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Abstract

A design is a collection of distinct points in a given set X , which is assumed to be a compact
subset of Rd , and the mesh-ratio of a design is the ratio of its fill distance to its separation radius. The
uniformity constant of a sequence of nested designs is the smallest upper bound for the mesh-ratios
of the designs. We derive a lower bound on this uniformity constant and show that a simple greedy
construction achieves this lower bound. We then extend this scheme to allow more flexibility in the
design construction.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Separation radius; Packing radius; Fill distance; Mesh norm; Covering radius; Mesh-ratio; Quasi-uniform
design; Greedy algorithm

1. Introduction

Let X be a compact subset of Rd , for some d ≥ 1, with vol(X ) > 0.
Let ∥ · ∥ denote a norm, not necessarily the Euclidean norm ∥ · ∥2, on Rd . The ball of radius

and center x is B(x, r ) = {x′
∈ Rd

: ∥x′
− x∥ ≤ r}. The volume of the unit ball B(0, 1) is

enoted by Vd . If the norm ∥ · ∥ is Euclidean, then Vd = πd/2/Γ (d/2 + 1).
A collection Xn = {x1, . . . , xn} of n distinct points in X will be called an n-point design

in the modern literature on approximation theory, designs are often called “data sets”, see
.g. [16,20]). We start with several definitions of well-known characteristics of designs.
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FD, the fill distance (also known as mesh norm, covering radius, dispersion, or minimax-
istance criterion), of the n-point design Xn for X is

h(Xn) = hX (Xn) = sup
x∈X

min
xi ∈Xn

∥x − xi∥ , n ≥ 1.

design X∗

n,F D will be called FD-optimal if h∗
n = h(X∗

n,F D) = minXn∈X h(Xn) . SR, the
eparation radius (also called packing radius or maximin-distance criterion), of Xn is

q(Xn) =
1
2

min
xi ̸=x j ∈Xn

∥xi − x j∥ , n ≥ 2.

design X∗
n,q will be called SR-optimal if q∗

n = q(X∗

n,S R) = maxXn∈X q(Xn) . The mesh-ratio
of Xn for X is

MR(Xn) = MRX (Xn) =
hX (Xn)
q(Xn)

, n ≥ 2.

The mesh-ratio provides a measure of how uniformly points in Xn are distributed in X , see
.g. [16, p. 573] and [5, p. 129]; it is sometimes called the uniformity constant of Xn , see [3].

The mesh-ratio is commonly used to assess the stability of approximations constructed on the
base of observations at xi ∈ Xn , see e.g. [16] and [20, Chapter 12]. According to Guideline
7.10 in [16, p. 579], the best approximation error with the most stable system is achieved
by using quasi-uniform designs (data sets) with the smallest mesh-ratio. The mesh-ratio is
fundamental in estimation of stability of approximations through the approach involving the
Lebesgue constant, see [3, Th. 1] and [8, Sect. 8.5]. Moreover, the mesh-ratio plays an important
role in the derivation of upper bounds on the quality of kernel approximations in the so-called
‘escape theorems’, when the approximated function is less smooth than the kernel, see [10,11]
as well as [5, Th. 1, p. 129] and [16, Th. 7.8].

Let X∞ = {x1, x2, . . .} ⊂ X be a sequence of points in X . There is a one-to-one
correspondence between such point sequence X∞ and the sequence {Xn}

∞

n=1 of nested designs
Xn = {x1, . . . , xn}. A sequence {Xn}

∞

n=1 of nested designs Xn in a compact set X ⊂ Rd is
alled quasi-uniform if there exists a constant b < ∞ such that MR(Xn) ≤ b for all n. The
mallest such b = MR(X∞) is called the uniformity constant of the corresponding sequence of
ested designs {Xn}

∞

n=1. Quasi-uniform sequences of designs with small uniformity constants
re the main sources of designs (point sets) in the meshless (or “mesh-free”) methods of
omputational mathematics; see e.g [5,16,20]. A sequence X∗

