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As strong evidence for inflation, relic gravitational waves (RGW) have been extensively studied.
Although they have not been detected yet, some constraints have been achieved by observations. Future
experiments for RGW detection are mainly of two kinds: CMB experiments and laser interferometers. In
this paper, we study these current constraints and the detective abilities of future experiments. We
calculate the strength of RGW �g�k� using two methods: the analytic method and the numerical method,
by solving the inflationary flow equations. By the first method, we obtain a bound �g < 3:89� 10�16 at
� � 0:1 Hz, where we have used the current constraints on the scalar spectral index and the tensor-scalar
ratio; furthermore, we have taken into account the redshift-suppression effect, the accelerating expansion
effect, and the neutrino damping effect on RGW. But the analytic expression of �g�k� depends on specific
inflationary models and does not apply well for the waves with very high frequencies. The numerical
method is more precise for the waves with high frequencies. It gives a bound �g < 8:62� 10�14, which is
independent of the inflationary parameters, and applies to any single-field slow-roll inflationary model.
After considering the current constraints on the inflationary parameters, this bound becomes �g < 2�
10�17. These two methods give consistent conclusions: the current constraints on RGW from LIGO, big
bang nucleosynthesis, and pulsar timing are too loose to give any constraint for the single-field inflationary
models, and the constraints from WMAP are relatively tighter. Future laser interferometers are more
effective for detecting RGW with the smaller tensor-scalar ratio, but the CMB experiments are more
effective for detecting the waves with the larger ratio. These detection methods are complementary to each
other for the detection of RGW.
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I. INTRODUCTION

In the past, a number of observations on the cosmic
microwave background (CMB) radiation power spectra
[1–3] and on the large-scale structure (LSS) [4] have
supported inflation as the good phenomenological model
to describe the evolution of the universe at a very early
stage, which naturally gives rise to the origin of primordial
fluctuations with a nearly scale-invariant and Gaussian
spectrum. In addition to the primordial density perturba-
tions, inflationary models also predict a stochastic back-
ground of relic gravitational waves (RGW), which are the
tensor perturbations. The detection of such a background
would provide incontrovertible evidence that inflation ac-
tually occurred and would also set strong constraints on the
dynamics of inflation [5].

There are mainly two kinds of experiments to detect
RGW at different frequencies. For RGW of very low fre-
quencies, � ’ �10�17–10�15� Hz, one can observe them by
detecting the power spectrum of CMB B polarizations [6].
Now, the three-year results of WMAP [2] have not yet
found the evidence of RGW. The experiment of the Planck
satellite [7] with higher sensitivity to polarization is sched-
uled for launch in 2007, and the Clover [8] and CMBPol
[9] projects with much higher sensitivities than Planck are
also under development. For RGW of high frequencies,
� ’ �10�4–104� Hz, another kind of experiment applies,
i.e. the laser interferometer detectors, including the current
TAMA [10], VIRGO [11], LIGO [12,13], and the future
LISA [14], ASTROD [15], BBO [16], and DECIGO [17].

Besides these two kinds, other methods have also been
used to constrain the strength of RGW, such as the timing
studies on the millisecond pulsars, which can constrain
the amplitude of gravitational waves by studying the
signal residuals of the millisecond pulses [18]. This
method is sensitive to the waves with frequencies from
10�9–10�7 Hz. The observational results of big bang nu-
cleosynthesis (BBN) can also constrain the strength of
RGW [19–21] at all frequencies. Although RGW have
not been found yet, some constraints on them have already
been obtained by these experiments and observations.

The purpose of this paper is to study the various mod-
ifications on the power spectrum of RGW and to examine
the constraints on the power spectrum from the experi-
ments. On the spectrum, we will consider modifications
due to such important effects as the redshift-suppression
effect, the accelerating expansion effect, and the neutrino
damping effect. Two methods will be applied in this study:
the analytic method and the numerical method, by solving
the inflationary flow equations. After considering all these
damping effects, we will get an analytic formula of the
strength of RGW, which, as a function of the wave number
k, depends on the scalar spectral index ns and the tensor-
scalar ratio r. By taking into account the current observa-
tional constraints on ns and r, we will obtain an upper
limit on the strength of RGW �g < 3:89� 10�16 at � �
0:1 Hz. From the r-�g plane, we find that the BBO experi-
ments can detect RGW if r > 8:3� 10�3, which is more
sensitive than the Planck satellite, but less sensitive than
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Clover and CMBPol. But the would-be ultimate DECIGO
can detect RGW if r > 6:8� 10�6, which is much more
sensitive than those CMB experiments. In this analytic
method, �g depends on the ratio r, an undetermined
parameter, whose value varies for the various, specific
inflationary models. Furthermore, the approximate power
law of the primordial power spectrum may also yield a
fairly large error.

To overcome these shortcomings, we move on to the
numerical method. Because the RGW depends sensitively
on the inflationary stage, during which it is generated, and
there are a number of inflationary models, the numerical
method is used by which a great many realizations are
produced that represents the respective inflationary mod-
els. The inflationary flow equations are applied to numeri-
cally calculate RGW, whereby an upper limit �g <
8:62� 10�14 is obtained for any slow-roll, single-scalar-
field inflationary model, independent of any inflationary
parameters. Taking into account the current observed con-
straints on ns, r, and � (the running of the scalar spectral
index), we arrive at a much tighter limit, �g < 2� 10�17,
which is beyond the sensitivity range of BBO. By numeri-
cally generating 107 realizations, we find that all of them
satisfy the current constraints on �g from LIGO, from
pulsar timing, and from BBN, but only nearly 0.05% of
them satisfy the current constraints on ns, �, and r. From
the resulting r-�g plane, one finds the DECIGO, if put into
running, will be effective for detecting RGW with smaller
r, but the CMB experiments, such as Planck, Clover, and
CMBPol, are more effective for detecting RGW with larger
r. They are complementary to each other for RGW detec-
tion. Our result from this numerical investigation applies
only to the single-field inflationary models with the chosen
initial conditions of Hubble slow-roll parameters.

The organization of this paper is as follows. Section II
gives a simple review on RGW and their evolution equa-
tion. In Sec. III, an analytic expression of the strength of
RGW will be obtained with three damping factors being
included, presenting the modifications due to the men-
tioned effects. In Sec. IV, the strength of RGW is numeri-
cally calculated by solving the inflationary flow equations.
Finally, Sec. V is devoted to conclusions.

