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Te camera calibration in monocular vision represents the relationship between the pixels’ units which is obtained from a
camera and the object in the real world. As an essential procedure, camera calibration calculates the three-dimensional
geometric information from the captured two-dimensional images. Terefore, a modifed camera calibration method based on
polynomial regression is proposed to simplify. In this method, a parameter vector is obtained by pixel coordinates of obstacles
and corresponding distance values using polynomial regression. Te set of parameter’s vectors can measure the distance
between the camera and the ground object in the feld of vision under the camera’s posture and position. Te experimental
results show that the lowest accuracy of this focal length calibration method for measurement is 97.09%, and the average
accuracy was 99.02%.

1. Introduction

Measuring the distance between self and the obstacle is a
crucial part of many felds. Te type of method to measuring
distance by cameras is called the vision-based ranging
method, which may promote the development of automatic
measurement and has a great research value [1, 2]. Te
vision-based ranging method includes the monocular vi-
sion-based ranging method and stereo vision-based ranging
method. Stereo vision-based ranging methods use the
parallax of cameras to measure, which needs to match
multiple images taken by multiple cameras. Monocular
vision-based ranging method has a higher performance than
the stereo vision-based ranging method because it does not
need match images in the data preprocessing stage [3].

Monocular vision-based rangingmethods can be divided
into three categories, including proportion-based methods,
machine learning-based methods, and coordinate trans-
formation-based methods. Proportion-based methods are
according to the principle that the distance is inversely
proportional to the image’s size from the target in the image
plane [4, 5]. Taking the ranging model proposed by Bao and

Wang [5], this model frst assumes the width of all vehicles as
a fxed value and then uses this value to learn the model
parameters from the images of vehicles at diferent distances.
Te ranging accuracy of this model is unsteady because if the
measured vehicle is not directly in front of the camera, the
value of width will no longer be correct. Machine learning-
based methods try to let the computer learn the parameters
of the ranging model. For example, Meng et al. [6] proposed
the ranging model based on the R-CNN [7] and nonlinear
regression. Tis model frst utilizes the R-CNN to detect the
position of the preceding vehicle, and then, the distance is
obtained by a nonlinear regression model. Te accuracy of
the objective decision is more than 90%. Coordinate
transformation-based methods have strong interpretability.
Tis type of method utilizes the relationship between world
coordinates, camera coordinates, pixel coordinates, and
camera parameter matrix to calculate the distance between
the camera and obstacles [8, 9]. Taking the method proposed
by Lu et al. [9], this model increased the ranging accuracy to
95.43%, which derives the ranging model based on the
principle of visual imaging. Although the ranging accuracy
of this model is higher than previous methods, camera
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calibration as a key technology in this model needs to be
improved.

Te high-precision camera calibration aims to determine
a set of geometric parameters. It is a prerequisite to extract
3D information from the captured images using the object’s
projections in the image plane. Camera calibration methods
can be divided into two categories, including traditional
calibration and self-calibration. Te traditional calibration
utilizes multiple reference points on the object to establish
the relationship between the 2D pixel coordinates and the
3D world coordinates. Yakimovsky and Cunningham [10] in
1978 proposed a camera calibration method to calculate the
transformation matrix of stereo cameras. Tey used a highly
linear lens and ignored the distortion to improve the ac-
curacy of 5mm at a distance of 2m. Due to the narrow feld
of view and not considering lens distortion, this methodmay
cause more errors in a wide feld. Te unknown parameters
computed by linear equations in the traditional camera
calibration method may not be linearly independent, which
increases the error of calibration. Martins et al. [11] in 1981
proposed the biplane calibration method using the points on
the double calibration plane. Tis method avoids any re-
strictions on the extrinsic camera parameters. On the
premise that there is no defection in the coordinate system,
the average error is about 4 mils with a distance of 25 inches.
However, the nonlinear lens distortion is not corrected. Tsai
[12] proposed a novel camera calibration method which
considered the camera distortion. First, the camera pa-
rameters are solved using the direct linear transformation
method or perspective projection transformation matrix.
Ten, the obtained parameters are taken as the initial values.
Te nonlinear optimization method is used to improve the
precision of the calibration. Tis method requires high-
precision calibration targets and a similar size feld of vision.
Chen et al. [13] proposed a calibration method based on a
bundle adjustment system, which reduces the requirement
of calibration targets. Te world coordinate system is rel-
atively stationary with the steam hammer to decrease the
error of calibration. Experiments show that the calibration
system measures the ram speed of a steam hammer
accurately.