∞
= {x∗

1, x∗

2, . . .} will be called
R-optimal if its uniformity constant is minimal:

MR(X∗

∞
) = min

X∞⊂X
MR(X∞) . (1.1)

It is well known that when X is connected, MR(Xn) ≥ 1 for any n-point design Xn in
(as the n-balls B(xi , CR(Xn)) must cover X ). One of the main results of the paper is

heorem 1.1, which states that in fact lim supn→∞ MR(Xn) ≥ 2 for any compact X with
ositive volume. The proof is rather elementary but the result does not seem to be known. It
mplies in particular that the classical greedy packing algorithm is MR-optimal.

heorem 1.1. For any sequence of nested designs Xn in a compact set X ⊂ Rd with
ol(X ) > 0, we have

lim sup
n→∞

MR(Xn) ≥ 2.
n particular, MR(X∞) ≥ 2 for any X∞ ⊂ X .
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Theorem 1.1 is proved in Section 2. The greedy-packing (or coffee-house) algorithm is
resented in Section 3.1; it constructs a sequence X∞ with MR(Xn) ≤ 2 for all n ≥ 2

and hence MR(X∞) = 2. In Section 3.2, we generalize the greedy-packing algorithm to the
construction of other quasi-uniform sequences with bounded MR(X∞). In Section 3.3 we use
the results of Section 3.2 to establish properties of an implementable version of the greedy-
packing algorithm where, at every iteration, the next design point xn+1 is chosen among a finite
set of candidates XN ⊂ X rather than within the whole X . In Section 3.4 we consider a
boundary-phobic version of greedy packing, which provides designs with worse (larger) mesh-
ratio but better (smaller) fill distance. A connection with two greedy kernel-based constructions
(energy minimization and the P-greedy algorithm) is presented in Section 3.5. Section 4 briefly
concludes. The Matlab scripts used to produce Figs. 1 and 2 are available at https://sdb3.i3s.u
nice.fr/anrindex/fr/node/5.

2. Proof of Theorem 1.1

Before providing a proof of Theorem 1.1, we prove two simple lemmas, both of them
presenting independent interest.

Lemma 2.1. For any design Xn in a compact set X ⊂ Rd , we have

[vol(X )/Vd ]1/d n−1/d
≤ h(Xn) , n ≥ 1.

oreover, for any m such that n ≥ m ≥ 2, we have

q(Xn) ≤ [vol(X0)/Vd ]1/d n−1/d ,

here X0 = X ⊕B(0, q(Xm)), Xm is a sub-design of Xn consisting of m points and ⊕ denotes
he Minkowski sum.

roof. The n balls B(xi , h(Xn)) cover X ; this yields the first inequality. The second inequality
ollows from q(Xn) ≤ q(Xm), which implies that all the balls B(xi , q(Xn)) are fully inside X0

i = 1, . . . , n). □

Lemma 2.1 has the following consequence concerning the rate of decrease of the fill distance
nd separation radius of quasi-uniform sequences of nested designs.

orollary 2.1. For any quasi-uniform sequence of nested designs Xn with uniformity constant
in a compact set X ⊂ Rd , we have

c1 n−1/d
≤ h(Xn) ≤ b q(Xn) ≤ c2 n−1/d , ∀n ≥ 2 , (2.1)

here c1 and c2 are some positive constants.

In the case of Euclidean norm, the statement of Corollary 2.1 is proved in [20]; see
roposition 14.1 and the discussion just after it.

emma 2.2. Let, for any given n ∈ N, Xn = {x1, . . . , xn} and X′

n+1 = {x′

1, . . . , x′

n+1} be
rbitrary n-point and (n+1)-point designs in X . Then

q(X′ ) ≤ h(X ).
n+1 n
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Proof. Since the n balls B(xi , h(Xn)) cover X , the pigeon-hole principle implies that at least
ne of them must contain at least two points x′

i and x′

j from X′

n+1. Therefore, ∥x′

i − x′

j∥ ≤

h(Xn), implying q(X′

n+1) ≤ h(Xn). □

roof of Theorem 1.1. Assume that lim supn→∞ MR(Xn) < 2. This would yield that there
xist r < 2 and n0 such that MR(Xn) ≤ r for all n ≥ n0.

