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Abstract 

This thesis focused on three aspects of human preference-based decisions. First, integrating 

multiple sources of value information had an impact on behavioural performance and the 

underlying cognitive process. During preference-based judgments, humans combine multiple 

information sources into a single source of evidence, and behavioural changes are related to 

the quality of evidence. Second, to investigate psychophysical performance (sensitivity and 

bias) based on internal value and external perception information, a categorization task was 

conducted with value information embedded into geometric shapes. As measured by Weber 

ratio, attaching internal values to geometric shapes resulted in less discriminating sensitivity 

than perceptual judgements, and there was no difference in the response bias between the two 

types of decisions. Hence, these findings showed that a single computational process may 

underlie both value-based and perceptual decisions, and that transferring internal preference 

onto external perceptual input generates additional noise to the decision-making process. Third, 

this thesis investigated the MEG signatures of internal value-based decisions as well as their 

differences from perceptual decisions. Instead of geometrical shapes, internal value 

information embedded into spatial locations and binary choice task was conducted using the 

identical visual stimuli in both the internal preference and external perception context. 

Multivariate patten analysis on source space MEG data showed that more extended visual and 

frontoparietal activations are sensitive to value differences in value-based decisions. These 

results provide a foundation for further integrating perceptual and preference-based decision-

making into a single framework. Overall, findings presented in this thesis contributes to the 

study of value-based decision-making by integrating novel experimental approaches, cognitive 

modelling, and electrophysiological investigations of the human brain. 
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Chapter 1 

Introduction 

1.1. Background  

Decision-making is defined as the cognitive process of choosing the most appropriate option 

between the available alternatives in order to achieve the goals or objectives of decision maker. 

This process involves several stages, the first of which is the integration of information from 

the external environment or the internal state of decision-makers themselves (e.g., individuals, 

groups, or organizations), followed by the accumulation of available information, the 

evaluation of available alternatives by considering additional factors such as uncertainty and 

costs, and finally choosing one of the available options (Fellows, 2004). This cognitive process 

is an essential component of behaviour; it spans from simple actions such as deciding whether 

to cross the street by judging the colour of the traffic light to complicated human judgments 

such as deciding which blockchain to invest money in. Therefore, decision-making research is 

of interest in a wide range of disciplines, including economics, neuroscience, psychology, 

finance, computer science, and statistics (Baron, 2000; Edwards, 1954; Gärling et al., n.d.; 

Rangel et al., 2008; Simon, 1966; Stirling, 2010; Trommershäuser et al., 2008). 

From the economic perspective, the decision-making process is modelled by rational choice 

theory, which states that people’s choices are motivated by the rewards and costs of their 

behaviour, such as benefits they expect to receive relative to the amount of time and effort they 

expend in decisions and resultant actions. This modelling approach is referred to as normative, 

and it includes different features of a decision into an algorithm that can evaluate and compare 

different options, with the aim of maximising reward by rationally calculating the decisions 

(Scott, 2000). However, during the early 1970s, scholars of the emerging discipline of 

behavioural economics noticed flaws in standard rational choice models, noting that 

conventional models are not sufficient to explain some human decisions, both in real-life 

conditions and in experimental studies. Subsequently, theoretical developments and 

convergence between economics and neuroscience led to the birth of the new field known as 

neuroeconomics or decision neuroscience at the turn of the last century (Bossaerts & 

Murawski, 2015; Gross et al., 2014; Purves et al., 2013; Rangel et al., 2008; Rustichini, 2009; 

D. V. Smith & Huettel, 2010). 
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Neuroeconomics focuses on value-based decision making, and examines the basis of value-

based decisions neurobiologically and computationally (Glimcher & Fehr, 2014; Rangel et al., 

2008). Value-based decision-making is normative in nature; it happens when an organism 

chooses among various alternatives based on subjective value. Examples involve fundamental 

animal activities, such as bee foraging. Value is also one of the most central concepts governing 

human life that plays a crucial role, because it engages almost every aspect that requires a 

decision. For example, deciding which career path we choose, deciding which political party 

we vote, choosing which consumer product we pick up, or judging whether something is 

aesthetically attractive, good for us, or morally right. Therefore, it is important to understand 

the value-based decision-making mechanism. This new field defines value-based decisions, 

extending the scope of decision-making from simple to complex decisions.  

Generally speaking, in people’s daily lives, there are two types of decisions: perceptual 

decisions (i.e., simple decisions), determined by objective states of the physical world; and 

value-based decisions based on the subjective preferences of the decision maker. The tasks in 

perceptual choice are simple and well-defined, requiring participants to perceive and classify 

sensory input. On the other hand, value-based decisions rely on the tasks whereby participants 

are required to make value judgments according to their own individual values and subjective 

preferences (Nakao et al., 2012; Christopher Summerfield & Koechlin, 2010). Typical 

laboratory experiments involve a series of food images to explain the internal processes 

underlying choices, so that subjective preferences are determined by ranking the food items 

from least to most valuable. However, existing experiments have not fully understood internal 

value decisions in order to simulate real-world decision challenges during value-based 

decision-making. For example, in the case of shopping scenarios, individuals make internal 

decisions regarding food items. Their choices are influenced not just by personal preference, 

but also by the location of items in the store and on the shelf, their physical packaging, and 

their previous experiences with this brand or food type. In light of this information, there are 

still unanswered questions about value-based decisions with regard to diverse internal 

processing factors. 

1.2. The aim and the structure of thesis 

The aim of this thesis is to elucidate value-based decision-making at the behavioural, cognitive 

modelling, and neuronal levels by extending the basis of the decision-making framework from 

perceptual decision-making. More specifically, this thesis focuses on how people make 
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decisions in relation to internal values, and how internal values may affect subsequent decisions 

and perceptions. Throughout the thesis, I developed novel experimental paradigms to study 

decision-making (i.e., paradigms based on binary choice by individual preferences and external 

perceptions), as explained in full in the following chapters. A brief summary of each chapter is 

given below. 

Chapter 2 gives a broad overview of theoretical and experimental explanations of research on 

decision-making including value-based decisions. First, I review the mathematical definitions 

of decision-making problems, followed by the theory behind the cognitive models that are 

commonly used to explain the decision-making process. Experimental observations from 

animal electrophysiology and human neuroimaging are then reviewed to provide an 

understanding of the simple decision-making process (i.e. perceptual decision-making). 

Finally, I present the definition of the value-based decisions along with their differences from 

perceptual decisions, the various concepts of value, the stages of value-based decisions, 

multiple value systems, current experimental paradigms and neural bases of value-based 

decisions as well as existing findings. 

Chapter 3 considers a value-based decision-making scenario with a novel task in which 

participants make value-based judgments based on the combinatorial of multiple items. The 

study investigates the effects of the number of items on decision performance, as well as 

underlying cognitive processing. I used the drift-diffusion model (DDM) to identify which 

internal components of processing are affected by multiple sources, with the hypothesis that 

participants can combine multiple information sources and subjective preference into a single 

source of evidence in the decision-making process, thereby altering choice behaviour. The 

results showed that the behavioural pattern is associated with a lower drift rate, and reduced 

decision threshold, but increasing information sources impeded rather than improved the 

decision accuracy. These results suggest that humans employ a bounded combination of 

information sources during value-based decisions, which do not significantly alter people’s 

choice strategies. 

Chapter 4 investigates how internal values guide human behaviour during value-based 

decisions and their possible interaction with perceptual decisions. I developed a novel choice 

paradigm that allows examination of both value and perceptual decisions by using an identical 

stimulus (parametrically morphed geometric shapes). Participants were instructed to perform 

categorization task based on value and perceptual information, and I observed psychometrical 
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performance. This study shows that assigning internal values to geometric shapes led to a lower 

discriminating sensitivity than for perceptual decisions, indexed by a decreased Weber ratio. 

There was no difference in participants’ response bias between the two types of decisions. 

Furthermore, value-based decisions were associated with longer reaction time than perceptual 

decisions across stimulus levels. These findings suggest that a common computational process 

may underly value-based and perceptual decisions and mapping internal preference onto 

external perceptual information results in the incursion of additional noise in the decision-

making process. 

Chapter 5 presents a novel task that allows to examine decision performance in two contexts: 

internal preference and external perception by using identical stimuli. MEG recording was used 

to identify spatiotemporal signatures of value-based decisions, which were compared with 

perceptual decisions. This project aims to compare perceptual decision making and internal 

value decision-making at the behavioural, computational, and neural levels. Using MVPA, I 

identified stimulus-task rule associations with changes in multivariate data patterns in MEG 

signals. The results suggest that the brain actively maintains rule-relevant information before 

and throughout the decision-making process. 

Chapter 6 summarizes the results and contributions presented in the thesis and discusses this 

work’s limitations and possible directions for future research. 

The results of these projects have been presented in the following conferences. 

• British Association for Cognitive Neuroscience (BACN), Birmingham, 2022. 

• International Symposium on Biology of Decision Making (SBDM), Online, 2021. 

• The Federation of European Neuroscience Societies (FENS) Forum, Paris, 2022. 

• The International Conference on Biomagnetism (BioMag), Birmingham, 2022.  

Brain imaging data acquired from these projects have been also used in following 

methodological papers. However, they are not included in this thesis.  

Tait, L., Özkan, A., Szul, M. J., & Zhang, J. (2021). “A systematic evaluation of source 

reconstruction of resting MEG of the human brain with a new high‐resolution atlas: 

Performance, precision, and parcellation.” Human Brain Mapping, 42(14), 4685-4707. 

Karahan E, Tait L, Si R, Özkan A., Szul M, Zhang J. “The interindividual variability of 

multimodal brain connectivity maintains spatial heterogeneity and relates to tissue 

microstructure.” Commun Biol 5, 1007 (2022). 
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Chapter 2 

Literature Review  

2.1. The computational principles of decision-making 

2.1.1. A theoretical framework of decision-making 

The decision-making process can be described as a form of statistical inference problem 

(Bogacz et al., 2006; Gold & Shadlen, 2007). This approach assumes that the decision variable 

(DV) integrates all available information from priors, evidence, and values while making a 

decision. According to signal detection theory (SDT), a DV can be defined as a ratio of two 

likelihoods given with the evidence (e) that obtained from sensory inputs and two choice 

options A and B in a binary decision (Bogacz et al., 2006; Gold & Shadlen, 2007), as shown 

below:  

 𝐷𝑉 = 	 !(#|%)
!(#|')

  (2.1) 

In the equation of DV, 𝑃(𝑒|𝐴) indicates the likelihood of obtaining an observation of e when 

A is the correct choice, and 𝑃(𝑒|𝐵) indicates the likelihood of obtaining an observation of e 

when B is the correct choice. A decision threshold can be applied to the DV to make a decision. 

Even though this DV equation (2.1) can be employed for binary choices, it does not take into 

account the required time to make a decision.  

SDT can be extended to sequential probability ratio test (SPRT) analysis that can tackle this 

issue. In SPRT, we assumed that the evidence from multiple observations become available for 

decision-making at the time step t = 1, 2, 3, …, n. The SPRT procedure then considers a DV as 

the probability ratio of all the different pieces of evidence: 

 𝐷𝑉 = 	 !(#!,#",##,…#$|%)
!(#!,#",##,…#$|')

 (2.2) 

Moreover, the flow of evidence 𝑒*, 𝑒+, 𝑒,, … 𝑒- is sampled independently over time. The SPRT 

considers the logarithm of the DV, and which can be converted to the sum of the log likelihood 

ratio of each piece of evidence.  

 log𝐷𝑉 =	 𝑙𝑜𝑔 !(#!,#",##,…#$|%)
!(#!,#",##,…#$|')

=	∑ 𝑙𝑜𝑔 !(#%|%)
!(#%|')

-
./*  (2.3) 
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The SPRT continuously accumulate the log of the DV with new pieces of evidence implements 

the stopping rule plays a role in continuously accumulating the logarithmic of the DV with new 

pieces of evidence, until the accumulated evidence met a satisfied a stopping rule (Bogacz et 

al., 2006; Gold & Shadlen, 2007). There are two choice situations that can be accounted by 

using SPRT. First, the log DV is greater than a decision threshold TA, in which case option A is 

selected. Second, the log DV is less than another threshold TB(TB <= TA), thus option B is 

selected. In addition to these, if TB is less than log DV and greater than TA, then there is 

insufficient evidence to make a determination. The decision process consequently proceeds 

with sampling and the accumulating of the new pieces of evidence. The decision time is equal 

to the number of time steps that it takes to achieve the threshold for making a decision. 

 

2.1.2. Sequential sampling models of decision-making 

The main idea behind sequential analyses such as SPRT is the accumulation of evidence 

samples over time to make a decision. The evidence accumulation, from a statistical point of 

view, decreases the noise in instantaneous evidence, and resultantly allows for making 

decisions more accurately. For instance, it has been demonstrated that SPRT is the most 

optimal test for achieving an optimal level of decision accuracy efficiency relative to the lowest 

amount of evidence samples (Bogacz et al., 2006; Gold & Shadlen, 2007). 

This evidence accumulation approach is widely employed in studies of computational cognitive 

models for decision-making, known as sequential sampling models. These models propose that 

choice behavior is the result of a gradual accumulation of evidence for different choice 

alternatives until a specific criterion or threshold value is met. This concept is mathematically 

formalized in models such as the diffusion decision model (Ratcliff & McKoon, 1978, 2008) 

or the linear ballistic accumulator model (Brown & Heathcote, 2008). These models all share 

a common approach: modelling parameters that are hypothesized to quantify aspects of 

cognitive processing are estimated in order to gain insights into behaviour (Turner et al., 2017; 

Wilson & Collins, 2019). The parameters in cognitive models represent the underlying 

cognitive processes involved in decision-making and are informed by theories of decision-

making. Therefore, cognitive models serve as formalized theories that objectively identify 

which parameters of the cognitive process influence observed behavioral differences across 

conditions or individuals. These models aim to explain how individuals make decisions 

considering factors such as values, preferences, and beliefs. On the other hand, theories of 
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decision-making provide a comprehensive framework for understanding the psychological and 

social factors that influence decision-making. By incorporating theories of decision-making 

into cognitive models, researchers gain a better understanding of the intricate processes 

involved in decision-making and develop more accurate and comprehensive models of human 

decision-making. These models are grounded in years of psychophysics experiments, which 

have established statistical inferences between sensory input and behaviour (Bogacz et al., 

2006; Forstmann et al., 2015; Gold & Shadlen, 2007; Ratcliff & Smith, 2004). As 

computational models of cognitive processes, they can convert hypotheses into numerical 

estimates, elucidate behavioural patterns, and account for brain responses measured through 

single-unit recording and brain imaging (Gold & Shadlen, 2007; Ratcliff & Smith, 2004; M. 

N. Shadlen & Kiani, 2013b). 

Sequential sampling models are classified into two primary classes based on their stopping 

rules. The first group is known as random walk models. For binary decisions, these models 

include a single accumulator, and its activity reflects the relative accumulated evidence in 

favour of the option than the other (Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004). The 

second group of sequential sampling models accumulate evidence supporting each alternative 

separately in multiple accumulators. Hence, each accumulator’s activity reflects absolute 

evidence supporting each choice option. In all of these models, the general principles are the 

same: accumulating evidence gradually over time until a threshold is reached, and a decision 

is made. 

The section below describes the DDM, one of the most commonly used sequential sampling 

models with relative evidence. Initially, this model was proposed to account for RT and 

accuracy measurement in memory retrieval tasks (Ratcliff, 1978, 1981; Ratcliff & Meyer, 

1988; Ratdiff, 1985). It has later been applied to several tasks involving the choice reaction 

times, including perceptual decision-making (Gigerenzer & Gaissmaier, 2010; Ratcliff & 

McKoon, 2008). 

  

2.1.3. The drift-diffusion model (DDM) 

SSM models can be distinguished by their relative or absolute decision rules, use of one or two 

accumulator numbers, and continuous or discrete time sampling (Ratcliff et al., 2016). The 

DDM model is defined as continuous evidence sampling of a random walk model process and 

is characterized by the following equation: 
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 𝑑𝑥(𝑡) = 𝜇𝑑𝑡	 + 𝜎𝑑𝑊 (2.4) 

This equation is derived by extending SPRT in Equation 2.3, where dx represents the dynamics 

of evidence accumulation at a given t time, μ signifies the mean increase in evidence for each 

unit time and 𝜎𝑑𝑊 denotes a Gaussian process with mean zero and 𝜎+𝑑𝑡 (Bogacz et al., 2006). 

The DDM can be applied to a binary decision problem with two possible outcomes: correct or 

incorrect. From Equation 2.4, we can refer to evidence that supports the correct choice as 

positive evidence (𝑑𝑥(𝑡)>0), and evidence that supports the incorrect choice as negative 

evidence (𝑑𝑥(𝑡)<0). The momentary evidence information is noisy and accumulates until one 

of the thresholds is met. This noisy process explained with DDM by seven parameters (Ratcliff 

& McKoon, 2008), as shown in Figure 2.1 and Table 1.1. 

The first is the boundary separation (a), which indicates the distance between the correct and 

incorrect threshold for a decision. When a is small, the decision is made more quickly but less 

accurately. Because of the noisy fluctuations in evidence, the incorrect decision boundary is 

more likely to be reached. When a is large, however, the decision is made more slowly but 

more accurately. The interpretation of this parameter hence entails a decisional trade-off 

between speed and accuracy.  

The second is the starting point (z) and represents response bias toward one of the two 

thresholds before the accumulation process begins. If evidence accumulation process starts at 

a/2, this indicates unbiased decisions. In contrast, biased decisions can be described as an 

unequal distance of z toward to the thresholds, so that z is close to one of the thresholds and the 

subject is biased to make a decision corresponding to the closer boundary.  

The third is the inter-trial variability of the z (sz).  

The fourth is the drift rate (v), which represents mean speed of evidence accumulation, and it 

can be interpreted as the quality of information obtained from the stimuli. The value of v is 

differed regarding experimental conditions such as the difficult condition has a lower drift rate 

than easy condition.  

The fifth parameter is the inter-trial variability of the v (eta), which indicates the variability of 

the stimulus quality.  

The final two parameters represent non-decisions time (Ter) and the inter-trial variability of the 

non-decisions time (st).  
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As depicted in Figure 2.1, non-decision time is defined as the overall latency time of the 

decision and is calculated as the sum of the encoding and motor execution duration. The 

information processing starts at the starting point (z) and proceeds accumulation until 

accumulated evidence reaches one of the two thresholds. The model predicts a correct response 

if the accumulated evidence met the upper threshold or A (upward signal). Due to the noisy 

fluctuations, the accumulated evidence may reach the lower threshold or B (downward signal), 

in which case the model predicts an incorrect response. Thus, the single-trial RT is the 

summation of the duration of the evidence accumulation (also known as the decision time) and 

the non-decision time predicted by the diffusion model. 

 

Table 1 The seven modelling parameters of the drift diffusion model 

Symbol Modelling Parameters 

a Boundary separation 

v Drift rate 
z Starting point 

Ter Non-decision time 
eta Inter-trial variability of the drift rate 

sz Inter-trial variability of the starting point 
st Inter-trial variability of the non-decision time 

 

 

The drift diffusion model (DDM) is a valuable framework for understanding the cognitive 

processes involved in decision-making by linking specific model parameters to these processes. 

Numerous experiments have aimed to establish connections between individual model 

parameters and distinct cognitive mechanisms. 

The decision boundary, which represents the threshold for reaching a decision in the drift 

diffusion model. It directly relates to the speed-accuracy trade-off (SAT) by determining the 

amount of evidence required before a decision is made. A larger decision boundary necessitates 

more evidence, resulting in slower but more accurate decisions. Conversely, a smaller 

boundary leads to faster but potentially more error-prone decisions. This parameter is 

associated with the cognitive process of adjusting decision criteria based on task difficulty or 

importance. Studies conducted by Bogacz et al., (2006), Forstmann et al., (2015), Hauke R. 
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Heekeren et al., (2008), M. N. Shadlen & Kiani, (2013a) have demonstrated that the amount of 

evidence accumulated over time directly influences the speed-accuracy trade-off. For example, 

Bogacz's study provides a comprehensive analysis of decision-making models in two-

alternative forced-choice tasks, highlighting the critical role of evidence accumulation in 

shaping the trade-off between response time and accuracy. Furthermore, researchers have 

explored the neural correlates of the decision boundary by manipulating the speed-accuracy 

trade-off. These investigations have identified increased neural activations in specific brain 

regions associated with fast decision preparation compared to accurate decision preparation. 

Regions implicated in these findings include the premotor area, striatum, basal ganglia, 

thalamus, dorsolateral prefrontal cortex, and dorsal anterior cingulate cortex (Basten et al., 

2010; Domenech & Dreher, 2010; Simen, 2012). These results suggest that the decision 

boundary parameter directly reflects the trade-off between speed and accuracy, as evidenced 

by neural activity in diverse brain regions. 

Another parameter in the DDM is the drift rate, representing the quality of evidence 

accumulated over time in favor of one decision option over the other. It can be influenced by 

factors such as attention, stimulus salience, and memory retrieval. In a study conducted by 

Krajbich et al., (2010), the impact of stimulus salience on the drift rate was investigated within 

a simple choice task. Using eye-tracking methods, the researchers examined participants' visual 

fixations and decision-making processes. The findings revealed that the salience of visual 

stimuli influenced the drift rate, with more salient stimuli leading to higher drift rates. The 

authors suggested that increased stimulus salience attracts more attention, resulting in faster 

and more confident evidence accumulation in favor of the salient option. This study provides 

empirical evidence for the influence of stimulus salience on the drift rate, highlighting the role 

of attention and visual processing in shaping the rate of evidence accumulation during decision-

making. Ratcliff and Starns, (2013) conducted another interesting investigation on the 

association between memory retrieval processes and the drift rate in recognition memory tasks. 

They proposed that the quality and efficiency of memory retrieval can impact the drift rate. 

When memory retrieval is more efficient and accurate, resulting in faster and more reliable 

access to relevant information, it leads to higher drift rates. Conversely, when memory retrieval 

is less efficient or uncertain, it can decrease the drift rate, slowing down the accumulation of 

evidence for decision-making. By integrating empirical data and computational modeling, this 

study provides insights into how memory retrieval processes can influence the drift rate within 

the framework of decision-making tasks involving recognition memory. Overall, these studies 
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have contributed to our understanding of how the drift rate parameter in decision-making 

reflects changes in cognitive processes. 

The non-decision time in the drift diffusion model (DDM) encompasses factors that are 

independent of the actual decision-making process, including motor response time and sensory 

processing delays. These factors contribute to the overall response time but are not directly 

involved in the decision-making itself. In a study conducted by Karahan et al., (2019) aimed at 

investigating the cognitive processes underlying the simple reaction time task, the researchers 

revealed that the non-decision time component during simple actions represents the time taken 

before information processing begins and the motor response is initiated. 

The starting point in the DDM reflects the bias or initial inclination towards one decision 

option. It can be manipulated to examine how biases affect decision-making. A study by 

Mulder et al., (2012) focused on two key factors: prior probability and potential payoff. Prior 

probability refers to the likelihood of an outcome based on available information, while 

potential payoff relates to the expected benefits associated with each choice. These factors can 

introduce biases into decision-making processes. The results indicated that both prior 

probability and potential payoff influenced decision-making behavior. Higher prior probability 

led to higher drift rates, indicating faster and more confident decision-making processes. 

Similarly, higher potential payoff was associated with increased boundary separation, 

reflecting a more stringent decision criterion and a tendency to wait for stronger evidence 

before making a choice. These findings contribute to our understanding of the biases that 

influence decision-making processes and provide crucial insights into the cognitive 

mechanisms involved in incorporating prior knowledge and potential rewards into decision-

making. 

To summarize, the experiments conducted have demonstrated a clear association between the 

parameters of the drift diffusion model (DDM) and cognitive processing. These findings 

highlight the interplay between specific model parameters and the underlying cognitive 

mechanisms involved in decision-making. 
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Figure 2.1 An illustration of the overview for drift diffusion model.  

The two trajectories represent the accumulation of evidence from a stimulus. The upward trajectory 

results in a correct response, and the downward trajectory results in an incorrect response. When one 

of the thresholds is reached (A or B), a response is started. The histograms below and above the 

boundary show the response distributions that correspond to correct and incorrect responses 

(respectively). The total RT is computed by summing the duration of the decision component modelled 

by the diffusion process and the duration of a non-decision component, representing the time required 

for stimulus processing and response execution. Adapted from Dutilh and Rieskamp (2016). 