II. RELIC GRAVITATIONAL WAVES AND THEIR
EVOLUTION EQUATION

Incorporating the perturbations to the spatially flat
Friedmann-Robertson-Walker (FRW) spacetime, the met-
ric is

 ds2 � a���2�d�2 � ��ij � hij�dxidxj�; (1)

where a is the scale factor of the universe and � is the
conformal time, which relates to the cosmic time by ad� 	
dt. The perturbation of spacetime hij is a 3� 3 symmetric
matrix. The gravitational wave field is the tensorial portion

of hij, which is transverse-traceless @ihij � 0, �ijhij � 0.
Since the RGW is very weak, jhijj 
 1, one just needs to
study the linearized evolution equation:

 @��
�������
�g
p

@�hij� � 16�Ga2����ij; (2)

where �ij is the tensor part of the anisotropy stress,
satisfying �ii � 0, and @i�ij � 0. It couples to hij as an
external source. In the cosmic setting, �ij can be generated
by the free-streaming relativistic particles [22,23], the
cosmic magnetic particles [24], etc. It is convenient to
Fourier transform these quantities as follows:

 hij��;x� �
X
�

�������������
16�G
p Z dk

�2��3=2
����ij �k�h

�
k���e

ikx; (3)

 �ij��;x� �
X
�

�������������
16�G
p Z dk

�2��3=2
����ij �k��

�
k���e

ikx; (4)

where the index � � “� ” or ‘‘�’’ labels the two polar-
ization states of the gravitational waves. The polarization
tensors ����ij are symmetric, transverse-traceless

ki����ij �k� � 0, �ij����ij �k� � 0, and satisfy the conditions

����ij�k����
0�

ij �k� � 2���0 and ����ij ��k� � ����ij �k�. Since
the RGW is assumed to be isotropic and each polarization
state is the same, h���k ��� is denoted by hk���, and ����

k ���
by �k���, where k � jkj is the wave number related to the
frequency by � 	 k=2� (the present scale factor is set as
a0 � 1). Then, Eq. (2) can be rewritten as

 

�h k � 2
_a
a

_hk � k2hk � 16�Ga2����k���; (5)

where the overdot denotes a conformal time derivative
d=d�. Although the interactions between gravitational
waves and other matter are very weak, in many cases, the
source �k in Eq. (5) is negligible and the evolution of
RGW only depends on the scale factor and its time deriva-
tive; however, in this paper we include this source term, so
that the damping from neutrino free-streaming is properly
taken care of.

III. THE ANALYTIC POWER SPECTRUM OF RGW

A. The primordial power spectrum of RGW

Inflationary expansion, as an attractive idea to describe
the very early universe, has received strong support from
the observations of CMB anisotropies and from studies of
the large-scale distribution of the galaxy. Here we will
consider only the single-field models. In the context of
slow-roll inflationary models, the observables depend on
three slow-roll parameters [25]:
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(6)

where MPl 	 �8�G��1=2 � mPl=
�������
8�
p

is the reduced
Planck energy, V��� is the inflationary potential, and the
prime denotes derivatives with respect to the field �. Here,
�V quantifies the ‘‘steepness’’ of the slope of the potential,
	V quantifies the ‘‘curvature’’ of the potential, and 
V
quantifies the ‘‘jerk.’’ All three of these parameters must
be smaller than 1 for inflation to occur. One of the impor-
tant predictions of the inflationary models is the primordial
scalar perturbation power spectrum, which is nearly Gauss-
ian and nearly scale invariant. This spectrum is written in
the form

 PS�k� � PS�k0�

�
k
k0

�
ns�k0��1��1=2�� ln�k=k0�

; (7)

where ns is the scalar spectral index, � 	 dns=d lnk is its
running, and k0 is some pivot wave number. In this paper,
k0 � 0:05 Mpc�1 is taken. The observations of WMAP
give PS�k0� ’ 2:95� 10�9A�k0� and A�k0� � 0:9� 0:1
[1]. Another major prediction of inflationary models is
the existence of RGW. The primordial power spectrum of
RGW is defined by

 PT�k� 	
32Gk3

�
h�k hk; (8)

where hk is the solution of Eq. (5). This spectrum can also
be put in a simple form,

 PT�k� � PT�k0�

�
k
k0

�
nt�k0���1=2��t ln�k=k0�

; (9)

where nt�k� is the tensor spectral index, and �t 	
dnt=d lnk is its running. In the single-field inflationary
models, a standard slow-roll analysis gives the following
relations:

 nt � �
r
8
; �t �

r
8

�
�ns � 1� �

r
8

�
;

r �
8

3
�1� ns� �

16

3
	V;

(10)

where r�k� 	 PT�k�=PS�k� is the so-called tensor-scalar
ratio. These formulas relate the tensorial parameters nt
and �t to the scalar parameters ns and r; the latter are
accessible to the observations of CMB and LSS. As shown
in Eq. (10), the relation between r and ns involves the slow-
roll parameter 	V , depending on the specific inflationary
potential. Inserting these into Eq. (9), one gets
 

PT�k� � PS�k0� � r

�

�
k
k0

�
��r=8���r=16���ns�1���r=8�� ln�k=k0�

: (11)

In general, the tensor-scalar ratio rmay vary with the wave
number k. Here and in the following sections we will take
the value of r at k � k0, i.e. r 	 r�k0�. Now the primordial
spectrum of RGW only depends on the parameters ns and
r. The recent constraints by the observations of three-year
WMAP, SDSS, SNIa, and galaxy clustering [26] are

 ns � 0:965� 0:012 �68% C:L:�; (12)

 r < 0:22 �95% C:L:�: (13)

The strength of the gravitational waves can be character-
ized by the gravitational waves’ energy spectrum

 �g�k� �
1

�c

d�g
d lnk

; (14)

where �c � 3H2
0=8�G is the critical density and H0 �

100h km s�1 Mpc�1 is the present Hubble constant (the
value h � 0:72 is taken throughout this paper). �g can be
related to the primordial power spectrum by the formula
[23,27]

 �g�k� �
1

12H2
0

k2PT�k�T
2�k�; (15)

where the transfer function T �k� will take into account the
various damping effects mentioned earlier, and will be
discussed below.

B. Damping effects

Here, three kinds of damping effects will be addressed.
First, we only consider the redshift-suppression effect
caused by the overall expansions of the universe. So,
temporarily, we drop the anisotropy stress term �k��� in
Eq. (5) due to neutrino free-streaming,

 

�h k � 2
_a
a

_hk � k2hk � 0: (16)

This equation of RGW only depends on the behavior of the
scale factor a���. It has been known that, during the
expansion of the universe, the mode function hk��� of the
gravitational waves behaves differently in two regimes: far
outside the horizon (k
 aH) and far inside the horizon
(k� aH). When waves are far outside the horizon, the
amplitude of hk stays constant, and when inside the hori-
zon, the amplitude is damping with the expansion of the
universe,

 hk /
1

a���
: (17)

By numerically integrating Eq. (16), this effect can be
approximately described by a transfer function [28]

 t1�k� �
3j1�k�0�

k�0

��������������������������������������������������������������
1:0� 1:36

�
k
keq

�
� 2:50

�
k
keq

�
2

s
; (18)

where keq � 0:073�mh2 Mpc�1 is the wave number cor-
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responding to the Hubble radius at the time that matter and
radiation have equal energy densities, and �0 � 1:41�
104 Mpc is the present conformal time. It is obvious that
this factor t1�k� is oscillating with the wave number k
caused by the Bessel function j1�k�0�. In practice, one is
usually interested in the amplitude of RGW, as the quick
oscillations are of no importance. For the waves with
k�0 � 1, this factor can be written as

 t1�k� �
3

�k�0�
2

��������������������������������������������������������������
1:0� 1:36

�
k
keq

�
� 2:50

�
k
keq

�
2

s
: (19)