Traditional camera calibration has a strong dependence
on calibration targets, which has high requirements for the
precision of calibration targets. Tis method is difcult to
transfer the unknown scene because it is usually limited to a
specifc feld of vision and distance. Terefore, the self-
calibration was proposed because of its higher operability,
which obtains the image sequence by controlling the camera
motion and then calculates the parameters by matching the
image sequence. Luong and Faugeras [14] proposed a self-
calibration method based on point correspondences and
fundamental matrices. Tey used point correspondences
between three images to estimate the perspective projection
matrices and parameters of the camera. In contrast to tra-
ditional camera calibration methods, this method washes
calibration targets with a known 3D shape. Tis method has
the disadvantages of the high cost of polynomial calculation
and sensitivity to noise since the continuation work in the
complex plane. On this basis, Zhang [15] proposed a

calibration method between the traditional calibration
method and the self-calibration method. Tis method uti-
lizes the two-dimensional measurement information for the
camera’s calibration, which reduces the requirements for the
equipment compared with the traditional calibration. In this
method, many diferent angle images of a two-dimensional
plane calibration target (checkerboard) are taken to detect
the feature points and calculate the parameter matrix of the
camera. Nonlinear refnement is based on the maximum
likelihood criterion to optimize the calibration results. Al-
though this method has simplifed the calibration process
compared with previous methods, it still has some re-
quirements for the standardization of operation. For ex-
ample, the image taken should avoid noise. Otherwise, the
inaccurate corner extraction will increase the calibration
error. Dong and Isler [16] proposed a method for external
parameters of camera calibration that obtained the point-to-
to plane constraints by two noncoplanar triangles. Tis
method reduces the dependence on the camera’s initial state
estimation. At the same time, it reduces the number of
observations without reducing the accuracy of the calibra-
tion. Xu [17] proposed a camera calibration method based
on mirrored. Tis method refects two groups of orthogonal
phase-shifting sinusoidal fgures by a mirror to calculate the
relationship between cameras by constraints between
phases.

To sum up, monocular vision-based ranging methods
based on coordinate transformation have higher accuracy
than other methods. Tis type of method [18, 19] has not
only a model efciency but also interpretability and stability.
Tey are generally based on the linear imaging model
constructed by the pinhole imaging principle to simplify the
derivation of the ranging model because the pinhole imaging
principle can directly construct the geometric correspon-
dence between the world coordinates and the pixel coor-
dinates. At the same time, considering that most of the
vision-based ranging methods are used in the automatic
measurement of robots or intelligent vehicles, where the
camera is fxed in a certain attitude, a lot of measurement
targets are ground objects. Terefore, this study proposes a
ranging model diferent from the previous vision-based
ranging methods, which measures the distance between the
camera and the ground object when the camera has an
inclination angle in three dimensions. Because the world
coordinate system is two-dimensional, the computational
complexity of the model is lower and there are not many
requirements for the three-dimensional structure of the
object.

As the only internal parameter of the camera needs to be
calibrated in the model, the accuracy of focal length cali-
bration directly afects the range’s accuracy. In the linear
imaging model, the object is presented to the image plane
through a small hole depending on the principle of straight-
line propagation. But in fact, the camera is convex lens
imaging, which has distortion and defocusing phenomenon.
Distortion will lead to the inconsistency between the the-
oretical imaging position and the actual imaging position,
and defocusing will lead to the image in some positions not
presented on the image plane. Previous references [20, 21]
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proposed the calibration of a nonlinear camera, which
calibrated the focal length and distortion parameters and
then restored the theoretical imaging position through the
distortion parameters and the actual imaging position. Al-
though radial distortion, centrifugal distortion, and thin
prism distortion are considered in these methods, defo-
cusing or other possible factors are not well considered.
Terefore, the accuracy of the ranging model can be
improved.