Consider all such n ≥ n0. The definition of h(Xn) and MR(Xn) implies the existence of
j ∈ Xn such that

∥xn+1 − x j∥ ≤ h(Xn) ≤ r q(Xn) .

herefore,

q(Xn+1) ≤ (1/2) min
xi ∈Xn

∥xn+1 − xi∥ ≤ (r/2) q(Xn).

his implies the exponential decrease of q(Xn) to zero (as n → ∞), which contradicts
2.1). □

. Construction of sequences of quasi-uniform designs

.1. Greedy packing

Let us first describe the greedy-packing algorithm (called “geometric greedy method” in [4]),
hich achieves the lower bound of Theorem 1.1 and hence constructs an MR-optimal sequence
f points X∞ and nested designs {Xn}

∞

n=1. This algorithm is sometimes called the “coffee-
ouse” algorithm, due to the analogy with the behavior of customers in large coffee shops,
here new clients tend to seat as far as possible from occupied tables [9].

Algorithm 1 (Greedy packing)

Require: X compact subset of Rd , x1 ∈ X .
1: set n = 1, X1 = {x1};
2: for n = 1, 2, . . . do the following:
3: find xn+1 ∈ Arg maxx∈X minxi ∈Xn ∥x − xi ∥,
4: set Xn+1 = Xn ∪ {xn+1}.

For arbitrary x1 ∈ X and any choice of xn+1 ∈ Arg maxx∈X minxi ∈Xn ∥x − xi∥ at step 3,
he sequence of designs Xn constructed by Algorithm 1 satisfies the following property.

emma 3.1. For all n ≥ 2, the designs Xn generated by Algorithm 1 satisfy q(Xn) =

h(Xn−1)/2.

roof. The inequality q(Xn) ≥ h(Xn−1)/2 is proved in [4, Lemma 5.1] by induction on n; the
quality is obtained by the same arguments.

By the definition of x2, we have q(X2) = h(X1)/2. Assume that q(Xn) = h(Xn−1)/2 and
onsider q(Xn+1):

q(Xn+1) = min
{

q(Xn), (1/2) min
xi ∈Xn

∥xn+1 − xi∥

}
= min {q(Xn), h(Xn)/2}

{ }
= min h(Xn−1)/2, h(Xn)/2 = h(Xn)/2 . □

4
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Theorem 3.2. For all n ≥ 2, the designs Xn generated by Algorithm 1 satisfy

h(Xn) ≤ 2 h∗

n , q(Xn) ≥
1
2

q∗

n , MR(Xn) ≤ 2.

roof. By Lemma 2.2 applied to the designs Xn+1 and X∗

n,F D , we obtain q(Xn+1) ≤ h∗
n .

sing Lemma 3.1, this gives h(Xn) ≤ 2 h∗
n . From Lemma 2.2 applied to the designs X∗

n+1,S R
nd Xn and Lemma 3.1, we obtain q∗

n+1 ≤ h(Xn) = 2 q(Xn+1). Finally, MR(Xn+1) =

h(Xn+1)/q(Xn+1) ≤ h(Xn)/q(Xn+1) = 2 . □

Theorem 3.2 may be deduced from Theorem 2.2 in [6], where Algorithm 1 is used to
inimize the maximum intercluster distance; see also [7, Theorem 4.3]. Theorem 3.2 also

ollows from Theorem 3.6. However, we think that the proof provided above is interesting in
tself, as the important role of Lemma 3.1 uncovers the key property of Algorithm 1.