It should be noticed that the above transfer function (19)
does not include the effect of the recent accelerating
expansion of the universe, which has been strongly sup-
ported by observations. The spectrum of RGW has been
studied in specific models for dark energy [29], such as the
Chaplyngin gas models and the X-fluid model. In
Ref. [30], we have presented an analytic solution of
RGW in the �CDM universe, and found that the amplitude
of the gravitational waves has been modified by the pres-
ence of the dark energy during the current expansion. In the
range of higher frequencies (�� 3� 10�18 Hz) in which
we are interested in this paper, the amplitude acquires an
overall factor �m=�� as compared with the decelerating
model, where �m and �� are the present energy densities
of matter and the vacuum, respectively. So this effect can

be simply described by a damping factor,

 t2 �
�m

��
: (20)

In the standard �CDM model with �m � 0:27 and �� �
0:73, this effect contributes a damping factor of t2

2 
0:137 for the strength of RGW in Eq. (15).

The third to be considered is the damping effect of the
free-streaming neutrinos [22], i.e. the anisotropic stress �k
on the right-hand side of Eq. (5). This effect was first
considered by Weinberg in Ref. [22]. This effect is primar-
ily produced by neutrinos when they are decoupled and are
free streaming in the universe, especially right after the
waves enter the horizon. The overall amplitude of RGW
will be reduced by roughly 20%. It has been shown that
anisotropy stress can reduce the amplitude for wavelengths
that reenter the horizon during the radiation-dominated
stage, and the damping factor is only dependent on the
fraction f of the free-streaming relativistic particles over
the background (critical) energy density in the universe.
The effect is less for wavelengths that enter the horizon at
later times. A number of works have been done to discuss
this effect, and in Ref. [23] the authors found that the effect
can be approximately described by a transfer function t3
for the waves with frequencies � > 10�16 Hz (which re-
enter the horizon at the radiation-dominant stage),

 t3 �
15�14 406f4 � 55 770f3 � 3 152 975f2 � 48 118 000f� 324 135 000�

343�15� 4f��50� 4f��105� 4f��180� 4f�
: (21)

When the wave modes (10�16 Hz< �< 10�10 Hz) reen-
ter the horizon, the temperature in the universe is relatively
low (< 1 MeV); the neutrino is the only free-streaming
relativistic particle. So we choose f � 0:4052, correspond-
ing to 3 standard neutrino species; the damping factor is
t3 � 0:803 13. But for the waves with higher frequencies
(� > 10�10 Hz), the temperature of the universe is very
high when they reenter the horizon, and the value of f is
much more uncertain. This is because the detail of how
many species of particles are free is not accurately known.
Thus, the detection of RGW at this frequency offers the
possibility of learning about the free-streaming fraction f
in the very early universe. In this paper, we choose f �
0:4052 when the waves in � 2 �10�16; 10�10� Hz. And for
the waves with � > 10�10 Hz, at the time when the waves
reentered the horizon, the temperature was high and the
neutrinos were in thermal equilibrium. So we choose f �
0, i.e. without free-streaming relativistic particles, which
corresponds to t3 � 1. But for the waves with � <
10�16 Hz, which reenter the horizon during the matter-
dominated stage, the neutrino density is small and its
damping impact can be neglected, so we choose t3 � 1.

That is,

 t3 ’

8<:
1; � < 10�16 Hz;
0:803 13; 10�16 Hz< �< 10�10 Hz;
1; � > 10�10 Hz:

(22)

Therefore, the total transfer function is the combination
of these three effects,

 T �k� � t1 � t2 � t3: (23)

Among these, t1 is dominantly important, which approxi-
mately shows the evolution of RGW in the expanding
universe. The function t2 has relatively smaller damping
on RGW, which accounts for the accelerating expansion of
the universe quite recently (z 0:3). The value of �g is
reduced by nearly an order for this effect. The function of
t3 has the most uncertainty in this discussion. In the ex-
treme case with f � 0, one has t3 � 1, i.e. no damping;
and in another extreme case with f � 1, one has t3 � 0:35,
the smallest value of t3. In the case with f � 0:4052, t3 �
0:803 13, only contributing a damping factor t3

2 � 0:645
for the strength of RGW.
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There are some other possible mechanisms, which might
affect the amplitude of the gravitational waves: for ex-
ample, the QCD transition [31,32], e�e� annihilation
[31–33], cosmic reheating [30,34], and so on [23]. These
could influence the value of the expansion rate _a=a, and
therefore affect the strength of RGW. However, these
effects are either small (as shown in the literature) in
comparison with the effects we have discussed, or there
are some uncertainties in their analysis, so these are not
considered here.

C. The upper limit of �g and the sensitivities of future
experiments

Future detectors of RGW are mainly classified into two
kinds: one kind is through CMB for very low frequencies,
and another is based on laser interferometers for relatively
high frequencies. For the waves of very low frequencies,
� < 10�15 Hz, the CMB experiments are sensitive. For
instance, the Planck satellite can detect RGW if r > 0:1
[7], the ground-based experiment Clover can detect the
signal if r > 0:005 [8], and CMBPol can detect it if r >
10�3 is satisfied [9]. It should be noted that, if r < 1�
10�4, the RGW may not be detected by CMB experiments.
This is because the CMB B polarizations generated by the
cosmic lensing are also very large, and the signals from
RGW may be subdominant to the lensing effects [35].

The direct detections of RGW by laser interferometers
are sensitive to the waves with high frequencies. For the
waves with � > 10�10 Hz, inserting the formulas (19)–
(23) with t3 � 1 in Eq. (15), the strength of the gravita-
tional waves becomes

 �g�k� �
22:5

12H2
0

PT�k�

�4
0k

2
eq

�
�m

��

�
2
’ 1:08� 10�6PT�k�: (24)

Using the expression of PT�k� in Eq. (11), one gets

 

�g�k� ’ 2:87

� 10�15r
�
k
k0

�
��r=8���r=16���ns�1���r=8�� ln�k=k0�

; (25)

where A�k0� � 0:9. This function depends on the wave
number k, the tensor-scalar ratio r, and the scalar spectral
index ns.