In this study, all the imaging points are considered to be
obtained based on pinhole imaging, so there is no need to
restore the pixel coordinates. Te efects of distortion and
defocusing are refected in the value of focal length.Tat is to
say, each point at each position has its corresponding focal
length. Tis focal length includes various factors that may
afect the imaging position. Tis study uses the actual dis-
tance and pixel coordinates to calculate the focal length
corresponding to diferent pixel positions and then analyses
the distribution of focal length value relative to pixel co-
ordinates. It is found that their distribution is not a simple
linear distribution. Terefore, to improve the accuracy of
range, this study attempts to learn the distribution of focal
length corresponding to diferent pixel positions by non-
linear regression (polynomial regression). Te results show
that the method can efectively improve the accuracy of the
ranging model.

In a word, this study focuses on proposing a simple and
high-accuracy camera’s focal length calibration method to
improve the accuracy of themonocular vision-based ranging
model. Te major method is to use a simple linear imaging
model to deduce the complexity of the ranging model and
then combine the distortion and defocusing phenomenon
caused by the nonlinear imaging of the camera into the focal
length calibration process. Te main innovations of this
study are as follows:

(1) When the camera has an inclination angle in three
dimensions, the ranging model for ground object
based on the linear imaging model and geometric
coordinate transformation is proposed

(2) Te distortion caused by convex lens imaging and
the infuence caused by defocusing is refected in the
focal length of the linear imaging model

(3) Te calibration process does not require the cali-
bration target, and the camera does not need to
move.

(4) Te focal length values containing the efect by
distortion and defocusing are calculated by the
ranging model, and the nonlinear distribution is
learned by polynomial regression.

2. Proposed Methods

2.1. Monocular Vision-Based Model. In the real scene, most
of the obstacles are on the ground, such as pedestrians or
other vehicles.Temodel in this study focuses on the ground
feature points, that is, the 3D world coordinate system is
reduced to the 2D coordinate system. Te posture of the

installed camera depends on the installed location. Te
camera does not have an inclination angle when the camera
is facing the front and the optical axis is parallel to the
ground. Te optical axis is defned as a line perpendicular to
the image plane and passing through the optical center.
Based on the pinhole camera model and the principle of
straight-line propagation of light [22], the ranging model for
the ground objects without the inclination angle of the
camera is shown in Figure 1.

As shown in Figure 1, O′ is the projection of the camera
optical center O on the ground plane.Te optical axis (OO″)
passes through the camera optical center O and is parallel to
the ground plane; the optical axis (OO″) is perpendicular to
the image plane. Te world coordinate system is established
with O′ as the origin, the line passing throughO′ and parallel
to the optical axis as Y-axis, and the line passing through O′
and perpendicular to Y-axis as X-axis. P is the measured
point on the ground plane, PY is the projection of P on the
Y-axis, PX is the projection of P on the X-axis, O″ is the
projection of the optical axis on the image plane, the height
from the optical center O to the ground is H (the length of
OO′), the image on the image plane of the point P is the
point P′, and the physical coordinates of P′ on the image
plane are P′(x, y). Te length of OO″ is recorded as the
focal length f. Te length of O′P (d) is the distance which we
will calculate. Te camera will have an inclination angle with
three diferent dimensions in the real scene. Te details of
the three dimensions are shown in Figure 2.

As shown in Figure 2(a), the feld of vision of the camera
is changed after the camera rotates. Te ranging model is
consistent with the noninclination angle. As shown in
Figure 2(b), the position of the optical center did not change,
and the optical axis is still parallel to the ground. Te dif-
ference with the noninclination angle is that the image plane
rotates around its center in the two-dimensional plane. Te
image plane can be restored to the state without inclination
by reverse rotation in the two-dimensional plane. Te in-
clination angle obtained by this way of rotation is called the
left or right inclination angle. Since it is not involved in
reconstructing the ranging model, the detail of restoring the
left-right inclination angle to a noninclination angle is de-
scribed in the discussion. As shown in Figure 2(c), the
optical axis of the camera is not parallel to the ground after
rotation. Te ranging model needs to reconstruct. Te in-
clination angle obtained by this way of rotation is called the
up or down inclination angle. Taking down the inclination
angle for an ample, the illustrated of the ranging model is
shown in Figure 3.

