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A B S T R A C T   

Additive manufacturing (AM) has been envisioned as a critical technology for the next industrial revolution. Due 
to the advances in data sensing and collection technologies, a large amount of data, generated from multiple 
sources in AM production, becomes available for relevant analytics to improve process reliability, repeatability, 
and part quality. However, AM processes occur over a wide range of spatial and temporal scales where the data 
generally involves different types, dimensions and structures, leading to difficulties when integrating and then 
analysing. Hence, in what way and how to integrate the heterogeneous data or merge the spatial and temporal 
information lead to significant challenges in data analytics for AM systems. This paper proposed a task-driven 
data fusion framework that enables the integration of heterogeneous data from different sources and modal-
ities based on tasks to support decision-making activities. In this framework, the data analytics activities involved 
in the task are identified in the first place. Then, the data required for the task is identified, collected, and 
characterised. Finally, data fusion techniques are employed and applied based on the characteristics of the data 
for integration to support data analytics. The fusion techniques that best fit the task requirements are selected as 
the final fusion approach. Case studies on different research directions of AM, including AM energy consumption 
prediction, mechanical properties prediction of additively manufactured lattice structures, and investigation of 
remelting process on part density, were carried out to demonstrate the feasibility and effectiveness of the pro-
posed framework and approaches.   

1. Introduction 

Additive manufacturing (AM) is a manufacturing paradigm that 
produces physical objects directly from computer-aided design (CAD) 
models by successively adding materials [1]. It has been recognised as 
one of the crucial technologies for the era of Industry 4.0 since it has 
great potential to provide mass customization, efficient supply chains, 
and decentralized and flexible production. Based on different process 
features (e.g., working principals, material supplies, state of fusion, 
etc.), AM processes are currently categorised into seven categories by 
ASTM standards [2], including powder bed fusion (PBF), material 
jetting (MJ), binder jetting (BJ), material extrusion (ME), sheet lami-
nation (SL), directed energy deposition (DED), and vat photo-
polymerization (VP). However, limited material choices, low 

repeatability and reliability, and lack of standards for design and qual-
ification [3] are the major drawbacks that prevent the widespread 
adoption of AM technologies in industries. The difficulties in under-
standing fundamental mechanisms and identifying the latent factors 
that influence AM processes build up barriers to in-depth research in 
AM. Therefore, improving decision-making activities for the enhance-
ment of AM process performances and product quality becomes critical 
challenges. 

The integration of advanced data sensing and collection technologies 
in AM systems has enabled exponential growth of data, providing un-
precedented opportunities for understanding the nature of AM processes 
and uncovering hidden knowledge [4]. In recent years, with the rapid 
development of advanced data analytics tools (e.g., machine learning 
technologies), data-driven methods have increasingly played important 
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roles in decision support for solving AM issues. Nonetheless, the ma-
jority of existing studies focus on the performance of using different data 
analytics models for tackling a few typical AM issues while what data to 
be considered in the models and how to deal with the data have not been 
extensively discussed and explored. This urges in-depth investigations of 
the guidelines for AM data management, integration, and analytics, 
especially in the increasingly data-rich environment of AM industries. In 
general, a typical AM process normally includes six phases, AM design 
generation, process planning (e.g., determining orientation, adding 
support structure, etc.), process parameter setting (e.g., slice, scan pat-
terns, etc.), part building, post-process treatment, and part qualification. 
The data generated during each phase can contain crucial information 
related to the process stability and part quality. It’s essential to take the 
data from multiple sources or modalities into consideration. However, 
this multi-source data is normally heterogeneous (e.g., signals, images, 
geometries), multi-dimensional, and multi-hierarchical, leading to dif-
ficulties in integration, especially when high-speed and 
high-dimensional data is presented [5,6]. Realizing the full potential of 
data analytics for digging out critical knowledge from massive volumes 
of AM data with various modalities will significantly improve the pro-
cess stability, repeatability, and product quality, and ultimately facili-
tate the development of AM industries [7,8]. 

This paper proposes a task-driven data fusion framework that pro-
vides guidelines when integrating heterogeneous data from various 
sources or modalities to support decision-making for AM. The contri-
butions of this work are highlighted as follows. 

• This study proposes a systematic way to identify, collect, charac-
terise, and fuse the data to support data analytics for AM tasks.  

• Based on the levels (layer-level and build level) of the target value to 
be obtained, guidelines were introduced for integrating data with 
different sources, dimensions, and modalities.  

• Based on the framework, different fusion approaches were proposed 
to tackle challenging AM issues. 

The remaining of this paper is organised as follows. Section 2 reviews 
the categories of AM data, studies of data analytics for AM tasks, and 
applications of data fusion techniques in AM. Section 3 introduces the 
proposed task-driven data fusion framework where 3 critical steps are 
included, i.e., (1) identifying analytics activities of tasks; (2) data 
acquisition and characterization; and (3) leveraging data fusion tech-
niques based on task requirements and data characteristics. In Section 4, 
three case studies that focus on different research directions were car-
ried out to demonstrate the feasibility and effectiveness of the proposed 
framework and approaches. 

2. Related works 

2.1. Categories of AM data 

The advancement of sensing and storage technologies has led to the 
data-intensive environment of AM systems where a large amount of 
production information can be captured, stored, and leveraged. Nor-
mally, AM data is continuously generated from the part design phase to 
the final part validation phase, the attributes of which involve various 
types, structures and dimensions. Sayyeda et al., [9] characterised AM 
data from different perspectives, including volume, velocity, and vari-
ety. From the volume perspective, terabytes (TB) size of monitoring data 
and computed tomography (CT) scan data can be generated for each 
build. The velocity of data depends on the sampling rates of sensors and 
machine log frequencies. For the variety aspect, various data types are 
generated per build, such as sensor signals, machine logs, images, CAD 
models, CT scan data, thermal videos, etc. Hyunseop et al., [10] defined 
6 types of AM data, including material properties, design parameters, 
process parameters, process signatures, part properties, and product 
performance. For example, in material properties, information on 

material chemistry and powder size distribution is included. To sys-
tematically manage and analyse the data generated from design to final 
product, the end-to-end digital spectrum of AM was categorized by Duck 
Bong et al., [11] into 8 phases. The first phase is the part geometry which 
deals with the information created during part design. Materials are also 
selected in phase 1. The second phase and third phases are defined as 
tessellated data and tessellated 3D models respectively where usable 
geometries are created from raw data. Followed by the fourth phase 
build file, the fifth phase machine data, the sixth phase fabricated part, 
seventh phase finished part, and eighth phase validated part. Informa-
tion of post-processing and mechanical testing on the fabricated parts 
are included in phases 7 and 8 respectively. Particularly targeted at the 
metal powder bed fusion process, the study [12] also mentioned data 
categories which are separated into 3 subsections, feedstock materials, 
and in-situ and ex-situ measurements. 

Previous studies have categorized AM data from different perspec-
tives with different focuses, however, most of them aim for the ease of 
data storage and management. To be closely linked to data analytics, 
this paper classifies AM data into three major categories, process-input 
data, process-generated data, and validation data, based on the 
sequence of the stages (from part design to final part validation) in an 
AM process. Each category involves several stages of the whole process. 

1) Process-input data: process-input data represents the data and in-
formation that are generated before the manufacturing process be-
gins, including design data, process planning data, and parameter 
setting data. Examples of each sub-category are listed as follows. 
• Design data: part geometries and material information (e.g., ma-

terial chemistry, particle size distribution, etc.) are included.  
• Process planning data: path planning, part orientation, location, 

etc.  
• Parameter setting data: scan speed, voltage, scan width, etc.  

2) Process-generated data: process-generated data consists of two parts, 
the data generated during the manufacturing process, and the data 
generated during the post-process treatment. During the 
manufacturing process, sensing and measuring technologies (e.g., 
multiple sensors, high-speed cameras, etc.) are employed for 
capturing in-process signatures (e.g., melt pool state, temperature, 
etc.).  
• Process monitoring data: voltage, current, temperature, gas rate, 

acoustic signals, optical emission, multi-sensor signals, melt pool 
images, etc.  

