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Analyzing and Unifying Robustness Measures
for Excitation Transfer Control in Spin Networks

S. P. O’Neil1,∗ I. Khalid2,∗ A. A. Rompokos1 C. A. Weidner3 F. C. Langbein2 S. Schirmer4 E. A. Jonckheere1

Abstract— Recent achievements in quantum control
have resulted in advanced techniques for designing con-
trollers for applications in quantum communication, com-
puting, and sensing. However, the susceptibility of such
systems to noise and uncertainties necessitates robust
controllers that perform effectively under these conditions
to realize the full potential of quantum devices. The time-
domain log-sensitivity and a recently introduced robust-
ness infidelity measure (RIM) are two means to quantify
controller robustness in quantum systems. The former can
be found analytically, while the latter requires Monte-Carlo
sampling. In this work, the correlation between the log-
sensitivity and the RIM for evaluating the robustness of
single excitation transfer fidelity in spin chains and rings
in the presence of dephasing is investigated. We show that
the expected differential sensitivity of the error agrees with
the differential sensitivity of the RIM, where the expectation
is over the error probability distribution. Statistical analysis
also demonstrates that the log-sensitivity and the RIM are
linked via the differential sensitivity, and that the differential
sensitivity and RIM are highly concordant. This unification
of two means (one analytic and one via sampling) to assess
controller robustness in a variety of realistic scenarios
provides a first step in unifying various tools to model and
assess robustness of quantum controllers.

Index Terms— Robust control, uncertain systems, quan-
tum control

I. INTRODUCTION

EMERGING quantum devices are potentially able to out-
perform classical computational devices in performing

complex and challenging tasks in quantum optics [1], quantum
cryptography [2] and quantum machine learning [3]. Robust
control design is essential to avoid errors in quantum devices
that will propagate and amplify as system size scales [4].

However, the proven techniques of robust control have
limited applicability in the control of quantum systems. Stan-
dard robust control design and analysis based on small-
gain theorem techniques requires closed-loop systems that are
well-posed and internally stable [5]. The marginal stability
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characteristic of all coherent, “closed-loop” quantum systems
is thus incompatible with the prerequisites of classical robust
control. Further, while the tools of classical control theory are
designed to guarantee stability and asymptotic performance,
the benefits of quantum technology stem from coherence,
a quality that originates with the imaginary-axis poles of
quantum systems and rapidly decays with time. As such,
quantum control problems such as state transfer or operation
of quantum logic gates are generally time-based, depreciating
the premium on asymptotic behavior.

In this letter we consider the task of optimal state transfer in
a simple quantum register, focusing on the control paradigm
of energy landscape shaping. The task is formulated as a
time-invariant control problem, and optimization techniques
are used to identify controllers that yield high fidelity [6],
[7]. Uncertainties in the quantum device model and environ-
mental interactions necessitate optimal fidelity controls in the
presence of these uncertainties. Various methods to obtain
robust and/or optimal controllers exist [8]–[10]. Model-based
methods study the problem as an adversarial game between
low error and robustness [11], [12], whereas model-agnostic
methods deploy learning algorithms that rely on input-output
measurements to generate robust controllers.

We examine the correlation between two distinct robustness
measures, the time-domain log-sensitivity and a robustness
infidelity measure (RIM). Our analysis of the RIM and log-
sensitivity is general and not strictly limited to the time-
domain or spin systems. Our motivation is to initiate the study
of consistent properties between the robustness measures as
a first step in development of a unified robustness theory
for quantum control. Indeed, while various robustness mea-
sures have been used, they have often provided discordant
results. Moreover, reliable robust control design is impor-
tant for the successful application of quantum technologies
across domains in the noisy real-world setting. In traditional
control theory, sensitivity quantifies the performance of a
closed-loop system under uncertainties. The time-domain log-
sensitivity can be computed analytically [13]. Alternatively,
the RIMp [14] evaluates controller robustness based on the pth
order Wasserstein distance of the error distribution under un-
certainty relative to the ideal distribution. Previous work [13]
extensively analyzes the log-sensitivity in chains and rings
of N particles with structured perturbations and indicates
small log-sensitivity is possible for extremely high-fidelity
controllers.