Te meanings of P, P′, O, O′, O″, PX, PY, PX
′, and PY

′
in Figure 3 are the same as is shown in Figure 1. Te dif-
ference between Figures 1 and 3 is that OO″ is the optical
axis with an inclination angle α, that is, the angle between the
horizontal line and the optical axis is called α. When the
camera has a down inclination angle, regulation α> 0, and
when the camera has an up inclination angle, regulation
α< 0.M is the intersection point of P′PX

′ and the horizontal
plane (plane OMN), N is the intersection point of PY

′O″ and
the horizontal plane (plane OMN), and the plane ONM is
parallel to the ground plane; the optical axis (OO″) is

Scientifc Programming 3



(a)

Optical axis Optical axis

(b)

(c)

Figure 2: Camera inclination angle decomposition.
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Figure 1: Ranging model without an inclination angle.
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Figure 3: Ranging model with an inclination angle.

4 Scientifc Programming



perpendicular to the image plane. Te length of OO″ is
defned as the focal length f, and the length of O′P (d) is the
distance which we will calculate.

MO is the projection of P′O on the plane OMN, O′P is
the projection of OP on the ground plane, and the three
points of P, O, andP are colinear. Because the plane OMN
is parallel to the ground plane, according to the property of
parallel planes, the angle between a line and its projection on
two parallel planes is equal. Terefore,

∠OPO′ � ∠P′OM � ∠P′OPX
′ + ∠PX
′OM. (1)

Te optical axis OO″ is perpendicular to the image plane
and O″N is in the image plane. According to the vertical
property of line and planes, a straight-line perpendicular to a
plane is perpendicular to any straight line in the plane. In
ΔNO″O, NO″⊥OO″, and ∠O″ON � α, OO″ � f, O″N is

O″N � f · tan α. (2)

Because the optical axis OO″ is perpendicular to the
image plane and O″PX

′ is in the image plane, OO″⊥O″PX
′ .

Following Pythagoras’ theorem, OPX
′ is

OPX
′ �

�������

x
2

+ f
2

􏽱

. (3)

OO″ is perpendicular to the image plane and in the
plane OO″PX

′ . According to the judgment theorem of plane
perpendicularity, OO″ is perpendicular to the image plane.
Te plane OO″PX

′ passing through OO″ is also perpen-
dicular to the image plane. OPX

′ is in the plane OO″PX
′ and

PX
′M is in the image plane. In ΔPX

′OM, OPX
′⊥PX
′M, O″N�����PX

′M, andO″PX
′ � NM. According to the properties of a

parallelogram, the opposite sides are parallel and equal,
PX
′M � O″N, and ∠PX

′OM is

∠PX
′ OM � tan− 1PX

′ M
OPX
′

� tan− 1f · tan α
�������

x
2

+ f
2

􏽱 . (4)

Te plane OO″PX
′ is perpendicular to the image plane,

and OPX
′ is in the plane OO″PX and P′PX

′ is in the image
plane. In ΔP′ OPX

′, OPX
′⊥P′PX
′, ∠P′OPX

′ is

∠P′OPX
′ � tan− 1P′PX

′

OPX
′

� tan− 1 y
�������

x
2

+ f
2

􏽱 . (5)

OO′ is perpendicular to the ground plane, in
ΔOPO′, PO′⊥OO′, OO′ � H, O′ P � d, and ∠OPO′ is

∠OPO′ � tan− 1 OO′

O′ P
� tan− 1H

d
. (6)

Te simultaneous equations (8) and (11)–(13) can be
obtained:

tan− 1f• tan α
�������

x
2

+ f
2

􏽱 + tan− 1 y
�������

x
2

+ f
2

􏽱 � tan− 1H

d
. (7)

According to the arctangent addition theorem, we get
the following results:

tan− 1f• tan α
�������

x
2

+ f
2

􏽱 + tan− 1 y
�������

x
2

+ f
2

􏽱 � tan− 1
f• tan α/

�������

x
2

+ f
2

􏽱

􏼒 􏼓 + y/
�������

x
2

+ f
2

􏽱

􏼒 􏼓

1 − f• tan α/
�������

x
2

+ f
2

􏽱

􏼒 􏼓 · y/
�������

x
2

+ f
2

􏽱

􏼒 􏼓

� tan− 1H

d
. (8)