• Post-process data: near-net-shape (NNS) part properties, heat 
treatment, milling, etc.  

3) Validation data: the produced products are validated by various 
testing methods where testing data is generated (e.g., CT scan data, 
tensile strength, hardness, fatigue life, etc.). Besides, information 
such as material waste, time cost, and energy consumption, is 
collected. 

2.2. Machine learning & advanced data analytics for AM tasks 

Data analytics is increasingly crucial to help engineers or technicians 
make decisions for tackling critical issues such as energy efficiency 
improvement, product quality enhancement, and waste reduction, in 
manufacturing industries. To achieve specific objectives for AM pro-
duction, it is essential to identify what tasks are involved and then what 
data analytics activities should be required. These steps are normally 
done by experienced AM engineers and data scientists [13]. For 
example, to reduce the porosity of the manufactured parts, tasks such as 
process parameter optimisation or in-situ monitoring can be involved. In 
this case, the goal of data analytics is to infer where the porosities 
possibly form based on the collected information (e.g., process param-
eters, sensor signals, etc.) and provide actionable insights for 
decision-makers. Identifying data analytics activities for tackling AM 
tasks is hard as it lacks systematic methods specifically for AM. Some 
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researchers have made efforts to explore this. Hyunseop et al., [10] 
introduced a five-tier taxonomy, i.e., “Value Tier”, “Decision-Making 
Tier”, “Data Analytics Tier”, “Data Tier”, and “Data-Source Tier”, to 
identify and prioritize data analytics opportunities in AM. In this clas-
sification, the target values are defined in the “Value Tier” in terms of 
quality, cost, and delivery. The decision-making activities for data an-
alytics are obtained from the “Decision-Making Tier” by using the 
integration definition for function modelling (IDEF0) [14] where the 
activities are defined by function models or ICOMs (input (I), control 
(C), output (O), mechanism (M)). Based on the predefined values and 
decision-making activities, the decision-making objectives can be rep-
resented by using the statement “Improving + [value] + when +
[decision-making activity]”. Accordingly, the potential data analytics 
problems corresponding to the objectives are identified in “Data Ana-
lytics Tier”. As an extension of this study, a data analytics opportunity 
knowledge (DOKB) base was developed in [13] where AM 
activity-specific data analytics tasks were defined by experts. 

Typically, data analytics problems are classified into 4 types [15,16], 
descriptive analytics, diagnostic analytics, predictive analytics, and 

prescriptive analytics. Each type of analytics answers different types of 
questions. Descriptive analytics answers the questions of what 
happened. Diagnostic analytics is for answering why it happened. Pre-
dictive analytics is to figure out what and when will happen. Prescriptive 
analytics aims to answer the question of what strategies should be 
applied. The explosive availability of data in AM industries has moti-
vated the transformation from traditional analysis methods to advanced 
data analytics for decision-making. The past decade has witnessed the 
rise of the adoption of machine learning (ML) technologies for smart 
manufacturing. As powerful data analytics tools for processing, inter-
preting, and leveraging data, ML technologies have played a central role 
in supporting decision-making for tackling AM issues in recent years 
[17–19]. Statistical learning approaches such as principal component 
analysis (PCA), and partial least squares (PLSs) have been primarily 
adopted for handling small-sample problems [20]. With the emergence 
of deep learning techniques (e.g., convolutional neural network (CNN)), 
massive data can be effectively processed and leveraged for handling a 
variety of AM tasks. Hence, data analytics has been extensively applied 
to AM research for knowledge discovery and decision support, including 

Table 1 
Studies of applying ML and advanced data analytics for tackling AM tasks in recent 5 years.  

Existing studies Publication 
year 

AM 
process 

AM task Algorithms Type of data 
analytics 

DeCost, et al.  
[22] 

2017 Metal AM Autonomous characterisation of powder feedstocks PCA, k-means, support vector machine (SVM) Descriptive 
analytics 

Akbari, et al.  
[23] 

2022 Metal AM Predicting melt pool characteristics for metal AM Gaussian process model, SVM, linear regression, 
artificial neural network (ANN), gradient 
boosting trees 

Predictive 
analytics 

Vrábel, et al.  
[24] 

2019 PBF Material classification PCA, SVM Predictive 
analytics 

Fathizadan, et al. 
[25] 

2021 PBF Real-time melt pool states defect detection Convolutional auto-encoder (CAE), 
agglomerative clustering, statistics 

Predictive 
analytics 

Bugatti, et al.  
[26] 

2021 PBF Defect detection for local overheating phenomena k-means, SVM, ANN Predictive 
analytics 

Ye, et al. [27] 2018 PBF In-situ monitoring for melt pool state recognition Deep belief network Predictive 
analytics 

Montazeri, et al. 
[28] 

2020 PBF Monitoring of porosity using optical emission 
spectroscopy 

PCA, k-nearest neighbours (k-NN), SVM, etc Predictive 
analytics 

Kusano, et al.  
[29] 

2020 PBF Tensile properties prediction Random forests (RFs), multiple linear regression Predictive 
analytics 

Scime, et al.  
[30] 

2018 PBF Autonomous spreading anomalies detection and 
classification 

CNN Predictive 
analytics 

Meng and 
Zhang. [31] 

2020 PBF Prediction of the remelted depth of single tracks to assist 
the process design and optimization in the laser PBF 
(LPBF) process 

Gaussian process-based model Predictive 
analytics 

Xin, et al. [32] 2020 PBF Detecting imprinted internal porosity of AM stainless 
steel based on thermal tomography 

k-means singular value decomposition (k-SVD) Predictive 
analytics 

Fischer, et al.  
[33] 

2022 PBF Detecting and classifying the powder bed 
inhomogeneities 

CNN Predictive 
analytics 

Andy, et al. [34] 2022 PBF Image synthesis for dynamic X-Ray radiography of in-situ 
selective laser melting (SLM) process 

Conditional generative adversarial networks 
(GAN) 

Predictive 
analytics 

Gong, et al. [35] 2022 PBF Building process-structure-property linkages for 
machining behaviour of Ti-6Al-4V 

Extreme gradient boosting (XGBoost), linear 
regression 

Predictive 
analytics 

Liu, et al. [36] 2022 PBF Online predicting the layer-wise 3D surface morphology 
in AM 

CNN Predictive 
analytics 

Yao, et al. [37] 2017 PBF Design feature recommendation during the conceptual 
design phase 

Agglomerative clustering, SVM Prescriptive 
analytics 

Ko, et al. [38] 2021 PBF AM design rule construction Decision tree Prescriptive 
analytics 

Roy, et al. [39] 2020 ME Modelling of thermal profiles ANN Predictive 
analytics 

Alejandrino, 
et al. [40] 

2020 ME Design of lattice infill 
pattern for increasing material efficiency 

ANN Prescriptive 
analytics 

Wang, et al.  
[41] 

2018 MJ In-situ droplet inspection and closed-loop control ANN Prescriptive 
analytics 

Nguyen, et al.  
[42] 

2020 DED Tool path planning strategy for rib-web structures ANN Prescriptive 
analytics 

Li, et al. [43] 2023 DED Automatic real-time defect detection for the wire arc AM 
(WAAM) process 

You only look once, version 4 (YOLOv4) Predictive 
analytics 

Huang, et al.  
[44] 

2019 General 
AM 

Support structure detection CNN Prescriptive 
analytics 

Hertlein, et al.  
[45] 

2021 General 
AM 

Topology Optimization for early-design stage Conditional GAN Prescriptive 
analytics  
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material characterisation, classification and selection, design for AM 
(DfAM), monitoring and defect detection, process modelling and con-
trol, and sustainability [8,21]. The following Table 1 has summarized 
typical studies of applying advanced data analytics and ML techniques 
for tackling different AM tasks in the recent 5 years. As shown in Table 1, 
in recent years, most studies have been focusing on process monitoring 
and defect detection tasks in AM where predictive and prescriptive an-
alytics are the major data analytics types involved. 