Note that in Theorem 3.2 the choice of the norm in X is irrelevant. Moreover, X does not
ave to be a subset of Rd ; in particular, X can be a discrete set as in the clustering problems
onsidered in [6].

While the calculation of q(Xn) is straightforward, h(Xn) is difficult to compute when X
s a continuous set. Methods of computational geometry can sometimes be used [14], but are
estricted to low-dimensional spaces. The substitution of a finite set XN for X , with the N
oints of XN suitably well spread over X , is often used in practice; see Section 3.3 for the
nalysis of this version of Algorithm 1.

For d = 1 and X = [0, 1], Algorithm 1 initialized at x1 = 1/2 is equivalent to the
elebrated van der Corput sequence in base 2 in terms of the behavior of h(Xn), q(Xn) and
R(Xn); see [12, p. 25]. The regular pattern of MR(Xn) observed in dimension 1 extends to

imension 2 with X = [0, 1]2 when ∥ · ∥ = ∥ · ∥2 and the algorithm is initialized at the center
1/2, 1/2). This is illustrated on the left panel of Fig. 1: MR(Xn) takes two values only, 2 and

2. The detailed behavior of the algorithm is as follows.

Theorem 3.3. For any n ≥ 5, define m = m(n) = ⌊log2(
√

n/2 − 1/4 − 1/2)⌋. Then the
packing and covering performance of Algorithm 1 with ∥ · ∥ = ∥ · ∥2, initialized at the center
(1/2, 1/2) of X = [0, 1]2, is as follows:

q(Xn) = γm
√

2/4 , h(Xn) = γm/2 , MR(Xn) =
√

2 , for n = nm ,

q(Xn) = γm/4 , h(Xn) = γm/2 , MR(Xn) = 2 , for n = nm + 1, . . . , km − 1 ,

q(Xn) = γm/4 , h(Xn) = γm
√

2/4 , MR(Xn) =
√

2 , for n = km ,

q(Xn) = γm
√

2/8 , h(Xn) = γm
√

2/4 , MR(Xn) = 2 , for n = km + 1, . . . , nm+1 − 1 ,

where γm = 2−m , nm = (2m
+ 1)2

+ 4m and km = (2m+1
+ 1)2.

For the sake of brevity, we only give a sketch of the full proof. It is based on the self-
replicating pattern of the construction. The first five points in X = [0, 1]2 correspond to
the corners and the center of the square. This gives the initialization for the beginning of the
initial cycle, indexed by m = 0, with m denoting the cycle number. Define the initialization
of cycle m as the replication of the initial design of cycle 0 into 4m squares of side length
γm = 2−m , which form a regular partition of [0, 1]2. The initial design for cycle m has thus
nm = (2m

+ 1)2
+ 4m

= 22m+1
+ 2m+1

+ 1 points: (2m
+ 1)2 of them form a regular grid

of width γm (i.e., a (2m
+ 1)2 full factorial design); the other 4m points are the centers of

the small squares. When moving to the next cycle, the algorithm first (i) adds the midpoints
of the sides of all small squares (in arbitrary order), then (ii) adds the 4m+1 centers of the
smaller squares created at previous phase. The number of points added during phase (i) equals
5
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Fig. 1. Designs generated by Algorithm 1 in X = [0, 1]2 with ∥ · ∥ = ∥ · ∥2 and x1 = (1/2, 1/2). Left: MR(Xn)
or n = 2, . . . , 85. Right: X80; the circles have radii h(X80) = γ2/2 = 0.125.

m = (2m+1
+1)2

−[(2m
+1)2

+4m] = 2m+1(2m
+1). For any n ≥ 5, the associated cycle number

= m(n) is the unique integer satisfying nm ≤ n < nm+1. As nm = 2(2m
+ 1/2)2

+ 1/2, this
ives m(n) = ⌊log2(

√
n/2 − 1/4 − 1/2)⌋.

