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When a forecast of the total value over several time periods ahead is required, forecasters are presented
with two temporal aggregation (TA) approaches to produce required forecasts: i) aggregated forecast (AF)
or ii) aggregate data using non-overlapping temporal aggregation (AD). Often, the recommendation is to
aggregate data to a frequency relevant to the decision the eventual forecast will support and then pro-
duce the forecast. However, this might not be always the best choice and we argue that both AF and
AD approaches may outperform each other in different situations. Moreover, there is a lack of evidence
on what indicators may determine the superiority of each approach. We design and execute an empirical
experiment framework to first explore the performance of these approaches using monthly time series of
M4 competition dataset. We further turn the problem into a classification supervised learning by con-
structing a database consisting of features of each time series as predictor and model class labelled as
AF/AD as response/outcome. We then build machine learning algorithms to investigate the association
between time series features and the performance of AF and AD. Our findings suggest that both AF
and AD approaches may not consistently generate accurate results for every individual series. AF is
shown to be significantly better than AD for the monthly M4 time series, especially for longer horizons.
We build several machine learning approaches using a set of extracted time series features as input to
predict accurately whether AD or AF should be used. We find out that Random Forest (RF) is the most
accurate approach in correctly classifying the outcome assessed both by statistical measures such as mis-
classification error, F-statistics, area under the curve, and a utility measure. The RF approach reveals that
curvature, nonlinearity, seas_pacf, unitroot_pp, mean, ARCHM.LM, Coefficient of Variation, stability, lin-
earity, and max_level_shif are among the most important features in driving the predictions of the model.
Our findings indicate that the strength of trend, ARCH.LM, hurst, autocorrelation lag 1, unitroot_pp, and
seas_pacf may favour AF approach, while lumpiness, entropy, nonlinearity, curvature, and strength of
seasonality may increase the chance of AD performing better. We conclude the study by summarising
the findings and present an agenda for further research.

� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction One common assumption in time series forecasting is that the
Timeseries forecastinghasbeenused formanydecades to inform
decisions in various sectors such as business, finance, economy, sup-
ply chain andhealthcare [35].With advances in technology, data can
oftenbe collectedat the timeof transactionor service, e.g. call arrival
times in a call centre, point of sales in retail, or incidents attended in
an ambulance service. In electronic databases, temporal data are
generally stored in a single level of granularity.
time series granularity matches the forecast requirement, i.e. to
produce daily forecasts, we use daily time series. However, the level
of time series granularity does not necessarily match the level of
forecast granularity, driven by the decision-making process. Indeed,
in practice the level of temporal granularity in the forecast require-
ment is often lower than the existing time series granularity. For in-
stance, while a forecast might be required at the annual (daily)
level, the time series is available at monthly (hourly) level. We also
recognise that there might be cases where forecast granularity is
higher than the existing series, however this requires introducing
a disaggregation mechanism and is not covered in this study.

Generally, forecast granularity level and its horizon are deter-
mined by decisions made in the light of forecasts. In this paper,
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we consider a situation where an original time series has a higher
temporal granularity (e.g. monthly) than the required forecast (e.g.
annual). We aim to generate a forecast of the total value over sev-
eral time periods ahead, which is referred to as forecast horizon ag-
gregation [30] or forecast over the lead-time period [42].

Producing an aggregated forecast over several periods is re-
quired in many situations to inform decisions about capacity plan-
ning, inventory management, logistics, procurement, and others
[32,48]. For example, generating a forecast for the whole lead-
time period is often required to determine the level of safety stock
in inventory management. In an emergency department, while the
historical hourly time series of admission is available, daily fore-
casts might be required for rostering, while quarterly forecasts
might be useful for resource planning [37]. In a supply chain, year-
ly forecasts might be used for procurement and budgeting deci-
sions, while the time series might be available at a monthly
granularity [29].

A key question then to be answered is: should the original time
series be used to generate the forecast for the required horizon and
then sum them up to obtain the forecast over time periods (lead-
time), i.e. Aggregate Forecast (AF), or should we first aggregate
the time series to match the forecast requirement granularity
and then extrapolate directly at that level, i.e. Aggregate Data
(AD). This has been illustrated in Fig. 1.

For the later, we often use the non-overlapping temporal ag-
gregation (NOTA) approach. Using this approach, the original ser-
ies is divided into a consecutive non-overlapping bucket of time,
starting from the most recent period backward. The size of the
bucket is equal to the number of time periods required in fore-
casting, which is referred to as aggregation level, m. The aggregat-
ed series is then created by summing up the values inside each
bucket. The number of aggregate observations is N=m½ �, where N
is the number of periods, and the x½ � operator returns the integer
part of x [40]. When we aggregate data to lower frequency do-
main such as annual using NOTA, we loose some information
and AD is losing some of the sensitivity compared to AF. AF
may better capture detailed information at the higher frequency
resulting in better accuracy. However, this might be also affected
by forecast horizon, as using AF might not be useful when fore-
casting far ahead into the future.

There are some studies that investigate this question when con-
sidering forecasting at one single level of aggregation [38,39,24] or
forecast combinations using multiple temporal aggregation levels
[23] or temporal hierarchies [2]. These approaches have been ap-
plied [32,33] in both intermittent demand [31] and fast-moving
demand contexts [2].

The overall conclusion is that both aggregate forecast and ag-
gregate data approaches may outperform each other. Their perfor-
mance may depend on the presence of the autocorrelation in the
original series, aggregation level, forecast horizon and the em-
ployed forecasting method (see, e.g., Boylan and Babai [6];
Rostami-Tabar et al. [41]; Rostami-Tabar et al. [39]; Nikolopoulos
et al. [32]). We should note that this study only applies to the case
of a single level of aggregation, we can extend this study to exam-
ine the case of using multiple level of aggregation, temporal hier-
archies or multi-output forecast in the future.

Despite recent developments in this area, there is still a lack
indication on which temporal aggregation approach should be
used to forecast a time series, given its features. To our knowledge,
this is the first study that explores the association between time
series features and the model performance in the context of fore-
casting by temporal aggregation (TA). The need for such research
has also been emphasised by Babai et al. [4] in a review article. This
study contributes to the area of time series forecasting and intends
to shed lights on how the performance of temporal aggregation ap-
proaches (i.e. both AF and AD) is associated with time series fea-
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tures. To that end, we use 48,000 time series from the monthly
M4-competition dataset. First, we examine how the features of
time series changes going from a high granularity (e.g. monthly)
to a low granularity (e.g. annual) level. We then build machine
learning models to describe the association between the original
time series features and the forecasting performance of temporal
aggregation approaches. Next, we use models’ outputs to discover
which features are critical in predicting accurately the perfor-
mance of AF and AD, followed by an interpretation of features as-
sociated with the forecasting performance. This can help us to
provide recommendations to forecasters and decision-makers on
which approach to use.

The research objectives are as following:

1. We measure 42 features of the time series at the original level
(e.g. monthly), and at various levels of temporal aggregation
(e.g. quarterly, annual) using the monthly M4 competition
dataset.

2. We reveal how time series features change as we aggregate
data from high frequency (e.g. monthly) to low frequency (e.g.
annual).

3. We assess the forecast accuracy performance of AD and AF ap-
proaches for the forecasts generated by the Exponential
Smoothing State Space (ETS) model.

4. We build machine learning models using time series features as
predictors to accurately predict which approach (i.e. AD or AF)
performs better.