The advanced LIGO can detect the waves with �gh
2 >

10�9 at � ’ 100 Hz [13]; the LISA project is expected to
detect waves with �gh2 > 10�11 at � ’ 0:005 Hz [14];
the ASTROD, a space project sensitive to the waves
with frequencies at � 2 �10�5; 10�3� Hz [15], is expected
to detect the waves with �gh

2 > 10�15 at � ’ 5�
10�4 Hz. The BBO, another important project, can detect
a background RGW with �g > 2:2� 10�17 at � ’
�0:1–1� Hz [16]. The DECIGO project, having a much

higher sensitivity by design, is expected to detect RGW
with �gh

2 > 10�20 at � ’ 0:1 Hz [17].
First, we will estimate the upper limit on the strength of

RGW in Eq. (25). Here we assume ns � 1 and r < 0:22,
which are consistent with the current observations [26].
The formula (25) gives an upper limit of �g at � � 0:1 Hz:

 �g < 3:89� 10�16: (26)

And this limit is arrived at when ns � 1 and r � 0:22. This
limit is nearly an order smaller than the result in Ref. [27].
This is because our analysis has taken into account the
damping effect of the accelerating expansion of the uni-
verse and the running of nt in the primordial spectrum.
This limit is in the sensitivity ranges of BBO and DECIGO,
but beyond those of LIGO, LISA, and ASTROD. In Fig. 1,
we plot the strength of RGW at � � 0:1 Hz, as a function
of r, where several models with different ns are demon-
strated. One sees that, when r < 0:01, the curves of the
function �g are almost overlapped for the models of differ-
ent ns, and only depend on the variable r. But when r >
0:01, the models of different ns can be distinguished. For a
fixed r, a larger ns yields a larger �g. This figure also tells
us that BBO can detect RGW if r > 8:3� 10�3, so it is
more sensitive than the Planck satellite, but less than
Clover and CMBPol. It is interesting to notice that
DECIGO can detect RGW if r > 6:8� 10�6, which is

FIG. 1. The strength of RGW at � � 0:1 Hz depends on the
slow-roll parameters ns and r. This figure shows the results of
the analytic approximation in (25). The solid lines from up to
down are the curves with ns � 1:00, 0.98, 0.96, 0.94, 0.90, 0.86,
respectively. The vertical (dotted) lines from right to left are the
sensitivity limit curves of current observations, Planck, Clover,
CMBPol, and the sensitivity limits of CMB observations, re-
spectively. The horizontal (dashed) lines from up to down are the
sensitivity limit curves of BBO and DECIGO, respectively.
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much more sensitive than all the CMB experiments (r >
10�4).

D. Predictions of inflationary models

The strength of RGW in Eq. (25) depends on the values
of ns and r. Observations have yielded fairly solid con-
straints on ns, but the value of r is still uncertain. The
relation between ns and r depends on specific inflationary
models, and different models will predict very different r.
In the following we will discuss several inflationary mod-
els, which predict different values of r and yield different
�g. One may categorize slow-roll models into several
classes according to the parameter space spanned by ns,
�, and r [36]. Each class should correspond to specific
physical models of inflation. Here we categorize the mod-
els according to the curvature of potential 	V in Eq. (6), as
it is the only parameter that enters into the relation (10)
between ns and r. The classes are defined in the following:

Case A: Negative curvature models 	V < 0.
The negative 	V models often arise from a potential of

spontaneous symmetry breaking. One type of popular po-
tential has the form of V � �4�1� ��=��p�, where p � 2
[36]. This kind of model predicts the red tilt ns < 1, which
is consistent with the observations of three-year WMAP.
Also, these models predict fairly small r. For the model
with p � 2,

 r ’ 8�1� ns�e�N�1�ns�; (27)

where N is the number of e folds, taken to be in the range
N 2 �40; 70� to account for the current observations on
CMB [1,2,37]. Here we choose the value N � 70. Using
the constraint on ns in Eq. (12) yields the constraint r 2
�0:014; 0:037�. From Fig. 1, one finds this is beyond the
sensitivity range of the Planck satellite, but within the
sensitivity ranges of Clover and CMBPol. It is also in the
sensitivity ranges of BBO and DICIGO. In other models
with p > 2, the predicted values of r are much smaller than
that of the model with p � 2.

Case B: Small positive curvature models 0 � 	V �
2�V .

These models contain as two examples the monomial
potentials V � �4��=��p with p � 2 for 0<	V < 2�V
and the exponential potential V � �4 exp��=�� for 	V �
2�V . In these models, to the first order in slow roll, the
scalar index is always red ns < 1 and the following con-
straint on r is satisfied:

 

8
3 �1� ns� � r � 8�1� ns�: (28)

Using the constraint on ns in Eq. (12), one finds that r 2
�0:061; 0:376�, which is in the sensitivity ranges of Clover,
CMBPol, BBO, and DECIGO. The sensitivity limit of
Planck is just in this span, so it may be able to detect the
model.

Case C: Intermediate positive curvature models 2�V <
	V � 3�V .

The supergravity-motivated hybrid models having a po-
tential of the form V ’ �4�1� � ln��=Q� � ���=��4�,
up to one-loop correction, belong to this class. In this case,

 ns < 1; r > 8�1� ns� (29)

are satisfied. Using the constraint on ns in Eq. (12), one
finds that r > 0:184, which is very close to the current
upper limit r < 0:22. Figure 1 shows that this is in the
sensitivity range of the Planck satellite.

Case D: Large positive curvature models 	V > 3�V .
This class of models has a typical monomial potential

similar to case A, but with a plus sign for the term ��=��p:
V � �4�1� ��=��p�. This enables inflation to occur for a
small value of �<mPl. This model predicts a blue tilt of
the scalar index ns > 1, which is in contradiction to the
constraint in Eq. (12). But we should note that the obser-
vations of three-year WMAP have not ruled out the
blue spectrum. If the running of ns with the wave number
k is allowed and the contributions of tensor fluctuations
are considered, then the best fit of WMAP data suggests
that ns�k � 0:002 Mpc�1� � 1:21�0:13

�0:16 and ��k �
0:002 Mpc�1� � �0:102�0:050

�0:043 [2]. This is a blue spectrum
with a negative running. So the determination of the value
of ns depends on the more precise observations.

IV. INFLATIONARY FLOW EQUATIONS AND
PREDICTIONS FOR RGW

In the discussions above, the RGW given by the analytic
expression (25) depends on the value of the tensor-scalar
ratio r, which has not yet been determined by observations.
Moreover, Eq. (25) is a good approximation only for the
waves with wave number around k ’ k0�10�16 Hz�.
Therefore, for the high frequency wave with � � 0:1 Hz,
nearly 15 orders larger than the value of k0, this approxi-
mate formula may have large errors and is inapplicable. To
avoid these flaws, in this section we will employ the
technique of the inflationary flow equations to relate
RGW of lower frequencies to that of higher frequencies.