2.3. Data fusion techniques in AM 

Data fusion has different definitions and architectures as it is a 
multidisciplinary field that involves a wide range of domains. Therefore, 
data fusion techniques can be classified into different categories based 
on the relations between data sources, the abstraction level of data, the 
nature of input and output data, and the architecture types of the fusion 
system [46]. In general, data fusion is defined as a framework that 
combines data from several different sources and related information 
from associated databases to obtain improved accuracy and more reli-
able inferences than individual ones could achieve [47,48]. In recent 
years, benefiting from advanced sensing and Internet of Things (IoT) 
technologies, data fusion techniques have been increasingly applied in 
manufacturing industries, such as the aerospace industry, automotive 
industry, and additive manufacturing industry [49–51]. It is common for 
real-world manufacturing data to be massive, heterogeneous, and 
contain noise, which makes it difficult to combine data from multiple 
sources for joint analysis. In AM, researchers have explored using data 
fusion strategies and techniques for regression and classification tasks, 
such as process monitoring and defect detection, mechanical property 
prediction, and surface roughness prediction, which obtained consid-
erable performances [52–56]. 

Due to the diversity and complexity of interactions during the AM 
process, process monitoring and defect detection are the most common 
application scenario of data fusion techniques. A fault diagnosis 
approach for fused deposition modelling (FDM) process states by using 
sensor data fusion was proposed by Kim et al. [52]. In this work, to 
classify process states, accelerometer and acoustic emission signals were 
collected in real-time from healthy and faulty states where features were 
extracted from raw signals. Then these features were used as inputs in 
the SVM model for process state classification. Zhang et al. [57] intro-
duced a registering and fusion method for in-situ monitoring of the LPBF 
process based on sensor data. The signatures of melt pools were obtained 
from a coaxial high-speed camera and the spatial information of melt 
pools was collected by an off-axis camera system. Through perspective 
transformation and multi-thresholding filtering, the processed images 
were analysed by CNN where the spatial distribution of melt pools was 
retrieved and finally registered in both global and local coordinates 
systems. A long short-term memory (LSTM) neural network was used to 
fuse the melt pool signatures for predicting layer surface topography. 
Gaikwad et al. [58] also adopted data fusion strategies for flaw detection 
in the LPBF process where multiple process phenomena of melt pools 
were captured by video cameras and a temperature field imaging sys-
tem. Key signatures of melt pools were extracted and used as inputs in 
ML models for detecting laser defocusing and predicting porosity levels. 
Deep learning algorithms are prevailing approaches for fusing data to 
obtain desired outputs and have been increasingly applied in AM sys-
tems, such as CNN and long-term recurrent convolutional networks 
(LRCN) for in-situ porosity detection based on multiple sensor data from 
melt pools [59], LSTM for tensile strength prediction based on in-process 
signatures and static factors [60], and CNN-LSTM for energy consump-
tion prediction based on CAD models and process parameters [56]. In 
the study [60], the tensile strength of the parts manufactured by the 
FDM process was predicted based on the in-process signatures and static 
factors. Multiple sensors were employed to capture in-process signatures 
and interactions between layers. These signatures were then fused with 
static factors (e.g., material properties) for tensile strength prediction 

based on the LSTM model. In addition to the strategies of fusing features 
in models for obtaining desired outputs, decision fusion is also consid-
ered in AM studies. For example, Li et al. [55] introduced an approach 
for surface roughness prediction of the products produced by the FDM 
process based on ensemble learning. In this work, real-time sensor sig-
nals were collected from different sensors, including accelerometers, 
thermocouples, and infrared sensors. Time and frequency-domain fea-
tures were extracted from sensor signals and used as inputs in different 
ML algorithms for training. An ensemble learning model was introduced 
to fuse the decision outputs from those base ML models for final surface 
roughness prediction. The experimental results show that the developed 
ensemble model outperformed the individual base models. Apart from 
multi-sensor signal fusion, fusion strategies and techniques are consid-
ered significant when dealing with heterogeneous data. Data with 
different dimensions, such as images and geometries, is commonly 
generated in AM systems but is difficult to be analysed precisely and 
integrated properly. Chen et al. [61] used in-situ point clouds to 
represent the geometries of the surface for defect identification in the 
DED process. In this work, the point cloud data was clustered by the 
density-based spatial clustering of applications with noise (DBSCAN) 
algorithm for separating the regions that potentially have defects (4 
surface classes were obtained). Then the key features of the clustered 
point cloud were extracted and used as input into different ML algo-
rithms for defect classification. Differently, Ma et al. [62] calculated the 
entropy of geometries to represent the solid and empty information of 
complex lattice structures. The entropy was fused with other parameters 
in the SVM model for final mechanical property prediction. To fuse 
multi-dimensional data for the DED process control [63], Vandone et al. 
proposed a data-driven approach for process modelling where the data 
collected from online and offline, including machine parameter settings, 
images of melt pools, sensor signals, 3D scan of geometries, were com-
bined to estimate the performance of the developed process model. Data 
fusion techniques are also applied to refine data and improve the quality 
of data in AM research. For example, to enhance the quality of the 
reconstructed surface topography of the parts produced by the DED 
process, Zou et al. [64] proposed two data fusion methods, competitive 
data fusion and cooperative data integration. The confocal laser scan-
ning microscopy (CLSM) and focus variation microscopy (FV) were used 
to acquire surface topography data. The CLSM was good at retaining the 
large shape features while FV was better in resolving small features. 
Therefore, the competitive data fusion method was used to integrate the 
advantages of CLSM and FV while cooperative data integration was 
aiming at including both the global and local details in a representation. 

Based on previous studies above, data fusion technologies are 
beneficial in reducing dimensionality, refining data, and improving 
model performance, especially when dealing with multi-source and 
multi-dimensional data. Studies that adopted data fusion techniques for 
tackling AM issues in recent 5 years are summarised in Table 2. It can be 
seen from Table 2 that most studies employed ML-based techniques for 
data fusion to obtain desired outputs, especially in classification and 
regression tasks. In addition, considering the nature of collected data, 
LSTM algorithms are frequently employed for tackling sensor signals 
and CNN-based algorithms are typically adopted for processing image 
data. Clustering techniques are used in some studies when dealing with 
the feature or data refinement task, such as [61,65]. A few studies [64, 
66] dealt with the data scale and spatial issues in AM. 

Owing to the advancement of data collecting and analysis technol-
ogies, data-driven methods and ML techniques have been increasingly 
employed to tackle AM issues. However, it lacks a systematic approach 
to identify what data should be collected for data analytics to support 
decision-making activities. This collected data is normally from different 
sources and has different dimensions, modalities, and structures, which 
is difficult to be jointly analysed. In addition, in what way to effectively 
uncover the hidden knowledge inside the data remains a challenging 
issue. 
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3. Framework and approaches of task-driven data fusion for AM 

Challenges in the multi-source and heterogeneous data integration 
for data analytics in AM urge the development of systematic methods for 
guidance in terms of what data should be included and how to integrate 
it. This section introduces a task-driven data fusion approach that con-
sists of 3 steps, including identification of task-driven data analytics, 
data required for tasks, acquisition, and characterization, and task- 
driven data fusion. The three-step approach provides guidelines for (1) 

the identification of data analytics activities and required data for the 
tasks, and (2) the fusion of multi-source data in data analytics for 
tackling different AM tasks. Fig. 1 illustrates the proposed framework. In 
the framework, the general AM process falls into 4 main stages, part 
design, process planning and setting, part building and post-treatment, 
and part qualification, which constitutes the x-axis of the figure. The 
y-axis is constituted by different categories of AM data. As described in 
Section 2.1, the general AM data (i.e., design data, process planning 
data, process parameter setting data, process monitoring data, post- 

Table 2 
The studies of applying data fusion for solving AM issues in recent 5 years.  