Example 3.4. We take X = [0, 1]2, ∥ · ∥ = ∥ · ∥2 and x1 = (1/2, 1/2). Algorithm 1
progressively imbeds regular grids in X . The left panel of Fig. 1 shows the evolution of
MR(Xn) as a function of n = 2, . . . , 85; the right panel shows Xn for n = 80 = k2 − 1.

The regular pattern observed on [0, 1]d for d = 1, 2 is maintained for d = 4, and
Algorithm 1 has the following behavior in [0, 1]4.

Theorem 3.5. For any n ≥ 17, define m = m(n) as the unique integer satisfying nm ≤ n <
nm+1, with nm = (2m

+ 1)4
+ 24m . Then the packing and covering performance of Algorithm 1

with ∥ · ∥ = ∥ · ∥2, initialized at the center (1/2, 1/2, 1/2, 1/2) of X = [0, 1]4, is as follows:
q(Xn ) = γm/2 , h(Xn ) = γm

√
2/2 , MR(Xn ) =

√
2 , for n = nm ,

q(Xn ) = γm/(2
√

2) , h(Xn ) = γm
√

2/2 , MR(Xn ) = 2 , for n = nm + 1, . . . , nm + ℓm − 1 ,

q(Xn ) = γm/(2
√

2) , h(Xn ) = γm/2 , MR(Xn ) =
√

2 , for n = nm + ℓm ,

q(Xn ) = γm/4 , h(Xn ) = γm/2 , MR(Xn ) = 2 , for n = nm + ℓm + 1, . . . , nm+1 − 1 ,

here γm = 2−m and ℓm = 6 × 22m (2m
+ 1)2.

The proof is omitted. Similarly to the 2-dimensional case treated in Theorem 3.3, the
onstruction follows a self-replicating pattern. The first 17 points in X = [0, 1]4 are the 16

vertices and the center of X . This gives the initialization for the beginning of the cycle m = 0,
which consists of the following two stages: (i) the algorithm chooses (in arbitrary order) all
points with two coordinates equal to 1/2 and the other two coordinates in {0, 1}; there are
22

×
(4

2

)
= 24 such points; (ii) the algorithm chooses (in arbitrary order) points with one

coordinate 1/2 and the other three in {0, 1} (there are 23
×

(4
1

)
= 32 such points), points with

hree coordinates 1/2 and one in {0, 1} (there are 2 ×
(4

3

)
= 8 such points) and points with

coordinates in {1/4, 3/4} (there are 16 such points).
The initialization of cycle m is defined as the replication of the initial design of cycle 0 into

24m hypercubes of side length γ = 2−m , which form a regular partition of [0, 1]4. The initial
m

6
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design for cycle m has thus nm = (2m
+1)4

+24m points: (2m
+1)4 of them form a regular grid

f width γm ; the other 24m points are the centers of the small hypercubes. We thus have 24m

eplications of the initial 17-point initial design, but in smaller hypercubes. In each of them,
he selections made by the algorithm are similar to those of the cycle m = 0.

From the description above, we can observe that the design Xnm re-scaled by a factor
m gives the integer lattice Z4 truncated to (i1, i2, i3, i4) ∈ {0, . . . , 2m

}
4. Moreover, when

= nm + ℓm , the design Xn re-scaled by 2m+1 gives the so-called checkerboard lattice D4

the subset of the integer lattice Z4 consisting of quadruples whose sum is even), truncated to
i1, i2, i3, i4) ∈ {0, . . . , 2m+1

}
4; note that D4 is the densest packing lattice in the 4-dimensional

pace [2, p. 9].
The regular behavior of Algorithm 1 observed for d = 1, and d = 2 and 4 where the

roperly re-scaled design Xn oscillates between the integer point lattice and the checkerboard
attice, does not hold for other dimensions d

.2. Relaxed greedy packing

We consider now a generalization of Algorithm 1, where the next point at a given iteration
s not necessarily the furthest away from current design points, but is guaranteed to be far
nough from them. The bounds obtained in Theorem 3.6 are worse than those in Theorem 3.2;
owever, it can be shown that the relaxation introduced may improve the covering properties
f the design sequence generated; see Section 3.4.