A. Inflationary flow equations

The inflationary flow equations were first introduced by
Hoffman and Turner [38] as a way of generating a large
number of slow-roll inflationary models to be compared to
the observational data. This method applies to any slow-
roll, single-scalar-field inflationary models, and relies on
defining a set of Hubble slow-roll parameters, which are
the derivatives of the Hubble parameter during inflation.
The major advantage of this method is that it removes the
field from the dynamics, and allows one to study the
generic behavior of slow-roll inflation without making de-
tailed assumptions about the underlying particle physics.
In this section, we will also use this method to generate a
large number of inflationary models, the observables of
which are required to be consistent with the current ob-
servational constraints at low frequencies. Then we will
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numerically solve the strength of RGW at very high fre-
quencies. In this method the Hubble slow-roll parameters
are defined by
 

���� 	
m2

Pl

4�

�
H0���
H���

�
2
;

�l��� 	
�
m2

Pl

4�

�
l �H0�l�1

Hl

d�l�1�H

d��l�1�
�l � 1�;

(30)

where primes are derivatives with respect to the scalar field
�, and H��� is the Hubble parameter as a function of �,
related to the potential V��� by the so-called Hamilton-
Jacobi formula,

 �H0����2 �
12�

m2
Pl

H2��� � �
32�2

m4
Pl

V���: (31)

These Hubble slow-roll parameters satisfy an infinite set of
hierarchical equations, called inflationary flow equations:

 

d�
dN
� ��� 2��; (32)

 

d
dN
� ���5� 12�� � 2��2�; (33)

 

d
dN

�l �
�
l� 1

2
� �l� 2��

�
�l � �l�1 �l � 2�

(34)

where N is the number of e folds of the inflation, and  	
2�1 � 4�. There are two families of fixed points of these
flow equations: one is that � � 0, �l � 0 for l � 2, and
 � constant. In Ref. [39], the authors found that, only if
> 0, this fixed point is stable, i.e. the attractor solution.
The other family of fixed points is given by � � constant,
 � �2�, �2 � �2, and �l � ��l�1 for l � 3. And later
we will show that the second family of fixed points is not
stable. The slow-roll parameters tend to run to the attractor
with the expansion of the universe, as long as the slow-roll
condition � < 1 is satisfied. In order to actually solve this
infinite series of equations numerically, it must be trun-
cated by setting a sufficiently high slow-roll parameter to
zero, i.e. �m�1 � b, with b being a constant, and �m�2 � 0
for some suitably large m. In this section, when numeri-
cally solving the inflationary flow equations, we make the
truncation of this series at m � 10, and choose a set of
acceptable initial conditions as in Refs. [27,39]:

 �ji 2 �0; 0:8�; (35)

 ji 2 ��0:5; 0:5�; (36)

 �2ji 2 ��0:05; 0:05�; (37)

 

�lji 2 ��0:025� 5�l�3; 0:025� 5�l�3� �3 � l � 10�;

(38)

where the subscript ji denotes the corresponding initial
values. This 11-equation set in Eqs. (32)–(34) is an au-
tonomous system [39]. We choose the constant b � 0, and
set the left-hand side of these equations to be zero. Then we
find the only real solution for this 11-equation set,
 

�c � b1=11; c � �2b1=11;

�lc � bl=11 �2 � l � 10�;
(39)

where the subscript cmeans the fixed point. This is just the
second family of fixed points with �c � b1=11. In order to
study the stability of this fixed point, let us consider the
small perturbations, i.e.
 

� � �c � ��;  � c � �;

�l � �lc � ��l �2 � l � 10�:
(40)

Substituting these into Eqs. (32)–(34), one gets the first-
order differential equations

 

d
dN

��
�
:
:

��10

0BBBBB@

1CCCCCA � M

��
�
:
:

��10

0BBBBB@

1CCCCCA; (41)

where the matrix M depends upon the values of �c, c, and
�lc, l � 2; . . . ; 10. If this fixed point is stable, at least, it is
necessary that the real parts of the eigenvalues of the
matrixM are negative [40]. However, no matter what value
of b � 0 we choose, this condition cannot be satisfied. So,
this fixed point is not a stable fixed point. If we choose the
value b � 0, this 11-equation set in Eqs. (32)–(34) has the
first kind of fixed point, which is stable only if c > 0 is
satisfied.

It is obvious that the evolutions of this 11-equation set
are different for the conditions with different b. Although
whether the fixed points are stable or not depends on the
value of b, in the computation below, we will still do
computations for both kinds of initial conditions: one
with b � 0, and the other with

 b 2 ��0:025� 5�8; 0:025� 5�8�: (42)

It turns out that, for these two cases, our calculational
results of �g are very similar. So, in the following sections,
we will only show the results of the former case of b � 0.

B. Inflationary parameters and the strength of RGW

Many observable inflationary parameters can be related
to the Hubble slow-roll parameters. Here we are only
interested in three observable parameters for the slow-roll
inflationary models: the tensor-scalar ratio r, the scalar
spectral index ns, and its running �, which can be de-
scribed as (to the second order in the slow roll) [41]

 r ’ 16��1� c�� 2���; (43)
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 ns ’ 1� � �5� 3c��2 � 1
4�3� 5c��� 1

2�3� c��2;

(44)

 � � �
1

1� �
dns
dN

; (45)

where c � 4�ln2� �� � 5 ’ 0:081 451 4 (with � the
Euler-Mascheroni constant) is a constant. Once the infla-
tionary flow equations in (32)–(34) are numerically solved,
the values of these observables are obtained. Since we are
interested in the gravitational waves in a very wide fre-
quency range, � 2 �10�16; 102� Hz, the primordial power
spectrum in Eq. (9) may not apply properly. Here we return
to its definition. In the slow-roll inflationary models, the
primordial power spectrum is [42]

 PT�k� �
16

�

�
1�

c� 1

4
�
�

2 H2

m2
Pl

��������k�aH
; (46)

where H is the Hubble parameter of inflation when the
waves exactly cross the horizon with k � aH. If ignoring
�, PT�k� depends only on the Hubble parameter H, a result
for exact de Sitter inflation. The formula (46) can be
rewritten as

 PT�k� �
�

4� �c� 1��
4� �c� 1��i

�
2 H2

H2
i

PT�k0�; (47)

where �i and Hi are the respective values of � and H when
k0 exactly crosses the horizon at a � k0=Hi. As before, the
RGW power spectrum can be related to the scalar one by
PT�k0� � PS�k0�r�k0�. The value of H is also related to Hi
by the following:

 H�N� � Hi exp
�
�
Z N

Ni
��n�dn

�
; (48)

where Ni is the number of e folds if H � Hi. Inserting
Eqs. (47) and (48) into Eq. (15), one gets the strength of
RGW,
 

�g�k� � 2:21� 10�10r
�
k
H0

�
2
T �k�2

�
4� �c� 1��
4� �c� 1��i

�
2

� exp
�
�2

Z N

Ni
��n�dn

�
; (49)

where T �k� is the damping factor, and H0 is the present
Hubble constant. Using the damping factors in Eqs. (19),
(20), and (22) and the expression of r in Eq. (43), one finds
that, for the waves with � > 10�10 Hz, the strength of
RGW is

 �g�k� ’ 4:59� 10�14��i � c�i�i � 2�2
i ��

�

�
4� �c� 1��
4� �c� 1��i

�
2

exp
�
�2

Z N

Ni
��n�dn

�
; (50)

which only depends on the Hubble slow-roll parameters �
and . Before we solve it numerically through the infla-

tionary flow equations, we first give an estimate of its upper
limit. Since 0 � � < 1 is satisfied during inflation, Eq. (50)
yields the upper limit when taking � � 0,