Existing studies Publication 
year 

AM 
process 

AM tasks Data used in the study Data fusion method 

Kim et al., [52] 2018 ME In-situ process state diagnosis Multi-sensor signals SVM 
Li et al., [55] 2019 ME Surface roughness prediction Multi-sensor signals, surface roughness SVM, RFs, ANN, Ridge 

regression 
Zhang et al.,  

[60] 
2019 ME Tensile strength prediction Material properties, process parameters, 

sensor signals 
LSTM 

Zhang et al.,  
[67] 

2019 ME Dynamic condition monitoring for 3D printer 
states 

Multi-sensor signals Sparse auto-encoders 
(SAE), LSTM 

Lin et al., [66] 2019 ME Online monitoring of overfill and underfill 
defects in the ME process 

3D CAD models, 3D point cloud data Scale-invariant feature 
transform 

Xu, et al., [68] 2022 ME Real-time in situ process defect detection Acoustic emission, 3D point cloud data SVM, Naïve Bayes, decision 
tree 

Vandone et al., 
[63] 

2018 DED Process control for improving part quality Sensor signals, melt pool images, 3D 
geometries, process parameters 

Statistical process models 

Chen et al.,  
[61] 

2021 DED Automatic rapid surface defect detection 3D surface shapes DBSCAN, k-NN 

Grasso et al.,  
[69] 

2018 DED Automatic process monitoring Multi-sensor signals Support vector data 
description (SVDD) 

Zou et al., [64] 2022 DED Improving the quality of the reconstructed 
surface tomography 

3D surface tomographic data Cooperative fusion, 
competitive fusion 

Qin et al., [65] 2018 PBF Energy consumption prediction for the selective 
laser sintering (SLS) process 

3D CAD models, Multi-sensor signals, 
process parameters 

k-means, ANN 

Tian et al.,  
[59] 

2021 PBF In situ porosity detection Thermal images, pyrometer images, 3D X- 
ray CT scan data, 

CNN, LRCN 

Gaikwad et al., 
[58] 

2022 PBF Process monitoring for porosity-related flaws Melt pool images, thermal signals, 3D X-ray 
CT scan data 

k-means, CNN 

Harbig et al.,  
[70] 

2022 PBF Determine melt pool anomalies in Metal PBF 
process 

Multi-sensor signals Threshold filters  

Fig. 1. The proposed task-driven data fusion framework for AM.  

F. Hu et al.                                                                                                                                                                                                                                       



Journal of Industrial Information Integration 34 (2023) 100484

6

process data, and validation data) is classified into 3 main categories, 
process input data, process-generated data, and validation data. The 
maturity of the collected data and information increases vertically. 
Different AM tasks (e.g., design concept generation, defect detection, 
mechanical property prediction, etc.) are assigned into different blocks 
(with dashed lines) according to the stages they belong to. With the 
increase in the maturity of the collected information, the tasks become 
more diverse. The collected data and information are processed by the 
task-driven data fusion methodology for data analytics to support the 
tasks. The detailed demonstrations of the proposed methodology are 
presented in Fig. 2. 

3.1. Identification of task-driven data analytics 

In the first step, data analytics activities for AM tasks are identified 
by employing the method developed in the study [5]. The AM task is 
firstly defined by AM researchers or engineers and its target value (V) is 
defined in terms of quality, cost, and delivery or their extensions (e.g., 
specific indicators of the quality). Decision activities involved in the task 
can be represented by a set of components using Input (I), Control (C), 
Output (O), and Mechanism (M) [14]. Data, objects, or materials can be 
represented by inputs. They are transformed by the activity. Controls are 
the essential conditions to ensure that correct outputs are produced by 

the activity. The output is generated through the activity. Mechanisms 
are tools (e.g., equipment, software) that help execute an activity. Based 
on the predefined target value (V) and identified decision activities, the 
decision objective can be stated as “Conducting [decision-making ac-
tivities] for improving/ maximising [V]”. Accordingly, the types of data 
analytics activities (i.e., descriptive, diagnostic, predictive, and pre-
scriptive analytics) can be identified. The example statements of 
different types of data analytics are presented as follows.  

• Descriptive analytics: characterizing [V], [I], [C], [O], and [M].  
• Diagnostic analytics: identifying the relationship between [ICOM] 

and [V].  
• Predictive analytics: predicting [V] based on [ICOM]  
• Prescriptive analytics: prescribing [C] for maximising [V] 

3.2. Data required for tasks, acquisition, and characterization 

3.2.1. Data required for tasks 
Once the data analytics activities and corresponding types are 

identified, the data required for the analytics can be identified, collected 
and characterized in the second step. The connections between different 
types of data analytics are illustrated in Fig. 3. As shown in the figure, 
the lower-level data analytics supports the higher-level analytics while 

Fig. 2. Illustration of the 3-step approach for identifying, collecting, characterising, and fusing data for AM data analytics.  
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the higher-level analytics can reflect the results derived from the lower 
level. For example, descriptive analytics aims to describe or characterize 
the ICOM and V of which the analytics results are used to support the 
diagnostic analytics. Therefore, the data required for descriptive ana-
lytics is ICOM- and V-specific. Diagnostic analytics aims to analyse the 
relationship between ICOM and V, in other words, finding out their 
correlations or casual relations. Data required for this type of analytics 
should be the characterization data supported by descriptive analytics. 
The diagnostic analytics results can reflect whether the characterization 
data should be extended. The goal of predictive analytics is to accurately 
predict the target value V to support prescriptive analytics. Hence, 
supported by the diagnostic analytics, data required for predictive an-
alytics is normally the characterization data of ICOM which has been 
identified to have correlations with V. Prescriptive analytics focuses on 
developing strategies or providing possible solutions to achieve the 
decision-making objectives and is normally supported by the corre-
sponding predictive analytics. The solutions or strategies generated from 
the prescriptive analytics aim to develop control C to obtain the desired 
target value V or obtain desired O based on I and M. 

3.2.2. Data acquisition and characterisation 
Data acquisition is an essential process for data analytics. After the 

data required for the task is determined, it is crucial to figure out how to 
obtain the required data and collect it precisely. The data sources for the 
required data collection can be identified based on 4 main stages of AM 
process. Data and information are generated during each stage where 
some of the data is recorded by AM machine automatically while others 
need to be captured by a specific set of devices. Table 3 presents ex-
amples of data generated during an AM process with corresponding 
process stages, sources, measurement types, data types, and collection 
devices. In the table, the measurement types and devices are not limited 
to the information provided. The required data needs to be characterised 
after it is collected for better understanding and the development of 
corresponding processing strategies to meet the task requirements. 
Normally, data is characterised by the “3V” approach [43,44], volume, 
variety, and velocity, which has been used to characterise AM data in 
previous studies [4]. The volume represents the amount of data received 
during AM processes and is to be processed for further analytics where 
adequate storage capacity and computing power are necessary. Variety 
in data refers to the different types of data (e.g., sensor signals, images, 

videos, text, etc.). Due to the heterogeneity, it is usually hard to simply 
combine the generated data for analytics. Velocity indicates how fast the 
data is being generated. It is crucial for developing appropriate data 
processing and analytics strategies for some particular AM tasks, for 
example, online monitoring. 

3.3. Task-driven data fusion techniques 

Data fusion techniques have different categories due to various 
criteria in multi-disciplinary areas, such as the classification according 
to the relations between the data sources, the abstraction levels, and 
architectures. The data fusion defined in Dasarathy’s architecture [71] is 
adopted in this framework as it considers the nature of input data and 
output data that aligns with the framework and approach of this paper. 
Data fusion techniques in Dasarathy’s architecture fall into 5 categories:  

• Data In-Data Out Fusion (DAI-DAO): The purpose of this type of 
fusion is to improve the accuracy or polish the input data and it is 
normally used to directly process the raw data captured from 

Fig. 3. The connections between different types of data analytics.  

Table 3 
An example of the data generated during an AM process.  