Namely,
�������

x
2

+ f
2

􏽱

· (f · tan α + y)

x
2

+ f
2

− y · f · tan α
�

H

d
. (9)

From equation (9), it concludes that

d �
H · x

2
+ f

2
− y · f · tan α􏼐 􏼑

�������

x
2

+ f
2

􏽱

· (f · tan α + y)
. (10)

From equation (10), the coordinate (x, y) of the mea-
sured point P′ on the image plane is the physical coordinate.
Its unit should be a millimeter. However, the coordinate
(x0, y0) of the point P′ directly extracted from the image
plane is the pixel coordinate. Tis pixel coordinate system is
established with the upper left corner of the picture as the
original center, and the unit is pixels. It is necessary to
translate the pixel coordinate (x0, y0) into the physical

coordinate (x, y) in equation (10). Te transformation
formulas are shown in equation (11).

x � x0 −
CR

2
􏼒 􏼓 · dx,

y � y0 −
RR

2
􏼒 􏼓 · dy.

(11)

In equation (11), x and y denote the physical coordinates
of point P′, x0 and y0 denote the pixel coordinates of point
P′, and dX and dy denote the size of a pixel unit in x and y

directions. RR and CR denote the row resolution and the
column resolution of the image plane.

2.2. Te Proposed Camera Calibration Model. According to
equation (10), the constraint equation of focal length is
shown in equation (12), where the distance d in equation (10)
is replaced by the accurate distance D in equation (12)
measured by the rangefnder.
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D
2
(tan α)

2
− H

2
􏼐 􏼑 · f

4
+ 2∗y · tan α · D

2
+ H

2
􏼐 􏼑 · f

3

+ D
2

· y
2

+ D
2
(tan α)

2
x
2

− H
2
y
2
(tan α)

2
− 2∗H2

x
2

􏽨 􏽩 · f
2

􏼐 􏼑

+ 2∗y · x
2

· tan α · D
2

+ H
2

􏼐 􏼑 · f + x
2

D
2

· y
2

− H
2
x
2

􏼐 􏼑􏼐 􏼑 � 0.

(12)

When the camera’s height from the ground and the
camera’s inclination angle remain unchanged, the pixel
coordinates of the targets at diferent positions are diferent.
According to the experimental data, the focal length which is
calculated by equation (12) is diferent. Te reason for this
phenomenon can be explained by the defocus phenomenon
[23] of convex lens imaging. For a camera, the image plane is
fxed according to the clearest image in the center.Terefore,
the image outside the center of the image plane does not
exactly ft the image’s position. Te points with diferent
object distances correspond to diferent focal lengths. To
obtain the focal length corresponding to diferent physical
coordinates (x, y), this study utilizes polynomial regression
to learn the relationship between focal length and the
physical coordinates. Te physical coordinates are the in-
dependent variables, and focal lengths are the dependent
variables. Te polynomial in the form of equation (13) and
the coefcient vector V in equation (13) are obtained by
polynomial regression.

f(x, y) � v00 + v10∗x + v01∗y

+ v11∗x∗y + v02∗y2
. . . . . . .

(13)

2.3. Error Compensation Algorithm. To improve the accu-
racy of the ranging, we propose an algorithm to compensate
for the ranging error which is produced from the coordinate
extraction of the feature point and the measurement of the
camera inclination angle by adjusting the pixel coordinates
(x0, y0). According to the experimental data, the gener-
alization ability of the model is the strongest and the most
stable when the ranging error threshold is set at 0.5%. Te
procedure is outlined in Algorithm 1. E(d) is the diference
between the calculated distance d and the accurate distance
D.

3. Experiments

Te equipment in our experiment is shown in Figure 4. Te
camera in this experiment is 1920∗ 1080 pixels. 100 targets
are placed in the range from 2 to 20 meters. Te spatial
location of the camera remains the same. Te accurate
distances D between the optical center projected on the
ground and the targets are measured by a laser range fnder.