 �g�k�< 7:34� 10�13 �i � c�i�i � 2�2
i �

�4� �c� 1��i�
2 ; (51)

which also depends on the values of �i and i. When �i �
1, the right-hand side of this inequality has the maximum
value, so one can give a loose upper limit of �g�k�,

 �g�k�< 8:62� 10�14; (52)

where the approximation r ’ 16� has been used, and the
second-order terms of the tensor-scalar ratio r have been
omitted. This upper limit holds only if the slow-roll con-
dition is satisfied. Compared with the limit in Eq. (26), this
upper limit does not directly depend on the values of ns and
r. Besides this merit, this limit applies for � > 10�10 Hz.
So, it applies for a wider range of frequencies. It is obvious
that this limit is much looser than that in Eq. (26). Notice
that the limit (52) is much smaller than the sensitivities of,
and therefore cannot be directly detected by, LIGO and
LISA, but it is larger than the sensitivities of, and can be
detected by, ASTROD, BBO and DECIGO. In writing
down the limit (52), t3 � 1 has been used, which is effec-
tive for waves with � > 10�10 Hz. But for waves with � 2
�10�16; 10�10� Hz, one should use t3 ’ 0:80313, and thus
the limit becomes �g�k�< 5:56� 10�14, which is a little
tighter than the limit in Eq. (52).

C. Current constraints on cosmic parameters

In the discussion above, we know that the values of ns,
�, r, and �g are all directly related to the Hubble slow-roll
parameters. Here, we give a review of the current con-
straints on them. The constraints on the inflationary pa-
rameters ns, �, and rmainly come from the observations at
large scale, including the observations of CMB, LSS,
and so on. Here, we call them ‘‘large-scale constraints’’
(LSC). When solving the inflationary flow equations, we
will take the initial condition at the time of horizon-
leaving, i.e. k0 � aH, where the pivot wave number k0 �
0:05 Mpc�1 as before.

Now, the WMAP CMB data (1st year) gives [1] ns �
0:93� 0:07, � � �0:047� 0:040, and the best fit of
the WMAPext� 2dFGRS galaxy survey gives ns �
0:93� 0:03, � � �0:031�0:016

�0:017. A fit using WMAP CMB
data and the SDSS galaxy survey gives [43] ns � 0:98�
0:02, � � �0:003� 0:010. Combining the observations
of three-year WMAP, SDSS, SNIa, and galaxy clustering
[26], one can give the constraints ns � 0:965� 0:012,
� � ��2:0� 1:2� � 10�2, and r < 0:22. These bounds
of ns and � are all at the 68% confidence level, and those
of r are at the 95% confidence level. These various bounds
are consistent with each other, taking into account the
corresponding confidence levels. Here, in our calculation
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we will choose the loosest constraints
 

ns 2 �0:86; 1:00�; � 2 ��0:087; 0:007�; r < 0:22;

(53)

which imply that the primordial scalar spectrum is ‘‘red’’
or scale invariant, and the running of the scalar index is
very small, as required by the slow-roll inflationary
models.

The constraints on �g mainly come from the observa-
tions at small scale. Here, we call them ‘‘small-scale con-
straints’’ (SSC), which include the tightest constraint from
observations of the pulsar timing [18],

 �gh
2 < 2� 10�9; � � 1:9� 10�9 Hz; (54)

the constraint from the recent observations of LIGO [12],

 �g < 8:4� 10�4; 69 Hz< �< 156 Hz; (55)

and the constraint from the observations of BBN [19,20],

 wgh
2 < 8:9� 10�6; (56)

where wg 	
R

�g���d ln�. Comparing with the con-
straints (26) and (52), it is fair to say that the current
SSC are too loose to give any constraint on the single-field
inflationary models. This result will also be checked in the
following numerical calculation.

D. The distribution of the realizations

In this subsection, we will present a numerical program
to solve the inflationary flow equations (32)–(34) for a
number of models, where each initial condition randomly
chosen within the constraints of (35)–(38) represents a
model.

First, we want to study how tight the LSC of Eq. (53) and
the SSC of Eqs. (54)–(56) are, as constraints, on the infla-
tionary models. We have produced 107 realizations of
inflationary models. It turns out that all these realizations
satisfy the SSC, which attests to the conclusion before:
the current SSC are too loose to give any actual constraint
on the single-field inflationary models. On the other
hand, among these 107 realizations, only 5523 of them
( 0:05%) satisfy the LSC of Eq. (53). So this constraint
is tighter for the inflationary models. In the following, we
will mainly discuss the distribution of these 5523
realizations.

During the numerical calculations, the inflation can end
in one of the following two ways. One is that � < 1 is
violated in the process of computing; then the inflation
automatically stops. A number of inflationary models are
of this class, such as the polynomial ‘‘large-field’’ models
and the ‘‘small-field’’ polynomial potentials [36]. The
other way is by an abrupt termination, perhaps from inter-
vention of an auxiliary field as in hybrid inflation. The
linear potentials and the exponential potentials also belong
to this class [36]. Here we choose the abrupt stop at N �

70 in computation. We have found that, among these 5523
realizations, only 14 of them stop the inflation in the first
way; all others do so in the second way. This fact is
consistent with previous works [27,39]. In the following
we will discuss these two kinds of realizations separately.

First, we discuss the 5509 realizations that exit inflation
by abrupt termination. They also satisfy both the large- and
small-scale constraints in Eqs. (53)–(56). These models
can inflate at least 70 e folds. In Fig. 2, we plot them in the
r-�g plane, which shows the following characters:

(a) For a fixed r, the distribution of �g is very scattered,
especially in the region with large r. For example,
for a fixed r � 0:22, the values of �g are distributed
in a broad range, �g 2 �10�45; 10�20�;

(b) For each fixed r, the values of �g have an upper
limit, and the small region just below this limit tends
to contain most of the realizations;

(c) For each fixed r, the values of the upper limit �g
from our numerical result are smaller than the ana-
lytic results of Eq. (25), especially in the region r >
0:01;

(d) At r ’ 0:03, the strength of RGW can attain the
maximum value �g ’ 2� 10�17, which is more
than an order of magnitude smaller than the analytic
result of Eq. (26). And this is beyond the sensitivity
ranges of LIGO, LISA, ASTROD, and BBO.

(e) Most of the realizations tend to concentrate in the
region with large values of r, and the larger r is, the
denser the distributions of the realizations are. More
than 90% of realizations are in the region of r >
0:01. This phenomenon of distribution may be due
to our specific choice of the initial conditions in
Eqs. (35)–(38).