2.2. Behavioural characteristics of perceptual decisions 

A typical application of sequential sampling models is to account for the behavioural and neural 

processes underlying perceptual decision-making. The process of perceptual decisions relies 

on the integration of incoming sensory information over time using the framework of these 

models. This sensory input is perceived by senses (i.e., from visual, auditory, tactile, and 

olfactory signals) to form a decision (Newsome et al., 1989; Romo & Emilio, 2001; Tsunada 

et al., 2016; Uchida et al., 2006). Such decisions directly influence our behaviour; for instance, 

when driving in the rain and spotting a dark object approaching and deciding to stop the car to 

avoid an accident. Various experimental paradigms from the discipline of psychophysics have 

governed to investigate of perceptual decisions. Fundamental results have been obtained in 

perceptual decision-making studies using the psychophysical movement discrimination tasks 

with binary choices.  
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Random-dot motion discrimination (RDM) is a classical paradigm in which the task involves 

two types of moving dots, some of which move consistently towards one direction (i.e., the 

coherent motion direction), while others move randomly. Here, the coherent motion dots 

represent sensory signals and random dots represent noise signals. Hence, the signal-to-noise 

ratio is directly employed from the proportion of sensory signals to noise signals. Subjects have 

to decide the dominant direction of the dots (left or right) and indicate their choices by pressing 

a button or making a quick eye movement towards the target on the proper direction (Newsome 

et al., 1989). As depicted in Figure 2.2, the task difficulty can be controlled by the strength of 

motion coherence. This paradigm is valuable for decision-making research, because it explains 

the neurological underpinnings of motion perception in connection to behaviour (Gold & 

Shadlen, 2007; H. R. Heekeren et al., 2006; Maunsell & Newsome, 1987; Pilly & Seitz, 2009).  

 

 

Figure 2.2 The representation of visual stimulus diagram for the RDM task.  

For visual stimuli, the dots are either randomly repositioned (which is generated as noise signals) or 

moving to fixed direction (which is generated as sensory signals). In this diagram, the dots providing 

the sensory signals are depicted as solid dots, and are repositioned with respect to the right direction, 

which indicates the direction of coherence motion. The level of consistency across the dots is indicated 

by the proportion of the coherence level. The stimulus in the left panel has 0% coherence, containing 

only random noise (with no useful information). The stimulus in the centre panel has 50% coherence; 

half of the dots move to the right direction while the others move randomly. The stimulus in the right 

panel has 100% coherence; all dots move in the same direction (i.e., to the right in this case) and the 

coherence direction can be easily distinguished. Adapted from (J. Zhang, 2012). 
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Other experimental paradigms include performing sensory discrimination tasks across several 

domains. Vibrotactile frequency-discrimination tasks have employed to investigate perceptual 

decisions in the somatosensory area, in which subjects have to distinguish the frequency of 

vibration between the two tactile stimuli, and decide which stimulus has the higher frequency 

of oscillation (for instance, see De Lafuente & Romo, 2005; Luna et al., 2005; Romo et al., 

1998; Romo & Salinas, 2003; Salinas et al., 2000).  Motion discrimination studies such as 

RDM have widely used to examine perceptual decisions in the visual domain (Gold & Shadlen, 

2007; Newsome et al., 1989; Preuschhof et al., 2006). More complicated tasks, such as home-

face discrimination tasks, have also utilized, in which subjects have to categorize whether the 

presented image is either a house or a face by pressing a button (H. R. Heekeren et al., 2004; 

Christopher Summerfield et al., 2006).  

Ranging from simple to complex tasks, the perceptual term refers to tasks in which the 

correctness of the response is indicated by an objective measure. The behavioural performance 

of subjects is explained by accuracy measurement and reaction times. In this context, it is also 

considered that these measurements provide knowledge regarding the processing of 

information; fast responses indicate less accumulated evidence, resulting in less accurate 

decisions, whereas slow responses result in more accurately decisions. This contradiction 

between accuracy and response times is described by the speed accuracy trade off (SAT) (Pitts’, 

1954; Wickelgren, 1977). The SAT is a fundamental decision-making phenomenon that has 

been observed in human (Wickelgren, 1977; J. Zhang & Rowe, 2014) and animal cognition 

(Chittka et al., 2009; Heitz & Schall, 2012) in two-choice psychophysical experiments. The 

DDM naturally reflects the speed-accuracy trade-off by modulating the response thresholds. 

When the threshold is lower, the process made rapidly so the decisions are faster. However, 

there is smaller amount of information, so noise has a greater influence on the process and the 

decisions are less accurate. In contrast, when the threshold is higher, the decisions are slower, 

but they are more accurate, since they are based on integration of more evidence and noise has 

less of an impact on the process. It has been established that the DDM provides excellent fits 

to behavioural data (Ratcliff & Smith, 2004; P. L. Smith & Ratcliff, 2004) while effectively 

accounting for variations in accuracy and response time distributions brought on by the 

manipulations discussed above. 

Sequential sampling models, particularly the DDM stated above, have been developed to 

describe the cognitive processes that involved in decision making (Luce, 2008; Ratcliff, 1979). 

As explained previously, the neural systems in perceptual decisions were explored utilising 



15 

RDM. Recent studies on perceptual decisions have shown that certain decision-making 

processes are represented by distinct brain areas. In humans, for example, the prefrontal cortex 

and parietal cortical regions have been activated throughout the process of accumulating 

evidence and generating a decision variable, whereas the motor cortex has been activated 

during the planning and selecting motor actions (Gold & Shadlen, 2007; Hare et al., 2011; H. 

R. Heekeren et al., 2004; Philiastides et al., 2011). Thus, it is believed that the neural 

mechanism underlying perceptual decision-making has a heterarchical interaction, in which 

separate processing stages span several brain areas. The following section describes the brain 

structures and neural computations of perceptual decision-making in greater detail. 

2.3. Neural mechanism of perceptual decisions 

2.3.1. Neurophysiological evidence  

2.3.1.1. Sensory evidence 

Neurophysiological studies in monkeys have provided the first evidence for neural activity in 

sensory neurons. According to the sequential sampling framework, these sensory neurons 

accumulate noisy sensory information (Gold & Shadlen, 2001, 2007; Romo & Salinas, 2003; 

P. L. Smith & Ratcliff, 2004). In a number of single unit experiments with monkeys, a 

relationship was identified between behavioural choices and neural activity in sensory regions 

(Newsome et al., 1989; Salzman et al., 1992). In these studies, monkeys were trained to perform 

the RDM task, whereby they had to decide the direction of coherently moving dots from among 

randomly moving dots. The response was often given by making a saccade or pressing a button. 

The results showed that the activity of neurons in the middle temporal (MT/V5) area was 

sensitive to selective motion direction, and this neural activity provides a sufficient description 

of behavioural performance (K. H. Britten et al., 1992; M. N. Shadlen & Newsomet, 1996).  

Similar links between behaviour and neural activity have been identified in studies using 

different stimuli. For example, in the vibrotactile frequency task (VTF), monkeys were trained 

to compare the vibration frequency between the two sequentially presented tactile stimuli and 

were required to choose the highest frequency stimuli. The behavioural response sensitivity 

was found to be similar to the sensitivity of the mean responses in the primary somatosensory 

cortex (S1), and fluctuations in neural responses from trial to trial were able to predict the 

monkeys’ behavioural decisions (Romo et al., 2004; Salinas et al., 2000) These results indicate 

that sensory neurons are activated to encode sensory evidence, particularly neurons in the 

middle temporal (MT/V5) area and primary somatosensory cortex (S1). 
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2.3.1.2. Evidence accumulation and decision formation 

Despite sensory regions such as MT and S1 encoding sensory evidence, the neural activity in 

these areas is not responsive to subsequent stages of decision formation. A series of monkey 

experiments revealed that activation of the lateral intraparietal area (LIP) is responsible for 

evidence accumulation processing from sensory evidence neurons (within the MT and S1) (K. 

H. Britten et al., 1996; Gold & Shadlen, 2007; M. N. Shadlen & Newsomet, 1996). The LIP 

area, which is localized a part of the intraparietal sulcus in the parietal cortex, is involved in 

the neural link between visual sensory information and motor action planning (Colby & 

Goldberg, 1999). Therefore, it is plausible to think that it is also involved in decisions utilising 

eye-movements to response (i.e., saccades). For a motion direction task that entailed a delay 

period between stimulus presentation and saccadic eye movement response, LIP neurons in 

monkeys increased and maintained their firing rates until a moment of decision formation and 

action-taking (i.e., a saccade towards a target). It is important to note that the firing rate of 

neurons varies between trials. In easy trials, the neuronal firing rate increases more rapidly than 

in more difficult trials. Moreover, the firing rate immediately dropped when the response was 

given (Kiani et al., 2006; M. N. Shadlen & Newsome, 2001).  

Research employing an identical paradigm but with the RT condition reported that neurons 

accumulate evidence, but a response is only provided when a decision threshold is reached. 

The responses were much slower for more difficult decisions because of the response threshold 

was achieved late. Figure 2.3 illustrates the mean firing rate from a population of LIP neurons 

during the random dot motion paradigm. In these experiments, two types of targets are 

displayed: the one-choice target (Tin) is inside the response field of the LIP neurons, whereas 

the other target (Tout) and random dots stimuli are outside of the neurons’ response field. After 

the delay period, neural activity begins to differentiate based on the subjects’ preferences. It 

increases in trials where subjects evaluate movement towards the response field of the 

population and decreases if the movement is judged to be far from the response field. A similar 

spike of activity occurs for all coherence levels prior to the commencement of the reaction, 

followed by a collapse after the saccade. 

On the basis of these findings, and taking into account DDM, it has been suggested that in 

motion direction tasks requiring a saccadic response, sensory evidence is encoded in neurons 

located within the visual field MT, while neurons in the LIP area integrate sensory evidence 

until a threshold is achieved to render a decision.  
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Figure 2.3 Accumulation of evidence in LIP during random dot motion task.  

During the RDM experiment, one target is exhibited inside the neurons’ response field while the other 

targets are shown outside the neurons’ response field. Each line in the graphic represents the mean 

firing rate of the population in the LIP neurons at different levels of coherence. The left figure depicts 

the aligned firing rate at stimulus onset, whereas the right figure depicts the saccade on time. The solid 

and dashed lines indicate trials in which the subject judges the motion towards or away from the 

response field, respectively. Adapted from Gold and Shadlen (2007). 

 

Studies using electrical microstimulation offered causal pathway for a close relationship 

between neural activity and decision behaviour in both the somatosensory and the visual 

domains (Hanks et al., 2006; M. N. Shadlen & Newsome, 2001). For instance, when the 

vibrotactile stimuli were substituted with analogous direct electrical microstimulation of 

primary somatosensory cortex neurons, the monkeys displayed a decision-making pattern that 

was remarkably similar to what was seen under normal experimental conditions (Romo et al., 

1998). In a similar pattern, the visual area MT plays a causal function in the coding of sensory 

evidence when the RDM task is being performed. When motion-specific MT neurons were 

activated, monkeys demonstrated a bias toward responding in favour of the preferred direction 

of the stimulated neurons (Salzman et al., 1990, 1992). Microstimulation of these neurons not 

only accelerates the choice-making process in favour of the chosen way, but also slowed down 
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the decision-making process in the opposing direction (Ditterich et al., 2003). Therefore, in 

both the visual and the somatosensory domains, microstimulation has provided direct causal 

evidence for a tight link between the representation of sensory evidence in sensory regions, an 

activity-related threshold mechanism, and perceptual decisions. In conclusion, the findings of 

neurophysiological studies in monkeys provide support for the fundamental idea that decision-

making in the brain involves the accumulation of evidence up to a certain threshold. 

In addition to the LIP-neurons, it has been discovered that neurons in the frontal eye fields 

(FEF) and the dorsolateral prefrontal cortex (DLPFC) are also involved in the process of 

evidence accumulation in visual perceptual tasks (Gold & Shadlen, 2000; Kim & Shadlen, 

1999). These areas play a role in the process of selecting and preparing oculomotor execution. 

The process revealed here for visual perceptual decision making is applicable to research 

including vibrotactile stimuli. It involves regions such as the second somatosensory cortex 

(Romo et al., 2002) and the ventral premotor cortex (Romo et al., 2004).  

The results of single-unit recordings in monkeys led to the conclusion that evidence is initially 

obtained in lower-level sensory regions, and subsequently accumulated in motor planning 

regions. These activations support the fundamental assumptions of models with sequential 

sampling. The activations observed in the accumulator neurons also suggest that both the 

decision and maintenance of the decision until the response cue occurrence is performed by the 

same neurons, as reported in a study employing a delayed response paradigm, in which neurons 

in the LIP region reached a threshold earlier for easier decisions and continued firing until a 

response could be given (M. N. Shadlen & Newsome, 2001).  

2.4. Neuroimaging evidence from human decision-making 

From the knowledge of neurophysiological studies and DDM assumptions, recent research has 

investigated the neural mechanism of the human brain to ascertain similarities and differences 

with the findings of monkey studies, including the findings explained above. Due to the 

invasive (and inhibitory) nature of single-unit recordings, non-invasive brain imaging 

techniques such as functional magnetic resonance imaging (fMRI), electroencephalography 

(EEG), and magnetoencephalography (MEG) have been widely used in human studies. fMRI 

detects neuronal activity by measuring the blood oxygenation level dependent (BOLD) 

response, and provides high spatial resolution to localize which brain areas involved in 

decision-making processing. EEG and MEG record electrical and magnetic activity in the brain 
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with high temporal resolution, allowing neuronal activity to be detected in milliseconds (Gold 

& Heekeren, 2014; Hauke R. Heekeren et al., 2008; Kelly & O’Connell, 2015).  

2.4.1.1. Sensory evidence 

Neuroimaging studies reveal that the human brain encodes sensory evidence in a similar way 

to that observed from neuropsychological findings in monkeys. The first neuroimaging studies 

to investigate the representation of sensory evidence in the visual domain for the human brain 

utilized a categorization task during simple perceptual decisions. Participants were asked to 

perform house-face discrimination tasks, in which they instructed to decide whether a presented 

visual stimulus was a house or a face. The degree of ease or difficulty of detections was adjusted 

by adding varying degrees of noise to the stimuli images, and neural activity was measured by 

fMRI. Heekeren and his colleagues found that the activity in left posterior DLFC shows 

evidence for comparison between face and house signals. Similar to research in monkeys, both 

the fusiform face area (FFA) and the parahippocampal location area (PPA) exhibit 

characteristics of sensory evidence encoding, with FFA and PPA activating more when 

detecting faces and houses, respectively. Additionally, FFA activation was stronger for easy-

face trials than for difficult-face trials. The same effect was observed for houses located within 

the PPA (H. R. Heekeren et al., 2004, 2006). These findings support the notion that the 

responsible areas for the house-face selection correspond to visual sensory evidence for face 

and house stimuli, which is consistent with the initial results. 

A recent EEG study utilized single-trial analysis to evaluate the cortical correlates of decision 

making during a face–car discrimination task, which is similar to the previously described 

face–house task. The earliest ERP component, N170, was shown to have a link with facial 

perception, and hence appears to provide sensory evidence. Overall, the findings in the visual 

domain give strong support for the assumption that sensory evidence representation in the 

decision-making processing (Philiastides & Sajda, 2006).  

Recent fMRI investigations have provided the representation of somatosensory evidence in the 

human brain by utilising vibrotactile frequency discrimination tasks. The primary 

somatosensory cortex showed increased activity during the encoding phase of the sensory 

evidence of tactile decision making, consistent with neurophysiological studies from monkeys 

(Preuschhof et al., 2006). In a similar vein, using a somatosensory discriminating task, Pleger 

and colleagues found that tactile stimuli produced spontaneous activity in the somatosensory 

cortex, among other areas (Pleger et al., 2006).  
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2.4.1.2. Evidence accumulation and decision formation 

Single-unit simian recordings indicate that decision-marking neuronal activity is increased 

gradually to an elevated level, which is subsequently sustained pending the issuance of a 

response. Notably, easier trials elicit a more rapid upsurge in neural activity. Downstream 

cortical regions, including the DLPFC and LIP, can formulate decisions based on comparison 

of outputs from sensory neurons that have been specifically tuned related to a certain decision 

threshold, and the results can consequently be correlated with actions. Heekeren and his 

collegues (2006)  sought to ascertain the validity of these fundamental principles arising from 

neurophysiological studies for humans. Human subjects were asked to choose (using their eye 

movement to binary visual targets) to judge the direction-of-motion in response to dynamic 

random-dot-motion stimuli. The researchers identified local oculomotor network regions for 

each subject, specifically the FEF and a space related to eye movement in the intraparietal 

sulcus (IPS), which is assumed to be analogous to the simian LIP (Sereno et al., 2001). The 

decision formation period (after visual motion and response cues), a significant correlation was 

observed between the strength of signal motion stimuli and the BOLD percent signal change 

in both the FEF and the IPS (H. R. Heekeren et al., 2006). These findings affirm the single-unit 

murine studies described previously, which demonstrated that FEF and LIP contribute to 

perceptual decision-making.  

The extent to which human motor actions might arise from the transformation of such decisions 

in the brain (aside from conventions motor plan and execution activity) was also explored by  

(H. R. Heekeren et al., 2006). Subjects undertook discrimination tasks (based on direction-of-

motion) by saccadic eye movement or button-pressing. More abstract decision variable areas 

were assumed to elicit a stronger response with high coherence (i.e., be easier tasks) relative to 

trials with lower coherence (i.e., more difficult tasks), without impacts from the decision-

expressing motor system. They identified four instrumental areas: the left fusiform / 

parahippocampal gyrus, the left IPS, the left posterior cingulate cortex, and the left posterior 

DLPFC. Significantly, these regions exhibited increased BOLD activity independent of the 

motor system deployed in decision expression (H. R. Heekeren et al., 2006). 

fMRI outcomes corroborated the earlier results of (Kim & Shadlen, 1999), who found that 

simian neural activity is proportional to stimulus motion signal strength. However, (H. R. 

Heekeren et al., 2006) human results indicated that the posterior DLPFC is likely to be a 

significant network component accumulating sensory evidence for decision computation up to 
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the decision boundary, and that this is independently translated into action independent from 

response modality.  

Simian neurophysiological investigations have not detected such neuronal activity (conducive 

to independent decisions from response modality). (Rorie & Newsome, 2005). Conversely, 

studies have demonstrated that human cortex regions respond independently to motor effectors 

deployed. (Hebart et al., 2012) multivariate fMRI analysis of motion discrimination tasks with 

decoupled response modalities indicated independent encoding of perceptual decisions in 

parietal and visual brain regions. Furthermore, human cerebral general signals for decision 

variable domains were identified by (O’Connell et al., 2012), based on subjects viewing a 

continuously presented annulus, with the contrast dropped at random intervals. EEG results 

showed that centro-parietal positivity (CPP) signals represent decision variables and manifest 

the characteristics of decision variables (in being modality-independent and tracking decision 

formation independently of overt motor responses).  

Additionally, neuroimaging research shows that IPS decision-related activity integrates 

evidence from the visual motion area MT+ (Kayser, Buchsbaum, et al., 2010), and this is 

affected by key factors including attention (Kayser, Erickson, et al., 2010). Causal evidence 

also supports the emerging evidence integration framework. The TMS of the DLPFC (a region 

formerly presumed to integrate evidence accumulated for choice alternatives for decision 

variable computation, without being instrumental in the decision threshold), combined with 

diffusion modelling, actually plays a detrimental role in the evidence accumulation process 

(Philiastides et al., 2011). 

In conclusion, neurophysiological and neuroimaging results support the assumption that 

evidence accumulation models capture important aspects of latent information processing 

supporting simple perceptual decision making. 

 

2.5. Value-based decision-making 

As previously stated in Chapter 1, decision-making is a pervasive cognitive process that occurs 

across all domains of daily life, and which involves behavioural outputs ranging from simple 

decisions, such as perceptual choices based on sensory input, to complicated decisions, such 

as value-based choices based on subjective value. These two categories of choices have been 

studied by separate examinations conducted within different paradigms and fields. Perceptual 
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decisions have been typically subjected in experimental psychology and neuroscience by 

measuring accuracy measurement and reaction times in simple psychophysical experiments, in 

which participants are required to classify perceived sensory evidence (Kenneth H. Britten et 

al., 1993; Hanks & Summerfield, 2017; Hauser & Salinas, 2014; Purves et al., 2013; P. L. 

Smith & Ratcliff, 2004; C. Summerfield & Blangero, 2017).  

On the other hand, value-based decisions are based on the individual value assigned by 

decision-makers’ preferences. These decisions first began to be studied in the early 1970s with 

the emergence of a new field called neuroeconomics or decision neuroscience, which was born 

with the integration of concepts from economics and neuroscience (Glimcher & Fehr, 2014; 

Rangel et al., 2008; Sanfey, 2007; D. V. Smith & Huettel, 2010). The new discipline of 

neuroeconomics addresses the subjective valuation process, how the brain computes these 

values, and what is the neural basis underlying valuation and decision-making. By expanding 

the scope of decision-making from simpler situations, this field seeks to develop a 

neurobiologically valid theory of how humans make complex decisions that can be employed 

in the social sciences. For example, successful performance in a random dot motion task 

requires executive functions but does not involve personal value judgments in the same way as 

choosing a food item from the menu in a restaurant. 

As pointed out above, in terms of paradigms and disciplines, perceptual and value-based 

judgements are distinct from one another. Furthermore, the primary distinction between these 

two decisions is that the quality of the response is determined by different criteria. The tasks in 

the perceptual decisions are simple and straightforward, and participants’ responses can be 

objectively evaluated as correct or incorrect. In such tasks, the optimality in decisions is defined 

by statistical inference based on SPRT benchmark, which minimises the response time for a 

given level of accuracy. Perceptual decision-making studies have a longstanding history, 

having originally been established in behavioural psychophysics research, and extensive 

physiological evidence suggests that the process behind perceptual decisions can be estimated 

using the SPRT test, offering statistical optimality. Signal detection theory is increasingly being 

applied to investigate the process of making this type of decision (Bogacz, 2007, 2009; 

Forstmann et al., 2015; Gold & Shadlen, 2007; Ratcliff et al., 2016; M. N. Shadlen & Kiani, 

2013b). 

On the other hand, value-based decisions, more specifically preference-based judgments, are 

based on subjective value judgments, whereby each choice option is evaluated by examining 
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its outcomes in relation to internal goods, motivations, or actions. Therefore, unlike perceptual 

situations, preference-based choices involve subjective criteria, which means that there are no 

objective factors that determine which response is correct. The theoretical framework for these 

judgments is provided by the expected utility theory, which is a cornerstone of mainstream 

economic analyses (von Neumann & Morgenstern, 2007). In all research inquiries concerning 

these theories and paradigms, the study objectives require perceptual tasks that aim to 

maximise correct responses, whereas subjective value-based tasks are more concerned with 

individual’s preferences. Despite its relative novelty, the discipline of value-based decisions 

has been studied from various interesting aspects, from economics to neuroscience, this 

diversity makes it difficult to identify the value and summarise the current findings. In the 

chapter that follows, I first give a brief overview of the definition of the value-based decision-

making, the various concepts of value, and the general framework of value-based decisions, 

then finally focus on the neural underpinnings of value-based decisions as well as the 

relationship between theory and models. 

Value-based decision-making is defined as a process in which different options are associated 

with internal or subjective values, such as choosing food items according to individuals’ 

preferences; or in which different choice options are related to external values, such as the 

choice alternatives are associated with monetary gain or loss in the gambling task. Aside from 

the difference on the option context, the decision-making process follows the same principle: 

first defining the available value options, then evaluating those values, and finally making a 

decision based on purpose given by external context or individual preference (Gold & Shadlen, 

2007). In this process, the term “value” does not refer to a property that is constant in nature, 

but rather to a property that has flexible and relative characteristic, and therefore is affected by 

external and internal conditions. Due to the changing nature of internal and external states, 

value-based decision-making has noisy processes, accumulating evidence stochastically, and 

fluctuating over time (Fellows, 2004; Gold & Shadlen, 2007).  

When such noise is external in origin, it can be interpreted as stimulus-related characteristics 

such as uncertainty and ambiguity, which determine the task difficulty levels of the decision. 