As is shown in Figure 5, the pixel coordinates of the contact
point between each target and the ground are extracted using
MATLAB. From the 100 pieces of data, 14 pieces were ran-
domly selected as the training dataset and 6 pieces as the test
dataset. Te focal length of the camera in the training dataset is
calculated by equation (11). Utilizing the polynomial regression
function in the ftting curve toolbox of MATLAB obtained the
regression vector V in equation (13).Te focal length of the test

dataset is calculated by equations (11) and (12). Equation (10) is
used to calculate the distance d of the test dataset.

4. Results

Te values of focal length calculation results of a training set
are given in Table 1. ForH (the height of the camera), α is the
inclination angle of the camera. D is the distance between a
target and the camera, which is measured by the laser
rangefnder. (x, y) are the physical coordinates calculated
according to equation (11), where CR � 1920, RR � 1080,
and dx � dy � 0.0026 millimeters. Ten, the focal length f

is calculated according to equation (12). All variables in
Table 1 are in millimeters (mm), except the variable a.

Taking (x, y) and f in Table 1 to polynomial regress, the
number of parameters in the regression vector is called the
length of the vector. Before regression, the convergence value of
the length of the regression vector V needs to be determined.
Te length of the vector V depends on the regression accuracy
and the size of the dataset. When the regression accuracy is
constant and the size of the dataset is large enough, the value of
vector V and the length of the coefcient vector V should be
convergent. When the regression accuracy is fxed above 99.5%,
Figure 6 shows the length of the vector V for diferent sizes of
the dataset. As is shown in Figure 6, when the size of the dataset
is less than 70, the length of the vector V gradually increases
with the increase in the size of the dataset. When the size of the
dataset reaches 70, the length of the vector V is stable at 12.
Terefore, the length of the vector V is converged to 12. Te
calibration equation of focal length is shown in equation (14),
and there are 12 regression parameters in equation (14). After
the length convergence value of the regression vector V is
determined, Figure 7 shows the parameters in the regression
vector obtained by polynomial regression of the data in Table 1.
Figure 8 is the regression model.

f(x, y) � v00 + v10∗x + v10∗y + v20∗x
2

+ v11∗x∗y + v02∗y
2

+ v21∗ x
2

∗y + v12∗x∗y
2

+ v03∗y
3

+ v22∗ x
2

∗y
2

+ v13∗ x∗y
3

+ v04∗y
4
.

(14)

f and E (d) are recalculated based on equation (14) and
the values in Table 1, and the results are given in Table 2.f′ is
the regression focal length calculated from Figure 7. Before E
(d) and after E (d), respectively, represent the ranging error
before and after using Algorithm 1. To verify the efec-
tiveness of the proposed method, a number of experiments
under diferent camera heights and inclination angles were
made. Te result of the maximum and average ranging error
is given in Table 3. Te maximum error of ranging is 2.91%,
and the maximum average error of ranging is 0.98%.
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Set t � 0, a1 � a2 � 1, b1 � b2 � 0, E(d) � (abs(d − D)/D),

Repeat
t� the number of E(d) greater than the training threshold in the training set,
Repeat

y0′ � y0 + 1 ory0′ � y0 − 1, x0′ � x0 + 1 orx0′ � x0 − 1.

Until E(d) of all data in the training set is less than the threshold,
Utilizing the frst-order linear regression method to obtain the regression expression like:

y0′ � a1∗y0 + b1, x0 � a2∗x0 + b2.

Until t� 0

ALGORITHM 1: Error compensation.

Targets

Camera

ComputerLaser range finder

Figure 4: Experimental equipment and target placement.
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Figure 5: Pixel coordinates of target extraction.
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5. Discussion

5.1. Ranging Model for the Camera with a Left or Right In-
clination Angle. Compared with no inclination angle, when
the camera has a left or right inclination angle as shown in

Figure 2(b), it is equivalent to that the pixel coordinate
system rotates the same angle in the same direction. It is also
equivalent to that in the same pixel coordinate system, and
the imaging points rotate in the opposite direction with the
same inclination. Te diagram of coordinate transformation
is shown in Figure 9.