FIG. 2. The distribution of the 5509 realizations in the r-�g
plane. The solid lines from up to down are the analytic curves
with ns � 1:00 and ns � 0:86, respectively. The vertical (dotted)
lines and the horizontal (dashed) lines have the exact same
meanings as those in Fig. 1.
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Among these 5509 realizations, 50.21% fall into the
sensitivity region of the Planck satellite, 97.11% fall into
that of Clover, 99.29% fall into that of CMBPol, and
42.91% fall into the sensitivity region of DECIGO. In
comparison with the CMB observations, much less realiza-
tions are in the sensitivity regions of laser interferometer
detectors. But, DECIGO can detect RGW with r being
much smaller than 10�4, which is beyond the sensitivities
of the CMB experiments. This conclusion is the same as
the analytic results in Sec. III. Therefore, the CMB experi-
ments and the laser interferometers are complementary to
each other for RGW detection.

Now let us look at the 14 realizations that satisfy all the
constraints in Eqs. (53)–(56), but end the inflation before
the e folds N � 70 arrive. We found, for these realizations,
the values of e folds are all in the region of N 2 �40; 70�,
which is consistent with current observations and theoretic
predictions [36]. In Fig. 3, we plot them in the r-�g plane.
This figure shows an interesting feature: a larger r corre-
sponds to a smaller �g, which is also consistent with the
distribution of realizations in Fig. 2. Among these realiza-
tions, 35.71% fall into the sensitivity region of the Planck
satellite, 100% fall into the sensitivity regions of Clover
and CMBPol, and 64.29% fall into the sensitivity region of
DECIGO. These results are also consistent with the distri-
bution of the previous 5509 realizations.

It should be mentioned that, in our numerical calcula-
tion, the initial conditions have been chosen randomly for
the Hubble slow-roll parameters in the regions (35)–(38).
It is not clear which one is closer to the actual situation of

the inflationary process in the early universe. However,
given the very broad range of initial conditions for the
Hubble slow-roll parameters, these large samples of 107

realizations may exhaust the reasonable reservoir of infla-
tionary models driven by the single scalar field.

V. CONCLUSION

Relic gravitational waves are regarded as strong evi-
dence for the inflationary models, which are directly re-
lated to the energy scale of inflation. Although up until now
people have not observed RGW, a lot of constraints have
been achieved on them. These constraints include two
kinds: one is the LSC, which is mainly from the CMB
observations, especially the recent WMAP results. This
can constrain RGW at very low frequencies � 2
�10�17; 10�15� Hz. The other is the SSC, which includes
the constraints from LIGO, BBN, and pulsar timing, and is
sensitive to the waves with high frequencies. A number of
experiments are under development for RGW detection,
which are also mainly of two kinds: the CMB experiments,
including Planck, Clover, CMBPol, and others; and the
laser interferometers, including advanced LIGO, LISA,
ASTROD, BBO, DECIGO, and so on. The latter ones are
sensitive to the waves with � 2 �10�4; 104� Hz.

In this paper, we have calculated the strength of RGW,
studied how tight the current constraints are on RGW, and
investigated the detective abilities of future experiments.
When calculating the values of �g�k�, we have used two
methods: the analytic method and the numerical method.
The former method simply shows the dependent relation of
�g�k� on the inflationary parameters ns and r. After con-
sidering the current constraints on these parameters, we
have given an upper limit �g < 3:89� 10�16, where we
have included the redshift-suppression effect, the acceler-
ating expansion effect, and the neutrino damping effect of
RGW. This limit is in the sensitivity ranges of BBO and
DECIGO, but beyond those of advanced LIGO, LISA, and
ASTROD. In the numerical method, we calculated the
values of �g�k� by solving the inflationary flow equations,
which is more precise for RGW in the high frequency
range, and also obtained an upper limit �g < 8:62�
10�14, which is independent of the inflationary parameters
and applies to any single-field slow-roll inflationary model.
After considering the constraints on ns, �, and r, this
bound becomes �g < 2� 10�17, which is beyond the
sensitivity limit of BBO.

The results from these two methods suggest the follow-
ing consistent conclusions: the current constraints on RGW
from LIGO, BBN, and pulsar timing are too loose to give
any constraint on the single-field inflationary models, and
the constraints from CMB and LSS are relatively tighter.
The future laser interferometer DECIGO is more effective
for detecting RGW with smaller r, but the CMB experi-
ments, such as Planck, Clover, and CMBPol, are more
effective for detecting waves with larger r. They are com-

FIG. 3. The distribution of the 14 realizations in the r-�g
plane. The solid lines from up to down are the analytic curves
with ns � 1:00 and ns � 0:86, respectively. The vertical (dotted)
lines from right to left are the sensitivity limit curves of current
observations, Planck, Clover, and CMBPol, respectively. The
horizontal (dashed) lines from up to down are the sensitivity
limit curves of BBO and DECIGO, respectively.
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plementary to each other for RGW detection. The laser
interferometers, such as the advanced LIGO, LISA, and
ASTROD, have little chance to find the signal of RGW, if
the single-field inflationary model is held.

A final remark should be made; that is, all conclusions
on RGW and their detection constraints arrived at in this
paper are pertinent only for single-scalar-field models for
inflation. RGW generated from other models of inflation
need to be analyzed separately.

ACKNOWLEDGMENTS

We thank S. Chongchitnan for helpful discussions.
W. Zhao’s work has been partially supported by Graduate
Student Research Funding from USTC. Y. Zhang’s re-
search has been supported by the Chinese NSF Grant
No. 10173008, NKBRSF Grant No. G19990754, and by
SRFDP.

[1] C. L. Bennett et al., Astrophys. J. Suppl. Ser. 148, 1
(2003); D. N. Spergel et al., Astrophys. J. Suppl. Ser.
148, 175 (2003).

[2] G. Hinshaw et al., astro-ph/0603451; L. Page et al., astro-
ph/0603450; D. N. Spergel et al., astro-ph/0603449.

[3] E. M. Leitch et al., Astrophys. J. 624, 10 (2005); C. J.
MacTavish et al., astro-ph/0507503; J. L. Sievers et al.,
astro-ph/0509203; D. Barkats et al., Astrophys. J. 619,
L127 (2005).

[4] S. Cole et al., Mon. Not. R. Astron. Soc. 362, 505 (2005);
M. Tegmark et al., Astrophys. J. 606, 702 (2004); D. J.
Eisenstein et al., Astrophys. J. 633, 560 (2005).

[5] A. Starobinsky, JETP Lett. 30, 682 (1979); S. Sasaki,
Prog. Theor. Phys. 76, 1036 (1986); V. F. Mukhanov,
H. A. Feldman, and R. H. Brandenberger, Phys. Rep.
215, 203 (1992); P. J. E. Peebles, Principles of Physical
Cosmology (Princeton University Press, Princeton, NJ,
1993); J. A. Peacock, Cosmological Physics (Cambridge
University Press, Cambridge, England, 1999); D. H. Lyth
and A. Riotto, Phys. Rep. 314, 1 (1999).

[6] U. Seljak and M. Zaldarriaga, Phys. Rev. Lett. 78, 2054
(1997); M. Kamionkowski, A. Kosowsky, and A. Stebbins,
Phys. Rev. Lett. 78, 2058 (1997); J. R. Pritchard and
M. Kamionkowski, Ann. Phys. (N.Y.) 318, 2 (2005);
W. Zhao and Y. Zhang, astro-ph/0508345.