For example, in the gambling task, the experimenter may externally adjust the probability of 

gaining or losing and the magnitude of the reward by an association with the stimuli. On the 

other hand, when the source of the noise is internal, this cannot be controlled by the 

experimenter; instead, it is linked to the individual states of the participants, such as motivation, 

attention, and thoughts (Fellows, 2004). 
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The discussion thus far has focused on the definition of value-based decision-making. Before 

explaining the general theoretical framework, it is necessary to explain different value 

approaches. The study of value concepts has been addressed from different aspects, and the 

meaning of the term “value” has been debated within a variety of disciplines, ranging from 

economics to psychology (Kahnt & Tobler, 2017; O’Doherty, 2014; O’Doherty et al., 2016). 

Value can be referred to as a function of, which is a function used to identify an individual’s 

preferences regarding a group of different value options (Glimcher & Rustichini, 2004). For 

example, if a person prefers option one more than option two, this suggests that option one has 

higher utility (and thus value) for than option two (for that person).  

In experimental studies, subjective preference can be evaluated from participants’ ratings of 

choice options, assuming that the participants’ internal states remain stable and consistent over 

the experimental period (O’Doherty, 2014). An alternative definition of value, commonly used 

in behavioural neuroscience, conceptualise value as a reinforcer, which indicates the amount 

of effort that an organism is willing to invest (Shizgal, 1997). 

Apart from the differences across these definitions, it is expected that these concepts would 

share common predictions about whether a given stimulus may or may not be considered 

valuable, as well as similar prediction in the neural substrates of the value. However, this 

generalisation may result in differing estimations in certain instances, such as decisions based 

on habit. Animals may select options based on higher reward actions that might not accurately 

reflect their preferences. As a result, the animal does not consume the good that obtained by 

habitual behaviour. (Berridge, 1996) study suggested that the terms “wanting” and “liking” can 

be differentiated both behaviourally and neurally. Similarly, the term “value” can be 

decomposed into different forms, such as “wanting”, “liking”, and “being rewarded”. These 

aspects of value are ambiguous, making it challenging to operationalise them, and they may 

require different computations and neuronal underpinnings. 

Since multiple forms have been used to describe value terms, it is essential to build a common 

lexicon and provide a common framework in order to avoid confusion between different 

disciplines (Rangel et al., 2008). To begin, the process of making decisions can be divided into 

three stages using a simplified model that is originated from classical decision theory: (1) 

possible options are identified; (2) they are then evaluated according to their associated value; 

and (3) the choice is made on the basis of its value (Baron, 2000; Lipshitz et al., 2001). 
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This model is used as a starting point for further exploration of decision-making component 

processes. However, it is unable to precisely describe the differences between the three stages, 

since it contains somewhat arbitrary and insufficiently informational aspects, such as the 

stopping criterion for difficult decisions during the option identification stage is not clearly 

defined (Fellows, 2004). Later, (Rangel et al., 2008) developed a revised model with five stages 

to describe the value-based decision-making process more systematically (Figure 2.4). The 

following section explains these stages and provides a brief description of our understanding 

of the underlying neurobiology. Finally, I address how the research presented in this thesis 

contributes to the existing body of knowledge. 

 

 

Figure 2.4 Computations involved in decision-making. 

In order to initiate a decision, an agent must first identify and represent their internal state, the external 

state of the world, and the possible set of actions available. Next, a value must be assigned to each of 

these actions, which are compared in order to select the action with the highest expected utility. Once 
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the chosen action is executed, the agent can then assess the desirability of the outcome. Any 

discrepancy between the expected and received outcome is used to inform future choice through 

learning. Adapted from (Rangel et al., 2008b).  

 

2.5.1. The stages of value-based decision-making 

According to (Rangel et al., 2008) framework, value-based decision-making process has been 

described according to the following five computational stages: 

i. Representation: This initial stage entails presenting the decision problem by evaluating 

internal variables derived from subjects' internal states and external conditions derived from 

the external environment, as well as possibly viable courses of action. 

ii. Valuation: At this stage, each of the detected choices is assigned a value based on the present 

state of internal and external variables. 

iii. Action selection: Based on a comparison of the values generated in the preceding phase, an 

action is chosen to acquire the highest-valued choice. 

iv. Outcome evaluation: comparing the actual outcome to the anticipated outcome of the 

decision. 

v. Learning: Based on the findings of the outcome evaluation stage, internal representations of 

available alternatives are updated, along with their value and the activities required to attain 

these options.  

The results of this stage impact the preceding stages of representation, evaluation, and action 

selection. The above paradigm is ambiguous on the timing of the comparative process; do we 

compare values as they are computed during the valuation stage, after this stage is complete, 

or in light of their associated actions during the action-selection stage? While (Rangel et al., 

2008) allowed some flexibility in this regard, (Padoa-Schioppa & Cai, 2011) proposed a 

similar, albeit more detailed, framework which included an ‘integration’ stage, in which 

external and internal variables are integrated with option characteristics to generate abstract 

values, which are then compared. Based on the outcome of this comparison, an action plan is 

generated in order to obtain the chosen option. It is implicit in this framework that these stages 

are (i) discrete, (ii) serial, and (iii) implemented in separate brain regions.  

While these stages may indeed describe how the brain transforms sensory information into a 

choice, this does not necessarily imply any of the above three characteristics. Some or all of 
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the stages of this process might overlap in time or in brain tissue. Cognitive models of value-

based decision-making have, in fact, often proposed that the evaluation and comparison stages 

occur in parallel (Busemeyer et al., 2019; Noguchi & Stewart, 2018; Sugrue et al., 2005). 

However, most neuronal circuit models of value-based decision-making have focused solely 

on the comparison stage, implying that evaluation occurs somewhere upstream of the modelled 

circuit (Chau et al., 2014; Rustichini & Padoa-Schioppa, 2015; Soltani & Wang, 2006; X. J. 

Wang, 2008), and mostly remaining silent on the question of when the action plan is determined 

(Yim et al., 2019). 

2.5.2. Multiple value systems 

Multi-valuation systems during valuation are an important part of the framework. Based on the 

outcomes from a large number of animal and human behavioural studies, three different types 

of valuation system have been suggested: Pavlovian, habitual, and goal-directed (Bray et al., 

2008; Clark et al., 2012; Matzel, 2002; O’Doherty et al., 2016; Raab & Hartley, 2018; Van Der 

Meer et al., 2012). 

• According to Pavlovian systems, only a small group is assigned a prepared behavioural 

group value, and it therefore has limited behaviours. However, they may be the driving 

force behind behaviours that cause significant economic outcomes (e.g., over-eating). 

Consumption behaviours such as approaching a sign that predicts food or consuming 

existing foods can be given as examples of this system. 

• Habitual valuation systems learn to value stimulus-response relationships based on the 

trial-and-error process in their previous experience. For example, a smoker wants to 

smoke at certain times of the day or after certain other behaviours, which is habitual 

smoking behaviour. 

• Goal-directed systems value actions by computing action-result relationships and then 

evaluating the rewards related to different results. The decision during food choice in a 

new restaurant can be given an example for this type of system. 

Habitual and goal-directed systems differ in their reactions to changes in the environment; the 

former only learn to change value assignment as a result of repeated experiences, while the 

latter change the value of action immediately after the value changes (Rangel et al., 2008). In 

addition to this valuation system, (J. Peters & Büchel, 2010) proposed that the concept of value 

can be classified differently in relation to the value-measurement relationship. Accordingly, 

the subjective value of an option can be divided into different subtypes as outcome value, goal 
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value, decision value, and action value. This classification mainly relies on the differences in 

computational aspects, suggesting that a decision is driven by the integration of costs, efforts, 

and risks. The outcome value (OV) is explained by the value of a reinforcer on consumption, 

rather than involving rewards with risks, costs, and effort such as experiments with using 

simple ratings to understand consumer behaviour. Similarly, the goal value (GV) does not 

involve costs. It refers to an abstract term to define the value is associated with consumption 

and rewards such as experiments based on willingness to pay strategy.  

Unlike GV and OV, the decision value (DV) incorporates costs and indicates the total value of 

a certain option, which can be affected by both internal states of an agent or external variability 

of the environment, such as experiments with monetary rewards based on temporal delaying. 

Lastly, the action value (AV) can be defined as a complicated term in which it refers to the 

value of the action that can lead to the highest value in the pre-choice period. Depending on 

the complexity of the decision context, these values may be based on OV, GV or DV. Thus, 

action values reflect a particular action’s matching to a particular value, which can be OV, GV, 

or DV. For example, in (Rangel et al., 2008) multi-class value system, the Pavlovian system 

and the goal-directed system have utilised action value as an outcome value. 

In relation to the above discussion on definitions of value concepts and frameworks, another 

theory has been proposed to unify value frameworks through linking value classification and 

value systems. This notion is crucial in the study of decision neuroscience and neuroeconomics 

for the value comparison stage. The idea behind that theory refers to the process of translating 

different values of multiple options into a single common scale for value comparison (Chib et 

al., 2009; Glimcher & Rustichini, 2004; Levy & Glimcher, 2011, 2012; Sugrue et al., 2005). 

For instance, when participants are deciding between different food options such as apples and 

oranges, the value of each option is translated into a single unit (single common currency).  

Although this concept is not directly addressed in (Rangel et al., 2008) framework, their 

research admits that option values need to be compared and combined in order to convert them 

into a single action, which precisely defines the term of common currency. Since this common 

unit provides value comparisons into different features of items, this theory is also employed 

in multi-attribute decisions in which each choice option is characterised by multiple attributes 

or elements. Accordingly, different attributes of each option are taken into account (for 

example, the flavour, calorie count, health status, and cost of the food options), after which the 

value of each of the attributes is evaluated, and all these attributes are combined into single 
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coherent value representation, which enables comparison with any other possible option 

(Busemeyer et al., 2019; Levy & Glimcher, 2012). At the conclusion of this chapter, I will 

consider a number of value-based decision-making scenarios in which individuals make 

decisions based on combinatorial of multiple items. 

2.5.3. Existing paradigms in value-based decision-making  

This subsection presents a brief overview of existing paradigms commonly used in 

experimental studies of value-based decisions. According to (Nakao et al., 2012), value-based 

decisions can be largely categorised into externally guided decisions (i.e., external or extrinsic 

value judgments) and internally guided decisions (i.e., internal or intrinsic value judgments). 

External value judgments are based on scenarios where there is an objectively correct answer 

that depends on external conditions, such as when there is uncertainty and only one less 

predictable correct response exists.  

In contrast to externally guided judgments, internal value decisions refer to the process of 

making decisions based on one’s own personal values and beliefs, rather than external factors 

such as financial gain. These decisions are often driven by individuals’ moral judgments and 

personal preferences, rendering them subjective. Since the outcome is determined by the 

subject’s internal values rather than by external criteria, there is no correct answer relying on 

external conditions for the subject. Ultimately, the goal of internal value decision-making is to 

make choices that are true to oneself and align with one’s personal values and beliefs.  

This thesis mainly considers the investigations of internal value judgments; more specifically 

it examines scenarios in the context of preference judgment. Several tasks can be utilised to 

measure subjective values during internal value judgments. The following section describes 

the most common types of tasks used to study internal value judgments: rating, willingness-to-

pay, temporal discounting, and binary choice preference tasks. 

 

2.5.4. Internal value judgement paradigms 

2.5.4.1. Temporal discounting task 

The first one is the temporal discounting paradigm, which is widely used in psychology and 

neuroscience research to study decision-making. These tasks typically involve making a choice 

between two possible options, one of which offers a small reward immediately and the other 

of which provides a larger reward later. Hence, temporal discounting reflects the tendency of 
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individuals to evaluate rewards according to what they receive sooner or later. The decision 

that an individual makes between the two alternatives is then utilised to draw conclusions about 

the individual's level of temporal discounting (Green & Myerson, 2004; Samuelson, 1937; 

Schultz, 2010). Recent study indicates that, in general, participants prefer the immediate reward 

and that the rate at which rewards are discounted varies considerably amongst individuals 

(Berns et al., 2007; Jan Peters & Büchel, 2011).  

2.5.4.2. Willingness to pay tasks 

Willingness to pay (WTP) is a concept most commonly used in economics and financial 

decisions and refers to the maximum amount of money that an individual is willing to pay for 

a good or things (Plassmann et al., 2007). In most cases, these tasks are typically based on the 

Becker-DeGroot-Marschak (BDM) auction paradigm (Becker et al., 1964), which is a method 

for determining the WTP of individuals within the context of a group setting. In the study 

design, an item is shown, and participants are asked to bid (i.e., offer) a certain amount of 

money by selecting one of the available options. The individual’s willingness to spend more 

money on an item indicates that this item is more valuable to the participant than others. As a 

consequence, the amount of money they are willing to spend acts as a direct indicator of 

preference (Fiedler, 2010; Harris et al., 2011; Motoki et al., 2019; Schoen et al., 2018). 

2.5.4.3. Rating tasks 

Rating tasks rely on the concept of internal value, whereby participants are instructed to rate a 

certain item, object, or situation on a scale by stating how much they would be pleased to 

receive the item (Lebreton et al., 2009). Based on the task presentation, individuals’ responses 

may indicate a range of various aspects. Some examples of these aspects include wanting (i.e., 

desiring), liking, being familiar with, or finding the experience pleasant (Goto et al., 2017). In 

the majority of experimental research, such tasks are performed in combination with others, 

such as binary choice preference tasks (Brus et al., 2021; Milosavljevic et al., 2010; Philiastides 

& Ratcliff, 2013). Nonetheless, there are situations in which these tasks serve as the principal 

focus of experimental studies in their own right (Qiu et al., 2020; Sun et al., 2020; Tashiro et 

al., 2019). 

2.5.4.4. Forced-choice preference tasks 

This task involves preference-based decisions in which participants were asked to choose their 

preferred item or items from a set of two or more options. Typically, making a decision is based 

on picking one of the two alternatives (i.e., binary choices such as responding with yes or no 
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or, responding with whether or not one wants to consume). The effort tasks may also be utilised 

as a kind of forced-choice preference task where participants were required to decide how much 

effort they would like to exert in order to achieve a reward (Cléry-Melin et al., 2011; Harris & 

Lim, 2016a; Pessiglione et al., 2007).  

All these internal value judgement paradigms provide approaches to making judgements that 

are based on an individual's subjective values. In these paradigms, decisions are made by 

assigning values to different options and choosing the one that aligns most closely with the 

individual's personal values. In my investigations, I will combine different versions of rating 

tasks and forced-choice preference tasks in order to evaluate various scenarios involving value-

based decision-making across novel tasks. 
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Chapter 3 

Multiple Information Sources’ Impact on Value-Based Decisions 

3.1. Background 

From ordinary and even unconscious decisions made in everyday life to complex international 

political policies, decisions are made as a result of evaluating many diverse pieces of 

information concerning pertinent factors. Rational decision-making depends on evaluating 

different attributes simultaneously in order to assay the highest expected overall value relative 

to the expected and potential costs inherent in decisions. Making an optimal choice requires an 

integration process in which the reward estimates of all attributes should be integrated into a 

combined value. Previous research has examined how people integrate different sources of 

information in various experimental paradigms (Noguchi & Stewart, 2018; Trueblood et al., 

2013; Tsetsos et al., 2010; Usher & McClelland, 2004).  

Accordingly, the evidence supporting each alternative is integrated over time, until sufficient 

evidence in support of one alternative reaches a response threshold. This integration process 

can provide an optimal strategy for fast and accurate decisions by reducing the noise in the 

accumulated information. The cognitive process during decision-making has been successfully 

explained by this general framework, commonly referred to as sequential sampling models 

(Bogacz et al., 2006). For perceptual decisions, although a few studies have examined how 

multiple pieces of information can influence behaviour (James, 2000; Krzemí & Zhang, 2021; 

Palmer, 1995; Shaw, 1982), choices on the basis of a single source are commonly used to 

examine the process of evidence accumulation (Gold & Shadlen, 2007). For value-based, more 

specifically preference-based decisions, most related research focused on multi-attribute 

choices, in which different types of information need to be combined to guide choices (Slovic, 

1995). For example, when renting a home, one need to consider the combination of room size, 

price, and location. This raises the issue of how multiple sources of information can be 

integrated during decision-making. The traditional approach suggested that multi-attribute 

choices entail that attributes are optimally weighted and combined in a way that reaches 

maximum utility (Dawes & Corrigan, 1974; Doyle, 1997; M. D. Lee & Cummins, 2004). More 

recent perspectives propose alternative heuristic models, such as the take-the-best model, 

assuming that only a few attributes are taken into account by a decision-making while others 
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are ignored (Gigerenzer & Gaissmaier, 2010; Gigerenzer & Goldstein, 2011; Gigezenger & 

Goldstain, 1999). 

The current study focused on the relatively neglected decision paradigm of value-based 

decision-making (VBDM), which posits that choices are made based on multiple sources of 

information of the same type. For example, when buying a chocolate assortment box, the nature 

of each item within the box may have similar values. Here, to make an optimal choice among 

multiple boxes, one needs to integrate their preferences towards individual items (i.e., select 

the box with the highest expected value). In such cases, how multiple information sources 

affects behavioural performance remains unclear.  

The standard accumulation model assumes that evidence for decision-making is accumulated 

over time. However, little research has been conducted to understand whether humans can 

effectively combine evidence from spatially distributed or dispersed sources. The DDM model 

relies on the assumption that evidence comes from a single source continuously over time. It 

is unknown, however, how people will behave when information is distributed from multiple 

sources. 

The present study aims to investigate the integration of information from multiple sources in 

decision-making and its implications for human cognitive processes. Although previous 

research supports the proposition that humans do indeed combine multiple sources of 

information during VBDM (Krajbich et al., 2010, 2012), such processes are inevitably 

constrained by limited attentional capacity. As a result, selective attention may direct the 

decision process to a subset of information sources, leading to biased choice behaviour. Two 

critical questions have yet to be addressed in this field: 

• How is VBDM affected by the number of information sources?  

• Is a decision-maker sensitive to the presence of incongruent information between 

multiple sources? 

These questions were addressed with regard to VBDM in two internet-based experiments, in 

which human participants were instructed to make binary forced choices based on their 

preferences, whereby each choice option consisted of multiple food items (Figure 3.1). 
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Figure 3.1 Experimental paradigms for both two-items task and four-items task. 

A. Two-items task experimental paradigm. Participants were asked to rate food items before making 

a binary choice between two alternatives, each of which contained two food items. B. Four-items task 

experimental paradigm. After completing a rating task, participants were instructed to choose between 

two options, each of which contained four food items. C. Four-items task experimental paradigm 

containing congruent and incongruent information. Participants completed a rating task followed by a 

binary choice task between two alternatives, each of which contained four food items 

 

Experiment 1 investigated the effect of the number of food items on behavioural performance. 

In one session, participants chose between two options, with each containing two food items. 

In another session, each option included four food items. Importantly, all food items assembled 

in each choice option were at the same level of preference rating. We hypothesized that such 

within-option consistency would promote one of two possible types of behaviour. First, as the 

number of food items per option increases, participants may evaluate additional items, which 

leads to prolonged reaction time (RT). Alternatively, participants may ignore the additional 

information because it is redundant, and hence show no behavioural change. By manipulating 

the number of food items per choice option, we examined how the number of information 

sources affects choice behaviour and RT. Furthermore, the decision task was presented in four 

difficulty levels, according to the extent of value difference between the preference ratings of 

food items.  

Experiment 2 aimed to replicate and extend the findings from Experiment 1 with the addition 

of incongruent information. Participants performed a binary choice task between two options, 
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each of which contained four food items. Two trial types were presented, depending on whether 

the food items in each choice option contained congruent or incongruent preference 

information. In congruent trials, all food items in each option had the same level of preference 

rating as in Experiment 1. In incongruent trials, one incongruent pair was created by swapping 

the locations of two food items in the two choice options. We expected that the presence of 

incongruent pairs would lead to one of two possible types of behaviour. First, if the participants 

made decisions by integrating multiple information sources, incongruent pairs had a negative 

impact on behavioural performance, leading to a lower accuracy and longer RT. Alternatively, 

participants could disregard the additional (incongruent) information and hence the 

manipulation of information congruency would not impact on behavioural performance.  

In both experiments, we fitted a cognitive model, the drift-diffusion model (DDM) (Ratcliff & 

McKoon, 2008), to the behavioural data and inferred the effects of information sources, 

information congruency, and task difficulty on the underlying decision-making process. The 

outcomes are reported in more depth below. 

Overall, the primary objective of this research is to investigate the integration of information 

from multiple sources in value-based decision-making in terms of behavioural performance 

and cognitive processes. The first experiment aims to examine behavioural patterns when the 

number of information sources increases. The second experiment focuses on understanding 

how people respond when information from multiple sources becomes incongruent. If 

individuals can successfully combine the information even when they are incongruent, it 

suggests that the combinations or the combined evidence may be diminished, leading to 

changes in behaviour. 

To explore participants' ability to evaluate multiple sources of information per alternative, we 

manipulated the preference level on a single source. As a straightforward manipulation, when 

individuals solely focus on a single pair of information, we do not anticipate observing any 

significant effects on their behaviour when the information becomes incongruent or when the 

number of information sources increases. 

By conducting this research, our aim is to contribute to our understanding of human cognitive 

processes by shedding light on the complexity of decision-making in real-world contexts. 
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3.2. Experiment 1: Two Items vs. Four Items Study 

3.2.1. Participants  

A total of 52 participants were recruited from an online recruitment portal Prolific (prolific.co) 

and took part in the experiment online. Participants’ age ranged from 19–56 years, with a 

median age of 24, and 16 were females). Table 2 shows demographic information about the 

participants. Prolific users are aware that they participate in research studies and are 

compensated for their participation based on minimum payment rates (Palan & Schitter, 2018). 

All participants received monetary payments for their participation. Consent was obtained from 

all participants. The study was approved by the Cardiff University School of Psychology 

Research Ethics Committee. 

Table 2 Demographic information about the participants. STD - standard deviation 

  

3.2.2. Apparatus 

The experiment was carried out online. Experimental scripts for stimulus presentation and 

response collection are written in HTML with a JavaScript library jsPsych 6.1.0 (de Leeuw, 

2015). The online experiment was run on the Pavlovia web server (pavlovia.org), and 

participants used web browsers on their computers to complete the experiment. It has been 

shown that online studies using modern web browsers can be employed as an efficient tool to 

accurately measure behavioural responses and reaction times (Anwyl-Irvine et al., 2020; de 

Leeuw & Motz, 2016; Semmelmann & Weigelt, 2017).  

 

3.2.3. Experimental Design 

All participants completed two experimental sessions. In each session, choice options were 

comprised of either two or four food items. Half of the participants completed the session with 

Category  Value 

gender female (16), male (36) 

age (years) mean: 26.2, median: 24, STD: 7.4 

nationality United Kingdom (12), Poland (12), Portugal 
(6), Italy (3), United States (6), Greece (4), 
China (1), Spain (2), Canada (1), Hungary 
(1), Finland (1), South Africa (1), Spain (1), 
Czech Republic (1) 
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two-item options first, whereas the other half completed the four-item session first. Each 

session included a rating part and a decision-making part. In the rating part, participants were 

asked to give preference ratings (i.e., how much they would like to consume the food item) to 

each food item chosen. A total of 100 food pictures were chosen from an online food database 

(Blechert et al., 2019). Participants were informed that they needed to rate the food items as 

evenly spread as possible. If their rating responses were severely biased, the session was 

terminated prior to the decision part, and their data was discarded without further analyses.  

The Likert-type rating scale contained five discrete values from -2 to 2, representing five 

preference levels: “strongly dislike” (-2), “dislike” (-1), “neutral” (0), “like” (1) and “strongly 

like” (2). In the decision-making part, participants were asked to make a binary choice between 

two options containing the combination of food items. The instruction is to decide which group 

of food items is more preferred. In each trial, two groups of food stimuli were presented on the 

left and right sides of the screen (two-item session in Figure 3.1A and four-item session in 

Figure 3.1B). In both two-item and four-item sessions, each option contained food items with 

the same level of preference rating (i.e., from -2 to 2).  

In both sessions, there were four different difficulty levels, depending on the relative value 

difference between two options: hard, middle, easy, and easiest. On a hard trial, two groups 

with one rating point difference appeared on the left and right of the screen (e.g., 0 vs. 1, 0 vs. 

-1, 2 vs. 1, -1 vs. -2). On a middle trial, the two groups which the graded difference is two 

appeared on the left and right sides of the screen (e.g., 0 vs. 2, 0 vs. -2, -1 vs. 1). On an easy 

trial, the rating difference between the groups is three and these groups appeared on the left 

and right sides (e.g., 2 vs. -1, -2 vs. 1). On an easiest trial, the rating difference which the 

highest grade is four. Similar to other trials, the two groups appeared on the left and right sides 

(e.g., -2 vs. 2). 