5. We examine the association between time series features and
the forecasting performance of these approaches.

The rest of the paper is organised as follows: Section 2 provides a
brief overview of the use of temporal aggregation in time series
forecasting. Section 3 describes the empirical experiment design,
forecasting approaches, method and forecast accuracy metrics. Sec-
tion 4 describes time series features and presents the time series
features for monthly M4 competition dataset, followed by analysing
how non-overlapping temporal aggregation affects time series fea-
tures. We then examine the forecasting performance of AD and AF
approaches. Section 5 presents machine learning algorithms and
their performance on accurately classifying the performance of AD
and AF for a given time series and its features. Section 6 presents
the important features and their connection with the performance
of temporal aggregation approaches. Section 7 provides concluding
remarks and an agenda for future research.
2. Research background

In practice, a time series is generally stored at a single level of
time granularity. When the time series is available at a higher level
of granularity (e.g. hourly), it is often expected to generate a fore-
cast at a lower granularity level (e.g. daily) over several time peri-
ods. Therefore, a forecast of the total value over several time
periods ahead (i.e. aggregation level) is required. In these situation-
s, an obvious option, that is often recommended in practice [11],
would be to first transform the higher granularity time series into
the lower granularity that matches the forecast requirement, and
then produce the forecast. The transformation is generally per-
formed using non-overlapping temporal aggregation. Another ap-
proach is to aggregate forecast rather than data. In that case, we
first produce base forecasts using the higher granular time series
for the forecast horizon (i.e. multiple periods ahead) and then ag-
gregate them.

The application of NOTA approach in time series forecasting has
been initially studied in the econometric literature. They evaluated
how NOTA may change the structure of Autoregressive Integrated



Fig. 1. Aggregate forecast vs. aggregate data approaches. Assuming a montly time series is available and a forecast over one quarter (aggregation level = 3 months) is required.
We first generate forecast for 3 periods ahead and then sum them up to create forecast over the quarter (Forecast by AF approach). Then, we create the temporally aggregated
series by dividing the original series into the block of 3 periods. Next, we forecast for 1 period ahead (Forecast by AD approach).
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Moving Average (ARIMA) processes [46,36]. This literature is in
favour of aggregate data using NOTA. They show that it leads to ac-
curacy gains under the assumption of ARIMA process and using an
optimal conditional mean forecast.

Rostami-Tabar et al. [38,39] further explored analytically the ef-
fect of NOTA on forecasting performance at both aggregated fore-
cast horizon (lead-time) and the disaggregated level using Mean
Squared Error (MSE). They assume that Single Exponential
Smoothing (SES) forecasting method is applied to an ARIMA(1,1)
time series. They determine the conditions under which aggregate
data outperforms the aggregate forecast approach. They show that
the superiority of each approach depends on the process parame-
ters that are affecting the time series features, parameters of the
forecasting method, and aggregation levels. They concluded that
NOTA performs better when autocorrelation is not highly positive.
In contrast, they show that high positive autocorrelation as one of
the key features of time series, favours AF approach. Rostami-Tabar
et al. [40] evaluated the impact of NOTA on forecasting demand
and orders in a supply chain. They assume that the demand time
series follows an ARMA(1,1), the stock policy is order-up-to-level
and optimal forecasting is used to produce forecasts. They showed
that although the NOTA does not lead to an accuracy improvement
in terms of MSE at the retailer’s level, however it can lead to MSE
reduction at the manufacturer level and a reduction of the bull-
whip effect. Mohammadipour and Boylan [30] also assessed ana-
lytically the effect of temporal aggregation when the time series
process is integer autoregressive moving average, INARMA(p; q),
processes. They demonstrated that aggregate data leads to lower
MSE compared to aggregate forecast approach when the value of
the autoregressive parameter is high.

The potential forecasting benefit of TA was investigated by
Willemain et al. [47] and Nikolopoulos et al. [32] in the context
of intermittent time series. Willemain et al. [47] empirically
compared the forecast accuracy improvement of AF and AD ap-
proaches. They showed that aggregating time series can lead to
more accurate forecasts. Nikolopoulos et al. [32] showed that
NOTA approach may offer considerable improvements in terms
of forecast accuracy. Further studies [3,34,23,44] confirmed em-
pirically the forecast and stock control improvement resulted
from NOTA. These studies covered both intermittent and fast
moving time series.

Athanasopoulos et al. [1] investigated the benefits of aggregate
forecast versus aggregate data in an empirical study consisting of
366 monthly series and various forecasting methods including
state space models for exponential smoothing (ETS), ARIMA, and
Theta. Their findings are in favour of aggregating forecasts. They
3

found that aggregating forecast from either monthly or quarterly
to yearly leads to more forecast accuracy improvements than year-
ly forecasts generated from the NOTA yearly series. Using time ser-
ies of order and point-of-sale in a retail supply chain, Jin et al. [20]
assessed the benefits of NOTA for forecast accuracy. They found
that NOTA leads to more accurate forecasts when the autocorrela-
tion of time series is not highly positive. In a study where a high
frequency time series is used, Luna and Ballini [26] showed that
in daily forecast of cash withdrawals, NOTA results in similar or
more accurate forecast than using hourly series.

Some studies have investigated the benefits of producing fore-
casts using multiple time series resulted from NOTA approach, cor-
responding to multiple levels of aggregation. Forecasts are
generated at each level and then combined to obtain the required
forecast. Kourentzes et al. [23] recommended using multiple levels
of aggregation and combining the separate forecasts (MAPA). Mul-
tiple studies in intermittent time series forecasting, promotional
modeling and inventory management highlighted the gain of using
multiple TA levels [33,22,5]. Athanasopoulos et al. [2] proposed
Temporal Hierarchies Forecasting (THieF), which creates multiple
temporally aggregated series using NOTA, generate forecasts and
then reconciles them to obtain the required forecast.

A stream of research investigates the use of features in time ser-
ies forecasting based on multiple time frequency spaces in visibil-
ity graphs. Liu et al. [25] proposed a multiple time–frequency
spaces fuzzy interval forecasting model using datasets from energy
and finance. The original series is decomposed into different com-
ponents, which are then used to reconstruct a group of time series
at different temporal scales. Next, a prediction interval forecast is
generated for the different reconstructed time series that are then
aggregated using the induced-ordered weighted averaging aggre-
gation operation to generate the final forecast. Hu and Xiao [12]
suggested a novel time series forecasting model based on a new
metric measuring nodes similarity in visibility graph. In the pro-
posed model, time series is first converted into a visibility graph.
Next, similarities between nodes are determined and finally fore-
casts are generated using the normalized similarity distribution.
Hu and Xiao [13] investigated the features of time series to gener-
ate accuracy forecasts from the perspective of fuzzy interaction be-
tween nodes. They used a fuzzy cognitive visibility graph to
convert the time series into a pair of directed weighted graphs.
Then, the weighted multi-subgraph similarity is developed to cal-
culate the similarity between nodes. They then proposed a novel
forecasting method for time series forecasts based on fuzzy simi-
larity distribution that can efficiently capture the spatio-temporal
dependency in the time series data. The empirical results
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confirmed the benefits of leveraging fuzzy interaction for time ser-
ies forecasting based on the visibility graphs.

Although all approaches including AF, AD and using multiple TA
levels have demonstrated forecasting gain, arguably none of them
are suitable to be used in every situation. Almost all studies in the
literature reports an overall accuracy (e.g. average) rather than ac-
curacy at the time series level. We argue that some time series fea-
tures may favour using a particular approach over others.
However, there is no study in the literature that investigates the
potential association between time series features and temporal
aggregation performance, which is the main aim of this study.
3. Experiment framework

In this section, we describe the design of the empirical experi-
ment used in this study. We first present the study framework,
then describe AD and AF approaches and the ETS forecasting
method, followed by the forecasting error metrics.