Classically a conflict exists between minimum error and



minimum sensitivity of the error quantified as S(jω) +
T (jω) = I , where S is the tracking error and T the sen-
sitivity of the error relative to unstructured uncertainties [15].
Attempts to embed S and T in a single criterion have been
proposed, e.g., the “mixed-sensitivity,” and its reformulation
for ∆-structured uncertainties as µ∆

([
ST TT

]T)
[5]. Thus

the RIMp may be viewed as a mixed-sensitivity approach for
uncertainties structured by their PDFs where both the error
(or infidelity) and its robustness (the variance of its PDF) are
encoded in a p-Wasserstein distance.

Additionally, the RIM1 is connected to randomized bench-
marking that averages the fidelity over the Clifford group used
to quantify robustness of quantum circuits by characterizing
the error per gate [16]. Moreover, the RIM1 formalizes the
already common approach of optimizing for the average
infidelity to obtain robust quantum controllers [17].

The letter is organized as follows. Sec. II introduces the
model used throughout this analysis. Sec. III introduces and
unifies the log-sensitivity and the RIM to measure robustness.
In Sec. IV, we formulate the hypothesis tests to compare the
two measures and present our results. Sec. V concludes.

II. PHYSICAL MODEL

We consider a quantum register comprised of an array of
quantum bits. The system can be modeled as a coupled spin
system with Hamiltonian

H :=

N∑
m̸=n

Jmn (XnXm + YnYm + κZnZm) (1)

where N is the number of qubits and Xn, Yn, Zn are the
N -fold Pauli operators acting on the nth particle [18]. Jmn =
Jnm denotes the interaction between particles n and m and
can be interpreted as the undirected edge between nodes n
and m on a graph. Only 1D spin networks are considered
here, with either a chain (linear register) or a ring (quantum
router) topology, constraining the couplings to be zero except
for Jn,n±1 (chain) and additionally J1,N = JN,1 for rings. We
assume uniform coupling for all non-zero J and κ = 0. We
further restrict the dynamics to the single excitation subspace
and the case where control is achieved by external bias fields
that shift the energy levels of particle n by ∆n, resulting
in an effective single excitation subspace Hamiltonian Hss

given by a matrix with diagonal elements ∆n and off-diagonal
elements Jmn. The closed system with no interaction with
the environment evolves according to ρ̇(t) = − i

ℏ [Hss, ρ(t)],
where ρ(t) is density operator describing the state of the
system [19], [20].

To study the robustness of a nominally closed quantum sys-
tem to environmental interaction we introduce a perturbation in
the form of dephasing in the Hamiltonian basis. This modifies
the evolution of the perturbed state ρ̃(t) to

˙̃ρ(t) = − i

ℏ
[Hss, ρ̃(t)] + L(ρ̃(t)) (2)

where L(·) = − 1
2 [V, [V, (·)]] is the Lindblad decoherence

superoperator, and [·, ·] is the commutator. We represent the
dephasing terms as V = V † =

∑N
k=1 ckΠk, where Πk is

the projector onto the kth shared eigenspace of Hss and V ,
and ck is the associated eigenvalue of V . Pre- and post-
multiplying (2) by Πk and Πℓ, respectively, and noting that
{Πk} is a resolution of the identity on CN , gives

ρ̃(t) =

N∑
k,ℓ=1

e−t(iωkℓ+γkℓ)Πkρ0Πℓ, (3)

where ωkℓ = (1/ℏ) (λk − λℓ) and γkℓ are the decoherence
rates and ρ0 is the (known) initial state of the system.