 

3.2.4. Procedure 

Each experimental session comprised 450 trials, which were divided into 15 blocks of 30 trials. 

Participants took short breaks between blocks. Each block contained 12 hard trials (3 trials 

from 0 vs. 1, 3 trials from 0 vs. -1, 3 trials from 2 vs. 1, and 3 trials from -1 vs. -2), 9 middle 

trials (3 trials from 0 vs. 2, 3 trials from 0 vs. -2, and 3 trials from -1 vs. 1), 6 easy trials (3 

trials from 2 vs. -1 and 3 trials from -2 vs. 1), and 3 easiest trials (3 trials from -2 vs. 2). The 

order of the four difficulty levels was randomized across trials in a block.  
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Each trial began with the presentation of a fixation point at the centre of the screen, with a 

uniformly distributed latency between 250 and 1500 ms. After the fixation, two choice options 

(each with two or four food items) appeared on the left and right side of the screen. Each trial 

was presented for a maximum of 3000 ms, during which time participants were instructed to 

click on one option using a mouse. Immediately after each choice action, the colour of the 

rectangular border of the chosen option changed colour to indicate the registration of a 

response, and the choice stimulus disappeared after the response. If participants did not respond 

within 3000 ms, a warning message was given, and the next trial began.  

 

3.2.5. Data Analysis 

We quantified the response time (RT) of each trial as the time between the onset of the food 

stimulus and the time of the behavioural response. Response accuracy was quantified as the 

proportion of trials in which the option with a higher preference rating was chosen. Trials with 

RTs faster than 300 ms were removed, to exclude fast guesses (i.e., inaccurate results). The 

trials that were discarded accounted for 0.08% of all trials. To make group inferences on mean 

decision accuracy and RT, we used Bayesian ANOVA, with the difficulty level and the number 

of information sources as within-subject factors. We used JASP (jasp-stats.org) to perform 

post-hoc comparisons and Bayes Factors (BFincl, BF10) to characterise the strength of 

evidence (Wagenmakers et al., 2018). 

 

3.2.6. Cognitive Modelling of Behavioural Data  

We used the hierarchical drift-diffusion model (HDDM) toolbox (Wiecki et al., 2013) to fit the 

DDM to each participant’s response time distribution and accuracy. HDDM is a hierarchical 

extension of DDM. It assumes that model parameters for individual participants are random 

examples drawn from group-level distributions and uses the Bayesian approach to estimate the 

posterior distributions of all model parameters at both individual and group levels (Wiecki et 

al., 2013). DDM assumes that a binary choice is made by a noisy process that accumulates 

information over time from a starting point until the accumulated information reaches one of 

two decision boundaries, corresponding to the two choice options (Ratcliff & McKoon, 2008). 

When one of the boundaries is reached, a motor response is executed. The model decomposes 

behavioural data into four components: 
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• The drift rate (v) refers to the average rate of information accumulation.  

• The decision threshold (a) refers to the distance between two response boundaries.  

• The non-decision time (Ter) refers to the latencies of stimulus encoding and the response 

execution.  

• The starting point (z) refers to a priory bias toward one of the two options. 

Furthermore, the DDM can be extended to involve trial-by-trial variability in drift rate sv and 

non-decision time st in order to improve model fitting (Ratcliff & McKoon, 2008). The model 

predicts RTs as the sum of the time period of accumulation process and non-decision time, the 

latter accounts for sensory encoding and motor execution delays (Karahan et al., 2019). 

In our study, the starting point was fixed at 0.5. Unlike previous studies like (Leite & Ratcliff, 

2011; Mulder et al., 2012; Simen et al., 2009), which explicitly manipulated the outcome of 

each option, our study took a different approach. We presented the position of the correct option 

(either left or right) randomly across trials without explicit manipulation. This randomization 

ensured that participants did not develop biases or preferences towards a specific position. To 

keep the model reasonably simple, by presenting the correct option randomly, we aimed to 

create a neutral decision-making environment where participants based their choices solely on 

the task requirements, rather than any preconceived biases towards one side. This approach 

allowed us to investigate the underlying cognitive processes involved in decision-making 

without the confounding influence of prior preferences or expectations. 

To accommodate changes in behavioural performance, one or more model parameters need to 

vary between conditions. We evaluated a total of 26 variants of the DDM model with different 

parameter constraints. In all but one model, the three main parameters (a, v, and Ter) were 

allowed to vary between conditions and/or sessions.  

For each model, we generated 20,000 samples from the joint posterior distribution of all model 

parameters by using Markov chain Monte Carlo sampling. The initial 2000 samples were 

discarded as burn-in to provide the stability of posterior estimates (Wiecki et al., 2013). 

Model fits were evaluated by comparing each model’s deviance information criterion (DIC) 

value (Spiegelhalter et al., 2002), where lower values indicate a better model fit. We used 

Bayesian hypothesis testing (Gelman et al., 2013) to make inferences between conditions from 

the posterior parameter distributions for the best fitting model variant. To clarify our statistical 
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report, we used p to refer to frequentist p-values and Pp|D to refer to the proportion of posteriors 

supporting the testing hypothesis at the group level from Bayesian hypothesis testing. 

 

3.2.7. Behavioural Results 

Participants performed binary preference-based choices between options incorporating two or 

four items in different sessions. Behavioural performance was quantified by accuracy 

(proportion of correct responses) and RT.  

Participants performed with a higher accuracy and faster reaction time in the two-item task 

(mean accuracy = 89.46%, mean reaction time:1231.56 ms) than in the four-item one (mean 

accuracy = 85.62%, mean reaction time:1342.19 ms). A repeated measures ANOVA revealed 

that there was significant main effect of task differences on participants’ behavioural 

performance (accuracy: F(1,50) = 8.041, p = 0.007, ηp2 = 0.139, BFincl = 47918.650; RT: 

F(1,50) = 22.450, p < 0.001, ηp2 = 0.310, BFincl = 51280.966) (Figure 3.2A and Figure 3.2B).  

 

Figure 3.2 Behavioural results.  

A. The accuracy measurement (ratio of correct responses) between the two items decision-making task 

(green) and four items decision-making task (orange) across all conditions. B. The average of RTs 

between the two items decision-making task (red) and four items decision-making task (blue) across 

all conditions 

 

The ANOVA also revealed that behavioural performance differed significantly between 

difficulty levels in both two-item and four-item trials (accuracy: F(3,150) = 214.647, p < 0.001, 

ηp2 = 0.303, BFincl = 3.129e+59, RT: F(3,150) = 162.900, p < 0.001, ηp2 = 0.765, BFincl = 

3.375e+58). In other words, as the preference rating of two options became more closer (i.e., 

more difficult), participants had lower accuracy and longer RT. Furthermore, there was a 

significant interaction between the number of sources and task difficulty (accuracy: F(3,150) 
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= 3.201, p = 0.025, ηp2 = 0.003, BFincl = 0.131, RT: F(3,150) = 3.006, p = 0.032, ηp2 = 0.057, 

BFincl = 0.126), indicating that the behavioural effects of the number of information sources 

vary between task difficulty levels.  

To explore whether choosing between options including preferred items differed from choosing 

with non-preferred items, we conducted pairwise comparisons between trials at the same 

difficulty level but including positive vs. negative rated items. Making choices involving 

positively rated items was faster across all difficulty levels: 0/1 versus 0/-1 (F (1, 51) = 20.924, 

p<0.001, ηp2 = 0.291), 0/2 versus 0/-2 (F (1, 51) = 5.764, p<0.001, ηp2 = 0.102) and 2/1 versus 

-2/-1 (F (1, 51) = 0.030, p<0.001, ηp2 = 5.939e-4). However, no difference was observed in 

decision accuracy: 0/1 versus 0/-1 (F (1, 51) = 1.128, p = 0.293, ηp2 = 0.022), 0/2 versus 0/- 2 

(F (1, 51) = 0.011, p = 0.917, ηp2 = 2.175e-4), and 2/1 versus -2/-1 (F (1, 51) = 0.030, p = 

0.862, ηp2 = 5.939e-4).  

 

3.2.8. Cognitive Modelling Results 

We used a hierarchical Bayesian version (Cavanagh et al., 2011; Vandekerckhove et al., 2011) 

of the DDM (Bogacz et al., 2006; Ratcliff & Tuerlinckx, 2002) to decompose individual 

participants’ behavioural data into model parameters to infer their latent cognitive processes. 

We allowed three model parameters (i.e., the drift-rate v, the non-decision time Ter, and the 

decision threshold a) to be fixed or vary between difficulty conditions, sessions (i.e., two-item 

vs. four-item options) or both. For each model variant, we ran 5 MCMCs, each having 20.000 

samples, with the first 5.000 samples disregarded due to burn-ins. Model convergence was 

assessed using the Gelman-Rubin statistic, with values lower than 1.1 indicating successful 

model convergence. The maximum value of the statistic from all parameters was R = 1.00085, 

which is less than the convergence criterion of 1.1(Gelman & Rubin, 1992), supposing that all 

parameter estimates converged after 20,000 steps.  

The model variant that described the data best (i.e., the one with the lowest DIC value) allows 

all three parameters (v, Ter, and a) to vary between sessions with two or four food items per 

option, and v and Ter to further vary between the difficulty levels (Figure 3.3B). To assess the 

model’s fit, we simulated the model with its posterior parameter estimates. In all conditions, 

the observed data and model simulations were in good agreement (Figure 3.3A). 
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Figure 3.3 Drift-diffusion model (DDM) fitting results.  

A. Showing model simulations on best fitting model from different participants. The red line depicts 

participant RT distribution data and blue line indicates model fit with varying model parameters. B. 

The deviance information criterion (DIC) score of 26 DDM model variants. The DIC score differences 

between all models and best fitting model are shown against corresponding model dependencies which 

were depicted on the left side of the graph. A purple-filled square indicates that corresponding 

parameter can vary between the difficulty levels on preference and two items/four items options. An 

orange or green-filled square indicates that corresponding parameter can vary between difficulty levels 

on preference or two items/four items options, respectively. Pink-filled square indicates that the 

parameter is fixed between conditions. The best fitting model had a 0 DIC score difference and was 

indicated by a black arrow. C. Group-level DDM model parameters of the best fitting model, which is 

the first model variant in Panel B. Each posterior distribution was obtained from 20,000 MCMC 

samples. Blue, red, green, and yellow lines represent different preference levels on the parameter of v 

and Ter. Solid and dashed lines represent different numbers of information sources on the parameter of 

v, Ter, and a 
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We used Bayesian statistics to quantify the proportion of non-overlaps between the posterior 

distributions of parameters (Gelman et al., 2013; Kruschke, 2010). For the drift rate, there was 

strong evidence to support differences between all conditions between difficulty levels. The 

drift rate was also higher in choosing options with two items than those with four (Pp|D = 

0.003, across four conditions). The mean posterior value across four conditions from two items 

was 1.568, whereas the mean posterior value across four conditions from four items was 1.968. 

Furthermore, choosing between two-item options led to a small increase in the decision 

threshold than four-item options (Pp|D = 0.728). We did not observe strong evidence 

supporting a difference in the non-decision time between conditions (Figure 3.3C and Table 

3). 

Table 3 Posterior comparisons of the model parameters (v and Ter) 

 

The table displays the proportion of non-overlap between posterior parameter estimates x and y, which 

equates to a Bayesian test of the hypothesis Pp|D(x > y). Experimental conditions are hard, middle, easy, 

easiest refer to different preference levels and the DDM parameters are v drift-rate and Ter non-decision 

time. 

3.3. Experiment 2: Swapping vs. Non-Swapping Study 

3.3.1. Participants 

Prolific online recruitment portal (prolific.co) was used to recruit 52 participants in the online 

experiment. Their ages ranged from 19 to 56 years, with a median age of 23.5 years, and 17 

participants were female. Table 4 summaries demographic information about the participants. 

  v  Ter 
  Two 

items 
Four 
items  Two 

items 
Four 
items 

Difference in 
preference level = 1 

x = Middle;  
y = Hard 1.000 1.000  0.907 0.962 

x = Easy;  
y = Middle 0.999 0.997  0.026 0.045 

x = Easiest;  
y = Easy 0.997 0.999  0.246 0.217 

Difference in 
preference level = 2 

x = Easy;  
y = Hard 1.000 1.000  0.256 0.501 

x = Easiest;  
y = Middle 1.000 1.000  0.005 0.006 

Difference in 
preference level = 3 

x = Easiest;  
y = Hard 1.000 1.000 

 
0.093 0.218 
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Informed consent was obtained from all participants. The study was approved by the Cardiff 

University School of Psychology Research Ethics Committee. 

Table 4 Demographic information about the participants. STD - standard deviation 

 

3.3.2. Apparatus 

Experimental scripts for stimulus display and response collection are written in HTML with a 

JavaScript library jsPsych 6.1.0 (de Leeuw, 2015a), as in Experiment 1.  

 

3.3.3. Experimental Design 

Similar to Experiment 1, Experiment 2 comprised two parts: an initial rating part and a main 

decision-making part. The rating part was the same as in Experiment 1. Each participant rated 

100 food items according to their subjective preference on a five-point Likert-type scale: 

“strongly dislike” (-2), “dislike” (-1), “neutral” (0), “like” (1) and “strongly like” (2). In the 

decision-making part, two groups of food items presented on the left and right sides of the 

screen in each trial. Each group consisted of four food items, from which participants were 

instructed to choose their preferred group of food items (Figure 3.1C). 

Half of the decision-making trials followed the similar design as in Experiment 1: all food 

items in a group had the same level of preference rating (hereinafter referred to as “non-

swapping trials”). There were three difficulty levels based on the value difference between the 

two food item groups: hard, middle, and easy. The difference in preference ratings between the 

two groups was only one on the hard level (e.g., 0 vs. 1, 0 vs. -1, 2 vs. 1, -1 vs. -2). A two-point 

preference rating gap existed between the two groups on the middle level (e.g., 0 vs. 2, 0 vs. -

Category  Value 

gender female (17), male (35) 
age (years) mean: 25.8, median: 23.5, STD: 6.8 
nationality Mexico (9), Portugal (8), Poland (7), Spain 

(4), United Kingdom (3), Italy (3), United 
States (3), Greece (2), Hungary (2), Austria 
(1), Colombia (1), Switzerland (1), 
Malaysia (1), Netherlands (1), France (1), 
Norway (1), Canada (1), India (1), South 
Africa (1), Zimbabwe (1) 
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2, -1 vs. 1). The difference in rating value between the groups was three on the easy level (e.g., 

2 vs. -1, -2 vs. 1). 

In the other half of trials, we first generated two groups of food items in the same way as the 

non-swapping trial. We then swapped the position of food items in a random row, hereinafter 

referred to as “swapping trials”. As a result, the swapped row contains incongruent value 

information compared with the other rows. 

 

3.3.4. Procedure 

The decision-making part comprised 576 trials, including 288 non-swapping and 288 swapping 

trials. The decision accuracy (proportion of correct responses) was provided on the screen as 

feedback after every 48 trials. Self-paced breaks were given after every 64 trials. Each trial 

began with the presentation of a fixation point at the centre of the screen with a uniformly 

distributed latency between 250 and 1500 ms. After the fixation, two food items groups 

appeared on the left and right sides of the screen until a response was received.  

 

3.3.5. Data Analysis and Cognitive Modelling 

As in Experiment 1, Statistical analyses were performed to quantify RT and accuracy. The 

response time (RT) of each trial was calculated as the time between the onset of the food 

stimulus and the time of the behavioural response. In the congruent conditions, response 

accuracy was measured as the proportion of trials in which the option with a higher preference 

rating was chosen, while in the incongruent conditions, response accuracy was measured as the 

proportion of trials in which the option with the higher preference rating was selected despite 

the presence of incongruent pairs. Specifically, incongruent conditions involved the 

manipulation of information congruency by swapping the locations of two food items. In these 

trials, the locations of two food items within the two choice options were swapped, resulting in 

incongruency between the preference ratings of the items and their actual positions. The correct 

responses were determined based on the overall preference ratings of the food items rather than 

the specific locations of the foods. Following the statistical analysis, we then evaluated the fit 

of 26 DDM with different parameter constraints to the behavioural data. please edit in academic 

language. 
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3.3.6. Behavioural Results 

Participants made binary value-based choices between two groups of food items. In half of the 

trials, incongruent information was introduced by swapping a pair of food items between the 

two groups (i.e., swapping trials). Repeated measures ANOVA showed that, compared with 

non-swapping trials, swapping trials had lower accuracy and slower RT (accuracy: F(1,51) = 

372.668, p < 0.001, ηp2 = 0.880, BFincl = 3.191e+60; RT: F(1,51) = 99.727, p < 0.001, ηp2 = 

0.662, BFincl = 8.544e+22) , (Figure 3.4A and Figure 3.4B) indicating that the presence of 

incongruent information hinders behavioural performance. We further replicated the effect of 

value difference observed in Experiment 1. Across swapping and non-swapping trials, larger 

value difference was associated with faster RT (F(1,51) = 99.727, p < 0.001, ηp2 = 0.662, 

BFincl = 8.544e+22) and higher decision accuracy (F(1,51) = 372.668, p < 0.001, ηp2 = 0.880, 

BFincl = 3.191e+60). There was significant interactions between swapping conditions and task 

difficulty in RT (F(2,102) = 111.702, p < 0.001, ηp2 = 0.687, BFincl = 1.182e+38) and 

accuracy (F(2,102) = 286.372, p < 0.001, ηp2 = 0.849, BFincl = 1.056e+61). These results 

suggested that the effect of information congruency from multiple sources is dependent on the 

average value difference between options. 

 

Figure 3.4 Behavioural results.  

A. The accuracy measurement (ratio of correct responses) between the non-swapping task (green) and 

swapping task (orange) across all conditions. B. The average of RTs between the non-swapping task 

(red) and swapping task (blue) across all conditions 

 

Furthermore, we compared the behavioural performance between trials at the same value 

difference but with positive or negative rated items (versus the group of neutral items). Across 

swapping and non-swapping conditions, making choices involving positively rated items were 

faster in all difficulty levels: 0/1 versus 0/-1 (F (1, 51) = 13.871, p<0.001, ηp2 = 0.214), 0/2 
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versus 0/-2 (F (1, 51) = 7.074, p = 0.010, ηp2 = 0.122) and 2/1 versus -2/-1 (F (1, 51) = 10.138, 

p = 0.002, ηp2 = 0.166). However, no difference was observed in decision accuracy: 0/1 versus 

0/-1 (F (1, 51) = 0.768, p = 0.385, ηp2 = 0.015), 0/2 versus 0/- 2 (F (1, 51) = 0.010, p = 0.920, 

ηp2 = 1.993e-4), and 2/1 versus -2/-1 (F (1, 51) = 5.738e-4, p = 0.981, ηp2 = 1.125e-5). 

Therefore, we replicated the facilitation effect in choices with positive options observed in 

Experiment 1. 

 

3.3.7. Cognitive Modelling Results 

Similar to Experiment 1, the HDDM model was used to decompose each participants’ 

behavioural data into internal components of cognitive processing (Wiecki et al., 2013). We 

allowed three model parameters (i.e., the drift-rate v, the non-decision time Ter, the decision 

threshold a) to be fixed or vary between difficulty conditions, task type (i.e., swapping or non-

swapping options) or both. For each model variant, we ran 5 MCMCs, with each one having 

20.000 samples, with the first 2.000 samples disregarded due to burn-ins. Model convergence 

was assessed using the Gelman-Rubin statistic, with values lower than 1.1 indicating successful 

model convergence. The maximum value of the statistic from all parameters was R = 1.00083 

(Gelman & Rubin, 1992), supposing that all parameter estimates converged after 20,000 steps. 

The best-fitting model version (i.e., the one with the lowest DIC value) allows all three 

parameters (v, Ter, and a) to vary between swapping and non-swapping conditions, and v to 

further vary between the difficulty levels (Figure 3.5B). The observed data and model 

simulations were in good agreement for all conditions (Figure 3.5A). 



48 

 

Figure 3.5 Cognitive modelling results.  

A. Model simulations on the best fitting model are shown on six participants. The red line represents 

data from participants' RT distributions, whereas the blue line represents model fit with varying 

parameters. B. The DIC score of the 26 DDM model variants. The DIC score differences between all 

models and the best-fitting model are shown against the model dependencies depicted on the graph's 

left side. A square filled with purple indicates that the corresponding parameter can vary between the 

preference levels and congruent/incongruent options. A square filled with orange or green indicates 

that the corresponding parameter can vary based on preference levels or congruent/incongruent pairs 

options, respectively. The square filled with pink indicates that the corresponding parameter is constant 

between conditions. A black arrow pointed to the best-fitting model, which had a DIC score difference 

of 0 and was denoted by a score of 0. C. Group-level DDM model parameters for the best fitting model, 

which corresponds to second model variant in Panel B. Each posterior distribution was derived from 

20,000 MCMC samples. Blue, red, and green lines reflect varying levels of preference for the 

parameter of v. On the parameter of v, Ter, and a, incongruent and congruent information sources are 

represented by solid and dashed lines, respectively. 
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We used Bayesian statistics (Gelman et al., 2013; Kruschke, 2010) to quantify the proportion 

of non-overlaps between the posterior distributions of parameters. For the drift rate, we found 

strong evidence supporting differences in difficulty levels between task types. Furthermore, 

choosing between four-item options with congruent conditions led to a small increase in the 

decision threshold than that of four-item options with incongruent conditions (Pp|D = 0.982) 

(Figure 3.5C). 

3.4. Discussion 

VBDM involves complex cognitive processes, because choices often depend on subjective 

motivations or preferences. During the decision process, each alternative needs to be associated 

with possible outcomes (Bogacz, 2007). To understand these decisions, several cognitive 

models have been developed. More recently, sequential sampling models have been used to 

examine the cognitive process underlying VBDM. Those models explain the accumulation 

process in the form of shifting of attention. Accordingly, a stochastic approach assumes that 

attention shifts between the attributes from moment to moment. The shifting comparisons are 

integrated over time into an evolving preference state to guide behaviour (Busemeyer et al., 

2019). 

In two independent experiments, we investigated how the existence of multiple information 

sources impacts preference-based decisions in terms of behavioural performance and its 

underlying cognitive mechanism. Experiment 1 investigated the impact of the number of 

information sources on decision-making. When the number of items in each choice option 

increased, human participants made slower and less accurate choices. Experiment 2 replicated 

and extended the main results of the first experiment. Consequently, when the number of items 

remains the same, incongruent information among each option lead to less accurate and slower 

decisions. Furthermore, in both experiments, decisions were slower and less accurate in more 

difficult conditions, in which preference ratings between options were closer.  

Our experimental design and procedure are similar to those used by Philiastides and Ratcliff, 

2013, who sought to identify how branding bias affects behavioural and decision processes, 

and specifically which internal components of processing are affected by the presence of 

branding. When making preference-based decisions between options associated with single 

items, they reported that behavioural performance varied according to the difference in the 

preference ratings of items. The current study did not consider the effect of branding, as all 

stimuli were presented without brands; instead, both experiments replicated the main finding 
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of Philiastides and Ratcliff (2013), with the extension to options associated with two and four 

items. Taken together, these results suggest that the value difference influences both the speed 

and accuracy of preference-based decisions, which calls for the need of computational 

modelling to combine both behavioural measures.  

One noteworthy addition is that our research was carried out in an online setting, suggesting 

the validity and reproducibility of online experiments to investigate the integration of 

subjective value during decision-making. When compared with trials with negatively rated 

items, the presence of positively rated items with the same value difference facilitates RT, but 

not decision accuracy. These results are akin to the effect of reward magnitude, which also 

demonstrates a facilitating effect on RT in probabilistic reward tasks (X. J. Chen & Kwak, 

2017; Schurman & Belcher, 2013). 

As highlighted above, in Experiment 1, the number of items per option affected behavioural 

performance. Since choices with four-item options consist of more pieces of information than 

those with two-item options, the prolonged RT associated with four-item options was expected, 

because of the additional time required to evaluate additional information sources. However, 

more items per option also led to less accurate decisions. This may appear to be 

counterintuitive, as all items within an option had the same level of subjective value (i.e., 

preference rating). The negative impact of multiple information sources on accuracy is more 

prominent in difficult trials. Preference or value judgement is generally a noisy process 

(Bogacz et al., 2007). Hence, the integration of the values from more items are susceptible to 

the fluctuations of value samples.  