Process stage Data 
source 

Measurement 
type 

Data type Device for 
Collection 

Design 
(process 
stage 1) 

Material Chemistry Multiple Test 
equipment Properties 

Part design Part geometry 3D 
geometry 

AM design 
software 

Process 
planning & 
setting 
(process 
stage 2) 

Process 
planning 

Support 
detection & 
generation 

3D 
geometry 

AM software 

Part location & 
orientation 

Multiple AM software 

Parameter 
setting 

Scan power, 
space, speed, 

Numerical 
value 

Machine log 
files 

Part building 
& post- 
process 
treatment 
(process 
stage 3) 

Process 
monitoring 

Melt pool 
images 

2D image High-speed 
camera, 
infrared 
sensor 

Surface 
morphology 

2D image High-speed 
camera, 
spectral sensor 

Acoustic 
emission 

Time-series 
signal 

Acoustic 
sensor 

Optical 
emission 

Spectral 
sensor 

Temperature Infrared 
sensor 

Vibration Acceleration 
sensor 

Chamber 
conditions or 
machine 
conditions 

System- 
embedded 
sensor 

Power, voltage 
(laser, 
machine, etc.) 

Power meter 

Material 
conditions 

Multiple 
sensors 

Post- 
processing 

Post-process 
type 

Nominal 
information 

Text record 

Process 
monitoring 

Multiple Multiple 
sensors 

Part 
qualification 
(process 
stage 4) 

Part test Porosity Multiple X-ray CT scan, 
acoustic 
sensor, etc 

Mechanical 
properties 

Multiple Test 
equipment 

Surface 
roughness 

3D 
geometry 

X-ray CT scan, 
profilometer, 
etc 

Deformation 3D 
geometry 

3D scan  
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devices. The processing of signals and images is one of its typical 
applications.  

• Data In-Feature Out Fusion (DAI-FEO): the raw data is integrated and 
extracted into a certain level of abstract information in this DAI-FEO 
fusion.  

• Feature In-Feature Out Fusion (FEI-FEO): The majority of feature 
fusion algorithms fall into this category, which incorporates both 
feature inputs and feature outputs. Compared with raw data inputs, 
feature inputs are normally refined and have initially extracted 
characteristics.  

• Feature In-Decision Out Fusion (FEI-DEO): Most fusion models or 
algorithms are classified in this fusion type and they are typically 
used for classification or regression tasks to support predictive ana-
lytics. Decisions are acquired through FEI-DEO fusion based on 
feature inputs (e.g., pattern recognition, target identification, state 
estimation, etc.).  

• Decision In-Decision Out Fusion (DEI-DEO): DEI-DEO fusion involves 
the transfer of certain local or low-level decisions to a global deci-
sion, considering the information from the local or low-level deci-
sion-making nodes. 

Fig. 4. The flowchart of the task-driven data fusion.  
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Fig. 4 presents the flowchart of task-driven data fusion. The data 
required for AM tasks is first collected and characterized. Then the ob-
tained data is judged if it is in the same dimensionality. If yes, the ob-
tained data is pre-processed (e.g., dealing with missing data, abnormal 
data) and processed through data fusion techniques by considering data 
characteristics to support data analytics. The evaluation process is 
conducted based on the task requirements to evaluate the analytics re-
sults and finally choose the fusion technique that best meets the re-
quirements. If the obtained data is not in the same dimensionality, a 
dimensionality reduction process (e.g., feature extraction) is required to 
process the high dimensional data before using the data fusion tech-
niques. The strategy for data fusion techniques follows Dasarathy’s ar-
chitecture. For example, Data In-Data out techniques are typically 
employed for processing in-process sensor signals. 

Typically, researchers and engineers focus on two levels of data and 
information collected from AM production for data analytics, layer level 
and build level. Layer-level data represents the data collected during the 
manufacturing process (e.g., sensor signals) and contains the informa-
tion for each printed layer. The build-level data represents the infor-
mation for the whole build. This data is normally obtained before the 
start of the process (e.g., CAD models, process parameters) or after the 
part is finished (e.g., part test). The target value of the data fusion driven 
by the AM task can be represented by the following Eq. (1). 

V = F
{
fli[xli(t), xli(t − 1), ..., xli(t − k)], fbj

(
xbj

)}
, (i, j, k= 1, ..., n) (1) 

In Eq. (1), t is the discrete-time, xli(t) represents the ith time-series 
measurement data at layer-level that is required by the task at time t, 
k represents the previous kth discrete time, xbj represents the jth build- 
level data, V is the target value, fli and fbj are the techniques used for 
processing the ith layer-level data and the jth build-level data (e.g., 
feature extraction, data refinement techniques) respectively, and F 
represents the data fusion techniques. The data fusion techniques follow 
Dasarathy’s architecture and consider the characteristics of xli(t) and xbj. 
The fli[xli(t), xli(t − 1), ..., xli(t − k)] and fbj(xbj) should be processed to the 
same dimension for fusion. Specifically, for the target value to be ob-
tained at layer-level (e.g., real-time defect detection), the target value of 
the next moment can be estimated based on the data collected at the 
current moment and previous measurement data. It can be represented 
by the following Eq. (2). 

Vl(t+ 1) = F
{
fli[xli(t), xli(t − 1), ..., xli(t − k)], fbj

(
xbj

)}
, (i, j, k= 1, ..., n) (2) 

In Eq. (2), Vl (t + 1) represent the estimated target value at (t + 1) 
discrete time. For the target value to be obtained at the build-level (e.g., 
mechanical properties prediction of printed parts), the layer-level data 
required by the task should be packed to the build-level and the fusion 
can be represented by the Eq. (3). 

Vb = F
{
fli[xli(t), xli(t − 1), ..., xli(1)], fbj

(
xbj

)}
, (i, j= 1, ..., n) (3) 

In Eq. (3), fli[xli(t), xli(t − 1), ..., xli(1)] represents the time-series 
measurement data during the whole build, and Vb is the target value 
at the build-level. A typical fli method is to extract time and frequency 
domain features. 

This section introduces the proposed framework and approaches of 
task-driven data fusion for data analytics in AM. In the next section, case 
studies are presented to demonstrate the feasibility and effectiveness of 
the approach. 

4. Case studies 

To demonstrate the feasibility and effectiveness of the proposed task- 
driven data fusion framework, three case studies on different AM tasks 
were carried out, including AM unit energy consumption prediction, 
mechanical property prediction of additively manufactured lattice 
structures (LS), and investigation of the effect of the remelting process 
on part density. (1) In case study 1, in the first step, the AM task is unit 

energy consumption prediction of printed objects, and the prediction is 
required to be made before the AM process begins. Hence, this task is 
identified as predictive analytics and involves prediction activities based 
on energy consumption-related information. In the second step, for 
predictive analytics, the information or data used for prediction should 
be identified correlated with unit energy consumption, such as material 
information, part geometries, machine parameter settings, etc. The part 
geometry data and material information are generated and collected 
during the part design stage (process stage 1). The machine setting and 
process planning data (e.g., laser power, scan speed, etc.) are generated 
and collected during the process planning and setting stage (process 
stage 2). A power meter is used to measure and collect power con-
sumption data during the AM production (process stage 3). After data 
collection, the data is characterized and used for training the prediction 
model in the third step where the fusion technique should consider the 
time-series patterns and complexity of 3D geometry features. The ac-
curacy of the energy consumption prediction model is used for evalu-
ating the fusion performances. (2) In case study 2, the task is to predict 
the mechanical properties of AM-produced LS with the requirement that 
the prediction model can apply to different materials. Considering the 
requirement, the data and information to be collected should be relevant 
to the mechanical properties of AM-produced parts, such as the used 
material density, LS types, process parameter settings, etc. The me-
chanical property data of printed LS need to be collected from the part 
qualification stage (process stage 4) by using specific test equipment. As 
the LS is complex, the fusion strategies should consider the complexity of 
LS for the prediction model. (3) In case study 3, the AM task aims to 
investigate the joint effect of different remelting process parameters on 
printed part density. Hence, it is diagnostic analytics involving statistical 
correlation analysis. As predictive analytics can provide reflections to its 
corresponding diagnostic analytics, predictive analytics is also adopted 
in this case study. Data required for the task is different combinations of 
remelting process parameters and corresponding part densities of prin-
ted parts. Combined with statistical analysis, the importance of each 
remelting process parameter is analysed based on the predictive model 
for density prediction. Table 4 presents the details of applying the pro-
posed task-driven data fusion framework for the case studies. The spe-
cific fusion techniques adopted for the case studies are demonstrated in 
the following sub-sections. 