Fig. 2 illustrates the framework of the experimental design per-
formed in this study. The framework consists of several steps
which are described as follows:

1. The original monthly time series is transformed into temporally
aggregated series for a given aggregation aggregation level, m

2. A set of features is extracted for the original and aggregated
time series.

3. The ETS forecasting method is applied to the original series to
generate forecast for m periods.

4. Forecasts per each period are added up to obtain the forecast
over the aggregated horizon (forecasts from AF).

5. Forecasts are generated using ETS model for temporally aggre-
gated series (forecasts from AD).

6. Forecast accuracy is calculated for each series.
7. A database consisting of time series features and the perfor-

mance of the AF and AD approaches is constructed. Time series
features are used as an input (predictors) and the winning ap-
proach (labeled as AF or AD based on the minimum error met-
ric) creates the response variable.

8. Several machine learning (ML) models are built to accurately
predict the superiority of AF/AD approaches using the data cre-
ated in step 7. These models include: 1) Logistic regression (LR),
2) Linear discriminant analysis (LDA), 3) Quadratic discriminant
analysis (QDA), 4) K-Nearest Neighbors (KNN), 5) Lasso, 6) Gen-
eralised Additive Model (GAM), 7) Boosting, 8) Support Vector
Machine (SVM), 9) Random Forest (RF), 10) Google Brain Ten-
sorFlow model (TensorFlow), 11) Facebook’s Deep learning
Torch model based on tensors & neural networks (DL Torch),
12) extreme gradient boosting (XGBoost), 13) recurrent neural
network (RNN), 14) convolution neural network (CNN), 15)
feedforward neural network (FNN) and 16) Dynamic Time
Warping (DTW). Researchers are referred to James et al. [19]
for a detail description of some of these approaches.

Given the outperformance of RF among all models used in this
study, we will describe it in more details in Section 5. The model
can help us to identify the most important time series features that
lead to the outperformance of RF. Moreover, it can also reveal how
time series features are connected to the performance of AD and AF.

Due to the page restrictions, details regarding the initial set up,
method of optimization and cost function of these algorithms are
not presented in the paper. We should note that we have conduct-
ed a comprehensive study and searched for optimal setups of each
model rather than using automatic MLmodels. Additional informa-
tion about the setup of models can be found in the Appendix or in
the GitHub repository.
4

3.1. Forecasting approaches

We consider two different approaches to produce the forecast
horizon aggregation (i.e. lead-time). Given that the original time
granularity is monthly, we aim at generating forecasts for various
aggregation levels that corresponds to 2-monthly (m = 2), quarter-
ly (m = 3), 4-monthly (m = 4), semi-annual (m = 6) and annual
(m = 12) time granularity.

The first approach is to aggregate forecasts (AF). This approach
first involves generating base forecasts for m periods ahead. Base
forecasts are then aggregated to create forecasts at the aggregation
horizon level. The main advantage of AF is that there is no loss of
information from the data because initial base forecasts are gener-
ated at the lowest disaggregated level. AF approach can capture the
dynamics of the high frequency series; however they may be noisy
and difficult to model. In the case of stationary time series, the AF
approach may produce a more accurate forecast when the autocor-
relation of the underlying demand series is highly positive [39].
Conversely, there is an absence of research in the case of non-
stationary time series. Therefore, this research is dealing with both
stationary and non-stationary time series and provides insight into
the perplexity of interactions between different factors that influ-
ence AF approach performance.

The second approach is to aggregate data (AD). This approach
consists of applying the non-overlapping temporal aggregation ap-
proach to the original series, using the time granularity level for
which the forecasting is needed. Following that the process of fore-
casting the temporally aggregated series for one step ahead is per-
formed. Benefits of AD can be seen in the reduction of the noise in
the data, as well as in revealing the smoother patterns that exist in
the series. The NOTA of the series usually sheds light on the key
time series features, which are more notable and clearer as we per-
form the aggregation to the lower granularity levels (e.g. quarterly,
annual).

3.2. Forecasting method

The exponential smoothing state space (ETS) models [15] are
used to produce out of sample forecasts, although our experi-
ment design is model agnostic and could be expanded to any
other forecasting model. ETS can capture trend, seasonality and
error components in a time series through various forms such
as additive, multiplicative or mixed. ETS accounts for 18 differ-
ent exponential smoothing models. The automatic exponential
smoothing model is applied using ets() function in the forecast
package [16] in R to produce forecasts for the original and aggre-
gated time series. For each series, ets() identifies the most accu-
rate model using the corrected Akaike’s Information Criterion
(AICc). Using an automatic forecasting method such as ETS is
suitable for this study, as we can assume that the best model
is selected for each series and this may help to separate the ef-
fect of the applied forecasting method from TA approaches (i.e.
AF and AD).

3.3. Forecast accuracy measures

In this experiment, forecast accuracy evaluation is required at
two different stages. We first use an error metric (e.g. Root Mean
Squared Scaled Error) to quantify the forecast accuracy of AF and
AD in generating time series forecast over lead-time for each time
series and ETS method. We consider the in-sample and the out-of-
sample sets in monthly M4 competition time series. We apply the
ETS method to each series in the in-sample dataset and keep their
forecast for the out-of-sample using time series cross validation
with re-estimation. The forecast horizon for the original time series
equals m, the aggregation level, and the horizon for



Fig. 2. Design of the experiment framework.
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non-overlapping aggregated series is one. We then compute the
forecast errors over the test period of each time series. To evaluate
the forecast accuracy and bias, several measures including Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean
Error (ME), Mean Absolute Percentage Error (MAPE), Mean Abso-
lute Scaled Error (MASE) and Root Mean Squared Scaled Error
(RMSSE) are used. We only present the results for RMSSE due to
the space limit of the journal and also because it is the recom-
mended error metric in M5 competition [28]. We share the R code
and the Rmarkdown file through the GitHub repository, which pro-
vide the possibility of changing the error metric in the YAML sec-
tion of the Rmarkdown to obtain results for other metrics. We
should also note that similar conclusions are reached when using
other accuracy metrics.

RMSSE is given by:

RMSSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean q2

j

� �r
;

where

q2
j ¼ e2j

1
T�m

XT
t¼mþ1

yt � yt�mð Þ2
;
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where ej is the forecast error, the difference between an observed
value and its forecast. yt is an observed value at period t; T is the
length of time series, and m is the seasonal length (e.g. for monthly
m = 12. For non-seasonal data, m ¼ 1.

Second, we need to report how accurately a classification model
predicts the outcome (i.e. the most accurate approach labeled as AF
and AD), when presented with a set of time series features at the
original series. To that end, we report several statistical measures
including misclassification error, F-statistics and area under the
curve (AUC).

The misclassification error is calculated as following:

Misclassificationerror ¼ 100%� 1� tp þ tn
� �

N

� �
;

where N is the total number of cases to predict, tp is the true posi-
tive (i.e. when the model correctly predicts the outperformance of
AF approach over AD) and tn is true negative (i.e. when the model
correctly predicts the underperformance of AF approach over AD).

F statistic is defined as:

Fstatistics ¼ 2� 100%� tp= tp þ f p
� �� tp= tp þ f n

� �� �
tp= tp þ f p
� �þ tp= tp þ f n

� �� �
;

 

Where f p is false positive and f n is false negative.
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The false positive rate represents the fraction of cases in which
AD was incorrectly classified as a right model to use, while the AF
was the correct one. Similarly, the false negative rate represents
the fraction of cases in which AF was incorrectly classified as a
right model to use, while AD was the correct one.