To permit robustness analysis in a linear time-invariant (LTI)
framework, we recast (2) as

˙̃r(t) = Ar̃(t) + Lr̃(t) (4)

by expanding (2) with respect to a suitable set {σn} of N2

Hermitian basis matrices for CN2

[21], [22]. Here, r̃(t) ∈
RN2

is the vectorized representation of ρ̃(t) in the basis {σn}
with components r̃k(t) = Tr(ρ̃(t)σk). The matrices A,L ∈
RN2×N2

are defined by [22]

Akℓ = Tr

(
i

ℏ
Hss[σk, σℓ]

)
, (5a)

Lkℓ =
1

ℏ
Tr(V σkV σℓ)−

1

2ℏ
Tr

(
V 2 (σkσℓ + σℓσk)

)
. (5b)

The solution to (4) is given by r̃(t) = et(A+L)r0, where r0 is
the expansion of ρ(0).

III. ROBUSTNESS ASSESSMENT

A. Performance and Perturbation Model
We consider the fidelity error of the excitation transfer from

the initial state ρ(0) to a desired output state ρout at a read-out
time T as the measure of performance. We restrict our analysis
to spin rings and chains of size N = 5 and N = 6. For chains,
we consider transfer from spin 1 to desired output states
OUT = {⌊N/2⌋ + 1, N}. For rings, we consider transfers
from spin 1 to OUT = 2 through ⌈N/2⌉. All controllers are
optimized to maximize fidelity under varying conditions as
described in [14], [20]. We evaluate the nominal fidelity error
in the LTI formalism as e(T ) = 1− cr(T ) where c ∈ R1×N2

is the transpose of rOUT.
To model the dephasing processes, we use the set of 1000

dephasing operators specific to spin networks of size N =
5 or 6, as employed in [20], normalized and tested to meet
the physical complete positivity constraints [23]. We denote
this set of dephasing operators by {Sµ} ∈ RN2×N2

where
µ indexes each dephasing operator and the elements of Sµ

are given by (5b) for the LTI representation. To modulate the
strength of the perturbation we introduce the dimensionless
scalar δ ∈ [0, 0.1].

The perturbed trajectory specific to Sµ and δ is

r̃(t;Sµ, δ) = et(A+δSµ)r0. (6)

This gives the perturbed performance measure

ẽ(T ;Sµ, δ) = 1− ceT (A+δSµ)r0 (7)

where ẽ(T ;Sµ, δ) denotes the error evaluated at time T under
the dephasing process Sµ at strength δ.



B. Log-Sensitivity

In accordance with [20], we choose the log-sensitivity as
one measure of robustness, calculated in two distinct ways:
analytically and numerically. In the analytical case we calcu-
late it directly from (7) as in [20]. For a given controller and
dephasing process we have

s(Sµ, T ) =
1

e(T )

∂ẽ(T ;Sµ, δ)

∂δ

∣∣∣∣
δ=0

=
−1

e(T )
ce(TA)(TSµ)r0.

(8)
The form of the last term in (8) only holds for this specific
dephasing model where [A,Sµ] = 0. For a given controller,
we average the s(Sµ, T ) values to yield sa(S, T ) where the
subscript a denotes ‘analytic’ and we drop µ to indicate
averaging over the entire set {Sµ}.

In a complementary manner, we approximate the proba-
bility density function p(δ, e) by sampling the fidelity error
ẽ(T ;Sµ, δ) of one controller for 1000 dephasing operators
and a range of δ, and calculating a kernel density estimator
(KDE). We quantize the dephasing strength δ into 1001 steps.
For each controller, we then produce a 1001 × 1000 array
of samples by evaluating ẽ(T ;Sµ, δ) at each step of δ for
each dephasing operator Sµ. From this array, we extract the
estimated fidelity error distribution through the MATLAB
function ksdensity. Selecting a suitable kernel radius for
the KDE is crucial to obtain a good estimator. We leverage the
MATLAB function smoothingspline to produce a func-
tional representation of the mean error denoted as ê(T ;S, δ),
where µ is dropped to indicated that averaging over the
dephasing operators has already taken place. We then calculate
a numerical derivative of the mean error estimate at δ = 0 so
that

sk(S, T ) =
1

e(T )

∂ê(T ;S, δ)

∂δ

∣∣∣∣
δ=0

(9)

provides the KDE-based log-sensitivity for a given controller.