Experiment 2 revealed that participants do not make preference-based decisions based on only 

a single item. In the incongruent condition, one pair of items had their value difference opposite 

to the rest of item pairs, but the magnitude of their value difference was the same as the rest 

pairs. If participants only evaluated one item pair, one would expect no change in the RT 

between congruent and incongruent conditions, which was not supported by our results. 

Instead, the inferior behavioural performance in the incongruent condition implied that 

information from multiple sources (i.e., multiple pairs) was combined during decision-making.  

Previous studies support the proposition of the integration of multiple information sources 

during food choices (Krajbich et al., 2010; Krajbich & Rangel, 2011). Similarly, information 

from different domains, such as price and preference, can jointly guide decision-making 

(Krajbich et al., 2012). Indeed, small attentional variations during the decision process, 



51 

measured by visual fixation, impact the final choice, suggesting that people tend to consider all 

items when making a choice. This hypothesis is also closely linked to theoretical models of 

multi-attribute choice: preference formation is driven by attention switching between different 

attributes, as suggested by the decision field theory (Roe et al., 2001), and the value-based LCA 

model (Usher & McClelland, 2004). 

Using a Bayesian hierarchical implementation of the DDM, our findings confirm that 

sequential sampling models provide a good fit to response accuracy and RT data in preference-

based decisions. Although sequential sampling models have been used to describe a wide range 

of multi-alternative, multi-attribute decision tasks (Bhatia, 2013; Krajbich & Rangel, 2011; 

Noguchi & Stewart, 2018; Trueblood et al., 2014; Tsetsos et al., 2010, 2012), to the best of our 

knowledge, this is the first attempt to use the DDM to investigate the effect of multiple 

information sources. It is worth noting that, unlike previous studies that explicitly manipulate 

the outcome of each option (Leite, 2011; Mulder et al., 2012; Simen et al., 2009), the current 

study presented the position of the correct option (i.e., left or right) randomly across trials. 

Therefore, we did not model response bias during parameter fitting. Bayesian inferences from 

the best-fitted model support that the number of information sources and task difficulty affect 

selective model parameters.  

First, our cognitive modelling has shown that increasing the amount of information affects the 

drift rate of the value integration process. In Experiment 1, the four-item task yielded a lower 

drift rate than the two-item task across all difficulty levels, and this change is accompanied by 

a moderate decrease in the decision threshold. In other words, as the number of information 

sources arises, participants accumulate value-based information of much lower quality (i.e., 

low signal-to-noise ratio), and make decisions based on less accumulated evidence. The 

magnitude of the drift rate has been associated with the allocation of attention (Schmiedek et 

al., 2007). It is possible that there is an additional cost in relation to selective attention on more 

information sources (Palmer, 1995; Reynolds & Chelazzi, 2004), which in turn leads to 

lowered drift rate.  

Second, in Experiment 2, the drift rate differs between choices with congruent and incongruent 

information. The incongruent condition had a lower drift rate than the congruent condition at 

all difficulty levels, and this change was accompanied by a reduction in the decision threshold. 

In the incongruent condition, the four items contained conflicting information. In addition to 
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decreasing the total value score, this conflict of information may have a distracting effect on 

attention. Thereby the evidence accumulation was adversely affected.  

This would be in accordance with the findings of Fisher’s 2014 multi-attribute study, which 

investigated how differential attention to positive and negative features of a product affects 

purchasing decisions with a choice between appetitive and aversive food alternatives. It was 

found that consumers give more weight to negative features than positive features in their 

choices, and attention is paid to negative features for a longer period of time during the choice 

process. In our case, the incongruent condition involved one non-preferred item in each choice 

option; hence, there may be an additional attentional cost associated with the incongruent pair 

during the integration of values (Fisher, 2014). 

Third, in both experiments, the drift rates vary with the difference in the preference level 

between options (i.e., task difficulty). The easiest task (with the highest difference in preference 

ratings) had the highest drift rate, and the drift rate decreased as task difficulty increased. These 

results are in line with the mathematical definition of the drift rate, which represents the 

difference in the average evidence in favour of two choice alternatives. Critically, when taking 

into consideration the number of free parameters, more complex models with a varying 

threshold between difficulty levels did not yield good fits. Therefore, value differences between 

choice options did not elicit changes in participants’ decision strategy or speed-accuracy trade-

off.  

Fourth, non-decision time is considered as the delay period during the decision process 

(Ratcliff & McKoon, 2008). Brain imaging studies suggested that the non-decision time 

estimated from accumulation models represents the latencies of early sensory processing 

(Nunez et al., 2017) and motor preparation (Karahan et al., 2019). In this research, the model 

allowing non-decision time to vary produced a better fit. However, there was no strong 

evidence to support that non-decision time changes between task difficulty levels or different 

information sources. Hence, our experimental manipulation did not have an effect on visual 

encoding and motor preparation latencies during preference-based decisions.  

This study only presented behavioural results from a heterogeneous sample and an internet-

based experiment, and consequently could not infer underlying neural processes during 

VBDM. Neurological investigations could provide more insight in this regard. A large brain 

network has been shown to encode the subjective value and ins integration, including the 

prefrontal cortex, the striatum, and the hippocampus (Kenning & Plassmann, 2008; McClure 
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et al., 2004; Plassmann et al., 2007; Schaefer, 2009; Schaefer & Rotte, 2010). More 

specifically, the ventromedial prefrontal cortex has been shown to encode the subjective value 

in multi-attribute decisions (Hunt et al., 2012; Strait et al., 2014). Future research could explore 

the neural representation of multiple information sources as examined in the current study.  

As a limitation, in this chapter, post ratings were not conducted, which means that participant 

preferences may have shifted slightly for certain items. However, in the following chapter 

(Chapter 4), pre and post-rating data were collected using food pictures from the same database. 

This data provides evidence that participant preferences are relatively stable, particularly 

towards individual food pictures from the same database. The strong correlation observed 

before and after the rating process suggests that participant preferences remained consistent. 

This stability in participant preferences towards the food pictures from the database has 

important implications for the current results. Firstly, using the same database across multiple 

chapters allows for a direct comparison and highlights the consistency of preferences. 

Secondly, similar procedures and methodologies have been employed in previous studies 

(Philiastides & Ratcliff, 2013). Even if there are minor changes in individual preferences within 

the experimental session, these fluctuations are likely to have a minimal impact on the overall 

results. The high correlation observed between pre and post-ratings indicates that any potential 

shifts in preferences are unlikely to significantly influence the final outcomes. Considering 

these factors, it can be concluded that the stability of participant preferences, as demonstrated 

by the strong correlation between pre and post-ratings, suggests that any minor changes in 

preferences during the experimental session are unlikely to have a substantial impact on the 

final results. 

In summary, when deciding between options comprised of multiple items, both the number of 

information sources and the averaged value difference influence choice behaviour. Such 

behavioural change relates to the quality of evidence required for rational and speeded actions, 

but not to the latency of sensorimotor encoding. 
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Chapter 4 

Preference Context Varies Perceptual Sensitivity During Decision-Making 

4.1. Introduction 

Everyday decisions often require consideration of several alternatives and rapidly choosing one 

of several options. As highlighted in Chapter 2, perceptual decisions are based on the physical 

properties of items, while value-based decisions rely on preferences or decision makers’ 

subjective goals. Research into the neural and computational underpinnings of decision making 

has progressed in two parallel but distinct streams. Perceptual decision making arose from the 

field of classical psychophysics, and is based on the processing of perceived information from 

external states. Perceptual tasks are straightforward in terms of designing, manipulating, and 

measuring with an objective approach, leading to only one correct answer. In this regard, 

studies can examine how humans choose particular actions during simple tasks, such as 

detection, discrimination, or categorization of sensory information.  

On the other hand, value-based (or preference-based) decisions are built on internal values and 

situations that have no correct answer per se, as the decision outcomes rely on a subjective 

evaluation. Such decisions investigate how humans choose options by assigning an individual 

value to distinct goods and actions, and in this approach, it is not easy to measure in a reliable 

manner (Gold & Shadlen, 2007; Hauke R. Heekeren et al., 2008; Kable & Glimcher, 2009; 

Rangel & Hare, 2010; Rushworth et al., 2011).  

Apart from these critical differences, both decision types share a common mechanism, in that 

they entail considering and processing information in order to make a final decision. Although 

a large number of existing studies in the literature have examined these two types of decisions 

on their similarities and differences by focusing on computational models and behavioural 

responses, the question of the ways in which they potentially interact, and to what extent, 

remains largely unanswered. 

A relatively recent study by Summerfield and Tsetsos (2012) argued that almost all decision-

making problems share a common structure, including both aspects of the decisions: the 

subjects need to determine one or more stimuli in a given sensory modality (i.e., answering to 

themselves what is that?), and then choose a response that will attempt to maximize the 

possibility of positive feedback or reward (i.e., what is the value of that?). The authors 

suggested that preferential decisions are affected by external states, since they require a 
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perceptual or extrinsic evaluation of the options on offer. Similarly, all perceptual decisions 

are associated with value options, mainly because they support the existence of reward value 

or loss aversion. Our study specifically focuses on internal value and its impact on cognitive 

processing. The aim of the research is to investigate how our preferential choices impact on 

perceptual decisions, based on the interaction between the two decision types.  

Our choices and actions are navigated through the values which reflect internal intentions, 

habits, or external incentives. Although value-based decisions often rely on internal value (i.e., 

intrinsic motivations and internal intentions), most research to date has focused on external 

value (i.e., extrinsic motivations and external incentives), whereby decision options have 

objective characteristics; this means that the value of the options is defined externally by the 

experimenter, and so the objective response exists.  

Value-based decisions with external value are examined by reward-based tasks, where the 

value of available choice options is determined by reward magnitude and reward probability. 

Reward tasks often entail a probabilistic aspect, whereby the task structure includes risk factors 

in order to gain or lose rewards (e.g., points or money). For instance, in a gambling task, the 

choice options are associated with different prospective rewards and different reward 

magnitudes, and participants need to decide the value of the option with the outcome as 

monetary gain or monetary loss (Gluth et al., 2013; Trimber & Luhmann, 2017; Zajkowski et 

al., 2021; X. Zhang et al., 2017).  

Another group of tasks uses the learning strategy regarding the probability of rewards, such as 

probabilistic reversal (Boehme et al., 2017; Chase et al., 2011; Cools et al., 2002), stimulus 

response (Bland & Schaefer, 2011), and instrumental reward learning tasks (Bach et al., 2017). 

Various types of stimuli, such as visual abstract patterns (Chase et al., 2011; Cools et al., 2002), 

geometric symbols (Bach et al., 2017), and geometric shapes (Bland & Schaefer, 2011; 

Boehme et al., 2017) can be used, and participants need to learn these stimuli in association 

with rewards, which differ in terms of magnitudes and variability.  

Another group of tasks focuses on how reward learning is influenced by value-based attentional 

capture (Itthipuripat et al., 2015; Jahfari & Theeuwes, 2016). For example, tthipuripat et al., 

(2015) used a novel probabilistic binary choice paradigm in which participants were asked to 

choose one target stimulus among three choice options (which included two target stimuli and 

one decoy or distractor stimulus). The critical point here was that the two target stimuli were 

assigned with high and low values by means of three different colours. However, colours were 
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randomly changed among the three choice options. Thus, by using decoy stimuli with a highly-

rewarded colour, this research showed how value-based learning might alter behavioural 

performance due to value-driven attentional bias. In all these tasks, the reward motivated 

individuals to engage in behaviours that maximize overall gain, hence demonstrating that 

human behaviours are induced by the enticements of rewards. Since the reward mechanism has 

an impact on behaviour, it also should affect the perceptual and cognitive processes that are 

crucial for the generation of behavioural response. Moreover, reward and attention are highly 

interactive during value-based decisions, such that they jointly influence behavioural outcomes 

(Anderson, 2016b; Sugrue et al., 2005).  

Previous studies pointed out that the allocation of attention is controlled by the probability of 

earning a reward. In particular, rewards have an effect on how attention is distributed among 

stimuli, and attention is biased towards reward-related objects or stimulus features. For 

example, neuroimaging studies on the neural underpinnings of reward processing have 

revealed a parallel stream of the reward and attention associations. The activation in the lateral 

intraparietal area (LIP), which is the brain area responsible for visual attentional processing 

(Bisley & Goldberg, 2010) is directly modulated by the probability of reward gains (Dorris & 

Glimcher, 2004; Louie et al., 2011; Sugrue et al., 2005). In a similar vein, many studies have 

examined the link between monetary reward and attentional performance. According to these 

studies, the presence of monetary incentives improves attentional performance by enhancing 

detection sensitivity, which could also be linked to increased cerebral perceptual sensitivity to 

reward-related stimuli (Engelmann et al., 2009; Luna et al., 2005; Mohanty et al., 2008). 

Furthermore, Berridge and Robinson (1998) proposed the incentive salience theory, which 

states that mesencephalic dopamine plays an effective role in perceptual responses to reward-

related stimuli. The engagement of the dopaminergic reward system may result in an 

enhancement of the perceptual representation of stimuli associated with reward value, making 

these stimuli more salient and attention-grabbing (Awh et al., 2012).  

Consistent with this notion, several studies demonstrated that reward has a robust effect on 

attentional selection of the visual characteristics, including a series of important studies led by 

Brian A. Anderson, using a reward association paradigm to understand value-driven attentional 

capture (Anderson, 2013, 2016a, 2016b; Anderson et al., 2011a, 2011b). Their tasks used the 

colour of stimuli to identify different visual features. Accordingly, in the learning session, the 

probability of gaining a high or a low reward was associated with either the green or red colour 

(respectively) among the different colours of the non-rewarded stimuli. In the following task, 
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reward-related stimuli were presented as distractors. Their findings demonstrated that 

previously reward-related cues led to bias on visual attention, with a distracting effect on 

selective attention and slowed behavioural performance.  

Similarly, in other study by Failing and Theeuwes (2014) associated target stimuli and rewards 

with colours, and it was found that non-target, but reward-associated stimuli attracted attention 

and had a detrimental effect on behavioural performance. Another study investigated how the 

visual feature of stimuli such as orientation is associated with the prospect of reward, whereby 

previously reward-related orientations were found to attract more attention due to increased 

attentional capture, and thereby led to changes in behavioural performance (Laurent et al., 

2014).  

Furthermore, other studies claimed that rewards have an interaction with physical salience, and 

that high reward facilitates processing perception of a feature by making it more attentive 

(Hickey et al., 2010; Qin et al., 2021; L. Wang et al., 2013). All in all, these studies showed 

that stimuli which are either associated with reward or were previously related with reward 

capture more attention than stimuli that are associated with low or no reward (Anderson, 2013; 

Chelazzi et al., 2013; Kiss et al., 2009; Libera & Chelazzi, 2009; Sawaki et al., 2015), and that 

highly-rewarded stimuli become more salient for the future decisions (Michel F. Failing & 

Theeuwes, 2014; Ikeda & Hikosaka, 2003; Kiss et al., 2009; Schiffer et al., 2014) thereby 

showing that behaviours are shaped by reward along with attention. 

Most previous studies focused on how reward affects the perception of visual features in terms 

of behavioural performance, but some studies have examined the effect of reward on the 

perception of timing behaviour (Akdoğan & Balcı, 2016; Balci et al., 2009; Michel Fabian 

Failing & Theeuwes, 2015). For instance, Michel Fabian Failing and Theeuwes (2015) 

investigated the idea that prospective reward alters timing perception using temporal oddball 

tasks, which required participants to judge the time durations between standard stimuli and 

temporal oddball stimuli. Standard stimuli were presented with a fixed duration, whereas 

oddball stimuli were shown with varying durations and associated with high, low, or no reward. 

The time durations for temporal oddball stimuli were indicated as either a longer or shorter 

period of time compared to standard stimuli duration. The results showed that the probability 

of high reward made the stimulus more salient by drawing more attention, and thus led to 

distortion of the subjective timing perception. Therefore, stimuli with a high reward were 

perceived for longer than stimuli with low or no rewards due to attentional bias.  
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Moreover, Anderson (2016a) examined how the reward-related auditory stimuli might 

influence attentional capture for the subsequent visual detection task. His research indicated 

that auditory sounds that were associated with a reward could interfere with performance, 

making the visual targets more identifiable. This finding suggests that value-driven attention 

might be captured at a cross-model level. Pooresmaeili et al., (2014) examined reward-

associated sound effect on performance in a perceptual discrimination task, and found that 

auditory stimuli that were previously associated with a high reward could improve the 

sensitivity of visual perception, and that this effect was observed even when the sounds and 

their reward associations were task-irrelevant. Altogether, these studies have shown that reward 

has a broad effect on attention. Reward-related stimuli or targets capture more attention, 

thereby enhancing their perceptual representation and making them more salient. This impact 

occurs not only in the visual domain but also in the auditory domain, and is transmitted between 

the domains, whereby reward information might interact across different task and shape 

behaviours. 

These earlier studies investigated how external value affects value-based decisions in different 

domains, with experimenters defining reward value options, thus objective responses were 

obtainable. Unlike the previous studies, this research investigates how internal values guide 

human behaviour during preferential decisions and their possible interaction with perceptual 

decisions. Rather than decisions based on external values, preference-based decisions (i.e., on 

internal values) rely on an individual’s subjective criteria that varies from person to person. 

Although internal values influence behaviour as much as external values, very little is currently 

known about the potential effects of the former. The aim of the present research is to fill this 

gap by investigating internal values by preferences and their interaction with external 

perception. For this aim, we developed a novel choice paradigm that allows us to examine both 

preference-based and perceptual decisions by using an identical stimulus. We hypothesized 

that assigning internal values to the stimulus alters people’s behaviour by changing the 

perception of visual sensitivity to the stimulus. Consequently, if internal value associations 

make the stimuli more salient, as in reward decisions, this should increase perceptual sensitivity 

to stimuli and change people’s responses given in perceptual decisions compared to the 

preferential task. 
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4.2. Materials and Methods 

4.2.1. Participants 

60 participants were recruited from an online recruitment portal (Prolific, prolific.co) and took 

part in the online experiment (age range 19–51 years old, median age 24 years old, 27 females). 

Table 5 shows demographic information about the participants. Participants were informed that 

they could voluntarily participate in a research study and be compensated for their time. All 

participants received monetary payments for their participation. Informed consent was 

obtained from all participants. The study was approved by the Cardiff University School of 

Psychology Research Ethics Committee. 

Table 5 Demographic information about the participants. STD - standard deviation 

 

Category  Value 

gender female (27), male (33) 

age (years) mean: 25.6, Median: 24, Std: 7.2 

nationality Poland (9), Mexico (7), Portugal (5), South 

Africa (5), United States (5), Hungary (3), 

Spain (3), United Kingdom (3), Canada (2), 

Czech Republic (2), Greece (2), Finland (2), 

Slovenia (2), Zimbabwe (2), Australia (1), 

Belgium (1), Brazil (1), China (1), Ireland 

(1), Sweden (1), Uganda (1) 

 

 

4.2.2. Apparatus 

Similar to the study in Chapter 3, this experiment was carried out online. Experimental scripts 

for stimulus presentation and response collection are written in HTML with a JavaScript library 

jsPsych 6.1.0 (de Leeuw, 2015). The online experiment was run on the Pavlovia web server 

(pavlovia.org), and participants used web browsers on their computers to complete the 

experiment.  
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Figure 4.1 The representation of stimuli and experiment phases.  

A. The shape stimuli. This figure depicts the morphology of superellipses from diamond-like to circle-

like using different n values ranging from 1.45 to 1.85. B. Rating phase. Participants were required to 

rate 60 food items according to subjective preferences (how much they would like to eat the presented 

food item) with using a rating scale anchored with “dislike”, “neutral”, “like”. C. Association phase. 

Participants were exposed to a series of shape and food pictures while performing a cover task to detect 

the target shape. D. Value-based decision-making phase. Participants were instructed to recall the 

association between shapes and food items and required to judge if the given shape was likely linked 

with food items they preferred. E. Perceptual-based decision-making phase. Participants were required 

to make judgements based on the shape's appearance 

 

4.2.3. Stimuli  

The shape stimuli used in this study were superellipses with different shape parameters. A 

superellipse is a closed curve that can appear like circles, stars, and diamonds. In the 2D 

Cartesian coordinate system, the set of all points (x, y) on a superellipse satisfies the equation 

below: 
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  (4.1) 

where n, a, and b are positive numbers. a and b define the length of two axes. n controls the 

curvature of the shape. When n changes from 1.45 to 1.85, the resulting stimulus morphs from 

a diamond-like shape to a circle-like shape. For 1 ≤n ≤2, the superellipse defined by the 

equation above morphs between a clear diamond shape (n=1) and a clear circle shape (n=2). In 

the current study, we set a=b=200, and the appearance of superellipses changes from diamond-

like to circle-like using different n values (Figure 4.1A). 

4.2.4. Experimental design 

All participants completed two experimental sessions, which comprised perception-based 

decisions and value-based decisions. Half of the participants completed the perceptual decision 

session first, and the other half completed the value-based decision session first. 

Value-based decision-making 

The value-based decision session included four parts, comprising: (1) rating, (2) association, 

(3) decision-making, and (4) re-rating. In the initial rating part, participants were asked to give 

their preference rating for each food item (i.e., the extent to which they would like to consume 

the food item). A total of 60 food pictures were chosen from an online food database (Blechert 

et al., 2019). The rating scale contains three values from -1 to 1, representing three preference 

levels: “dislike” (-1), “neutral” (0), and “like” (1) (Figure 4.1B). To eliminate the order effect, 

all 60 food items were shown together on the screen for 10 seconds at the beginning of the 

session. Participants performed three rating trials to familiarize themselves with the procedure, 

and then proceeded to rate all of the remaining food items. 

In the association part, participants established associations between preference levels and 

abstract geometric shapes. This part included four blocks, with 22 trials in each block. In each 

trial, a superellipse stimulus was constantly presented in the background as a blank frame and 

11 food items was presented serially at the centre of the superellipse. Only two superellipses 

with extreme shapes were used in this stage: a diamond-like shape (n=1.45) and a circle-like 

shape (n=1.85). 50% of trials were presented with a diamond shape, during which we presented 

11 randomly chosen food items that were rated as “dislike” by participants. In the other 50% 

of trials, we presented a circle shape and 11 randomly chosen food items from the “like” 

category. 
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Participants were instructed to learn the association between the superellipse shape and the 

preference level of food items. To maintain participants’ attention, they performed a rapid serial 

visual presentation task orthogonal to their preference of food items. In each trial, 10 food item 

were presented for 900 ms followed by a 500 ms fixed fixation interval. One food item was 

presented for a maximum of 2000 ms, during which the superellipse changed its border colour 

was changed from blue to red (i.e., the target), and participants had to respond to the target with 

a mouse-click response (Figure 4.1C). The position of the target stimulus within a trial was 

randomized across blocks. If participants failed to respond to the target within 3000 ms, a 

warning message was presented. A short break (1 seconds) was given after each block, and a 

long break (10 seconds) was given at the end of the association part. 

In the value decision-making part, seven groups of superellipses were used as stimuli, ranging 

from diamond-like to circle-like. The mean shape parameter of superellipse stimuli ranges from 

diamond-like (n=1.455) to circle-like (n=1.855), with intermediate steps at 1.455, 1.555, 1.605, 

1.655, 1.705, 1.755, and 1.855. Within each group, to avoid repetitions of presenting the same 

geometric shape, we variated the n value of superellipses between [-0.004, +0.004] around the 

group’s mean shape parameter. The decision-making part consisted of 420 trials, including 60 

trials per shape group in a randomized order. On each trial, one shape was shown without food 

items. Participants were instructed to recall food items associated with their shape background 

and decide if the presented shape was likely associated with food items they prefer, by pressing 

right or left arrow keys on a keyboard (Figure 4.1D). There was no time limit on responses in 

the decision-making part. Participants had self-paced breaks after each 60 trials, during which 

their performance was presented on the screen. To maintain participants’ engagement with the 

value-based assessment, after every 70 trials, six food items were presented on the screen and 

participants needed to make binary decision on whether they liked or disliked the food shown. 

After the decision-making part, participants again rated their preference towards individual 

food items. The design and procedure of the re-rating part was the same as the initial rating 

part. 