We can also illustrate the trade-off between false positives and
true positives using a curve. It is called a receiver operating charac-
teristic curve, or ROC curve [19]. The ROC curve is a plot of the true
positive rate (tp, sensitivity) versus the false positive rate (f p, 1 -
specificity) for a set of thresholds. We can quantify this by calculat-
ing the area under the curve, or AUC. The higher AUC, the better the
model does at predictions. The maximum value of AUC is 1, which
would be considered as a perfect prediction. Conversely, a model
that performs no better than chance will have an AUC of 0.5 and
would be considered as a poor one.

In addition to the statistical measures discussed above, we also
perform the utility evaluation of different models. The utility met-
ric approximates the costs and benefit of wrong and correct classi-
fication. For that purpose, average RMSSE error is used as a utility
metric.

To assess the prediction accuracy of models, we split the data
created in the step 7 of Section 3 into a training and a test set.
To that end, we randomly divided the data on train and test set
in a 70=30% split. The train data (33600 cases) is used for training
different algorithms, while the test data (14400 cases) is used to
evaluate the performance of models.
Table 1
Time series features considered in this study and their descriptions

Feature Description

mean Mean
var Variance
cv Coefficient of variation
trend Strength of trend, a value clo
seasonal_strength Strength of seasonality, a val
entropy Measure of how easy the ser
lumpiness Lumpiness is the variance of
flat_spots Number of sections of the da
crossing_points Number of times a time seri
nonlinearity Extent of nonlinearity, if valu
stability Stability is the variance of th
hurst Hurst coefficient of a time se
spike Prevalence of spikes in the r
linearity Linearity of the trend compo
curvature Curvature of the trend comp
peak Timing of the peaks
trough Timing of the troughs
x_acf1 First autocorrelation coefficie
x_acf10 Sum of squares of the first te
diff1_acf1 First autocorrelation coefficie
diff1_acf10 Sum of squares of the first te
diff2_acf1 First autocorrelation coefficie
diff2_acf10 Sum of squares of the first te
seas_acf1 Autocorrelation coefficient a
x_pacf5 Sum of squares of the first 5
diff1x_pacf5 Sum of squares of the first 5
diff2x_pacf5 Sum of squares of the first 5
seas_pacf Partial autocorrelation coeffi
unitroot_kpss Kwiatkowski-Phillips-Schmid
unitroot_pp Phillips-Perron statistic for t
arch_acf Sum of squares of the first 1
garch_acf Sum of squares of the first 1
arch_r2 R2 value of an AR model app
garch_r2 R2 value of an AR model app
ARCH.LM Statistic based on the Lagran
e_acf1 First autocorrelation coefficie
e_acf10 Sum of squares of the first te
max_level_shift Largest mean shift between
time_level_shift Timing index of the largest m
max_var_shift Largest variance shift betwee
time_var_shift Timing index of the largest v
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4. Time series data, features and temporal aggregation
performance

In this section, we first introduce features extracted for each
time series. Following that, we plot the distribution of these fea-
tures for the monthly M4 competition dataset. Then, we explore
how non-overlapping temporal aggregation changes these fea-
tures. Finally, we discuss the forecasting performance of AD and
AF applied to the monthly M4 dataset.

4.1. Time series features

Table 1 presents the description of features used in this study.
For each time series (original or aggregated), we compute a set of
measures from the training data. These features are also described
in detail by Wang et al. [45], Hyndman et al. [17] and Hyndman
and Athanasopoulos [15].

Given the complexity of the relationship between the time ser-
ies features and the performance of temporal aggregation ap-
proaches, we have considered all 42 features as predictor rather
than using only few limited numbers of features known to users
such as the strength of trend or seasonality, to develop an accurate
prediction model. Using a reduced number of features either se-
lected based on their interpretability or using dimensional reduc-
tion techniques might reduce the predictability power of the
model, but this could be an interesting avenue for future research.
se to 1 indicate highly trended series
ue close to 1 indicate highly seaonal series
ies is to forecast. Entropy close to 0 shows a series is easy to forecast
the variances of tiled (non-overlapping) windows
ta where the series is relatively unchanging
es crosses the median
es around 0 series is linear. Large values shows nonlinearity
e means of tiled (non-overlapping) windows
ries which is a measure of long memory
emainder component of the STL decomposition
nent of the STL decomposition
onent of the STL decomposition

nt
n autocorrelation coefficients
nt from the differenced series
n autocorrelation coefficients from the differenced series
nt from the twice differenced data
n autocorrelation coefficients from the twice differenced series
t the first seasonal lag
partial autocorrelation coefficients
partial autocorrelation coefficients of differenced series
partial autocorrelation coefficients of second-order differenced
cient at the first seasonal lag
t-Shin (KPSS) test
esting if a series is non-stationary
2 autocorrelations of squared series
2 autocorrelations of residuals, after fitting an GARCH(1,1)
lied to the squared series
lied to residuals, after fitting an GARCH(1,1)
ge Multiplier (LM) test for autoregressive conditional heteroscedasticity (ARCH)
nt of the remainder series
n autocorrelation coefficients of the remainder series
two consecutive sliding windows of the time series
ean shift between two consecutive sliding windows of the time series
n two consecutive sliding windows of the time series
ariance shift between two consecutive sliding windows of the time series
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4.2. Time series features of monthly M4 data

We use the monthly M4 competition time series to empirically
examine the performance of AD and AF and investigate the connec-
tion between their performance and time series features. The
monthly M4 data contains 48,000 time series from the Economic,
Finance, Demographics and Industry areas, while also including
data from Tourism, Trade, Labor andWage, Real Estate, Transporta-
tion, Natural Resources and the Environment [27]. The monthly
data is the most important data for the business applications
[43] and therefore the largest class in M4, containing almost half
of the data (48,000 time series).

For each time series in the monthly M4 dataset, we extract 41
features as described in Table 1 using tsfeatue() function in the ts-
features package in R [14]. Additionally, we include one more fea-
ture defined as origin, which is the origin of the time series M4
Fig. 3. Features of monthly time seri
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competition data, i.e. Economic, Finance, Demographics and
Industry.

Fig. 3 and 4 illustrate the corresponding distribution of each fea-
ture. Y-axis shows the count, or the number of time series, and X-
axis indicates the range of values extracted for each feature. These
figures show that the monthly M4 data covers a wide range of time
series features, which makes it a suitable dataset for this research.
We describe some significant features observed in the dataset, and
readers are referred to Fig. 3 and 4 for further details.

The spectral entropy plot indicates that there is a range of time
series from easy (less noise, more systematic information) to hard
(more noise, less systematic information) to forecast. Coefficient of
Variation is also skewed to the right and indicates less variability
for most series. The trend peaks near one and is skewed to the right
indicating the strong presence of the trend in this dataset. We also
observe that the nonlinearity feature peaks near zero and it is
es from M4 competition dataset.
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skewed to the right, which indicates the lack of nonlinearity in the
time series. The autocorrelation lag1 and seasonal autocorrelation
lag1 is skewed to the left, and is highly positive for many time ser-
ies. We also measure the seasonal autocorrelation lag1 which is
highly positive. Lumpiness is extremely low for almost all time ser-
ies and stability has a range from low to high values. Both seasonal
partial autocorrelation and the strength of seasonality indicate a
lower strength of seasonality. Both stationarity and non-
stationarity of series are measured using unitroot_pp and unit-
root_kpss statistics. They indicate a strong presence of stationary
time series. Curvature shows a sharp distribution centred around
zero, which means that most series do not have stochastic or chao-
tic nature. Time series of stochastic nature are associated with
curves displaying positive curvature in a neighbourhood of their
initial points, whereas curves related to chaotic phenomena have
a negative curvature. Hurst has a left skewed distribution with al-
most all series with a value close to one indicating the presence of
Fig. 4. Features of monthly time series fro
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the long memory in the series, which is related to the
autocorrelation.