C. RIM

Under uncertain dynamics, the fidelity error is a sample
drawn from the probability distribution Pδ(e = e) of a random
variable e. The subscript signifies that the probability distribu-
tion depends on the noise strength δ. The RIM1(δ) (robustness
infidelity measure) is the first order Wasserstein distance of
Pδ(e = e) from the maximally robust probability distribution,
i.e., the Dirac delta distribution at minimum infidelity 0.
Note that the p-Wasserstein distance between two measures
µ(dx), ν(dy) is the minimum over all transference plans of
the average p-moment of |x − y| or cost of transferring µ to
ν [24]. We can simplify the RIM1 as the first raw moment of
the error probability distribution [14],

RIM1(δ) = EPδ
[e] , (10)

where EPδ
[·] =

∫
X (·)Pδ(e = e) de is the expectation op-

erator w.r.t. the probability distribution of the error Pδ(e)
over some appropriate domain X . The RIM1 aims to capture
both infidelity and robustness in a single measure and extends
the infidelity by a noise strength δ. At δ = 0, there is no
uncertainty so the RIM1 is just the nominal fidelity error

(infidelity) e(T ). A further generalization is the RIMp as the
pth order Wasserstein distance can be used, but this is not
considered here.

D. Unifying Differential Sensitivity with the RIM
We can relate the RIM1 with the differential sensitivity

ζ(Sµ, T ) =
∂ẽ(T ;Sµ, δ)

∂δ

∣∣∣∣
δ=0

(11)

by considering the expectation EPδ
[ζ]. The dependence of the

function Pδ(e = e) and ζ on δ requires careful attention, but
for our decoherence noise model, we can use reparametriza-
tion [25] to write an equivalent expectation operator for our
decoherence noise model that isolates the dependence of
Pδ(e = e) on δ to just the error e with a new probability
distribution function independent of δ.

One way to do this is to note that the stochasticity of e is
entirely due to the uncertainty of the dephasing operators Sµ,
which is represented by the random variable S, with δ being
a deterministic scale parameter.

Theorem 1: For the decoherence noise model, the expected
differential sensitivity is the differential sensitivity of the
RIM1 i.e. EP(S)[ζ(Sµ, T )] =

∂RIM1(δ)
∂δ

∣∣∣
δ=0

.
Proof: We first unpack the differential sensitivity using the
definition of the derivative,

∂ẽ(T ;Sµ, δ)

∂δ

∣∣∣∣
δ=0

= lim
ϵ→0+

ẽ(T ;Sµ, δ + ϵ)− ẽ(T ;Sµ, δ)

ϵ

∣∣∣∣
δ=0

= lim
ϵ→0+

ẽ(T ;Sµ, ϵ)− ẽ(T ;Sµ, 0)

ϵ
. (12)

We apply the expectation operator EP(S) [·] on (12) and
simplify using the reparametrization trick: EP(S)[·] ↔ EPδ

[·],

EP(S)[ζ(Sµ, T )] = EP(S)

[
lim

ϵ→0+

ẽ(T ;Sµ, ϵ)− ẽ(T ;Sµ, 0)

ϵ

]
= lim

ϵ→0+

EP(S) [ẽ(T ;Sµ, ϵ)− ẽ(T ;Sµ, 0)]

ϵ

= lim
ϵ→0+

EPϵ
[ẽ(T ;Sµ, ϵ)− ẽ(T ;Sµ, 0)]

ϵ

= lim
ϵ→0+

RIM1(ϵ)− RIM1(0)

ϵ

=
∂RIM1(δ)

∂δ

∣∣∣∣
δ=0

.

Swapping the limit and the expectation in the second line is
justified as long as the limit in the mean of the sequence
{ ẽ(T ;Sµ,ϵ)−ẽ(T ;Sµ,0)

ϵ }ϵ>0 exists. □
Note that Thm. 1 does not necessarily hold in the general

case, as removing the dependence on δ via reparametrization
is not always possible.