[7] http://www.rssd.esa.int/index.php?project=Planck.
[8] A. C. Taylor et al., astro-ph/0407148.
[9] http://universe.nasa.gov/program/inflation.html; L. Verde,

H. Peiris, and R. Jimenez, J. Cosmol. Astropart. Phys. 01
(2006) 019.

[10] http://tamago.mtk.nao.ac.jp/.
[11] http://wwwcascina.virgo.infn.it/.
[12] B. Abbott et al. (LIGO Scientific Collaboration), Phys.

Rev. Lett. 95, 221101 (2005).
[13] http://www.ligo.caltech.edu/advLIGO.
[14] http://lisa.nasa.gov/.
[15] W. T. Ni, S. Shiomi, and A. C. Liao, Classical Quantum

Gravity 21, S641 (2004).
[16] http://universe.nasa.gov/program/bbo.html; V. Corbin and

N. J. Cornish, Classical Quantum Gravity 23, 2435 (2006).
[17] N. Seto, S. Kawamura, and T. Nakamura, Phys. Rev. Lett.

87, 221103 (2001).
[18] S. Detweiler, Astrophys. J. 234, 1100 (1979); S. E.

Thorsett and R. J. Dewey, Phys. Rev. D 53, 3468 (1996);
A. N. Lommen, astro-ph/0208572.

[19] B. Allen, gr-qc/9604033; R. H. Cyburt, J. Ellis, B. D.
Fields, and K. A. Olive, Phys. Rev. D 67, 103521
(2003); R. H. Cyburt, B. D. Fields, K. A. Olive, and
E. Skillman, Astropart. Phys. 23, 313 (2005); T. L.
Smith, E. Pierpaoli, and M. Kamionkowski, Phys. Rev.
Lett. 97, 021301 (2006).

[20] M. Maggiore, Phys. Rep. 331, 283 (2000).
[21] E. W. Kolb and M. Turner, The Early Universe (Addison-

Wesley Publishing Company, Reading, MA, 1990).
[22] S. Weinberg, Phys. Rev. D 69, 023503 (2004); D. A. Dicus

and W. W. Repko, Phys. Rev. D 72, 088302 (2005).
[23] L. A. Boyle and P. J. Steinhardt, astro-ph/0512014.
[24] C. G. Tsagas and J. D. Barrow, Classical Quantum Gravity

14, 2539 (1997); C. G. Tsagas and R. Maartens, Phys. Rev.
D 61, 083519 (2000).

[25] A. R. Liddle and D. H. Lyth, Phys. Lett. B 291, 391
(1992); Phys. Rep. 231, 1 (1993).

[26] U. Seljak, A. Slosar, and P. McDonald, astro-ph/0604335.
[27] T. L. Smith, M. Kamionkowski, and A. Cooray, Phys. Rev.

D 73, 023504 (2006); S. Chongchitnan and G. Efstathiou,
Phys. Rev. D 73, 083511 (2006); T. L. Smith, H. V. Peiris,
and A. Cooray, Phys. Rev. D 73, 123503 (2006).

[28] M. S. Turner, M. White, and J. E. Lidsey, Phys. Rev. D 48,
4613 (1993).

[29] J. C. Fabris, S. V. B. Goncalves, and M. S. dos Santos, Gen.
Relativ. Gravit. 36, 2559 (2004); M. S. Santos, S. V. B.
Goncalves, J. C. Fabris, and E. M. de Gouveia Dal Pino,
gr-qc/0504032.

[30] Y. Zhang, Y. F. Yuan, W. Zhao, and Y. T. Chen, Classical
Quantum Gravity 22, 1383 (2005); Y. Zhang, W. Zhao,
Y. F. Yuan, and T. Y. Xia, Chin. Phys. Lett. 20, 1871
(2005); Y. Zhang, X. Z. Er, T. Y. Xia, W. Zhao, and
H. X. Miao, Classical Quantum Gravity 23, 3783 (2006).

[31] B. Kampfer, Ann. Phys. (Berlin) 9, 605 (2000); D. J.
Schwarz, Ann. Phys. (Berlin) 12, 220 (2003); T.
Schaefer, hep-ph/0509068.

[32] Y. Watanabe and E. Komatsu, Phys. Rev. D 73, 123515
(2006).

[33] D. J. Schwarz, Mod. Phys. Lett. A 13, 2771 (1998).
[34] L. P. Grishchuk, Zh. Eksp. Teor. Fiz. 67, 825 (1974); Ann.

N.Y. Acad. Sci. 302, 439 (1977); L. P. Grishchuk, V. M.
Lipunov, K. A. Postnov, M. E. Prokhorov, and B. S.
Sathyaprakash, Phys. Usp. 44, 1 (2001).

[35] M. Zaldarriaga and U. Seljak, Phys. Rev. D 58, 023003
(1998); M. Kesden, A. Cooray, and M. Kamionkowski,

RELIC GRAVITATIONAL WAVES AND THEIR DETECTION PHYSICAL REVIEW D 74, 043503 (2006)

043503-11



Phys. Rev. Lett. 89, 011304 (2002); L. Knox and Y. S.
Song, Phys. Rev. Lett. 89, 011303 (2002); W. Hu, M. M.
Hedman, and M. Zaldarriaga, Phys. Rev. D 67, 043004
(2003).

[36] S. Dodelson, W. H. Kinney, and E. W. Kolb, Phys. Rev. D
56, 3207 (1997); W. H. Kinney, Phys. Rev. D 58, 123506
(1998); H. V. Peiris et al., Astrophys. J. Suppl. Ser. 148,
213 (2003).

[37] L. Alabidi and D. Lyth, J. Cosmol. Astropart. Phys. 05
(2006) 016; astro-ph/0603539.

[38] M. B. Hoffman and M. S. Turner, Phys. Rev. D 64, 023506
(2001); W. H. Kinney, Phys. Rev. D 66, 083508 (2002);
A. R. Liddle, Phys. Rev. D 68, 103504 (2003); S.

Chongchitnan and G. Efstathiou, Phys. Rev. D 72,
083520 (2005).

[39] W. H. Kinney, Phys. Rev. D 66, 083508 (2002); R. Easther
and W. H. Kinney, Phys. Rev. D 67, 043511 (2003).

[40] E. J. Copeland, A. R. Liddle, and D. Wands, Phys. Rev. D
57, 4686 (1998); B. Gumjudpai, T. Naskar, M. Sami, and
S. Tsujikawa, J. Cosmol. Astropart. Phys. 06 (2005) 007.

[41] A. R. Liddle, P. Parsons, and J. D. Barrow, Phys. Rev. D
50, 7222 (1994).

[42] E. D. Stewart and D. H. Lyth, Phys. Lett. B 302, 171
(1993).

[43] U. Seljak et al., Phys. Rev. D 71, 103515 (2005).

WEN ZHAO AND YANG ZHANG PHYSICAL REVIEW D 74, 043503 (2006)

043503-12