Algorithm 2 (Relaxed greedy packing)

Require: X compact subset of Rd , x1 ∈ X , a ∈ (0, 1], α1, α2, . . . ∈ [a, 1];
1: set n = 1, X1 = {x1};
2: for n = 1, 2, . . . do the following:
3: take any x′ such that minxi ∈Xn ∥x′

− xi ∥ ≥ αn h(Xn) and set xn+1 = x′;
4: set Xn+1 = Xn ∪ {xn+1}.

At step 3, the choice of xn+1 is arbitrary provided it satisfies the condition indicated.
ue to this flexibility, several existing algorithms form particular cases of Algorithm 2,
hich in fact defines a whole family of algorithms. In particular, one may first select
∗

∈ Arg maxx∈X minxi ∈Xn ∥x − xi∥ and then take any point xn+1 ∈ B(x∗, (1 − αn)h(Xn)).
andom designs with guaranteed covering and packing performance can easily be generated

n this way: for instance, take xn+1 = (1 − αn)x∗
n + αnx∗ with x∗

n ∈ Arg minxi ∈Xn ∥x∗
− xi∥ and

n a random variable (e.g., uniform) in [a, 1], a > 0.

heorem 3.6. For all n ≥ 2, the designs Xn generated by any version of Algorithm 2 satisfy

h(Xn) ≤
2
a

h∗

n , q(Xn) ≥
a
2

q∗

n , MR(Xn) ≤
2
a

.

roof. We first prove by induction that for all n ≥ 2, q(Xn) ≥ (a/2) h(Xn−1).
For n = 2, by construction we have q(X2) ≥ (α1/2) h(X1) ≥ (a/2) h(X1).
Assume that q(Xn) ≥ (a/2) h(Xn−1) and consider q(Xn+1). The induction assumption gives

q(Xn+1) = min
{

q(Xn), (1/2) min
xi ∈Xn

∥xn+1 − xi∥

}
≥ min {q(X ), (α /2) h(X )}
n n n

7



L. Pronzato and A. Zhigljavsky Journal of Approximation Theory 294 (2023) 105931

N
s

t

=

T

s

P
a
S

a
i

a

f
r
M

v

3

X

≥ min {(a/2) h(Xn−1), (a/2) h(Xn)} = (a/2) h(Xn) .

The inequality proved by induction implies

MR(Xn) = h(Xn)/q(Xn) ≤ h(Xn−1)/q(Xn) ≤ 2/a.

ext, by Lemma 2.2, h(Xn−1) ≥ q∗
n , and therefore q(Xn) ≥ (a/2) h(Xn−1) ≥ (a/2) q∗

n . The
ame lemma implies h∗

n−1 ≥ q(Xn) ≥ (a/2) h(Xn−1). □

Theorem 3.2 follows from Theorem 3.6 by taking a = 1. As in Theorem 3.2, the choice of
he norm in X is irrelevant and X does not have to be a subset of Rd .

The following property is an extension of Theorem 3.6 to the situation where lim infn→∞ αn
a ∈ (0, 1] in Algorithm 2 (i.e., not all αi are bounded from below by a).

heorem 3.7. Suppose that in Algorithm 2 the choice of xn+1 at Step 3 is such that the scalars

αn = min
xi ∈Xn

∥xn+1 − xi∥/h(Xn)

atisfy αn ≥ α > 0 for all n and lim infn→∞ αn = a ∈ [α, 1]. Then, the designs Xn satisfy

lim sup
n→∞

h(Xn)
h∗

n
≤

2
a

, lim inf
n→∞

q(Xn)
q∗

n
≥

a
2

, lim sup
n→∞

MR(Xn) ≤
2
a

.