IV. RESULTS

A. RIM Preprocessing
To compare the log-sensitivity and RIM1(δ), we need to

extract a representative dephasing noise scale δ to use for
RIM1(δ) since the log-sensitivity is independent of δ. A priori,
for the two measures RIM1(δ1) and RIM1(δ2), for some



Fig. 1: RIM1(δ) for 100 controllers sorted in increasing order
of error (to the right) for the ring spin transfer problem for
N = 6 with O = 4.

Fig. 2: Kendall’s tau τ(δ1, δ2) heat map showing agree-
ment between RIM1(δ1) and RIM1(δ2) measures for 0.1 >
δ1, δ2 > 0.005 for the ring spin transfer problem for N = 6
with O = 4.

δ1, δ2 ∈ [0, 0.1] noise scale parameters and δ1 ̸= δ2, the
measure values or controller rank ordering w.r.t. the values do
not necessarily coincide or agree. We quantify the agreement
using rank-correlation analysis via Kendall’s tau τ(δ1, δ2) for
100 controllers which are ranked according to their respective
RIM1 values. For the spin transfer problems considered here,
we found that for δ1 = 0.05, the rank correlation is strongest
(around > 0.8) for δ2 ∈ (0.005, 0.1). Fig. 1 shows the
RIM1(δ), δ ∈ [0, 0.1], for 100 individual controllers sorted
in increasing order of error (to the right) for the spin ring
transfer problem with N = 6, OUT = 4. Fig. 2 shows the
results of our rank-correlation analysis for the same transfer
problem.

B. Hypothesis Test Formulation: Robustness Measure
Concordance and Robustness-Performance Trade-off

Given two forms of the log-sensitivity and the RIM1, we
expect that if all give a trustworfthy measure of robustness,
they should show a concordant trend across all controllers for
the same problem defined by ring or chain size and transfer.
Based on the fundamental limitation S(s)+T (s) = I of clas-
sical feedback control, we also anticipate that the controllers
exhibiting good robustness (small log-sensitivity or RIM1)

should have diminished performance (larger fidelity error).
To test these hypotheses, we establish a pair of hypothesis
tests based the Kendall τ rank correlation coefficient. To
test concordance or discordance of robustness measures we
establish one-tailed tests for concordance (right tail for τ > 0)
or discordance (left tail for τ < 0) as

• H0: no correlation of sa(S, T ), sk(S, T ) and RIM1;
• H1+/−: positive/negative correlation of same metrics.

The rank correlation is computed in a pairwise manner be-
tween robustness measures. To test the trend between e(T )
and the robustness measures, we establish a second one-tailed
test (left tail) for anti-concordance as

• H0: no correlation of e(T ) and sa(S, T ), sk(S, T ), or
RIM1;

• H1: negative correlation between same metrics.
With the combination of ring and chain sizes and transfer
problems at our disposal, this provides a total of 36 test cases
for each hypothesis test for chains and 45 test cases for each
hypothesis test for rings. Within each test, we have 100 sam-
ples based on the best (highest fidelity without decoherence)
100 controllers.

For each test, we evaluate the statistical significance as

pτ =

{
1− Φ(Zτ ), for concordance
Φ(Zτ ), for discordance,

(13)

where Zτ is the Kendall τ test statistic given as Zτ =

τ
(√

2(2n+5)
9n(n−1)

)−1

[26], n = 100 is the number of samples,
and Φ(·) is the normal cumulative distribution function. We
set the significance level at a standard 95% so that α = 0.05.
We reject (accept) the null hypothesis if pτ < α (pτ ≥ α).

C. Hypothesis Test Results: Robustness Measure
Concordance and Robustness-Performance Trade-off

Applying the hypothesis test to the correlation between the
robustness measures provides mixed results. On one hand,
across all test cases, sa(S, T ) and sk(S, T ) are highly concor-
dant. However, the correlation between the RIM1 and either
measure of the log-sensitivity provides inconclusive results—
neither concordant nor discordant. This indicates that utiliza-
tion of the log-sensitivity and RIM1 as defined in Sec. III does
not provide an equivalent robustness measure. Table I displays
the results of the hypothesis test for concordance of the
robustness measures for the set of chain controllers, illustrating
the inconsistent trends between analytic log-sensitivity and
RIM1 but consistent trend between sa(S, T ) and sk(S, T ).