The distribution of the e_acf10 values is skewed to right and the
plot shows that for most of the time series e_acf10 is close to zero,
which means the leftover from trend and seasonality seems to be
random.

4.3. Effect of temporal aggregation on time series features

In addition to extract the features of monthly time series, we
also compute features after transforming the time series into bi-
monthly, quarterly, 4-monthly, semi-annual and annual granulari-
ty. We use these features to demonstrate how non-overlapping
temporal aggregation may change time series features. To high-
light the effect of NOTA, we first started by plotting the distribution
of features at each level, however the difference between distribu-
tions was not visible because features have log-tails. Instead, we
m M4 competition dataset (continue).
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categorise features of the original series to into four categories us-
ing quantiles:

� If 0 < feature 6 0:25, Category = Very low
� If 0:25 < feature 6 0:5, Category = Low
� If 0:5 < feature 6 0:75, Category = High
� If 0:75 < feature 6 1, Category = Very high

We then calculate the mean of features for each category and each
time granularity. The results have been illustrated in Fig. 5 and 6.
They show how time series features change frommonthly to annual
granularity. The results indicate that as the level of time granularity
increases from monthly to annual, some features become weaker
and may disappear, while others dominate the series.

We observe a decrease in curvature as we aggregate and it ap-
proaches zero at annual level, while nonlinearity increases with ag-
gregation indicating that series become more nonlinear. Mean
increases and variance decreases, however the effect is higher for
very high category. We also observe that coefficient of variation
decreases. Linearity is pushed toward zero if it is high or low,
meaning that series at annual level losses its linearity feature. Both
uniroot_pp and unitroot_kpss become close to zero with increasing
aggregation level, highlighting the fact that series become more
non-stationary if the monthly series is stationary, otherwise it re-
mains almost the same. The measures related to seasonality such
as seasonal strength, autocorrelation lag1 and the sum of squared
of the first 10 autocorrelation decreases. It is interesting to observe
that entropy increases with aggregation if it is not very high at
monthly level, meaning that series become difficult to forecast.
However we see a reduction in entropy if it is very high at the
monthly level. We also observe an increase for ARCH.HM especially
if it is very low at the monthly level. If it is very close to one, it stays
almost unchanged.

We should note that some features are not stable and show
chaotic behaviors at the annual level. This might be because these
features are not measurable for some time series. Therefore, they
are returned as NA (not known) and are removed when calculating
the mean of each category, hence the disorder of these features at
the annual level.
4.4. Forecast accuracy evaluation of AD and AF approaches

In this study, we aim at generating forecasts for a forecast hori-
zon aggregation, lead-time period, using AF and AD approaches.
While the original time series granularity is monthly, we require
forecasts to be produced at Bi-monthly (aggregation level = 2),
Quarterly (aggregation level = 3), 4-monthly (aggregation level = 4),
Semi-annual (aggregation level = 6) and annual (aggregation
level = 12).

Fig. 7 displays a boxplot of RMSSE measure created for all
48,000 series at various level of forecast granularities. Results
demonstrate that both AF and AD approaches might outperform
each other for different time series. However, AF approach is
generating consistently more accurate forecasts through all ag-
gregation levels and the difference becomes more pronounced
as aggregation level increases. The difference is especially no-
table at the annual level. From 48,000 monthly time series, the
AF approach was superior in 30,147 cases (63%) compared to
17,853 cases (37%) for AD when forecasting annual time granu-
larity. These results might be surprising, because common rec-
ommendation based on practice and in the literature (see
Section 2) is to use AD over AF. However, we should note that
almost all these studies report the overall accuracy improvement
rather than the forecast accuracy at the series level. Our results
show that recommending AD to forecast over the lead-time
9

might not necessarily lead to more accurate forecast. Moreover,
AF is shown to be a very competitive forecasting strategy. This
might be due to the features of the monthly time series dis-
cussed in Section 4.2.

We have also conducted a statistical test using MCB (Multiple
Comparison with the Best method) [21] to assess the statistical sig-
nificance in the performance of AF and AD approaches.

From Fig. 8, it is evident that there is a statistical difference be-
tween forecasts generated from AF and AD. The forecasts generated
from AD approach are less accurate compared to AF. The results
were cross-validated through multiple forecast horizons (h = 12,
24 and 60) and via several other error metrics as described in
3.3. The main conclusions are almost perfectly aligned with results
demonstrated in Fig. 8.

In Fig. 7, we showed that both AF and AD have diverging per-
formance through different levels of aggregation. Moreover, Fig. 5
and 6 demonstrate the evolution of the time series features
through these levels. We believe that the presence of certain time
series features might favour AD or AF. We should note that the
results presented for the rest of this paper are based on forecasts
produced for the annual level (aggregation level = 12) using AF
and AD approaches. This is because we see the highest difference
in the performance at the annual level, and when the time series
granularity is monthly, very often forecast is required at the an-
nual level.

In the next section, we build machine learning models to ex-
plore the association between time series features and the fore-
casting performance of AF and AD performance.
5. Machine learining models

In this section, we use several models to shed lights on the as-
sociation between time series features and the performance of
these approaches. Using the time series features extracted at
monthly time granularity and the RMSSE error metric generated
for each approach (i.e. AF and AD), we build machine learning al-
gorithms to reveal relevant sets of features affecting the perfor-
mance of these approaches. The first step in building such a
model is to construct a dataset consisting of time series features
and model class labels for a given time series. Therefore, we turn
this problem into a classification supervised learning, using fea-
tures as predictors and the winning approach labelled as AD or
AF as the response variable or the outcome for each time series.
We discover, extract, and present the details on which time series
features are the most influential on the accuracy of AF and AD ap-
proaches. In addition to interpretability, the algorithm should be
able to accurately predict which model to use with a given set
of time series features in the original series. We have used the
RMSSE at the annual level given the pronounced difference in ac-
curacy at that level.

Fig. 9 shows a grid of scatterplots showing the bivariate interac-
tions between various pairs of features. Each point corresponds to
one time series. The figure also highlights the winning approach
(i.e. either AF or AD), when forecasting for annual time granularity.
The black dots represent the situations where AD was more accu-
rate, while yellow dots represent the opposite, i.e. AF was more ac-
curate. Given the number of features used in this study, it is
unfeasible to include the scatterplot matrix for all pairs of features.
Fig. 9 shows only the pairs plot for 10 features.

Fig. 9 demonstrates a perplexed relationship between features
and AD/AF approach performance, influenced by noise, confound-
ing features and lack of clear decision boundaries between AD
and AF performance. It is clear that some features might have lin-
ear or nonlinear relationships with each other, while others might



Fig. 5. The effect of non-overlapping temporal aggregation on monthly time series features of M4 competition dataset.
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Fig. 6. The effect of non-overlapping temporal aggregation on monthly time series features of M4 competition dataset (continue).
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Fig. 7. RMSSE errors through aggregation levels.