P1 is the image of the fourth quadrant when the camera
has a right inclination angle, and P is the image point
without an inclination angle restored to the left, where
|OP1| � |OP|. In ΔP1 OP1y, according to the arctangent
function,

∠OP1P1y � tan− 1x1
y1

. (15)

Clearly,

∠OPPx � ∠POPy � ∠OP1 P1y − β � tan− 1x1
y1

− β. (16)

In ΔPOW,

x0 � OPy � OP · sin ∠OPPx �

��������

x12 + y12
􏽱

·

sin tan− 1X

Y
− β􏼒 􏼓 · y0 � OPx

� OP · cos ∠OPPx �

��������

x12 + y12
􏽱

·

cos tan− 1X

Y
− β􏼒 􏼓,

(17)

P(x0, y0) in equation (17) is the pixel coordinates of the
measured point without a left inclination angle and right
inclination angle in equation (11). When the pixel of the
target is in other quadrants, the formula of coordinate
transformation is diferent from the fourth quadrant, but the
principle is the same.

5.2. Robustness of the Vector V. To study the robustness of
vector V, the height and selection of the camera were analyzed
in this study. Table 4 provides the value of vector V when the
height of the camera is 229 millimeters and 239 millimeters.

Table 1: Focal length calculation results of a training set.

H/mm D/mm x/mm y/mm f/mm E (d)/%
1451 10009 0.0832 −0.4316 4.608727 0.003032
1451 10273 0.156 −0.442 4.543764 0.005428
1451 11290 0.5382 −0.4654 4.268784 0.014776
1451 11825 0.7436 −0.4706 4.131007 0.013635
1451 13507 0.026 −0.5512 4.20472 0.041678
1451 12744 0.273 −0.5252 4.221513 0.065757
1451 13571 0.5018 −0.5382 4.112991 0.100842
1451 16760 0.104 −0.6032 3.964895 0.623398
1451 16939 0.0442 −0.611 3.991179 0.709382
1451 17367 0.2574 −0.611 3.940146 0.117892
1451 15414 0.3952 −0.5798 4.024374 0.233182
1451 18511 0.0026 −0.637 3.968945 0.242895
1451 19034 0.1716 −0.6422 3.948959 0.209105
1451 19839 0.3536 −0.6292 3.934795 0.098061
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Figure 6: Comparison of the length of vector V under diferent
sizes of the dataset.

f (x, y) = p00 + p10∗x + p01∗y + p20∗x2 + p11∗x∗y + p02∗y2 + p21∗x2∗y +
p12∗x∗y2 + p03∗y3 + p22∗x2∗y2 + p13∗x∗y3 + p04∗y4

p00 = 4.126 (4.049, 4.203)

p01 = 0.2758 (0.1467, 0.4049)

p11 = –0.07034 (–0.2391, 0.0984)

p12 = 0.007137 (–0.111, 0.1253)

p04 = 0.03578 (–0.1355, 0.207)
p13 = 0.01673 (–0.09963, 0.1331)
p22 = –0.0002216 (–0.07504, 0.0746)
p03 = –0.05335 (–0.131, 0.02431)

p21 = –0.02118 (–0.0954, 0.05303)
p02 = –0.01169 (–0.3247, 0.3013)

p20 = 0.01416 (–0.06318, 0.0915)

p10 = –0.05472 (–0.09939, –0.01004)

Figure 7: Te values of the parameters.
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Table 5 provides the value of the vector V under camera
A and camera B at the same height. As given in Tables 4 and
5, the height and selection of the camera will afect the value
of the regression vector V. Terefore, in the application, the
same regression vector is only suitable for the same height
and the same camera.

5.3. Compare with Other Methods. To verify that the cali-
bration method proposed in this study is suitable for the
monocular vision ranging model and can efectively com-
pensate for the distortion and defocus phenomenon, this
study is compared with the Zhang [15] and Li [20] method
calibrate the same camera, and the calibration results are
given in Table 6.

Table 6 provides the intrinsic matrix calibrated by Zhang
and Li methods. Tis matrix contains the focal length in-
formation of the camera. Te radial distortion and the
tangential distortion in Table 6 represent the distortion
information of the camera, and the pixel coordinates can be
corrected by these distortion parameters. Te focal length
(regression model) in Table 6 is the regression model of focal
length obtained in this study, where x and y are the pixel
coordinates.