4.1. Case study of AM energy consumption prediction 

4.1.1. Data description 
The target system in this experimental study is an SLS machine (EOS 

P700). The collected datasets include data and information from more 
than a hundred production processes with thousands of produced parts. 
The produced products were designed by different AM designers and 
had a variety of shapes and geometries. The information of process pa-
rameters, 6 attributes, was recorded in machine log files for each build, 
including hatch speed, hatch space, hatch power, recoater speed, and 
the values of the dispenser. The material used is polyamide PA2200. The 
unit energy consumption Eu (Wh/g) is used to evaluate the consumed 
energy level and calculated by the following equation. 

Eu =
Et
Ml

(4) 

In Eq. (4), Et is the total energy consumed for each printed layer, and 
Ml represents the weight of each layer. After calculation, the unit energy 
consumption of printed layers ranges from 3.37 to 301.63 Wh/g, with a 
mean value of 14.45 Wh/g. 

4.1.2. Data fusion for energy consumption prediction based on CNN-LSTM 
model 

To implement the predictive analytics, different fusion strategies, 
including (1) FEI-DEO, and (2) FEI-FEO combined with FEI-DEO, are 
considered that directly use feature inputs for predicting the target 
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energy consumption values. For the FEI-DEO fusion strategy, it is com-
mon for the 3D models of the products to have different shapes and 
geometries some of which are difficult to be described by hand-crafted 
features due to their complexity. In conventional feature extraction 
methods, such as statistical features or envelopes of geometries, the 
inner structures are inevitably neglected while the general information 
about geometries is extracted. 3D models in AM systems are sliced into 
layer-wise models with predefined layer thicknesses for layer-by-layer 
construction of physical objects. This facilitates the analysis of 3D ge-
ometries by transforming the sliced models into layer-wise images 
(shown in Fig. 5), which is consistent with the nature of AM processes. 

CNN, a type of deep learning algorithm, consists of multiple con-
volutional layers and pooling layers for automatically extracting and 
learning highly represented features that are used for regression or 
classification tasks in the fully connected layers. The highly represen-
tative features are extracted from images by convolution operations and 
max pooling operations which are defined by the following equations. 

Y(i, j) =
∑

m

∑

n
K(i − m, j − n)*X(m, n) (5)  

yn(i, j) = max(Yn{i, j}) (6) 

Eq. (5) represents the convolution operation where Y (i, j) is the 
output feature map of the next layer, (i, j) denotes the position of the 
output pixel, X is the input image, K is the kernel, (m, n) is the position of 
the kernel element, and * represents the convolution operation. Eq. (6) 
represents the max pooling operation used to reduce the dimensionality 
of the output feature map from the convolution operation. Yn{i, j} are 
the elements in the neighbourhood of (i, j) in the extracted feature map 
at the nth layer andyn(i, j) is the output through the max pooling oper-
ation. The max pooling operation aims to replace the sub-region of 
feature maps with the maximum value in the region. Fig. 6 illustrates the 
convolutional feature extracting process. The final extracted features of 
the layer-wise images are flattened into 1D feature vectors and fused 
with process parameter data in the LSTM neural network for time-series 
energy consumption prediction. The LSTM algorithm is a type of 
recurrent neural network (RNN) and is composed of several cells that 
retain the temporal information of the previous cells. It is typically used 
for learning the sequential patterns within data. Finally, the CNN-LSTM 
model fuses the geometric features with process parameter data for 

Table 4 
The details of applying the proposed task-driven data fusion framework for the case studies.  

Step Sub-items Case study 1 Case study 2 Case study 3 

Step 
1 

AM task AM unit energy consumption prediction Mechanical property prediction 
of LS 

Investigation of the joint effect of remelting processes 
on part density 

Task requirements Predicting before the process begins Applicable to different materials Identifying the relationship between remelt process 
and part density 

Type of the target value Cost Quality Quality 
Involved decision-making 
activities 

Predicting unit energy consumption based 
on process-input data 

Predicting mechanical 
properties of LS manufactured 
by using different materials 

Predicting part density 

Type of data analytics Predictive analytics Predictive analytics Diagnostic analytics 
Step 

2 
Data required for the task Design CAD models, material information, 

process planning data, parameters setting 
data, energy consumed during the process 

Design CAD models, material 
information, parameter setting 
data, the mechanical property of 
final printed parts 

Parameter setting data, remelting strategy, the density 
of final printed parts  

Data 
acquisition 

Process 
stage 1 

AM design software, material test 
equipment 

AM design software, material 
test equipment 

N/A  

Process 
stage 2 

Machine log file Machine log file Machine log file, manual records  

Process 
stage 3 

Power meter N/A N/A  

Process 
stage 4 

N/A Mechanical property test 
equipment 

Density test equipment  

Data characterization Volume 2GB (total) Volume 5 MB (total) Volume >1GB (total)   
Velocity Time-series: 1HZ Velocity N/A Velocity N/A   
Variety 3D models, 1D numerical data, 

time-series sensor data 
Variety 3D models, 1D 

numerical data 
Variety 1D numerical data (porosity is calculated 

based on the 3D reconstruction) 
Step 

3 
Data dimensionality Multi-dimensional data Multi-dimensional data Data in the same dimension 
Data fusion strategy (1) FEI-DEO 

(2) FEI-FEO + FEI-DEO 
FEI-DEO FEI-DEO 

Data fusion techniques 
consideration 

The fusion technique should consider the 
time-series patterns and complexity of 3D 
geometry features. 

The fusion technique should 
consider the complexity of 3D 
geometry features 

Combined with statistical analysis, leveraging feature 
importance ranking based on information entropy in 
predictive models for density prediction 

Evaluation method Prediction accuracy Prediction accuracy Prediction accuracy  

Fig. 5. An example of transforming the CAD model to sliced layer-wise images for analysis.  
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predicting the unit energy consumption of each printed layer. For 
comparison, different ML models, including light gradient boosting 
machine (LGBM), XGBoost, RFs, and ANN are adopted for energy 

consumption prediction where convolutional features from CNN are 
used as inputs. 

For the FEI-FEO combined with the FEI-DEO fusion strategy, as the 
features (over thousands of feature vectors) learned from layer-wise 
images through convolution operations are sparse and contain redun-
dant features, the learned features are refined by typical fusion tech-
niques before being used as inputs for FEI-DEO fusion in the LSTM 
model. PCA, kernel PCA (KPCA), locally linear embedding (LLE), and 
locality preserving projections (LPP) fusion techniques are applied to 
refine the features while simultaneously retaining essential information. 
The proposed approach is illustrated in Fig. 7. 

4.1.3. Prediction results 
By using AM analysis software (Autodesk Netafbb), the geometry 

information of different products was obtained from CAD models. The 
layer-wise images were obtained from sliced models and saved in BMP 
format. The evaluation metrics for the fusion models are the root mean 
squared error (RMSE) and the coefficient of determination (R2). The 
evaluation metrics are calculated by the following equations. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
s
∑s

i=1
(yi − ŷi)

2

√

(7)  

R2 = 1 −

∑s
i=1(ŷi − yi)2

∑s
i=1(ȳi − yi)2 (8) 

Fig. 6. The illustration of the feature extraction process of layer-wise images of 
sliced CAD models. 

Fig. 7. The proposed approach for energy consumption prediction based on the CNN-LSTM model.  
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In Eqs. (7) and (8), s represents the number of samples, yi, ŷi, and ȳ 
denotes the actual, predicted, and mean value of the outputs, respec-
tively. There were more than 10,000 layer-wise images used for model 
training and more than 3000 samples used for validation. In the first FEI- 
DEO fusion strategy, the performances of different models are shown in 
Fig. 8. In the figure, the proposed CNN-LSTM model had the best result 
with an RMSE of 7.04 while RFs performed the worst with an RMSE of 
12.35. Fig. 9 shows the comparisons of the performances between the 
original CNN-LSTM model and the models with different fusion tech-
niques. The CNN-LSTM model combined with the LLE fusion algorithm 
obtained the best results in terms of RMSE (5.38) and R2 (0.72) while the 
CNN-PCA-LSTM had the largest error with an RMSE of 8.79. The CNN- 
KPCA-LSTM had the worst performance in R2 (0.44). Obviously, after 
applying FEI-FEO strategies, the performances of most prediction 
models are improved. Information loss could occur during the FEI-FEO 
process. However, the fused features are normally more informative 
and less likely to lead to underfitting problems when the number of 
training samples is limited. 