Perceptual decision-making 

In the perceptual decision-making session, there was no rating or association parts on food 

items. In each decision-making trial, a single superellipse was presented on the centre of the 

screen, and participants made binary decisions on whether the presented shape was more 

similar to a diamond or a circle (Figure 4.1E). Similar to the value decision-making session, 
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the perceptual decision-making session consisted of 420 trials with 60 trials per shape group. 

Participants had self-paced breaks after each 60 trials, during which their performance was 

presented on the screen.  

 

4.2.5. Data analysis 

For decision-making tasks, the seven shape groups and two decision contexts (value-based and 

perceptual-based) served as independent variables. For each shape group and decision context, 

the dependent variables were the proportion of “likely” (in value-based sessions) or “circle” 

(in perceptual-based sessions) and the corresponding RT from stimulus onset. A cumulative 

Gauss functions were fitted to the proportion of likely/circle responses using the psignifit 

toolbox (Wichmann & Hill, 2001). We then derived the point of subjective equality (PSE) and 

Weber ratio (WR) from the psychometric curve of each task. The PSE describes the 50% 

response threshold from the psychometric function, which indicates the shape parameter at 

which the participant made a 50% likely or circle response. The WR is a normalized measure 

of variability, calculated as the just noticeable difference (JND) divided by the PSE. The JND 

was defined as half the distance between the 75% and 25% thresholds. A smaller WR indicates 

a steeper psychometric function slope, which is thus more sensitive to the change of stimuli.  

In our study, PSE and WR were utilised because they were common measures taken from 

psychometric functions and there was a limited number of trials per preference level. By 

calculating PSE and WR, we aimed to assess participants' perceptual discriminability and 

sensitivity in making decisions based on shape discrimination. These measures offer valuable 

information about participants' ability to perceive and discriminate between different stimulus 

levels, providing a quantitative assessment of their decision-making performance. Instead of 

other models, using PSE and WR allowed us to specifically evaluate the distinguishability and 

sensitivity of perceptual judgments in our study, which was relevant to our research objectives. 

 

4.3. Results 

In a two-session internet-based experiment, we evaluated participants’ value-based and 

perceptual decisions on superellipse shapes that morphed between a diamond and a circle 

(Figure 4.1D and Figure 4.1E). In value-based decisions, participants decided whether a 

superellipse shape likely contained their preferred or non-preferred food items, with a priori 
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association training whereby a diamond was associated with preferred foods and a circle with 

non-preferred foods. In perceptual decisions, participants were explicitly instructed to perform 

two-alternative shape discrimination tasks on superellipse shapes (i.e., diamond or circle). 

Behavioural performance was quantified by the proportion of likely/circle responses and RT at 

each level of stimulus groups. 

Repeated-measures ANOVA showed a significant main effect between the two decision 

contexts for RT: (F(1, 59) = 7.124, p=0.01, ηp2 = 0.108), but there was no significant main 

effect between the two decision contexts for choice proportion: (F(1, 59) = 0.079, p=0.779, ηp2 

= 0.001). In both tasks, as expected, when geometric shapes morphed from diamond-like to 

circle-like, the choice proportion to the “likely” response (i.e., the one associated with preferred 

food) and the circle response (in perceptual decisions) increased (F(2.505, 147.785) = 

1213.829, p<.001, ηp2 = 0.954), and participants slowed down their responses in decisions with 

ambiguous shapes between diamond and circle categories (F(1.858, 109.649) = 19.098, 

p<.001, ηp2 = 0.245) (Figure 4.2A and Figure 4.2B). 

 
Figure 4.2 Behavioural results.  

A. The percentage of likely and circle response (ratio of correct responses) between the perceptual-

based decision-making task (green) and value-based decision-making task (orange) across all stimulus 

levels. B. The average of RTs between the perceptual-based decision-making task (red) and value-

based decision-making task (blue) across all stimulus levels 

 

Interestingly, there were significant interactions between decision contexts and stimulus levels 

in both choice proportion (F(2.995, 176.711) = 6.501, p<.001, ηp2 = 0.099) and RT (F(3.186, 

187.997) = 3.243, p=0.021, ηp2 = 0.052, Greenhouse-Geisser correction). Hence, although there 

was no overall difference in behavioural performance between decision tasks, promoting the 
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context of subjective preference varied participants’ response strategy among different stimuli. 

For RT, the interaction between decision contexts and stimulus levels were mainly driven by 

the facilitation of RT in preference-based decisions of more ambiguous stimuli (i.e., shapes 

between diamond and circle, n=1.60, t(59)=-2.869, p=0.006; n=1.65, t(59)=12.069, p<.001; 

n=1.70, t(59)=19.878, p<.001), as there was no RT difference between decision contexts in 

trials with unambiguous stimuli (n=1.45, t(59)=-1.599, p=0.115; n=1.5, t(59)=-1.060, 

p=0.294).  

To further characterise the context-dependent changes in choice proportion, for each session, 

we calculated the Weber fraction (WR) and the point of subjective equality (PSE, the 50% 

threshold) from the psychometric function fitted to individual participants’ choice proportions 

across stimulus levels (Figure 4.3C). Compared with perceptual decisions, preference-based 

decisions had larger WR (t (59) = 3.127, p = .003, paired t-test) (Figure 4.3B) but similar PSE 

(t (59) = 0.241, p = .81) (Figure 4.3A). Therefore, the addition of preference-based context 

during decision-making decreased participants’ perceptual sensitivity towards visual stimulus, 

while maintaining the response bias across individuals.  

 



66 

 
Figure 4.3 The behavioural performance comparison of preferential and perceptual decision-making 

tasks.  

Both data were fitted with separate psychometric functions to compute the corresponding threshold 

and Weber ratio. A. 50% response thresholds define from the psychometric function for both decision 

types. B. Weber ratios calculated as half the distance between the 75% and 25% thresholds divided by 

50% response thresholds. A smaller Weber ratio indicates steeper psychometric function and more 

sensitive to detect the shapes. C. Psychometric curves. The y axis shows the proportion of likely 

response for preferential decisions and the proportion of circle response for perceptual decisions, 

whereas the x-axis indicates the stimulus levels, which range from diamond-like to circle-like forms. 

Red dots and line correspond to human's perceptual decision-making performance. Blue dots and line 

represent performance of preferential judgments 

 

 

�

�

0.022

0.038

WR (Value−Based) WR (Perceptual−Based)

�

�

1.625

1.645

50% Threshold
 (Value−Based)

   50% Threshold
 (Perceptual−Based)

A B

1.0 

0.8 

 0.4

0.2 

1.4 1.5 1.6 1.7 1.8 

---

1.9 

Stimulus Level 

Pr
op

or
tio

n 
of

 Li
ke

ly 
Re

sp
on

se
 

0.6 

0.0 

---
Value−Based Task

Perceptual−Based TaskC



67 

To assess participants’ consistency in their preferences towards food items, we compared 

individual participants’ preference ratings for all food items before and after their main 

decision-making parts. On average, participants gave the same level of rating for over 90% of 

items Figure 4.4, indicating that the food stimuli used in the current studies are associated with 

stable preference-based information. Nevertheless, the rating consistency also varies between 

participants. Is it possible that participants with better preference rating consistency also exhibit 

superior behavioural performance during decision-making, indexed by higher sensitivity? Our 

results did not support this hypothesis, as there was no significant correlation between rating 

consistency and decision sensitivity (i.e., the WR) in preference-based (r = 0.048, p = 0.713) 

or perceptual decisions (r = -0.093, p = 0.479). 

 

 
Figure 4.4 The proportion of equally graded food items between rating and re-rating phases for each 

participant 

 

Overall, comparing preference rating scores in the two rating tasks allowed us to examine 

whether participants maintained a consistent preference for food items throughout the study. 

However, it is important to note that our data analysis did not specifically focus on examining 

items with the same preference rating scores in the two rating tasks. Our data was based on the 

first rating. The data analysis focused on examining decision-making performance based on 

the association between super ellipse shapes and preference levels of food items. The analysis 

did not specifically differentiate or focus on items with the same preference rating scores in the 

two rating tasks. 
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4.4. Discussion 

This current study aimed to examine whether preference-based information affects the 

decision-making process concerning external perceptual information. A choice paradigm was 

developed using an identical set of shape stimuli for both preference-based and perceptual 

decisions via intrinsic value-mapping. In both task contexts, when the information was more 

ambiguous (i.e., when the shape was between a diamond and a circle), behavioural performance 

was disruptively affected (i.e., decisions were slower and less accurate). Task contexts effect 

changes in participants’ behaviour, such that preference-based contexts are associated with less 

sensitive yet more rapid responses than the perceptual contexts with regard to ambiguous 

decisions. The experimental results are discussed in more detail below. 

4.4.1. Learning preference value not associated with response bias 

Our results showed that learning the preference value associated with shapes did not introduce 

any response bias, supported by the null result in PSE between task contexts. The WR 

difference between decision contexts suggests that the presence of the preference context 

decreases participants’ sensitivity to perceptual information. As discussed below these results 

are contradictory to previous studies on the effect of reward expectation on perceptual 

decisions.  

Perceptual-based decisions and value-based decisions have been studied as two distinct but 

parallel fields. Value-based decisions have often been examined on the basis of external value 

(extrinsic value), whereby the value of the decision options is identified by the experimenter 

and an objectively “correct” answer exists. Such decision paradigms commonly associate 

choice options with rewards or losses. Learning reward associations has been found to lead to 

bias in the allocation of attentional priority across visual features (Anderson, 2013; Anderson 

et al., 2011a, 2011b; Anderson & Yantis, 2012; Awh et al., 2012; Chelazzi et al., 2013; Hickey 

et al., 2010; J. Lee & Shomstein, 2014; Maclean & Giesbrecht, 2015; Qi et al., 2013; Schiffer 

et al., 2014). Highly rewarded stimuli were attentionally prioritized compared to their low-

rewarded counterparts (Anderson et al., 2011a, 2011b; Anderson & Yantis, 2012; Hickey et 

al., 2010), and made the stimulus more salient for making future decisions (Michel F. Failing 

& Theeuwes, 2014; Ikeda & Hikosaka, 2003; Kiss et al., 2009; Schiffer et al., 2014).  

The above cited studies concluded consistently that reward probability influences attention, 

which leads to improved detection performance and changes people’s behaviour. When people 

make decisions between alternatives with different payoffs based on sensory information, their 



69 

responses are biased towards the more rewarded choice alternative (Fleming et al., 2010; Liston 

& Stone, 2008; Mulder et al., 2012; Christopher Summerfield & Koechlin, 2010). Furthermore, 

a higher reward probability of a choice option increases the attention to the option, which is 

suggested to increase participants’ perceptual sensitivity to the more rewarding choice 

alternative (Engelmann et al., 2009; Mohanty et al., 2008; Small et al., 2005). However, it 

should be noted that different geometric shapes used in our study were associated not with 

probabilistic rewards, but with subjective preference. One possible explanation for the results 

on response bias and WR is that although the expectation on objective rewards plays an 

important role, subjective preference does not elicit the same effect on behaviour.  

4.4.2. Preference-based context led to faster RT 

The preference-based context also led to faster RT than the perceptual context, in particular in 

trials with ambiguous stimuli. Specifically, participants responded less cautiously in the 

preference-based context, which may appear counterintuitive at first glance. This is because 

the preference-based context involves the integration of internal (i.e., preference) and external 

(i.e., perceptual) information that likely takes longer than the perceptual context. However, the 

perceptual context may prompt participants to be more attentive to the visual stimulus, which 

in turn enhances perceptual sensitivity and prolongs decision time. Furthermore, the current 

study required participants to build associations between extreme shapes and preference levels, 

and decisions were based on the associative memory (G. E. Wimmer & Shohamy, 2012). 

Indeed, many value-based decisions have been found to be intertwined with the information 

from memory (Gluth et al., 2015; Murty et al., 2016; M. N. N. Shadlen & Shohamy, 2016; 

Weber & Johnson, 2006; Weilbächer & Gluth, 2016; X. G. E. Wimmer & Büchel, 2016). This 

associative memory process can trigger decision heuristics that facilitate processing speed 

(Kahneman, 2003, 2011). 

Similar findings were reported by Dutilh and Rieskamp (2016), who suggested that different 

incentives during perceptual and preference-based decisions change people’s behaviour. In 

their study, the participants performed a marble task, in which the relative proportion of black 

and white marbles was associated with different monetary payoffs. In the perceptual choice, 

participants were to decide the proportion of black marbles; in the preferential choice, they 

judged the proportion of white marbles with an underlying risk factor. Consequently, the 

criteria were defined according to the subjective goals of the decision maker, and the subjects 

responded as risk avoidance or risk seeking. Although their subjective criteria differed from 

the current study in this aspect, as they were objectively based on reward learning, they also 
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found that participants responded faster in preference-based than perceptual decisions, similar 

to our study. 

4.4.3. Summary 

The current study was conducted online. Together with Chapter 3, our results demonstrated 

that participants in online tasks can make direct preference-based decisions and make decisions 

on abstract shapes in preference-based or perceptual contexts. Thus, our research contributes 

to the increasing trend of online psychological and psychophysics experiments, confirming the 

validity and reliability of internet-based experimentation (de Leeuw & Motz, 2016; Germine 

et al., 2012; Semmelmann & Weigelt, 2017).  

In conclusion, mapping preference-based context onto perceptual information reduces 

perceptual sensitivity and facilitates response speed during decision-making. The following 

chapter further investigates preference-based and perceptual decisions when preference-based 

information is associated with different spatial locations. 
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Chapter 5 

MEG Signatures of Task Relevant Information During Preference-Based 

and Perceptual-Based Decisions 

5.1. Introduction 

Neuroimaging literature has extensively investigated the neural representation of task rules 

during decision-making processes. Task rules play a crucial role in guiding behaviour and 

determining appropriate actions based on sensory information and subjective preferences. 

Understanding how the brain encodes and represents task rules can provide valuable 

insights into the underlying cognitive processes involved in decision-making. 

The previous chapter presented an internet-based choice paradigm that subjective 

preference and perceptual information are presented as geometric shapes. We 

demonstrated that participant could make different types of choices with the same set of 

information based on task context. Such decision-making process requires the brain to 

have robust encoding of task rules for the same set of stimuli, and the flexibility of 

encoding task-specific information to switch between task rules. This relates to the 

literature of the task rule representation in the brain. For simple decision-making, task rules 

can be defined as the context establishing the relationship between stimulus features and 

their corresponding actions, i.e., task rules providing and constraining task-relevant 

information (Dreisbach et al., 2012). Previous studies considered comparable task rules 

about perceptual and conceptual aspects of visual stimuli such as colour discrimination 

versus orientation (Cai & Leung, 2009; Sakagami et al., 2006). It has been showen that the 

neural encoding of the task rule is represented in the frontoparietal network for a variety 

of experimental contexts (Bode & Haynes, 2008; Cole et al., 2011; Haynes et al., 2007; 

Hebart et al., 2012; Momennejad & Haynes, 2012; Reverberi et al., 2012a, 2012b; Soon et 

al., 2013; Waskom et al., 2014; Woolgar, Hampshire, et al., 2011; Woolgar, Thompson, et 

al., 2011; J. Zhang et al., 2013). For instance, J. Zhang et al., (2013) conducted experiments 

using functional magnetic resonance imaging (fMRI) to examine brain activity while 

participants performed perceptual decision tasks that required them to follow specific task 

rules such as motion discrimination, colour detection, and size discrimination. They found 

that distinct frontoparietal regions were involved in representing and implementing 

different task rules. Specifically, the study identified separate neural networks associated 
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with rule selection and rule implementation. The rule selection network, located in the 

dorsolateral prefrontal cortex, was responsible for encoding and maintaining task rules to 

guide decision-making. The rule implementation network, located in the posterior parietal 

cortex, was involved in translating the selected rule into appropriate motor responses. 

Interestingly, the researchers also observed some overlap between these networks, 

suggesting that certain frontoparietal regions are engaged in both rule selection and 

implementation processes. Similar to fMRI research, electrophysiological studies revealed 

that the prefrontal network displayed task-specific activation patterns that were 

dynamically modulated by the presented cues (Mante et al., 2013; Rigotti et al., 2013; 

Stokes et al., 2013). In addition, EEG/MEG-based neuroimaging studies have identified 

frontoparietal activations when participants encoded task rule information (Cunillera et al., 

2012; Hall-McMaster et al., 2019; Liegel et al., 2022; Rawle et al., 2012) . 

In conjunction with MEG/EEG, a more recent technique called multivariate pattern 

analysis (MVPA) offers additional understanding of the cognitive control processes. 

MVPA utilizes pattern classification methods applied to neuroimaging data in order to 

ascertain what information is being encoded in the brain (Haxby, 2012). Time-resolved 

MVPA has been employed to examine how information processing unfolds over time 

(Carlson et al., 2011; Hebart et al., 2012). For example, Hebart et al., (2018) conducted a 

study where participants performed various tasks involving visual object stimuli while 

MEG measurements were taken. They discovered that object features relevant to the tasks 

were amplified during the later stages of processing, more than 500 milliseconds after the 

presentation of the stimuli. Other studies have revealed distinct patterns of task-relevant 

information during complex tasks, demonstrating separate dynamics for stimuli, tasks, and 

responses (Hubbard et al., 2019; Kikumoto & Mayr, 2020; Wen et al., 2019). These MVPA 

investigations have provided valuable insights into the neural processes underlying goal-

directed behaviour. 

In this chapter, we aim to build upon this existing literature by examining the neural 

representation of task rules before and during different types of decision-making processes. 

The study utilizes a choice paradigm where participants associate different spatial 

locations with their subjective preference for common snacks. During subsequent MEG 

recordings, participants make binary choices based on either the spatial locations 

(preference-based decisions) or the visual features (perceptual decisions) of the presented 

targets. The research questions addressed in this chapter are twofold. First, the study 
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investigates the neural representation of task rules prior to the decision-making process. 

This will provide insights into how the brain encodes and represents task rules in 

anticipation of making a decision. Second, the investigation examines whether task-

irrelevant features, such as spatial locations during perceptual decisions, influence the 

neurocognitive processes of decision-making. By exploring the impact of irrelevant 

information on decision-making, the study aims to uncover factors that modulate decision 

processes and shed light on the flexibility and adaptability of the brain in switching 

between different decision-making contexts. To investigate these research questions, the 

study employs cognitive modelling on behavioural data to gain insights into the decision-

making processes. Additionally, multivariate pattern analyses (MVPA) are conducted on 

MEG data to examine the neural representation of task rules at different stages of a trial, 

from instruction to implementation. By combining these approaches, the study aims to 

provide a comprehensive understanding of the neural dynamics and cognitive mechanisms 

underlying decision-making and the encoding, switching, and implementation of task rules 

in different decision-making contexts. 

 

5.2. Materials and Methods 

5.2.1. Participants 

31 participants (22 females, 9 males; age rage, 19-24 years; mean range, 20.67 years) were 

recruited from Cardiff University student panel. All participants had normal or corrected-

to-normal vision, and they are right-handed. None of the participants had no history of 

any significant neurological or psychiatric illness and none of them had previous 

experience with the task. Table summaries demographic information about the 

participants. Subjects were informed about all aspects of the experiment, and they 

provided written consent before starting the experiment. We paid £56 for each subject for 

their participation in the experiment. The experimental protocol was approved by Cardiff 

University School of Psychology Ethics Committee. 

Table 5 Demographic information about the participants. STD - standard deviation 
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5.2.2. Apparatus 

The experiment was conducted in the behavioural testing room and MEG testing room. In 

the behavioural tests, stimuli were presented on a 22-inch CRT monitor with a resolution 

of 1600 by 1200 pixels and a refresh rate of 85 Hz, located approximately 120 cm in front 

of the participants. In the MEG sessions, visual stimuli were displayed on a MEG 

compatible PROPixx projector (VPixx Technologies Inc., Canada) with a resolution of 

1920 by 1080 pixels and a refresh rate of 120 Hz, located approximately 120 cm in front 

of the participants. A chin rest was used to adjust the head position and viewing distance 

from the screen. Participants’ responses were obtained from a response box (NATA button 

box). The experiment script was written in Python and used PsychoPy v3.1.0 library 

(Peirce, 2007). 

 

5.2.3. Stimuli 

The initial rating and learning stages used 30 pictures of snacks were taken. The snack 

items were chosen to be easily accessible from the supermarkets. Each snack item was 

presented in the centre of the white circle with a grey background. In the main decision-

making stage, Gabor patches were used as the stimuli, and they were displayed on a grey 

background. We set the Gabor patches with fixed 90˚ orientation and 5 cyc/deg spatial 

frequency. Gabor patches were placed on the screen according to the dimensions of a 

screen with standard 4:3 aspect ratio. On each trial, Gabor patches were presented in four 

spatial locations as to height units, including two at the bottom and the remaining two at the 

top (( -0.45, 0.25), (-0.25, -0.25), (0.45, 0.25), (0.25, -0.25)). 

 

5.2.4. Task and Procedure 

Participants completed this study in four different days, including one behavioural session, two 

MEG sessions, and one MRI session. This experiment consisted of five stages: (1) the initial 

Category  Value 

gender female (22), male (9) 
age (years) mean: 20.7, median: 20, STD: 2.61 
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rating stage; (2) the learning stage; (3) the staircase stage; (4) the decision-making stage (main 

task); and (5) the final rating stage.  

1. Initial rating stage: Participants were instructed to provide preference rating for a set of 30 

different snacks, indicating “how much they would like to consume the presented snack item” 

on a continuous scale from 1 to 100, with labelled two preference levels: "dislike" (1) and "like" 

(100). Each snack item was presented three times randomly so that participants completed a 

total of 90 ratings on the 30 snack items. Participants used mouse to move the value indicator 

on the rating scale to the left and right (Figure 5.1A). There was no time limitation for 

responding. At the end of this stage, the rating score for every snack item was calculated by 

averaging three ratings. Four snack items, two of which were graded with the highest scores 

and the other two with the lowest scores, were selected to be used as stimuli in the next stage. 

2. Learning stage: We asked participants to associate four snack items with their spatial 

locations. These snack items were the two most preferred ones (preferred items) and the two 

least preferred ones (non-preferred items), that were chosen based on each participant’s 

individual rating scores. Their spatial locations were different between the first and second 

MEG session. In the first session, the two favourite items (preferred items) were placed at the 

bottom of the screen, whereas in the second session, they were presented on the right side of 

the screen (Figure 5.1B). 

This stage started with the presentation of the four snack items (two good ones and two bad 

ones) on their corresponding spatial locations for 4.5 seconds. During this period, participants 

were instructed to learn snack items with their spatial mappings. Following, a random spatial 

location was displayed on the screen, which highlighted using a grey circle. The fixation point 

was then displayed for 0.8 seconds. Next, four snack items were presented side by side as 

choice options at the bottom of the screen in a random order. Participants were required to 

recall the snack item which was presented on the highlighted spatial location and then choose 

one of option from four snack items. There was no time limit for responses. The feedback was 

given after every trial, the correct and incorrect answers were shown on the screen as "correct" 

or "error", respectively. Participants responded by pressing buttons with their right hand using 

a button box. Four choices options correspond to 4 fingers (from left to right snack items: right 

index finger, right middle finger, right ring finger and right little finger).  

3. Staircase stage: We used staircase procedure to identify participants’ individual perceptual 

thresholds. On each trial two Gabor patches were displayed on the screen. Participants were 
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performed perceptual task in which they required to choose the brighter Gabor patch. The 

contrast of the Gabor patch was continuously adjusted by a total of 20 trials via two-down one-

up staircase procedure with the 75% threshold. Each trial was presented for a maximum of 

2500 ms, during which time participants were instructed to respond with two arrow keys from 

the keyboard correspond to right or left choices. At the end of this part, the values of individual 

brightness level for each participant were obtained to use in the decision-making phase. 

4. Decision-making stage (main task): This stage was completed in two separates MEG 

recording sessions. Participants made binary choices between two Gabor patches that could 

appear in four possible spatial locations. In preference-based decisions, participants were 

instructed to recall the mappings between four spatial locations and snack items, because these 

locations were associated with their two preferred and two non-preferred items. Then, they 

required to decide the location of which Gabor patch is associated with the snack item they 

prefer more. In the perceptual decisions, participants were instructed to choose Gabor patch 

stimuli with higher brightness. The order of the two task rules were randomized on a trial-by-

trial basis. Task rules was conveyed by the different colours of the fixation points (blue or 

green), and the mapping between the fixation point colour and task rules was counterbalanced 

between participants (Figure 5.1C). 