Fig. 8. Performance of AF and AD models evaluated using MCB test. RMSSE values are used for computing the ranks and a 95 percentile confidence level.
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be unrelated. For most of features presented in Fig. 9, there is no
strong relationship.

Considering the complicated boundaries and relationship be-
tween predictors, we develop several machine learning algorithms
to discover patterns and connections between time series features
and the accuracy of the AF and AD approaches.

5.1. Evaluating the prediction accuracy for models in classification

In this section, we examine the prediction accuracy of the ML
models in classifying whether AD or AF should be used to forecast
the horizon aggregation of a given time series, based on its fea-
tures. We report the prediction accuracy of the ML classifiers using
measures discussed in Section 3.3. We have designed an interac-
tive ShinyApp that includes the prediction accuracy of ML ap-
proaches and can be accessed by readers 2.

Table 2 demonstrates that RF model has the best performance
with the lowest misclassification error, highest F statistics and
one of the best AUC statistics.

The Fig. 10 shows the result of MCB test conducted to examine
the difference between the performance of ML algorithms. The re-
sults show that there is a statistically significant difference be-
tween the performance of RF and all other models. According to
the MCB test, AD approach generated the most inaccurate forecasts
2 https://supplychainanalytics.shinyapps.io/Evaluation_of_ML_models/.
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and therefore drastically underperformed compared to the others.
All other ML models have much better performance, and the RF
comes out as the ultimate winner in terms of mean rank classifica-
tion accuracy on the test data set.

We also perform the utility evaluation of ML models. The re-
sults are presented in the Table 3. Table 3 represents the average
values of RMSSE for AD and AF approaches when the correct
classification was AD and AF, respectively. When the true model
to use is AD (17,853 causes), the average RMSSE error is 0.9028
for AD, and 1.5204 for AF. On the contrary, when the true model
to use is AF (30,147 causes), the average RMSSE error is 1.6568
for AD and 0.8669 for AF. In this way, we design the average
costs and benefits associated with classification decisions and
we are able to evaluate the ML models performances via practi-
cal utility measure contribution connected to their usage, and
not just via standard statistical measures. This kind of perfor-
mance evaluation has much more value for practitioners assess-
ing the practical values of each ML model. The presented utility
evaluation can be further extended in practice by linking the
monetary costs to the decision based on the forecast. However,
domain knowledge on the area where forecasts are implemented
is required.

Fig. 11 demonstrates that RF has the smallest utility metric (cu-
mulative average RMSSE) while performing the classification task
on the test data set. We have also included the Ideal model, a mod-
el that always predict correctly, to highlight the deviation of ML



Fig. 9. Time series features matrix. Each point indicates one single time series with a feature in x-axis and another at y-axis. The black and yellow colors show the
outperformance of AD and AF, respectively.

Table 2
Comparison of different ML models.

F-statistics Misclassification error AUC

LR 0.6083881 0.4383333 0.5676151
LDA 0.7655532 0.3718750 0.5130521
QDA 0.7121420 0.3929861 0.5499207
KNN 0.6882851 0.3911806 0.5814969
Lasso 0.6368112 0.4252083 0.5677939
GAM 0.6042137 0.4383333 0.5707890
RF 0.7773134 0.3367361 0.5704724
Boosting 0.7646663 0.3640972 0.5267067
SVM 0.7646663 0.3640972 0.5318491
DTW 0.7093325 0.3888889 0.5616327
FNN 0.7649972 0.3724306 0.5128323
DL Torch 0.7649434 0.3678472 0.5230656
XG Boost 0.7688268 0.3423611 0.5728495
TensorFlow 0.7669575 0.3690972 0.5166527
RNN 0.7659351 0.3710417 0.5142032
CNN 0.7662412 0.3700694 0.5158014
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approaches from this benchmark and to reveal the maximum pos-
sible margin for reducing the overall cumulative RMSSE. Therefore,
our result shows that RF also provides the most accurate result for
a given time series examined by utility metric.

Among several algorithms, the RF provided the most accurate
results according to the several criteria. Therefore, we further dis-
cuss this approach in the next section in more details.
13
5.2. Building the random forest algorithm

Individually, these trees tend to overfit the data and generate
future forecasts with large variance. But, at the same time, they
produce a low bias. Therefore, to reduce the variance, the Bagging
process is building many trees on slightly different train data (since
the data is bootstrapped-resampled) and averages forecasts of all
the trees in one unique forecast. For the sake of improving the Bag-
ging process, Breiman [7] introduced the RF as an algorithm that
mimics the Bagging process but uses only a small random sample
of the available features, for building each classification tree. The
idea behind this is instead of just ‘‘shaking” the data via
bootstrapped-resampled process, we are introducing additional
randomness in the process by ‘‘shaking” the features for the fore-
casting via random sampling of just part of the features. Therefore,
each time a split in a tree is considered, a random sample ofm pre-
dictors is chosen as a split candidates from the full set of p features.
A fresh sample of m features is taken at each split, and typically m
� ffiffiffi

p
p

[10]. By forcing this process each time using the subsample of
fresh features, the RF is decorrelating each tree. In this way, the
process of averaging many different trees will reduce the variance
more efficiently than in the case of correlated trees.

To generate the RF model, there are several questions and tun-
ing parameters that need to be optimized so that the final model
could generate reliable and accurate forecasts. For that purpose,



Fig. 10. Performance of different models evaluated through MCB test. RMSSE errors are used for computing the ranks and a 95 percentile confidence level.

Table 3
Cost and benefit matrix.

Actual

AD AF

Predicted AD 0.902872 1.6568039
AF 1.520416 0.8669348

Fig. 11. Utility accuracy comparison.
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Friedman et al. [10] have proposed the following methodology pre-
sented in the Algorithm1.

Algorithm1: Random Forest methodology.

1: For b ¼ 1 to B:
(a)Draw a bootstrap sample Z* of size N from the training
data.
(b)Grow a random forest tree Tb to the bootstrapped data,
by recursively repeating the following steps for each
terminal node of the tree, until the minimum node size nmin

is reached.
(i)Select m variables at random from the p variables.
(ii)Pick the best variable/split-point among the m.
(iii)Split the node into two daughter nodes.

2: Output the ensemble of trees Tbf gB1.
To make a prediction at a new point x:

Regression: bf Brf xð Þ ¼ 1
B

PB
b¼1Tb xð Þ.

Classification: Let bCb xð Þ be the class prediction of the bth
random-forest tree.

Then bCB
rf xð Þ ¼ majority vote Cb xð Þf gB1.

The first question is how many features to randomly choose for
training in each individual tree (i.e. tree depth)? The question of
howmany trees to use for fitting the RF model emerges, which also
needs to be answered in parallel. In order to determine the optimal
number of features and trees for building an RF model, the evalu-
ation process is performed with a different number of features and
trees in each split. Therefore, the resulting process represents the
optimization problem of seeking the minimum of the surface gen-
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erated by features in each split, trees and resulting out of the bag
(OOB) forecasting error. (Please refer to Fig. 12). OOB represents
the misclassification error of the RF model while performing the
classification tasks. Also, OOB is the approximation of the cross val-
idated test error, since the process of fitting bootstrapped data sets
consists of training the model on just part of the original data and
then predicting the remaining part of the original data (i.e. out of
bag data). By averaging OOB errors from many different tree mod-
els (which comprise the final random forest model), the final OOB
is obtained.