4.2. Case study of predicting mechanical properties of LS 

4.2.1. Data description 
The AM data used in this experimental study, including 57 samples, 

is collected from the 3D printing research group at Chongqing University 
[62]. The parts were fabricated by SLM machines using Ti6Al4 V and 
316 L stainless steel powders. Different LS, strut structures and 
strut-based and sheet-based TPMS structures, are included in the sam-
ples. The final printed parts are composed of LS units. The examples of 
LS are shown in Fig. 10. The mechanical properties of produced LS were 
tested and indicated by the elastic modulus and yield strength. The 
tested elastic modulus of the final printed LS ranges from 37.5 to 9309 
MPa, with a mean value of 3299 MPa. The tested yield strength of the 
final LS ranges from 1.9 MPa to 590.3 MPa, with a mean value of 154.88 
MPa. 

4.2.2. Data fusion for mechanical properties prediction based on ML models 
LS produced by AM has been increasingly adopted in industries, such 

as the aerospace industry, due to their adjustable mechanical properties 

and light weights. LS are normally complex and their geometric features 
are hard to be extracted and analysed. Methods such as point clouds and 
feature curves are typically employed for analysing LS geometries. 
However, there are also drawbacks when applying these methods, such 
as too much data generated through point clouds, and hard to represent 
the internal shapes and structures of LS. Therefore, considering the 
mechanical properties of printed parted are correlated with the solid 
proportion of LS units, the geometric features of LS can be extracted and 
represented by the entropy of their voxelized 3D models [62]. By vox-
elizing a 3D model, a new model consisting of pixels of a specified size is 
created and positioned in a space with an R3 resolution. This space 
contains empty and solid pixels to represent the geometries of LS. In this 
experiment, 100 × 100 × 100 resolution was used. The LS units were 
first voxelized into 3D voxels of which the porosities were calculated. 
Following are the equations Eqs. (9) and ((10)) used to calculate entropy 
[72]. In the equations, P1 and P2 represent the proportions of solid and 
empty voxels respectively. 

E = − P1log2P1 − P2log2P2 (9)  

P1 + P2 = 1 (10) 

Since it is hard to distinguish different LS unit models with the same 
entropy but have different geometries, the units were divided into 20 
subspaces and the entropy of each subspace was calculated, illustrated 
in Fig. 11. The direction for dividing aligns with the fabrication direction 
Z-axis. Then the entropy of an LS unit is represented by the entropy 
vector that includes the entropy of 20 subspaces. 

Hence, the geometric features of LS can be represented by the en-
tropy vector of the unit, the unit length, and the porosity of the unit. The 
density and elastic modulus of used materials and the machine process 
parameters are closely related to the mechanical properties of the final 
printed parts. These data and information are taken into consideration 
for mechanical property prediction. FEI-DEO fusion is adopted where 
the ML algorithms are used to fuse the features for predicting mechan-
ical properties. Fig. 12 shows the developed fusion approach for the 
mechanical properties prediction of LS. 

Fig. 8. The performances of different prediction models.  
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4.2.3. Prediction results 
The elastic modulus and yield strength are used as indicators of part 

mechanical properties. Figs. 13 and 14 show the prediction results for 
elastic modulus and yield strength respectively. The RMSE and R2 were 
used to evaluate the model’s accuracy. As shown in the figures, the RFs 
achieved the best results in RMSE (556.80 MPa) for elastic modulus 
prediction with an R2 of 0.76. Also, it had an RMSE of 28.28 MPa with an 
R2 of 0.78 for yield strength prediction. The k-NN algorithm had the 
worst performance with an RMSE of 1417.96 MPa for elastic modulus 
prediction and an RMSE of 81.31 MPa for yield strength prediction. The 
SVM had the best performance in R2 (0.91) for elastic modulus predic-
tion while ANN had the best performance in R2 (0.96) for yield strength 
prediction. 

4.3. Case study of investigating the effect of the remelting process on part 
density 

4.3.1. Data description 
In this experimental study, both AM and remelting processes were 

conducted on an SLM machine (EP-M250) where the used material was 
18Ni-300 maraging steel [73]. The schematic diagram of the remelting 
process is shown in Fig. 15 where the arrows in red represent the remelt 
scan paths. The remelt angle in Fig. 15 is 90◦ Different process param-
eters combined with remelting strategies were used to investigate the 
relationship between remelting process and part density. The parts were 
manufactured in a cube shape with dimensions of 8 × 8 × 8 mm3. 

Fig. 9. The comparisons of performances between different fusion techniques.  

Fig. 10. The examples of LS in the experimental study.  

Fig. 11. Obtaining the entropy vector of LS units based on the entropy 
of subspaces. 
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4.3.2. Data fusion for identifying the relationship between remelt process 
and part density 

To investigate the effect of the remelting process on part density, the 
statistical correlation between remelt process settings and relative 
density was first analysed based on the Pearson correlation coefficient 
(PCC). The PCC is calculated by the following Eqs. (11) where rXY is the 
PCC between variables X and Y, Xand Yrepresent the mean values of X 
and Y respectively. 

rXY =

∑n
i=1(Xi − X)(Yi − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Xi − X)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(Yi − Y)2

√ (11) 

PCC analysis only measures the linear relationship between vari-
ables, therefore, feature importance ranking based on the information 
gain is employed for further investigation. Information gain measures 
the reduction in uncertainty about the target variable after splitting the 
dataset on a particular feature. The information gain of the tree-based 
algorithms is calculated by the following equations. 

H(D) =
∑K

k=1
− pilog2pi (12)  

H(D|A) =
∑n

i=1

|Di|

|D|
H(Di) (13)  

Gain(D,A) = H(D) − H(D|A) (14) 

In Eqs. (12) - (14), H (D) is the entropy of dataset D relative to the K- 
wise classification, pi denotes the proportion of D that belongs to class 
i. Di denotes the subset of dataset D where feature A takes the value i. |Di| 
is the number of instances in Di, and |D| is the total number of instances 
in D. H (D | A) represents the entropy of D conditional on feature A, and 
Gain (D, A) represents the information gain of feature A relative to the 
dataset D. For the quality of the part density, the samples were classified 
into 3 quality levels: low, medium, and high. The FEI-DEO fusion 
strategy is adopted where the remelting process setting data is used for 
part density level prediction. Based on the prediction result, the 
importance of features is analysed through information gain. The 

Fig. 12. The proposed fusion approach for mechanical properties prediction of 
LS parts. 

Fig. 13. The performances of different prediction models for elastic modulus prediction.  
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approach is illustrated in Fig. 16. 
The prediction model used in this case study is XGBoost which is an 

ensemble learning algorithm of decision trees. It provides a parallel tree 
boosting for classification, regression, and ranking tasks. 

4.3.3. Analytics results 
As shown in Fig. 17, the PCC between each feature is calculated and 

presented. From the results, the laser power and scan speed tend to have 
negative correlations with part density while the remelt angle and hatch 
space tend to have positive correlations. However, there is no strong 
linear relationship between the remelting process parameters and part 

density that has been observed. 
For further investigation, the feature importance ranking through 

predictive analytics was conducted. Different tree-based algorithms, 
RFs, XGBoost, LGBM, and Adaptive Boosting (AdaBoost), were trained 
for part density level classification based on the given remelting process 
parameters. Besides tree-based algorithms, k-NN was also adopted for 
comparison. The evaluation metric for evaluating the classification is 
accuracy which is calculated by the following equation. 