Each recording session consisted of 4 blocks of 120 trials. Hence, a total of 960 trials were 

completed across two MEG sessions. In each block, feedback was provided after every 25 trials 

and a short break was given after 40 trials. Half of the trials used preference-based decision 

rules and the other half used perceptual decision rules. Furthermore, in each block, 20 trials 

presented Gabor stimuli at the two preferred locations, 20 trials presented Gabor stimuli at the 

two non-preferred locations, and the remaining 80 trials presented Gabor stimuli at one 

preferred and one non-preferred locations. 

Each trial began with the presentation of a fixation point at the center of the screen for 800 ms, 

indicating whether the upcoming trial represents a perceptual decision trial or a preference-

based decision trial. Next, two Gabor patches (each option demonstrates one of the four spatial 

locations by means of the Gabor patches) appeared on the screen for a maximum of 2500 ms, 

during which participants make their preference-based (based on spatial locations) or 

perceptual (based on Gabor patches’ brightness) choices by pressing the left or right button on 

a button box. After the response, choice options disappeared, and an inter trial interval was 

presented with a random latency between 1200ms and 1800ms. If the participants did not 
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respond within 2500 ms, a warning message was given, and the participants proceeded to the 

next trial.  

5. Re-rating stage: This part was performed outside the MEG scanner after the recording 

session. The original 30 snack items were rated with same procedure as in the initial rating 

phase in order to re-evaluate participants’ preference after decision-making. 

 

Figure 5.1 The representation of experimental procedure of the study  

A. Rating phase. Participants were required to rate 30 food items according to subjective preferences 

(how much they would like to consume the presented food item) with using a continuous scale from 1 

to 100. B. Learning phase. Participants were instructed to encode four snack items and their associated 

locations. These snack items were the two most preferred items and the two least preferred items. C. 

Decision-making phase. Two types of tasks were performed using the same stimulus (Gabor patches). 

Before the decision-making tasks, participants were instructed to encode the colour of fixation points 

as a task cue. After that, they made a binary forced choice task, indicating their response by pressing 

a button. In preference-based task, subjects were asked to choose the items according to their favourite 

food items location, while in the perceptual decision-making task, they were instructed to choose the 

items as to the brightness level.  
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5.2.5. Behavioural Measures 

We quantified the response time (RT) of each trial as the time between the onset of the Gabor 

patch stimulus and the time of the behavioural response. For preference-based trials, response 

accuracy was quantified as the proportion of trials in which the option with a higher preference 

rating was chosen. To exclude fast guesses, trials with RTs faster than 100 ms were removed. 

The trials that were discarded accounted for 0.01% of all trials. To make group inferences on 

mean decision accuracy and RT, we used frequentist and Bayesian ANOVA, with task rules 

and task difficulty levels as within-subject factors. We used JASP (jasp-stats.org) to perform 

post-hoc comparisons and Bayes Factors (BFincl, BF10) to characterise the strength of 

evidence (Wagenmakers et al., 2018). Similar to Chapter 3, the hierarchical drift-diffusion 

model (HDDM) (Wiecki et al., 2013) was used to fit the DDM to the reaction time distribution 

and accuracy of each participant. Then, we assessed the fit of different model designs with 

varying parameter constraints to the behavioural data. 

 

5.2.6. MEG and MRI data acquisition 

A 275-channel CTF axial gradiometer system was used to obtain whole-head MEG recordings, 

at a sampling rate of 1200 Hz (0 to 300 Hz band-pass). An additional 29 reference channels 

were recorded for the aim of noise cancelation, the primary sensors were analyzed as synthetic 

third-order gradiometers (Vrba and Robinson, 2001). One sensor was turned off during 

recording due to excessive sensor noise (i.e., Nx = 274 gradiometers). Subjects were seated 

upright in a magnetically shielded room with their head supported on a chinrest in order to 

minimize movement. The task was presented on either a CRT monitor or LCD PROPixx 

projector (VPixx Technologies Inc., Canada). Horizontal and vertical electro-oculograms 

(EOG) were recorded to monitor eye blinks and eye movements. For MEG/MRI coregistration, 

the head shape with the position of the electromagnetic head coils was digitized using a 

Polhemus FASTRAK (Colchester, Vermont). Fiduciary coils (head shape digitization: 

Polhemus Fastrack – head shape, location of head position electrodes on the fiducials) were 

placed at fixed distances from three anatomical land-marks (nasion, left and right pre-

auricular). Each recording session lasted approximately 30 minutes. 
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All participants also underwent a whole-brain MRI scan on a Siemens 3T Connectom MRI 

scanner and a 32-channel receiver head coil (Siemens Medical Systems). We used a T1-

weighted magnetization prepared rapid gradient echo sequence (MPRAGE; echo time: 3.06 

ms; repetition time: 2250 ms sequence, flip angle: 9◦ ,field-of-view: = 256 × 256 mm, 

acquisition matrix: 256× 256, voxel size: 1 × 1 × 1 mm). 

 

5.2.7. MEG Pre-processing  

All MEG analyses will be carried out using MATLAB. Continuous raw data was bandpass 

filtered at 0.1-100 Hz, 0.1Hz high pass filter and 100 Hz lowpass filter. The recordings were 

decomposed into 50 components using independent component analysis (fast ICA). Then, ICA 

components which belong to eye movements and cardiac activities were manually removed 

from the original data. Identification of visual artefacts was provided by simultaneous EOG 

recordings. Between 3 and 5 components were removed for each subject. Before the epoch 

data, 30Hz filter was applied. Following the above steps, cleaned data was obtained, which was 

then be further processed into epochs based on different triggers. Then, the data was down 

sampled to 200 Hz and the baseline was corrected using the time interval 200ms before task 

cue onset. 

 

5.2.8. MEG Source Space 

We analyzed the MEG source activity using an established source localization method, the 

linearly constrained minimum variance (LCMV) beamformer (Hillebrand et al., 2012; Van 

Veen et al., 1997). This approach combines the forward model and the data covariance matrix 

to construct an adaptive spatial filter. Beamformer weights were normalized by their vector 

norm to alleviate the depth bias of MEG source reconstruction (Hillebrand et al., 2012). For 

each run of each participant, the structural MRI scan was coregistered to MEG sensor space 

using FreeSurfer. The structural MRI scan was segmented, and a volume conduction model 

was computed using the semirealistic model (Nolte, 2003).  

Te inverse source reconstruction using an LCMV beamformer on a 6 mm template with a local 

sphere forward model in Fieldtrip (version 20161101, http://www.fieldtriptoolbox.org). We 

then used the Automated Anatomical Labeling atlas (AAL; (Tzourio-Mazoyer et al., 2002) to 

derive source-level time courses for every voxel in each of the 78 AAL cortical regions 

(excluding the cerebellum and subcortical structures). In the univariate analysis, MEG activity 

from left and right ROIs were averaged to obtain bilateral cortical activity. In multivariate 
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analysis, we performed pattern classification for each ROI and averaged classification 

accuracies from left and right ROIs. 

5.2.9. Multivariate Pattern Analysis 

We use time-resolved Multi-Voxel Pattern Analysis (MVPA) on source-localized MEG data 

(Dima et al., 2018; Zajkowski et al., 2021) MVPA combines information represented across 

multiple sources, which has been shown to be sensitive in decoding information representation 

from human electrophysiological data (Cichy et al., 2014; Dima et al., 2018). 

We conduct three MVPA analyses to identify the latency and spatial distribution of the MEG 

multivariate information. The first is to decode task rules (e.g., preference-based vs. perceptual 

decisions). The second is to decode difficult vs easy choices (e.g., choices between two 

preferred or non-preferred options vs. choices between one preferred and one non-preferred 

options). The third is to decode choices of high preference vs choices of low preference values. 

Each analysis is formed as a binary classification problem. The data feature for classification 

included MEG source-level time courses of each ROI. In each analysis, at each sampled time 

point and for each participant, we trained Linear Discriminant Analysis (LDA) classifier and 

calculated the mean classification accuracy following a stratified fivefold cross-validation 

procedure. LDA offers supervisor training speed than other classifiers such as the support 

vector machine.  

For each ROI, each timepoint, classification accuracy was tested against the chance level 50%. 

In each cross-validation, 80% of the data issued as a training set, and the remaining 20% as a 

test set. In some analysis, the number of trials belonging to the two classes is unbalanced in the 

training set. We use an under-sampling approach to randomly select the number of trials in the 

majority class to match that of trials in the minority class. To reduce data dimensionality, we 

perform principal component analysis to the training set data and selected the number of 

components that explained over 99% of the variance in the training set. The test set data are 

projected to the same space with reduced dimensions by applying the eigenvectors of the 

chosen principal components. We then train LDA to distinguish between the two classes and 

evaluate the classification accuracy using the test set data. The procedure is repeated five times 

with different training and test sets, and the classification accuracies are averaged from the 

fivefold cross-validation. We use the LDA implementation in MATLAB Machine Learning 

and Statistics Toolbox. 

To estimate the significance of the classification performance, we use two-tailed one-sample t 

test to compare classification accuracies across participants against the 50% chance level. To 
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account for the number of statistical tests across ROIs and at multiple time points, we use 

cluster-based permutation (Maris & Oostenveld, 2007) to control the family-wise error rate at 

the cluster level and the ROI level from 2000 permutations. 

5.3. Results 

5.3.1. Behavioural Results 

Participants performed binary choices in two decision-making tasks, involving perceptual 

decisions based on brightness discrimination and preference-based decisions based on 

subjective preferences. The behavioural performance of the participants was quantified by 

accuracy measurement (proportion of correct response) and reaction time (RT). In preference-

based decisions, the selection of the visual stimuli showing the positions of higher graded snack 

item was considered the correct response, while the selection of higher-brightness visual 

stimuli was marked as the correct response in perceptual decisions. 

The behavioural performance was compared between two decision-making tasks; perceptual 

vs. preference-based on three difficulty levels (high versus high, low versus low, and high 

versus low, which were generated from the subjective preferences). Participants performed 

with a higher accuracy and longer reaction time in perceptual task (mean accuracy = 82.04%, 

mean RT = 922.22 ms, Figure 2A) than in preference-based task (mean accuracy = 68.42%, 

mean RT = 825.32 ms). A repeated measures ANOVA revealed that there was significant main 

effect of task rules on participants’ behavioural performance (Accuracy: F (1,30) = 21.396, p 

< 0.001, ηp2 = 0.416, BFincl = 1457.595; RT: F (1,30) = 11.369, p < 0.05, ηp2 = 0.275, BFincl = 

7.774e+6) (Figure 5.2A and Figure 5.2B). 

The ANOVA also revealed that behavioural performance differed significantly between 

subjective preference levels in the preference-based task (Accuracy: with Greenhouse-Geisser 

correction, F (1.524, 45.715) = 17.717, p < 0.001, ηp2 = 0.371, BFincl = 352403.592, RT: F (2, 

60) = 14.531, p < 0.001, ηp2 = 0.326, BFincl = 2310.527). Participants had better accuracy and 

faster RT when deciding between high and low value conditions (mean accuracy = 86.048%, 

mean RT = 794.41 ms) compared to two high value conditions (mean accuracy = 46.35%, mean 

RT = 804.35 ms) and two low value conditions (mean accuracy = 72.98%, mean RT = 878.47 

ms). As expected, behavioural performance was comparable difference in perceptual task 

between difficulty levels (Accuracy: with Greenhouse-Geisser correction, F (1.231, 36.927) = 

1.923, p = 0.172, ηp2 = 0.06, BFincl = 0.435, RT: F (2, 60) = 0.997, p = 0.375, ηp2 = 0.032, BFincl 

= 0.210). These results suggested that the behavioural performance in preference-based 
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decisions were sensitive to the subjective value difference, whereas participants were able to 

ignore this value information making perceptual decisions.  

Furthermore, there was significant interaction between the tasks and difficulty levels 

(Accuracy: with Greenhouse-Geisser correction, F (1.510, 45.312) = 15.335, p < 0.001, ηp2 = 

0.338, BFincl = 56417.869, RT: F (2, 60) = 16.30, p < 0.001, ηp2 = 0.352, BFincl = 1.872) 

indicating that the differences between task difficulties differ between the two types of tasks. 

Comparing the two sessions, the behavioural performance was not significantly different 

between the sessions across the participants (Accuracy: F (1,62) = 0.045, p = 0.832, ηp2 = 7.27e-

4, BFincl = 0.171; RT: F (1,62) = 0.037, p = 0.847, ηp2 = 6.013e-4, BFincl = 0.464).  

 

 
Figure 5.2 Behavioural results  

A. Across all stimulus levels, the percentage of choosing brighter stimuli and choosing preferred snack 

items (ratio of correct responses) for the perceptual-based decision-making task (green) and 

preference-based decision-making task (orange), respectively. B. The average of RTs between the 

perceptual-based decision-making task (red) and preference-based decision-making task (blue) across 

all stimulus levels 

 

We additionally compared the score of subjective preference on each snack item between the 

rating and re-rating phases. We found a strong correlation between the two times of ratings 

across the participants (r = 0.882, p < 0.001). This finding indicated that the individuals’ 

preferences for the snack stimuli were consistent (Figure 5.3). 
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Figure 5.3 The correlation result from the subjective preference on each snack item between initial 

rating and re-rating phases.  

A. and B. Examples from two different participants. C. The graph shows R values for all participants.  

 

5.3.2. Cognitive Modelling Results 

Similar to Chapter 3, the HDDM model was used to decompose each participant’s behavioural 

data into internal components of cognitive processing (Wiecki et al., 2013). We allowed three 

model parameters (i.e., the drift-rate v, the non-decision time Ter, the decision threshold a) to 

be fixed or vary between difficulty conditions, task rules (i.e., preference-based or perceptual-

based decisions) or both. For each model variant, we ran 5 MCMCs, with each one having 

20,000 samples, discarding the initial 2,000 samples as the burn-ins. The Gelman-Rubin 

statistic was used to evaluate model convergence (Gelman & Rubin, 1992). After 20,000 
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samples, the maximum Gelman-Rubin statistic was R = 1.00022, indicating that all parameter 

estimations converged after 20,000 steps. 

The best-fitting model (i.e., the one with the lowest DIC value) allows all three parameters (v, 

Ter, and a) to vary between task rules, v to vary between the difficulty levels, and t to further 

vary between the difficulty levels (Figure 5.4B). The observed data and model simulations 

were in good agreement for all conditions (Figure 5.4A).  

 

 

 

Figure 5.4 Cognitive modelling results.  

A. Model simulations on the best fitting model are shown on six individuals. The red line provides 

data from the RT distributions of participants, whereas the blue line represents model fit with variable 

parameters. B. The DIC score of the 26 DDM model variants. The DIC score differences between all 

models and the best-fitting model are shown against the model dependencies depicted on the graph's 

left side. A square filled with purple indicates that the corresponding parameter can vary between the 

preference-based decisions and perceptual-based decisions across task difficulty levels. A square filled 

with orange indicates that the corresponding parameter can vary based on task difficulty levels (i.e., 

high-high value, low-low value, and easy-difficult conditions). Green-filled square indicates that 

2

1

0

2

1

0

2

1

0

-5 0 5-5 0 5

-5 0 5

2

1

0
-5 0 5

Po
st

er
io

r P
ro

ba
bi

lit
y

Response time (seconds)

A

2

1

0
-5 0 5

2

1

0
-5 0 5

C

0 1 2
0

1

2

drift-rate (!)

0
0.3 0.4 0.5 0.6

5

10

15

non-decision time ("#$)

Preference High-High value
Perceptual High-High value
Preference Low-Low value
Perceptual Low-Low value
Preference Easy-Di!cult
Perceptual Easy-Di!cult

Po
st

er
io

r p
ro

ba
bi

lit
y

0

2

4

1.2 1.4 1.6 1.8
threshold (%)

Perceptual
Preference

103 104

DIC Score Di"erences

B
&!&&&&%&&"#$ Model Features

vary between di!culty levels 
and sessions
vary between sessions

vary between di!culty levels

#xed



85 

corresponding parameter can vary between the preference-based decisions and perceptual-based 

decisions. The square containing the colour pink indicates that the corresponding parameter is constant 

between conditions. A black arrow pointed to the best-fitting model, which had a DIC score difference 

of 0 and was denoted by a score of 0. C. Group-level DDM model parameters for the best fitting model, 

which corresponds to second model variant in Panel B. Each posterior distribution was derived from 

20,000 MCMC samples. Blue, red, and green lines reflect varying levels of preference for the 

parameter of v. On the parameter of v, Ter, and a, preference-based and perceptual-based information 

are represented by solid and dashed lines, respectively. 

  

 

We calculated the proportion of non-overlaps between parameter posterior distributions using 

Bayesian statistics (Gelman et al., 2013; Kruschke, 2010). For the drift rate, there was strong 

evidence to support differences between task difficulty levels for preference-based decisions. 

The drift rate was also higher in choosing between high value versus low value options for 

preference-based choices. For non-decision time parameter, we observed that choosing 

between two low value items led to a significant increasement in the non-decision time for 

preference-based decisions. Furthermore, making preference-based decisions led to a small 

increase in the decision threshold than making perceptual-based judgements (Pp|D = 0.934) 

(Figure 5.4C and Table 6 Posterior comparisons of the model parameters (v and Ter) 

Table 6 Posterior comparisons of the model parameters (v and Ter) 

 

The table indicates the proportion of non-overlap between posterior parameter estimates x and y, which 

equates to a Bayesian test of the hypothesis Pp|D(x > y). Experimental conditions are high-high, low-

 v  Ter 
 Preference 

Based 
Perceptual 

Based  Preference 
Based 

Perceptual
Based 

x = Low-low 
value;  
y = High-high 
value 

1.000 0.782  0.986 0.587 

x = High-low 
value;  
y = High-high 
value 

1.000 0.553  0.438 0.358 

x = High-low 
value;  
y = Low-low 
value; 

0.986 0.256  0.008 0.279 
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low, high-low values refer to different preference levels and the DDM parameters are v drift-rate and 

Ter non-decision time. 

 

5.3.3. MEG Results 

We performed MVPA on source-localized MEG activity to identify cortical ROIs that contain 

significant information of 1) task rules prior to the decision-making process, 2) task difficulty 

and 3) preference levels during decision-making. Figure 5 shows the binary classification 

accuracy in the source space multivariate analyses and their corresponding univariate 

differences on three contrasts: preference-based vs perceptual decisions, distinct versus similar 

target values, and high value versus low value trials. In each figure, the black bars indicate the 

time in that region with significant classification or univariate difference (p<0.01, FWE 

corrected).  

The first 800 ms of each trial was the rule instruction period, during which only task cues were 

presented without choice stimuli. During this period, there was significant pattern information 

of task rules (i.e., preference-based vs. perceptual decisions) in the occipital lobe and the 

superior parietal cortex. The significant decoding in the visual cortex may relate to the different 

task cues used in the task instruction period. The decoding in the parietal cortex is consistent 

with earlier studies on rule representation and supports the frontoparietal network of task rules 

(Waskom, Kumaran, Gordon, Rissman, & Wagner, 2014; Soon, Namburi, & Chee, 2013; 

Momennejad, 2012; Reverberi, Gorgen, & Haynes, 2012a, 2012b; Cole, Etzel, Zacks, 

Schneider, & Braver, 2011; Woolgar, Hampshire, et al., 2011; Woolgar, Thompson, et al., 

2011; Bode & Haynes, 2009; Haynes et al., 2007). It is worth noting that there is no univariate 

difference in the initial 800 ms. After the initial 800 ms, task rule decoding was significant in 

large groups of occipital, temporal, parietal, and frontal ROIs. More importantly, we observed 

significant decoding of task rules in the medial prefrontal cortex including the supplementary 

motor area (SMA) and the anterior cingulate cortex (ACC), which has also been associated 

with task rule representation (Zhang, Kriegeskorte, Carlin, & Rowe, 2013) (Figure 5.5). 

We expected that information representation relating to task difficulties or preference levels 

could only exist after 800 ms, because no choice target was presented during the rule instruction 

period (0-800 ms). Both univariate and multivariate analyses supported this prediction, as they 

yielded null results in the first 800 ms.  

When contrasting trials with targets of distinct (i.e., one preferred and one non-preferred 

targets) or similar (i.e., two preferred targets or two non-preferred targets) values, occipital, 
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parietal, temporal, and prefrontal (SMA) regions contain significant information of task 

difficulty levels during preference-based decisions. Interestingly, a similar analysis on 

perceptual decision trials demonstrated significant representation of task difficulty levels in a 

smaller set of ROIs, predominantly in the occipital and parietal lobules. Considering that there 

was no behavioural difference in perceptual decisions between targets with distinct or similar 

preference values, our MVPA results suggesting that the brain encodes task irrelevant 

information during perceptual decisions. In other words, when participants perform perceptual 

decisions, targets’ value information in terms of their spatial locations can be reliably decoded 

from MEG activity, although such information is not relevant to the current task. For both 

preference-based and perceptual decisions, the contrast of distinct and similar target values 

yield no significant univariate difference in any ROI (Figure 5.7). 

On the contrast of high vs. low value targets, during preference-based decisions, there was 

significant multivariate classification results in the occipital cortex, the superior parietal cortex, 

and the SMA. The same contract on perceptual decision trials lead to significant classification 

results predominately in the occipital cortex, indicating the presence of task irrelevant 

information. On univariate analyses, this contrast is associated with a transit difference ~100 

ms after stimulus onset, likely relating to the difference in visual evoked fields (Figure 5.6). 
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Figure 5.5 Combined MEG results for preference-based decisions and perceptual-based decisions. 

Each row represents decoding from each cortical region and the black bar indicates significant time 

points corrected across clusters and ROIs (p<0.01). 

A. The results from multivariate pattern analysis B. The results from univariate analysis 
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Figure 5.6 MEG results for preference-based decisions and perceptual-based decisions for easy versus 

difficult conditions.  

A. This panel shows the results from preference-based decisions. The right figure depicts univariate 

analysis results for preference-based decisions, whereas the left figure shows multivariate analysis 

results for preference-based decisions. B. This panel shows the results from perceptual-based 

decisions. Similar to Panel A, the right figure indicates univariate analysis results for perceptual-based 

decisions, whereas the left figure shows multivariate analysis results for perceptual-based decisions 
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Figure 5.7 MEG results for preference-based decisions and perceptual-based decisions for choosing 

between two preferred items and choosing between two non-preferred items (i.e., choosing between 

high value versus high value and choosing between low value versus low value).  

A. This panel depicts the results from preference-based decisions. The left figure shows univariate 

analysis results for preference-based decisions, whereas the right figure shows multivariate analysis 

results for preference-based decisions. B. This panel shows the results from perceptual-based 

decisions. Similar to Panel A, the left figure indicates univariate analysis results for perceptual-based 

decisions, whereas the right figure shows multivariate analysis results for perceptual-based decisions 
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5.4. Discussion 

In this chapter, we studied preference-based and perceptual decisions using identical visual 

stimuli for both types of decisions. The aim of this study is to compare preference-based with 

perception decisions in terms of behavioural performance, cognitive modelling, and neural 

representations. Participants performed binary choice tasks guided by task cues on a trial-by-

trial basis. The preference information is encoded at different spatial locations, whereas the 

perceptual information is presented within each target stimulus. The current study also 

demonstrates that, in both preference-based and perceptual decisions, MEG activity in selective 

cortical regions contains information of preference values (i.e., preferred vs non-preferred) and 

the level of value conflict (i.e., similar vs. distinct values).  