Fig. 12 reveals that increasing the number of trees used for gen-
erating RF model reduces the misclassification error. A similar sce-
nario exists with features used in each split, where increasing the
number of features (up to a certain point) reduce misclassification
error. The presented surface is highly erratic and undulating, mak-
ing it hard to visually determine global minimum. For that reason,
the performance of the four best RF models with feature splits (m =
6, 10, 21 and 42) are shown through a different number of trees
used for fitting RF model (Fig. 13).

The Fig. 13 represents the optimal number of splits (randomly
selected features) used during the process of building each



Fig. 12. Surface plot of the number of features (depth), number of trees and
misclassification error of random forest model.
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classification tree, according to OOB forecasting error. As demon-
strated in Fig. 13 the OOB error is minimized on the depth of 10.
Therefore, the optimal number of features (i.e. tree depth) for the
RF model is 10.

The second tuning question is how many trees should be used
for generating the RF model? One of the good merits that help in
this process is the resilience of RF on overfitting [10]. Averaging
process during the RF building phase remedies the negative effects
of choosing a large number of trees for fitting the model, since this
will not result in an increase in variance on the test set. This im-
Fig. 13. Determining the optimal depth and the of
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plies that the penalty of choosing a too large number of trees on
models’ overall performance is minor. The criteria for this judg-
ment is based on the OOB misclassification error, which RF model
produces on a given data set. Therefore, the optimal number of
trees is chosen by determining the number of trees where the
OOB misclassification error is stabilized (Fig. 13). From Fig. 13, it
is clear that error is stabilized by using the 3,000 trees.
6. Association between time series features and AF/AD
performance

Since the RF consists of many trees, it is no longer possible to
represent the resulting statistical learning procedure using a single
tree, and it is not clear which variables are most important to the
procedure [18]. Therefore, the RF improves prediction accuracy at
the expense of interpretability. Instead, it is possible to obtain
the overall summary of the importance of each feature by measur-
ing the mean decrease in the Gini index.

The Fig. 14 demonstrates the overall importance of the features
used in building trees during the random successive process of
generating the RF model. Importance of the features is determined
by the decrease in total amount of the node impurity by splits over
a given predictor and averaging over all trees in RF. The decrease of
the node impurity is measured by the Gini index. Large value of the
Gini index indicates the important features. Clearly some features
prove to be more important than others in classifying accurately
the AF versus AD approach. The most important features are: cur-
vature, nonlinearity, seas_pacf, unitroot_pp, mean and ARCHM.LM;
while origin, through, peak and flats spots seems to be the least im-
portant for predicting which temporal aggregation method to use
(i.e. AF or AD). The quantity being modelled here is the probability
of correctly choosing the AD versus AF, and the opposite. The least
important features have approximately half of the importance as
the most significant ones. Difference in a decrease of node impurity
from the curvature to the origin feature is more than 250 units,
indicating the wide range of features importance.

Fig. 15 and 16 represent the partial dependence plot for all fea-
tures. The x-axis represents the range of values extracted for each
feature and the y-axis is the probability of classifying AF versus AD.
number the trees in the random forest model.



Fig. 14. Predictor features importance spectrum for the M4 data. A feature importance is computed using the mean decrease in Gini index.
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Therefore, the dependent value is the probability of correctly pre-
dicting the aggregating forecasts i.e. AF approach.

The plots illustrate the marginal effect of the selected features
on the response (outcome) after integrating out all the other vari-
ables and their average effect on the response [18].

The rug marks at the bottom of each plot show the distribution
of feature across the variable range. Note that here the data density
is lower near the edges. This may cause unstable behaviour of the
curves in those areas. The vertical scales of the plots show the
probability of AF approach providing more accurate forecast for
each feature as values of that feature changes. From Fig. 15 and
16, it is clear that the features have a mixed effect on classifying
AF and AD approaches. While the effect might be clear for feature
such as trend or nonlinearity, it is less clear for other such as mean
or coefficient of variation.

We observe that increasing trend, ARCH.LM, hurst, autocorrela-
tion lag 1, unitroot_pp and seas_pacf may increases the chance of
AF performing better, therefore AF become preferable. However,
increasing lumpiness, entropy, nonlinearity, curvature, strength
of seasonality may increase the chance of AD performing better,
so the strong presence of these features may favour AD over AF.
It is important to note that we are less interested in the exact prob-
ability in these plots. Instead, we are interested in discovering how
changing time series feature may increase/decrease the chance of
AF or AD.
7. Conclusions

In time series forecasting, time granularity of a forecast re-
quired to inform a decision might be different from the time series
granularity itself. For instance, if a time series is stored at a higher
frequency (e.g. monthly), forecasts might be required at lower fre-
quencies (e.g. quarterly, annual). This is very common in modern
organisations as data can be collected in the finest time granulari-
ties. Therefore, there are situations where a forecast of the total
value over a time period ahead (e.g. horizon aggregation/lead-
time) is needed. To generate such a forecast for a given time series,
we may consider two options: i) first generate forecasts, followed
by adding them up to obtain the forecast horizon aggregation
16
(AF), or ii) first aggregate the time series using non-overlapping
temporal aggregation and then generate the forecast (AD). In this
paper, we design and execute an empirical experiment framework
using the monthly M4 competition data to i) explore the forecast-
ing performance of these approaches; and ii) investigate the asso-
ciation between time series features and forecasting performance
of temporal aggregation approaches (e.g. AF or AD).

There is a common assumption that series at the higher level of
temporal aggregation (lower frequency) are smoother with less
noise and more cleaner patterns, which often implies that forecasts
created at the higher temporal aggregation levels are more accu-
rate. This practice may exist in supply chains, where practitioners
are usually advised to aggregate the series to the frequency levels
aligned with their decision-making horizons and then to create
forecast for the period of interest. In this paper, we questioned this
practice and explore the comparative performance of AF and AD
approaches. We conducted comparative research of the forecasting
performance using 48,000 monthly series from M4 data, at differ-
ent levels of temporal aggregation corresponding to generating
forecasts at bi-monthly, quarterly, 4–monthly, semi-annual, and
annual levels. Results demonstrate that there is a significant num-
ber of series for which AF (63%) outperforms AD (37%).

Given the fact that there is a lack of indications on which ap-
proach should be used for a given time series, we investigate the
association between time series features and AF/AD forecasting
performance. We seek to shed lights on the effect of temporal ag-
gregation on time series features and then investigate how they
might affect the performance of AD and AF approaches. To that
end, we first construct a database consisting of features of each
time series as predictor and model class labelled as AF/AD as re-
sponse/outcome. Then, we examined 16 different models to accu-
rately predict the correct class and consequently recommend using
the most accurate approach for a given time series and its features.

Our results show that Random Forest model provides the best
performance in accurately classifying approaches measured
through statistical and utility metrics. Moreover, RF model is used
to reveal the most important time series features in producing the
accurate prediction. Additionally, we extract the partial depen-
dence plot to describe the association between features and fore-
cast performance of AD and AF. The partial dependence plot



Fig. 15. Partial dependence plot - the range of features vs. the probability of classifying AF versus AD.
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helps to show how the value of a feature may favour AF over AD
approach. The main findings of this study can be summarised as
follows:

� First, when a forecast of the total value over several time peri-
ods ahead is required (i.e. aggregation horizon or lead-time),
we show that AF is a considerably superior methodology to em-
ploy in general. The findings indicate that neither of the ap-
proaches are always the most accurate, when the accuracy is
reported for the individual time series. The findings clearly
show that the most accurate forecast is not necessarily generat-
ed by non-overlapping temporal aggregation. This may raise
concerns about the validity of the common practice in such
circumstances.