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(15) 

In Eq. (15), TP represents the number of correctly predicted positive 
samples, FP represents the number of incorrectly predicted positive 
samples, TN is the number of correctly predicted negative samples, and 
FN is the number of incorrectly predicted negative samples. The per-
formances of different models are shown in Fig. 18. XGBoost achieved 
the best classification accuracy (77.8%) while the k-NN had the worst 
accuracy (60.7%). Based on the XGBoost model, the feature importance 
ranking of remelting process parameters on part density level is shown 
in Fig. 19 by calculating the information gain. It can be seen from the 
results that the scan speed has the most significant impact on part 
density level, followed by the hatch space. However, there is no strong 
relationship observed between laser power and part density level. The 
information gain of layer thickness on the prediction model is zero as the 
value of layer thickness in this experimental study keeps the same. More 
experiments need to be carried out for further investigation. 

5. Discussion 

5.1. Advantages and limitations of the proposed approach 

The proposed task-driven data fusion framework and approach 
provide guidelines for data analytics to support decision-making activ-
ities in AM when dealing with heterogenous and multi-source AM data 
and information. In the increasingly data-intensive environment of AM 
industry, the issues of what data and information should be collected 
and how to leverage them to support AM production becomes crucial. 
Additionally, the data involved in AM systems vary not only in time 

Fig. 14. The performances of different prediction models for yield strength prediction.  

Fig. 15. Schematic diagram of the remelting process.  

F. Hu et al.                                                                                                                                                                                                                                       



Journal of Industrial Information Integration 34 (2023) 100484

16

scales but spatial scales, which builds up barriers to joint analysis. 
Driven by AM tasks, the proposed approach helps AM engineers and 
decision-makers systematically identify the data and information 
required for tackling the tasks and implement data fusion techniques 
based on the data characteristics to best fit the task requirements. It 
provides a methodological way to collect, fuse, analyse, and evaluate the 
multi-source and multi-dimensional data and information in data ana-
lytics for AM. Limited by the type of fusion architecture, the proposed 

approach focuses on leveraging the AM data for supporting decision- 
making while the fusion of the distributed AM nodes, networks, and 
systems is not considered. The fusion for the system level of AM will be 
explored in future studies. In addition, when adopting data-driven 
methods to tackle AM issues, the quality of data should be ensured. 
Sensors must be calibrated and the status of AM machines should be 
checked regularly to avoid errors when collecting data. However, the 
performance of developed models will inevitably be affected by 

Fig. 16. Data fusion for identifying the relationship between the remelting process and part density.  

Fig. 17. PCC between remelting process parameters and part density.  
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uncertainties. Process stability and repeatability might also influence 
the accuracy of predictions. In some cases, environment variations could 
affect the target value and they should be treated as variables in data 
analytics. 

5.2. Data considered in analytics 

AM data used in analytics vary in terms of type, volume, and 
dimension. The variety and heterogeneity of data lead to challenges 
when jointly analysed. Given that the characteristics of the generated 

data normally depend on the nature of AM processes and the collection 
devices, essential data pre-processing and dimensionality reduction 
processes are required for data alignment before analysing. During data 
analytics, the performances of different analytical models vary due to 
the differences in their capabilities when dealing with different kinds of 
data. It is crucial to employ the analytical models that best fit the data 
structures. For example, in case studies 1 and 2, 3D CAD models were 
both involved in predictive analytics. However, different feature 
extraction processes and fusion models were considered. The layer-level 
energy consumption prediction in case study 1 should consider the time- 

Fig. 18. The accuracy for classifying part density levels of different models.  

Fig. 19. The feature importance ranking of remelting process parameters.  
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series patterns while case study 2 should consider how the LS of parts 
can be precisely represented. Also, too many data points generated after 
feature extraction or data fusion process should be avoided in some cases 
as it normally requires considerable computational capabilities for 
further data analytics. In addition, the data consideration in analytics 
needs to take the task requirements into account. For example, imple-
menting an X-ray CT scan for part density calculation is accurate but 
fairly time-consuming. Thus, using acoustic emission and Archimedes’ 
principle for density tests are preferable alternatives in some cases. 

5.3. With fusion and without fusion 

Large amounts of AM data are generated from labs and industries 
nowadays, offering huge opportunities for data analytics to improve the 
understanding of AM processes and support decision-making activities. 
However, some of this data can contain crucial information related to 
the decision-making activities while some data is redundant. The in-
clusion of redundant data or irrelevant data for data analytics not only 
affects the performances of analytical models where conflicts may occur 
but causing resource inefficiency. Therefore, when comes to data fusion 
of multi-sourced data, the sources to be included should be the most 
relevant to the decision-making activities. Additionally, some data 
fusion techniques provide a refining process of data where noise data, 
outliers, or redundant data can be reduced. However, the refining pro-
cess can also lead to considerable information loss that ultimately 
jeopardizes the performance of data analytical models. Considering this, 
evaluations are essential for the assessment of fusion processes on 
whether the data should be included or whether the refining processes 
are appropriate. Evaluation criteria from different perspectives should 
be developed in future research. In the case studies, this paper adopted 
RMSE for evaluating the regression performances of different models, as 
RMSE is the most effective and widely employed indicator for assessing 
regressions. With the task requirements becoming more complex and 
diverse, other evaluation metrics should be employed. 

5.4. Optimization between performance and task requirements 

When evaluating the performances of analytics models supported by 
data fusion techniques, the results derived from the analytical models 
should best fit the AM task requirements. However, in some cases, for 
example, real-time process monitoring requires the time for inference of 
the analytical model to be as short as possible. This leads to the pursuit 
of a fast reaction of models while the data and information to be 
involved are inevitably reduced. Some essential information may lose 
during the shrinking or refining process of the data, which ultimately 
affects the model’s performance. In addition, apart from the data and 
information to be considered, the complexity of the analytical model 
also needs to be reduced to avoid extra computing time. Therefore, the 
optimization between model performance and task requirements is 
critical and challenging. Establishing evaluation models for specific AM 
tasks to find optimized solutions between analytical model performance 
and task requirements is a promising strategy. 

6. Conclusions 

This paper proposed a task-driven data fusion framework that pro-
vides guidelines for integrating heterogeneous data from various sources 
or modalities to support decision-making activities in AM tasks. The 
proposed framework and approach fill the research gap that lacks a 
methodological way to identify, collect, and leverage the multi-source 
and multi-dimensional data for data analytics in AM. In addition, tar-
geted at the characteristics of the collected data and AM task re-
quirements, different data fusion strategies are applied to refine the data 
and improve the accuracy of the target value. By considering the in-
formation from different sources, measurements, and modalities, the 
performances of the models for obtaining target values are normally 

improved. However, it is worth noting that evaluations of the fusion are 
essential as some fusions result in considerable information loss and 
jeopardize models’ performances. Three case studies on different AM 
tasks were carried out to demonstrate the feasibility and effectiveness of 
the proposed approaches, including AM energy consumption prediction, 
mechanical property prediction of additively manufactured LS, and 
investigation of the joint effect of remelting process on part density. The 
experimental results show that the applied data fusion strategies and 
techniques can effectively integrate the data with different dimensions, 
structures, and types for data analytics to support decision-making ac-
tivities. Due to the strong capability in learning hidden information 
within data and modelling complex nonlinear relationships, ML has 
been widely used for fusing data to obtain desired target values. 
Therefore, in the FEI-DEO fusion, ML algorithms prevail. Besides, in the 
case studies, as the task requirement is accurate prediction, RMSE and 
R2 were adopted as indicators to evaluate the fusion in regression tasks. 
Accuracy was used as the indicator for the classification task. The fusion 
model with the best performance was used to obtain the target value. In 
different AM tasks, different requirements can be attached, thus, 
different evaluation methods should be applied. Compared with tradi-
tional single-dimensional and single-modality data analytics, the pro-
posed task-driven data fusion framework and approach not only 
systematically identify and collect the data required for the AM task but 
effectively leverage the information from multi-sources, measurements, 
and modalities to support decision-making activities. It has great po-
tential to be applied in AM industry to help improve AM production. 
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