We observed that when the decision based on perceptual information, the decisions were 

slower but more accurate. Similar to Chapter 4 findings, our behavioural results show that the 

perceptual stimuli were more ambiguous, and participants’ response were slower. Moreover, 

the decisions rely on preference-based information also led to faster RT than the perceptual 

context. These findings support that the context of the perceptual information may encourage 

individuals to pay more attention to the visual input, which, in turn, enhances perceptual 

sensitivity and prolong the amount of time needed to make a decision. In addition, the value 

information or subjective preference embedded into spatial locations, and participants were 

required to remember value mappings among different spatial locations. Hence, when 

participants performing preference-based decisions, the associative memory also plays a role 

during the decision-making processing (G. E. Wimmer & Shohamy, 2012). In fact, numerous 

value-based decisions have been observed to be intertwined with the information retrieved 

from memory (Gluth et al., 2015; Murty et al., 2016; Shadlen & Shohamy, 2016; Weber & 

Johnson, 2006; Weilbächer & Gluth, 2016; G. E. Wimmer & Büchel, 2016). This process of 

associative memory can activate judgement heuristics, which in turn helps to facilitate 

processing speed (Kahneman, 2003, 2011). Taken together, these findings suggest that the task 

context influences participant behaviour, with preference-based contexts associated with less 

accurate but faster responses than perceptual contexts. Dutilh and Rieskamp, (2016) reported 

similar findings, indicating that changing incentives during perceptual and preference-based 

judgements influence people's behaviour. Although their subjective criteria differed from the 

current study since their value-based decisions based on reward learning, they also reported 

that participants responded faster in preference-based judgements than in perceptual decisions, 

similar to the findings in the current study. 
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SSM models have also been used to explain the evaluation of decision variables in value-based 

tasks (Busemeyer & Townsend, 1993; Gluth et al., 2012; Roe et al., 2001; Usher & McClelland, 

2004). Here, the Bayesian hierarchical implementation of the DDM provided a good fit to 

response accuracy and RT data. First, our cognitive modelling results showed that value 

mappings on spatial locations affects the drift rate, when participants performing preference-

based decisions. Between the task difficulty levels, there was a significant difference on 

preference-based decisions, but not on perceptual decisions. This is because perceptual 

judgements are only based on the luminance of the stimuli, which is irrelevant to spatial 

locations. Second, the non-decision time differs between the two types of decisions. The 

perceptual-based decisions had a higher non-decision time than preference-based decisions 

among task difficulty levels, and this change was accompanied by a reduction in the decision 

threshold. When participants making decisions based on more ambiguous information (i.e., 

perceptual information), behavioural performance was disruptively affected (i.e., decisions 

were slower) by increasing the non-decision time.  

Using MVPA on MEG source localized activity, we identified cortical ROIs that contain 

significant information regarding task rules before the decision-making process, rule-relevant 

information throughout the decision-making process and task difficulty. First, we found 

significant decoding of task rules in the medial prefrontal cortex including the supplementary 

motor area (SMA) and the anterior cingulate cortex (ACC). These prefrontal regions have been 

associated with task rule representation (J. Zhang et al., 2013). Second, there was no univariate 

difference in the first 800 milliseconds of the measurement (the representation of the task rule). 

Following the first 800 milliseconds, significant task rule decoding was seen in broad clusters 

of occipital, temporal, parietal, and frontal ROIs. Third, or findings from the MVPA indicate 

that the brain encodes information that is not relevant to the task when it is making perceptual 

decisions. Since there was no behavioural difference in perceptual judgements between task 

difficulty conditions (which based on preference levels), we observed significant 

representation of task difficulty levels in a smaller set of ROIs, predominantly in the occipital 

and parietal lobules. This finding supports that the human brain remains sensitive to value 

information when participants performing perceptual-based choice. Our preference-based 

choices impact on perceptual decisions, based on the interaction between the two decision 

types. Recent research by Summerfield and Tsetsos (2012) supports our conclusion that 

perceptual decisions may involve value information or preference-based decision may be 

influenced by external perception. Since these two domains interact, our results consider that 
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the two domains might be combined to develop a broad framework for comprehending human 

decision-making.  

Two issues worth further consideration. First, this study used the DDM to draw inferences on 

behavioural data from both preference-based and perceptual decisions. Recent reserach support 

that same computational model can capture the information processing stages in those two 

types of decisions (Dutilh & Rieskamp, 2016; Polanía et al., 2014). As one potential limitation, 

here we analysed our behavioural data in the evidence accumulation framework, but we did 

not directly use this framework to interrogate the MEG data. Instead, we focused on our MEG 

signatures on pattern classification during the task rule encoding and the decision-making 

processing with specific task conditions. However, several previous studies applied evidence 

accumulation models to brain imaging data in order to investigate the neural basis of value-

based decisions (Basten et al., 2010; Cavanagh et al., 2011; Gluth et al., 2012; Hare et al., 2011; 

Hunt et al., 2012; Lin et al., 2020; Pisauro et al., 2017; Polanía et al., 2014; Tajima et al., 2016). 

As a general assumption for the evidence accumulating framework for value-based judgments, 

the non-sensory evidence is provided by the subjective value that individuals assign to each 

option. Recent studies used HSMM model with EEG data to identify stages of the decision-

making processing (Berberyan et al., 2021; Borst & Anderson, 2015; Dong & He, 2007; Joo et 

al., 2013). Further research might explore how to link cognitive processes and neural 

processing stages during preference-based decisions using HSMM.  

Second, the current study mainly focused on broadband MEG activity, and future studies 

should investigate specific oscillatory activity. One previous study attempted to examine value-

based and perceptual decisions using the evidence accumulation framework (Polanía et al., 

2014). It showed that gamma band oscillations in parietal cortex is correlated with evidence 

accumulation, and this correlation is common for both perceptual-based and value-based 

decisions. Furthermore, the synchronization between parietal and fronto-polar regions was 

found stronger in value-based decisions than perceptual-based decisions. These findings 

suggest that the neural implementation of evidence accumulation process during decision-

making may be frequency specific.  

This study provides two main contributions to the field. First, the study revealed a temporal 

signature in the neural activity during the decision-making process. Initially, in the early visual 

areas, the neural activity was observed, and later it became more prominent in motor or frontal 

regions. This finding suggests a dynamic progression of information processing and suggests 

a temporal flow of neural activation from sensory areas to higher-order cognitive and motor 
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regions. This temporal signature provides insights into the sequence of neural events involved 

in decision-making. Second, there are numerous studies in the field that have investigated the 

temporal signature of value-based decision-making using EEG and MEG. These studies have 

provided valuable insights into the neural dynamics and temporal patterns associated with 

decision processes. By examining the precise timing of neural activity, these investigations 

have contributed to our understanding of the temporal dynamics of decision-making and the 

underlying cognitive processes. However, in general, these studies focused on decisions based 

on reward/loss or external value decisions (Castegnetti et al., 2020; P. Chen et al., 2023; X. J. 

Chen & Kwak, 2022; Harris & Lim, 2016b; Huang et al., 2021; Itthipuripat et al., 2015; Thomas 

et al., 2013; Tyson-Carr et al., 2018; C. Wang et al., 2020). In this research, we examined the 

impact of different decision-making contexts, specifically preference-based decisions and 

perceptual decisions, on the neural activity. The results showed clear differences in MEG 

activity based on the representation of task rules and stimuli. This suggests that the brain's 

neural encoding and representation are influenced by the contextual factors of the decision-

making process. The presence of extended contextual dependencies indicates that the brain 

flexibly adapts its neural processing based on the specific demands of the decision-making 

context. 

For a future direction, an integrated model could be applied to behavioural and neuronal data. 

For instance, in one study, researchers aimed to establish a relationship between the decision-

making process and EEG signatures. Behavioural and EEG data were integrated using a joint 

hierarchical Bayesian model in order to determine whether electrophysiological activity 

reflects trial-by-trial changes in the rate of evidence accumulation for decision-making 

(Zajkowski et al., 2021). Similar to this research, we could use a single trial trace of model 

parameters to integrate behavioural and neuronal signatures into a single model. 

In conclusion, the study presented here is an attempt to further integrate our understanding of 

perceptual-based and preference-based decision making, from behavioural, cognitive 

modelling and neural representation perspectives. 
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Chapter 6 

Discussion 

This chapter provides a summary of the thesis in Section 6.1, and discusses the limitations of 

this research and potential future research directions in Section 6.2, in order to provide a 

comprehensive understanding of the outcomes of this inquiry, with a deeper knowledge of 

value-based decision-making. 

6.1. Summary of contributions  

The thesis began with a review of theoretical and experimental basis of decision making in 

Chapter 2. Decision-making problems were formalized with mathematical explanations based 

on the theory underlying cognitive models, and the classical drift-diffusion model (DDM) was 

utilised to define the decision-making process. In the context of DDM application, I reviewed 

behavioural aspects of perceptual decision-making through classical paradigms and described 

outlined the fundamental decision-making phenomena that influence behavioural performance 

in decision-making, such as the speed-accuracy trade-off. I provided a summary of seminal 

findings on the neurological process of perceptual decision-making through observations from 

animals via invasive electrophysiological recordings and from humans via non-invasive 

neuroimaging. Next, I reviewed the description of value-based decision-making, which allows 

broadening the scope of decisions from the simple to the complex and summarized its 

differences from perceptual decisions. I the reviewed the different concepts of values, the steps 

of value-based decisions, multiple value systems, existing experimental paradigms, and the 

neural signature of value-based decisions, as well as previous research findings. 

The main contributions of the thesis were presented in Chapters 3-5, covering making 

preference-based judgments on combinations of multiple elements (Chapter 3) and examining 

the translation of the value information as well as their possible interactions with perception 

(Chapter 4-5). 

 

6.1.1. Integrating multiple sources of value information 

Chapter 3 investigated how preference-based decisions are made with the existence of the same 

types of multiple information sources, and how these multiple information sources affect 

decision performance and underlying decision processes. I addressed these questions by 
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designing through two internet-based experiments in which participants made binary choices 

based on their food preferences, whereby each option involved the combinatorial of multiple 

food items.  

Experiment 1 included two experimental sessions. In one session, each option contained two 

food items, and in the other session, each option contained four food items. Despite increasing 

the number of food items in the options between two sessions (which was a pivotal point of the 

experiments), all the food items combined in each option had the same preference level. 

Between two sessions and across four levels of preference difference, I compared behavioural 

measurements (Accuracy and RT) and the DDM parameters and found that increasing the 

number of items in each option led to less accurate and slower responses. The DDM results 

further showed that more pieces of information are associated with a lower drift rate. These 

findings established that when participants need to evaluate more pieces of value information, 

they are able to integrate the multiple information, but increasing information sources impeded 

rather than improved the decision accuracy.  

Experiment 2 aimed to replicate and extend the main findings of Experiment 1 by using 

congruent versus incongruent information. In this experiment, participants made preference-

based choices between two groups of food items, with each option containing four food items, 

and each choice option containing either fully congruent information or a piece of incongruent 

information. The results for incongruent information were less accurate and slower than those 

for the congruent condition, and this behavioural pattern is associated with a lower drift rate 

and reduced decision threshold in the incongruent condition. These findings suggest that 

individuals employ combinatorial of information sources during preference-based decisions. 

The number of information sources has an impact on behavioural performance, and such 

behavioural changes are related to the quality of evidence needed for rational and speed actions, 

but not the latency of sensory-motor encoding. 

Chapter 3 laid the foundations for the following experiments by establishing the integration of 

combinatorial value information into a single source of evidence. To the best of my knowledge, 

the research described in the Chapter 3 is the first study to investigate the impact of the same 

types of multiple information sources in value-based decision-making. 
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6.1.2. Value information embedded into geometric shapes 

Chapter 4 investigated decision performance under the context of internal preference and 

external perception. I developed an internet-based choice paradigm that allows examination of 

both value and perceptual decisions using the same visual stimuli. I parametrically morphed 

geometric shapes to vary between circle-like and diamond-like stimuli, and participants were 

instructed to perform categorization task based on internal value and perceptual information. 

In preference-based decisions, participants had the opportunity to establish the association 

between geometrical shapes and preference levels. They were then required to decide whether 

a visual stimulus was likely to be associated with preferred or non-preferred snack items. Using 

the same set of visual stimuli, the participants also performed perceptual decisions to determine 

whether a given stimulus was more like a circle or a diamond. This existing paradigm allowed 

investigation of how initial internal value mappings may affect subsequent perceptual 

decisions.  

I observed psychometrical performance (sensitivity and bias) on the categorization task based 

on internal value and external perception information. The results showed that attaching 

internal values to geometric shapes led to lower discriminating sensitivity than perceptual 

decisions, indexed by a decreased Weber ratio. There was no difference in participants’ 

response bias between the two types of decisions. Furthermore, value-based decisions were 

associated with longer reaction times than perceptual decisions across stimulus levels. These 

findings suggest that a common computational process may underlie value-based and 

perceptual decisions and mapping internal preference onto external perceptual information 

results in additional noise in the decision-making process.  

Chapter 4 established an experimental design that used embedded internal value information 

for the geometric shapes. Participants used value mappings towards the shapes to indicate their 

snack item preferences, whereby the internal value information translated into geometrical 

shapes. Since internal value-based decisions are mostly influenced by memory representations, 

this design aimed to mimic scenarios in real-life decision making. Moreover, the identical 

visual stimuli design allowed investigation of interactions between internal value and external 

perception, and comparison of preference-based and perceptual-based decision-making.  
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6.1.3. Value information embedded into spatial locations 

Chapter 5 presented an MEG experiment on preference-based and perceptual-based decisions. 

Participants were instructed to perform binary choice task in the contexts of internal preference 

and external perception using the identical visual stimuli on a trial-by-trial basis. The different 

colour of fixation points indicated the task rule of each trial. Rather than different geometrical 

shapes, internal values were mapped through different spatial locations by means of Gabor 

patches stimuli. In preference-based decisions, participants remembered value mappings 

among different spatial locations and snack items at different levels of subjective preference. 

The participants were then required to make binary choices between Gabor patches stimuli, 

according to which spatial location was associated with the snack item they prefer more. Using 

the same spatial locations and Gabor patches stimuli, participants made perceptual decisions to 

distinguish which Gabor patch stimulus was brighter than the other. This experiment aimed to 

compare internal value decisions and perceptual decisions in terms of behavioural 

performance, computational modelling, and underlying neural basis. Using the MEG 

recording, the spatiotemporal signatures of internal value-based decisions were identified and 

compared with perceptual decisions. 

Using MVPA, I identified stimulus-task rule association with changes in multivariate data 

patterns in MEG signal. The results suggest that the brain actively maintain rule-relevant 

information before and throughout the decision-making process. MVPA on source space MEG 

data showed that more extended visual area activations are sensitive to value differences in 

value-based decisions. These findings provide a framework for further integrating perceptual 

and preference-based decision-making into a single framework. 

6.2. Limitations  

There are a few limitations in the methodological decisions and experimental work undertaken 

in this research that ought to be noted when interpreting its outcomes.  

6.2.1. Value-based judgements 

6.2.1.1. Single value preferences 

In order to identify value-based judgments, I solely focused on one aspect of value in all of my 

projects, which is internal value in the context of subjective preference. Choices in this context 

of value-based decisions are based on the individual’s own criteria rather than external criteria, 

hence there is no correct response (Johnson et al., 2005; Nakao et al., 2009, 2012; Paulus & 
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Frank, 2003). Previous research has described subjective preference with the preference 

judgment task using a variety of preference judgments, such as product choice (Knutson et al., 

2007, 2008), brand choice (Santos et al., 2011), face selection (Chaudhry et al., 2009), holiday 

alternatives choice (Chaudhry et al., 2009), geometric figures (Jacobsen et al., 2005), and 

colour selection (Johnson et al., 2005). However, the majority of the studies used food item 

choices for preference judgment tasks during internal value decisions (Arana et al., 2003; 

Bielser et al., 2016; Hare et al., 2009; Harris et al., 2011; Harris & Lim, 2016; Linder et al., 

2010; Milosavljevic et al., 2010; Polanía et al., 2014; Tashiro et al., 2019).  

For instance, Arana et al. (2003) examined neural substrates during preference judgment for 

different incentive values by presenting a series of restaurant menus created with high and low 

incentive values. In the task, participants were not hungry, and the food items in the menus 

were customised for each individual. Participants were instructed to follow a set of menus and 

were asked to choose one from the menu halfway through the trials. Similarly, Hare et al. 

(2009) investigated neurobiological underlying of self-control during preference judgment for 

different factors of food items (health and taste). To identify differences between self-controller 

and non-self-controller decision-makers, participants were asked to rate the food items twice 

according to health and taste separately. Based on the rating results, an item rated as neutral for 

both health and taste was selected as the reference item for each participant. In the decision-

making task, participants were asked to make a judgment between each of the food items and 

reference food item. Similar to the above studies, in all projects of this thesis, food items were 

utilised to evaluate preference judgments.  

6.2.1.2. Rating tasks 

Moreover, several papers about value-based decisions utilised rating tasks to indicate value on 

a scale (Bielser et al., 2016; Harris et al., 2011; Harris & Lim, 2016; Philiastides & Ratcliff, 

2013b; Tashiro et al., 2019; Wimmer & Shohamy, 2012). In the same manner, in Chapter 4 

and Chapter 5, before and after the experiments, two sets of ratings were performed on a Likert 

scale with using food items in order to indicate consistency. Those type of experimental 

procedure provide a robust measure of participants’ preference towards food items.  

6.2.1.3. Subjectivity issues 

In Chapter 3 and Chapter 4, the representation of internal value was based on more abstract 

concepts. defined by subjective preferences towards the food items, which can reduce any 

potential bias or influences from branding. Philiastides and Ratcliff (2013) investigated how 
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branding bias influences human behaviour and decision-making processes, demonstrating that 

branding does indeed affect people’s choices (as intended). Furthermore, internal values are 

not limited towards food items: a broad range of internal values are instrumental in human 

decision-making. Moral decision-making stories are examples for other intrinsic value 

decisions (Heekeren et al., 2003; Greene & Paxton, 2009; Hare et al., 2010; Krueger et al., 

2007; Kümmerli et al., 2010; Moll et al., 2006; Schleim et al., 2011; Sommer et al., 2010).   

For instance, Sommer et al. (2010) investigated neural correlates during moral conflict 

situations in daily life. During tasks, the researchers did not assume that either one of the two 

options offered was correct. In the task, participants made choices when presented with morally 

conflicting situations in daily life in which moral rules crashed with personal desires, so that 

the decisions made were based on moral motivations or hedonistic behaviour. Both choices 

had their own advantages and disadvantages, but there may not be universally correct answer 

within the framework of the tasks. The choices, which entailed decisions, relied on participants’ 

own criteria (i.e., participants could follow two behaviour strategies – making a decision based 

either upon their personal desire or their moral standards). The findings indicated that moral 

decisions were associated with increased activity in a large neural network involving the medial 

frontal cortex, the temporal cortex, the temporo-parietal junction, and the posterior cingulate 

cortex; conversely, hedonistic decisions were associated with increased activity in the 

amygdala/parahippocampal region.  

In a similar vein, Moll et al. (2006) asked participants to decide between receiving money or 

donating to a charity, with neither option being presumed to be correct. In this case, the 

conclusion indicated that the participant earning money is not always the correct answer, 

because a charitable donation may be regarded the correct response from a moral perspective. 

Given the subject’s personal viewpoint and financial interests, receiving the money rather than 

donating it to charities would be regarded the correct option. This choice signifies that the 

decision is motivated by self-interest or morality (depending on the criteria of the participant). 

The findings indicate that judgments based on moral beliefs are more significantly associated 

with medial frontal cortex activation than monetary reward decisions. 

6.2.2. Internal value integrations 

Throughout this thesis, I considered internal value integrations and the converse of preference-

based decisions (i.e., internal value judgments) in relation to perceptual decisions. However, 

there is also a contrast between internal value judgments (i.e., preference-based decisions) and 
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external value judgments. As a limitation, my research has no explicit consideration of external 

value judgments and their comparison with perceptual decisions. However, most research to 

date has focused on external value to elucidate the value-based decisions (i.e., extrinsic 

motivations and external incentives), in which decision options have objective characteristics; 

this means that the value of the options is defined externally by the experimenter, and correct 

answers exist. Such situations include objective utilities such as money, gambling, and other 

external incentives. Examples of tasks employed in external value judgments include gambling 

tasks and tasks in which one option is linked with a probabilistic better outcome than the others 

(i.e., a stimulus is associated with the probabilistic of a reward) (Abler et al., 2009; Bach et al., 

2017; Bowyer et al., 2021; Gluth et al., 2013; Huettel, 2006; Hunt et al., 2013; Itthipuripat et 

al., 2015; Knutson et al., 2005; Lin et al., 2019; Oemisch et al., 2017; Steffen et al., 2011; 

Thomas et al., 2013; Tobler et al., 2007; Trimber & Luhmann, 2017; Volz et al., 2003; Wang 

et al., 2019; Zajkowski et al., 2021; Zhang et al., 2017; Zheng et al., 2020; Zhu et al., 2019).  

For instance, when requiring participants to decide about different reward values, Abler et al. 

(2009) used cues to indicate different magnitude and probability of the monetary rewards. In 

the task, participants were instructed to follow the cue and make a decision based on the 

expectation of monetary rewards, whereby this value could be at different magnitudes, 

probabilities, and uncertainties. Research on extrinsic value judgments investigates the effect 

on decision making of circumstances with objectively correct responses, but it is difficult to 

predict outcomes due to the presence of uncertainty (Nakao et al., 2012). Thus, due to the 

implied correctness of the answers and decision criteria differences, there is a clear distinction 

between internal and external value judgments. Since external values affect behaviour as much 

as internal ones, it is important to investigate the potential interactions of internal and external 

values on behaviours, as they are as important as internal values in understanding value-based 

decisions. However, external value judgments are not the main focus of this thesis; it would be 

useful for future work to consider the interaction or influence of different effects from internal 

and external values on value-based decisions.  

6.2.3. Online data collection 

6.2.3.1. Dropout issues 

The research presented in Chapters 3-4 was based on internet-based experiments. Although 

conducting online studies has the benefit of collecting data from large and diverse groups of 

participants in a relatively short period of time at much lower cost (such as employing the 



103 

experimenter for a short time and average rate of the participants’ compensation expenses), it 

also introduces a number of technical and scientific challenges  (Birnbaum, 2004; Reips, 2000). 

First, an important challenge of interactive online experiments concerns participants dropping 

out before they complete the experiment. Participants rarely leave a session in physical 

laboratory experiments, whereas in online studies, participants are more likely to drop out. If 

dropouts occur for external reasons or technical challenges to the experiment, such as network 

connections, recording data over the internet, frozen screens, and so on, these reasons only lead 

to extra costs to the experimenter (Arechar et al., 2018) Internal dropouts are much more 

serious (when participants leave the experiment due to decreased motivation). Such dropouts 

may compromise the internal validity of experiments (Zhou & Fishbach, 2016). In our 

experiments, seven participants withdrew from the experiment before completing all their 

sessions because of external issues.  

6.2.3.2. Technical issues 

Furthermore, technical challenges can arise from conducting online studies, as this format does 

not allow full experimental control over participants’ computer hardware factors that may 

affect the experimental conditions (e.g., screen size, computer speed, and a variety of web 

browsers).  

6.2.3.3. Rapport 

The absence of interaction between participants and experimenters during the experiment when 

using most forms of online data collection lose some of the potential engagement possible with 

traditional face-to-face methods. When the instructions are misunderstood by participants, 

there could be important issues affecting data quality and reliability. In my experiments, in 

order to address this challenge, feedback was provided sequentially after a part of the trials, 

and when the participants could not proceed to fulfil the task with higher than chance level they 

were removed from the experiment. 

6.2.3.4. Oversimplification 

Due to the particular challenges of online data collection adumbrated above, the experiments 

were designed as relatively simplified and repetitive psychological tasks. However, scenarios 

that include value-based decisions are typically more complex in real life. Nevertheless, these 

online experimental setups suggest the validity and reproducibility of online experiments to 

investigate the integration of subjective value and to examine psychometrical performance 

during value-based decision-making. 
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6.2.4. Summary 

The behavioural and cognitive modelling results presented in Chapter 3 showed that humans 

are able to combine multiple pieces of information in preference-based decisions. The 

psychometrical performance from the experiments in Chapter 4 consider sensitivity and bias 

on the categorization task based on value and perceptual information. Our findings showed that 

mapping preference-based context onto perceptual information reduces perceptual sensitivity 

and facilitates response speed during decision-making. Chapter 5 further investigated 

preference-based and perceptual decisions when preference-based information is associated 

with different spatial locations. This chapter demonstrated that participant perceptual judgment 

is modulated or shaped by subjects’ preference-based information. Future studies could look 

whether the reverse effect is also true (i.e., whether participant preference-based judgment is 

affected by perceptual appearance). Chapter 5 showed that there is a distinct neural signature 

of decision context between preference-based decisions and perceptual-based decisions. When 

performing perceptual or value-based decisions using identical stimuli, MVPA results showed 

that preference-based context engages a wider visual areas activation such as frontal parietal 

networks. Our results suggest that the brain actively sustains rule-relevant information before 

and throughout decision-making process. In conclusion, this thesis contributes to the research 

of value-based decision-making by integrating novel experimental approaches, cognitive 

modelling, and electrophysiological measures of the human brain.  
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