Applying the hypothesis test to the trend between perfor-
mance and robustness reveals similar, mixed results. For both
chain and ring controllers, this trend is highly negative for
the log-sensitivity versus e(T ), rejecting H0 for H1 in all
test cases, indicative of a trade-off between performance and
robustness. However, the trend between RIM1 and e(T ) is
highly concordant in some cases while anti-concordant in oth-
ers, a further indicator of dissonance between the robustness
measures. Figure 3 shows a typical plot of the log-sensitivity
and RIM1 versus controller index. Though the trend of log-
sensitivity versus e(T ) is opposite to that of RIM1 versus



TABLE I: Excerpt of hypothesis test for concordance of robustness
measures for chain controllers optimized with different algorithms
{A,B,C}. Light shading indicates discordant trends. Dark shading
indicates failure to reject H0.

sa(S, T ) vs. sk(S, T ) sa(S, T ) vs. RIM1

Transfer τ pτ τ pτ
N= 5 OUT= 3 A 1.000 0.000 0.201 0.002
N= 5 OUT= 3 B 1.000 0.000 0.487 0.000
N= 5 OUT= 3 C 1.000 0.000 0.319 0.000
N= 5 OUT= 5 A 1.000 0.000 0.258 0.000
N= 5 OUT= 5 B 1.000 0.000 −0.556 0.000
N= 5 OUT= 5 C 1.000 0.000 0.207 0.001
N= 6 OUT= 4 A 1.000 0.000 0.000 0.498
N= 6 OUT= 4 B 1.000 0.000 −0.214 0.001
N= 6 OUT= 4 C 1.000 0.000 −0.202 0.001
N= 6 OUT= 6 A 1.000 0.000 −0.134 0.024
N= 6 OUT= 6 B 1.000 0.000 −0.639 0.000
N= 6 OUT= 6 C 1.000 0.000 0.029 0.336

Fig. 3: Plot of sa(S, T ), sk(S, T ), and RIM1 versus controller
index (ranked by error) for a 6-chain, 1 → 4 transfer. The
strong correlation between log-sensitivity measures is evident
along with the negative correlation between log-sensitivity and
e(T ). Conversely, we see a concordant trend between RIM1

and e(T ).

e(T ), the plot shows that both measures capture the same
“jumps”, indicating that there is concordance in the ability
of each measure to detect the relative robustness between
controllers, as predicted by Theorem 1.

To explore these relative differences, we consider the rela-
tionship between the differential sensitivity ζ{a,k}(S, T ) and
the adjusted R̃IM1 = RIM1−e(T ) where the nominal error is
removed to retain the ”spread” of the RIM1. Reapplying the
hypothesis test with the differential sensitivity, calculated both
analytically and through the KDE, and R̃IM1 results in strong
positive concordance between all three measures for the 45
ring test cases and 36 chain test cases with p-values near zero.
Furthermore, the hypothesis test for anti-concordance between
ζ{a,k}(S, T ) and the R̃IM1 versus e(T ) rejects H0 in favor of
H1 in the majority of test cases, while any test cases that do
not meet the α < 0.05 threshold are the same for all robustness
measures. Specifically, for the ring controllers, nine of the 45
test cases fail to meet the significance threshold, while for
the chains, 15 of the 36 cases do not meet the threshold. As

TABLE II: Excerpt of hypothesis test for trend between differential
sensitivity and R̃IM1 versus e(T ) for chain controllers optimized
with different algorithms {A,B,C}. Shaded cells indicate failure to
reject H0.