In order to verify the performance of the three cali-
bration methods in the monocular vision ranging model, a
large number of ground measured points are randomly
distributed on the ground. Te distribution of the measured
points on the image plane is shown in Figure 10. Tese
measured points are randomly distributed in all areas of a
picture and randomly selected four groups of test sets, 30
feature points in each group. Zhang and Li’s methods use
their distortion parameters to correct the pixel coordinates
before ranging. Te focal length obtained by the three
calibration methods and the pixel coordinates after cor-
rection is substituted into the ranging model to calculate the
distance. Te ranging error results are shown in Figure 11.

As shown in Figure 11, the proposed calibration method
is more stable and accurate than Zhang and Li’s method for
the monocular vision-based distance measurement model.
Table 7 provides the accuracy comparison of the ranging
model in this study compared with other ranging models.

Combined with Figure 11 and Table 7, it can be seen that
the proposed calibration method in this study is more
suitable for the ranging model in this study than other
calibration methods. Te monocular vision-based ranging
model in this study has higher accuracy than other ranging
methods.

Table 2: Focal length calibration results.

f′/mm d/mm Before E (d)/% After E (d)/%
4.60894033416042 10008.6964887034 0.003032 0.22004
4.54340989429504 10273.5575694457 0.005428 0.218179
4.26951768094114 11288.3317364075 0.014776 0.169679
4.13041136577056 11826.6123375319 0.013635 0.181646
4.20616526188184 13501.3705794102 0.041678 0.033825
4.21897294335602 12752.3800233027 0.065757 0.136777
4.116390711837 13557.3146909214 0.100842 0.064484
3.97931880894754 16655.5185071925 0.623398 0.239009
3.97525839762631 17059.1622131422 0.709382 0.497604
3.94269561616738 17346.5256637998 0.117892 0.30663
4.01820166494699 15449.9426832249 0.233182 0.148455
3.9737624793774 18466.0377275484 0.242895 0.427274
3.9450206644398 19073.8011347716 0.209105 0.045672
3.93673296545302 18425.9136618791 0.098061 0.29088

Table 3: Results of maximum generalization error and average generalization error.

Range Inclination angle Camera height (mm) Number of groups Max (generalization E (d)) Average (generalization E (d)) (%)

2–20m 13.6° 1451
1 2.80 0.83
2 2.49 0.94
3 2.16 0.98

2–20m 0° 864
1 2.89 0.83
2 2.75 0.68
3 2.91 0.97

5–20m −10.5° 1491
1 2.90 0.98
2 2.01 0.78
3 2.46 0.81
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Figure 9: Diagram of coordinate transformation with a right inclination angle.
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Figure 8: Regression model.

Table 4: Comparison of P value vectors of the same camera with diferent heights.

H/mm v00 v01 v02 v03 v04 v10 v11 v12 v13 v20 v21 v22
229 5.6e+ 02 1.5e+ 01 −2.7e− 01 2.03e− 03 −5.4e− 06 5.3e− 01 −1.4e− 02 1.3e− 04 −4.7e− 07 −2.0e− 04 7.78e− 06 −4.9–08
239 −1.744 3.1e+ 01 −6.1e− 01 5.73e− 03 −1.8e− 05 3.99e− 02 3.1e− 03 −9.3e− 05 3.8e− 07 −2.8e− 03 9.79e− 05 −8.3e− 07
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ŷ
3
+
1.
00
6
∗
ŷ
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Figure 11: Camera inclination angle decomposition.
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6. Conclusions

In this study, a camera’s calibration for a monocular vision-
based ranging model based on polynomial regression was
proposed to establish the relationship between world co-
ordinates and pixel coordinates. For the possible distortion
of the captured images, we utilize an error compensation
algorithm to revise the pixel coordinates. Compared with
other methods, our method has a high score for matching.
Te process of regression and error compensation can ef-
fectively compensate for the errors caused by distortion
without the distortion parameters of the convex lens. Te
experimental results show that the accuracy of ranging in
this study is more than 97%. In the future, we will combine
our method with image recognition to improve safety in
fully autonomous driving.
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