� Second, non-overlapping temporal aggregation changes the fea-
tures of time series. The magnitude of the change varies for dif-
ferent features. In particular, we observe that with increase in
the aggregation level, the strength of seasonality, the autocorre-
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lation, coefficient of variation, linearity, curvature and KPSS unit-
root statistic decrease. However, nonlinearity, mean, variance,
ARCH.LM, trend, unitroot_pp statistics increase. Entropy is the
only measure that both increases and decreases based on its ini-
tial value.

� Third, Random Forest model is the most accurate classifier ML
algorithm in predicting which approach provides more accurate
forecast given a set of time series features as input.

� Fourth, RF model revels that the top ten important features for
predicting whether AF or AD should be used for a given monthly
time series in M4 competition include curvature, nonlinearity,
seas_pacf, unitroot_pp, mean, ARCHM.LM, coifficient of variation,
stability, linearity and max_level_shift.

� Fifth, dependence plots provide some indications on how time
series features may favour AD over AF, and vice versa. We ob-
serve that increasing seas_pacf, trend, ARCH.LM, hurst, autocorre-
lation lag 1 and unitroot_pp increases the chance of AF
performing better. While, increasing coefficient of variation,



Fig. 16. Partial dependence plot - the range of features vs. the probability of classifying AF versus AD (continue).
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entropy, nonlinearity, and curvature increases the chance of AD
performing better, so the strong presence of these features
may favour AD over AF.

The proposed framework can be generalised to be used with
other time series data. We believe that the conclusion should re-
main true for lower frequency time series such as monthly and
18
quarterly. However, a different conclusion might be reached
when using higher frequency time series data such sub-daily,
daily, or weekly. This will bring further complications such as
the presence of multiple seasonal cycles and long seasonalities.
Therefore, time series features and the way they may change
with increasing the aggregation level may differ. Also, the choice
of forecasting method becomes important as a method like ETS



B. Rostami-Tabar and D. Mircetic Neurocomputing 548 (2023) 126376
cannot handle those complications. This would be an important
avenue for further research.

Given the findings of this study and the potential value of tem-
poral aggregation in time series forecasting, the current study
could be extended in a number of ways. Research into any of the
following areas would prove to be useful:

� In this study, we use all features to build the ML model, an al-
ternative approach would be to use dimension reduction ap-
proaches for all features representing the same type of
information such as seasonality, autocorrelation, noise, etc
and then build the model;

� The proposed framework can be used to examine the associa-
tion of time series features and temporal aggregation with
sub-daily and daily time series data as they present further
complications.

� Given that the exact relationship between time series features
and the optimal temporal aggregation approach is not known,
one direction for future research could focus on using meta-
learning and other advanced techniques such as transformers
neural networks and attentional mechanism to further shed
lights on this problem.

� In this paper, we define the AD and AF approaches to forecast a
cumulative number of periods ahead, therefore it is considered
as a single output approach. It might be interesting to investi-
gate the forecasting by temporal aggregation as a multi-
output scenario [9], where a sequence of two or more future
data points are of interest.

� Finally, using time-series classification techniques [8] to classify
time series data based on various factors including time series
Table 4
The main setup information for ML models

Model R package Running
time (min)

Feature
enginering

Activation formula

LR stats ~3 NO glm(marks~.,family = b
LDA MASS ~3 NO lda(marks~., data = tra
QDA MASS ~3 NO qda(marks~., data = tra
KNN class ~20 YES knn(Xlag[train,], Xlag[-
LASSO glmnet ~10 NO cv.glmnet(x, y, family=
GAM gam ~12 NO gam(marks~. + s(trend

df = 3) + s(seasonal_str
RF randomForest ~2200 NO randomForest(marks~.,
Boosting gbm ~3000 YES gbm(marks~., data = tra

depth = 10)
SVM e1071 ~6000 YES tune(e1071::svm, as.fa

(cost = c(0.001, 0.01, 0
FNN nnet ~10 YES nnet(marks~., data = tr
DTW dtw ~5 YES knn(train = trainData[,

distance = dtw.dist)
DL Torch torch ~180 YES nn_module(‘‘Net”, initi

nn_linear(40, 30), self$
15), self$fc6 <- nn_line
nn_linear(5, 5), self$fc1
self$fc2() %>% nnf_relu
nnf_relu() %>% self$fc6
self$fc9() %>% nnf_relu

XG Boost xgboost ~300 YES xgboost(data = xgboos
TensorFlow tensorflow,

keras
~30 YES keras_model_sequentia

layer_dropout(rate = 0.
>% layer_dense(units =

RNN keras ~30 YES keras_model_sequentia
(rate = 0.2) %>% layer_d

CNN keras ~35 YES keras_model_sequentia
input_shape = c(42, 1))
layer_flatten() %>% laye
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futures and investigate their association with forecast accuracy
of temporal aggregation approaches might be also an interest-
ing avenue for further research.
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Appendix A
inomial, data = train.data)
in.data)
in.data)
train,], ClassTable[train,‘‘marks”], k = 3)
‘‘binomial”, type.measure=‘‘auc”)
, df = 3) + s(seas_acf1, df = 3) + s(linearity, df = 3) + s(entropy, df = 3) + s(x_acf1,
ength, df = 3) + s(seas_acf1, df = 3), family = binomial, data = train.data)
data = train.data1, mtry = 10, ntree = 3000, importance = TRUE)
in.data01, distribution = ‘‘bernoulli”, n.trees = 4500, shrinkage = 0.01, interaction.

ctor(marks)~., data = train.data, scale = FALSE, kernel = ‘‘radial”, ranges = list
.1, 1, 5, 10, 100), gamma = c(0.5, 1, 2, 3, 4)))
ain.data, size = 10, maxit = 500, decay = 0.001, rang = 0.1)
�5], test = testData[, �5], cl = trainLabels, k = k, prob = TRUE, use.all = TRUE,

alize = function() {self$fc1 <- nn_linear(length(features1), 40), self$fc2 <-
fc3 <- nn_linear(30, 30), self$fc4 <- nn_linear(30, 15), self$fc5 <- nn_linear(15,
ar(15, 10), self$fc7 <- nn_linear(10, 10), self$fc8 <- nn_linear(10, 5), self$fc9 <-
0 <- nn_linear(5, 1)}, forward = function(x) {x %>% self$fc1() %>% nnf_relu() %>%
() %>% self$fc3() %>% nnf_relu() %>% self$fc4() %>% nnf_relu() %>% self$fc5() %>%
() %>% nnf_relu() %>% self$fc7() %>% nnf_relu() %>% self$fc8() %>% nnf_relu() %>%
() %>% self$fc10()})
t_train, max.depth = 23, nrounds = 500, objective = ‘‘binary:logistic”)
l() %>% layer_dense(units = 80, activation = ‘‘relu”, input_shape = c(42)) %>%
6) %>% layer_dense(units = 40, activation = ‘‘relu”) %>% layer_dropout(rate = 0.3) %
5, activation = ‘‘relu”) %>% layer_dense(units = 1, activation = ‘‘sigmoid”)
l() %>% layer_lstm(units = 64, input_shape = c(42, 1)) %>% layer_dropout
ense(units = 1, activation = ‘‘sigmoid”)
l() %>% layer_conv_1d(filters = 32, kernel_size = 3, activation = ‘‘relu”,
%>% layer_max_pooling_1d(pool_size = 2) %>% layer_dropout(rate = 0.2) %>%
r_dense(units = 1, activation = ‘‘sigmoid”)
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