ζa(S, T ) vs. e(T ) R̃IM1 vs. e(T )
Transfer τ pτ τ pτ
N= 5 OUT= 3 A 0.0069 0.4597 −0.0271 0.3449
N= 5 OUT= 3 B −0.0416 0.2698 −0.0469 0.2448
N= 5 OUT= 3 C 0.0788 0.1227 0.0756 0.1327
N= 5 OUT= 5 A 0.0339 0.3084 −0.0069 0.4597
N= 5 OUT= 5 B −0.1317 0.0261 −0.1426 0.0178
N= 5 OUT= 5 C −0.1560 0.0107 −0.1754 0.0049
N= 6 OUT= 4 A −0.3665 0.0000 −0.4097 0.0000
N= 6 OUT= 4 B −0.2529 0.0001 −0.2590 0.0001
N= 6 OUT= 4 C −0.2117 0.0009 −0.2246 0.0005
N= 6 OUT= 6 A −0.2574 0.0001 −0.3220 0.000
N= 6 OUT= 6 B −0.2178 0.0007 −0.2343 0.0003
N= 6 OUT= 6 C 0.0238 0.3626 −0.0008 0.4952

shown in Table II, however, the data is consistent across the
three robustness measures for each controller set, suggesting
greater trustworthiness in the differential sensitivity and R̃IM1

to assess robustness.

D. On the Differential Sensitivity and Adjusted RIM1

Thm. 1 in Sec. III-D shows that the expected differential
sensitivity is the differential sensitivity of the RIM1. We
confirm this with numerical evidence beyond concordance
of R̃IM1 and ζa(S, T ). Given δ small enough, a forward
difference approximation of ∂RIM1

∂δ

∣∣
δ=0

shows strong agree-
ment with the value of the ζa(S, T ). Specifically, quan-
tizing the range of δ by 1001 points so that δ(n) =
0.0001n for n ∈ [1, 1000], the relative error in ζa(S, T ) and
(RIM1 − e(T )) /δ(1) = R̃IM1/δ(1) does not exceed 0.1%
across all test cases.

Additionally, we see that R̃IM1 has the capability to provide
a robustness assessment for values of δ beyond δ = 0 where
the differential sensitivity is no longer valid. Fig. 4 displays
characteristic plots of R̃IM1 as a function of δ ordered by
increasing differential sensitivity. Fig. 4a shows a characteristic
trend of faster increasing R̃IM1 for those controllers with the
larger differential sensitivity, suggesting that these controllers
display robustness properties at greater perturbation strength
in accordance with ζa(S, T ) at δ = 0. Fig. 4b displays the
same overall trend but with outliers that indicate the existence
of controllers with more global robustness properties that are
not captured by the differential sensitivity at δ = 0.

V. CONCLUSION

Although the log-sensitivity and RIM1 have merit as stand-
alone measures of robustness, they are not concordant mea-
sures. However, they are linked by the differential sensitivity,
and we have shown that the expectation of the differential
sensitivity over the set of dephasing operators is equivalent
to the derivative of RIM1 at δ = 0. This result is not
limited strictly to the time-domain or to spin systems. Existing
robust control methods can benefit from these measures by
using them to post-select synthesized open-loop controllers



(a) Larger perturbation behavior for a 5-ring 1 → 2 transfer

(b) Larger perturbation behavior for a 6-ring 1 → 4 transfer

Fig. 4: R̃IM1 as a function of δ compared to ζa(S, T ).

or directly optimize for controllers that minimize a given
robustness measure. Both measures agree locally, near δ = 0,
but the RIM can be used for a more global (w.r.t. δ) a
posteriori robustness assessment of controls.

These results are a positive step in unification of robustness
measures, but more work is required to make the results
more generally applicable. Firstly, the type of perturbations
considered must be generalized. Specifically, it is necessary
to investigate whether this unification of robustness measures
holds under the case of Hamiltonian and/or controller un-
certainty simultaneously with dephasing and dissipation. Sec-
ondly, investigation of the relationship between higher order
differential sensitivity measures and higher orders of the RIM
is necessary to improve higher order robustness of controllers
as the number of perturbations under consideration increases.
Finally, a test on physical systems is required to assess how
well the proposed robustness measures compare to physically
measurable performance in the setting of perturbations and
uncertainty.
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