 

Body Mass (kg) 76 ± 17 44-107 

BMI (kg/m2) 26 ± 5 21.2-38.9 

Systolic Blood Pressure (mmHg) 114 ± 11 90-142 

Diastolic Blood Pressure (mmHg) 69 ± 11 48-93 

Heart Rate (bpm) 62 ± 9 45-78 

Total Cholesterol (mg/dl) 191 ± 33 132-256 

HDL-C (mg/dl) 64 ± 21 34-115 

LDL-C (mg/dl) 105 ± 27 54-175 

Triglycerides (mg/dl) 112 ± 60 39-230 

TG/HDL-C Ratio 2.1 ± 1.6 0.5-5.8 

Abbreviations: BMI: body mass index, HDL-C: high-density lipoprotein 
cholesterol, LDL-C: low-density lipoprotein cholesterol, TG: 
triglycerides. Data are mean ± SD. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 2. Bivariate correlation between dependent variables and potential covariates 

 Independent Variables Covariates 

Dependent Variables TC LDL-C HDL-C TG (rs) Age Sex 
BMI 
(rs) 

METs 

CVLT Delayed 
Recall Score 
(rs) 

r -0.05 -0.36 0.48* -0.37 -0.48* 0.16 -0.14 0.26 

P-value 0.79 0.08 0.01 0.06 0.01 0.43 0.50 0.19 

Hippocampal 
Stiffness 

r 0.42* 0.25 0.43* -0.08 0.06 0.27 -0.22 0.21 

P-value 0.03 0.22 0.03 0.70 0.77 0.18 0.27 0.29 

Hippocampal 
Damping Ratio 

r -0.03 0.05 -0.34 0.63* 0.39* -0.15 0.27 0.03 

P-value 0.88 0.79 0.09 0.0005 0.05 0.45 0.17 0.87 

Abbreviations: CVLT: California Verbal Learning Test III; BMI: body mass index, METs: leisure 
physical activity metabolic equivalents hours/week; TC: total cholesterol; HDL-C: high-density 
lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; TG: plasma triglycerides. rs 
represents variables for which Spearman rank correlation test was run in which the r values are 
Spearman correlation coefficients; rest of the r values represent Pearson correlation coefficients; 
*P < 0.05 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Multiple linear regression models 

CVLT Delayed Recall Score 

  P-value 

TG -0.09 0.655 
HDL-C 0.27 0.192 
Age -0.45* 0.020 

Model Variance (adjusted R2) 0.28* 0.016 

Hippocampal Stiffness 

  P-value 

TG -0.03 0.903 
HDL-C 0.43 0.066 
Age 0.12 0.543 

Model Variance (adjusted R2) 0.09 0.168 

Hippocampal Damping Ratio 

  P-value 

TG 0.54* 0.012 
HDL-C -0.03 0.885 
Age 0.22 0.212 

Model Variance (adjusted R2) 0.36* 0.005 

Abbreviations:  CVLT: California Verbal Learning Test III; TG: 
triglycerides, HDL-C: high-density lipoprotein cholesterol; Standards 
regression coefficients (β) represent association between each 
independent variable and the dependent variable while holding the 
other independent variables constant; *P < 0.05 