roof. As lim infn→∞ αn = a ∈ (0, 1], for all ϵ > 0, there exists n0 such that αn > a − ϵ for
ll n ≥ n0. We first prove that there exists an n1 ≥ n0 such that q(Xn1 ) > [(a − ϵ)/2] h(Xn1 ).
uppose that this is wrong; that is, q(Xn) ≤ [(a − ϵ)/2] h(Xn) for all n ≥ n0. We get

q(Xn+1) = min
{

q(Xn), (1/2) min
xi ∈Xn

∥xn+1 − xi∥

}
= min {q(Xn), (αn/2) h(Xn)}
≥ min {q(Xn), [(a − ϵ)/2] h(Xn)} = q(Xn) ,

nd thus q(Xn+1) = q(Xn) for all n ≥ n0. As q(Xn0 ) ≥ (α/2) q∗
n0

> 0 from Theorem 3.6, this
s in contradiction with Lemma 2.1 which states that q(Xn) ≤ Cn−1/d for some C > 0.

Take now n = n1 such that q(Xn1 ) > [(a − ϵ)/2] h(Xn1 ). We have

q(Xn1+1) ≥ min
{
q(Xn1 ), [(a − ϵ)/2] h(Xn1 )

}
= [(a − ϵ)/2] h(Xn1 ) ≥ [(a − ϵ)/2] h(Xn1+1) ,

nd therefore by induction

q(Xn+1) ≥ [(a − ϵ)/2] h(Xn) ≥ [(a − ϵ)/2] h(Xn+1)

or all n ≥ n1. Similarly to the proof of Theorem 3.6, h(Xn−1) ≥ q∗
n and h∗

n−1 ≥ q(Xn)
espectively imply that h∗

n/h(Xn) ≥ (a − ϵ)/2 and q(Xn)/q∗
n ≥ (a − ϵ)/2, with, moreover,

R(Xn) ≤ 2/(a − ϵ), for all n > n1. As ϵ is arbitrary, the result follows. □

In the next section, Theorem 3.6 is used for assessing properties of an easily implementable
ersion of Algorithm 1, where xn+1 at step 3 is chosen from a finite set.

.3. Greedy packing for a finite candidate set

Consider a version of Algorithm 1 where xn+1 is chosen among a finite set of candidates
⊂ X rather than from the whole X . This assumption makes the implementation of
N

8
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Algorithm 1 much simpler but naturally deteriorates its performance. Such implementation of
Algorithm 1 can be considered as a special case of Algorithm 2, and hence, as we show below
in Theorem 3.9, its performance over entire X can be assessed. Note that the total number

f iterations must be smaller than N , the number of candidate points: indeed, for n ≥ N , the
lgorithm degenerates as several points necessarily coincide in XN+ j , j ≥ 1.

emma 3.8. For any n-point design Xn and any N-point set XN ⊂ X we have

hXN (Xn) ≤ hX (Xn) ≤ hXN (Xn) + hX (XN ).

roof. The inequality hXN (Xn) ≤ hX (Xn) follows from XN ⊂ X . Next, denoting XN =

x(1), . . . , x(N )
}, we have

hX (Xn) ≤ sup
x∈X

min
xi ∈Xn

min
x( j)∈XN

(
∥x − x( j)

∥ + ∥x( j)
− xi∥

)
= sup

x∈X

[
min

x( j)∈XN

(
∥x − x( j)

∥ + min
xi ∈Xn

∥x( j)
− xi∥

)]
≤ sup

x∈X

[
min

x( j)∈XN

∥x − x( j)
∥ + max

x( j)∈XN

min
xi ∈Xn

∥x( j)
− xi∥

]
= sup

x∈X

[
min

x( j)∈XN

∥x − x( j)
∥ + hXN (Xn)

]
= hX (XN ) + hXN (Xn) . □

heorem 3.9. When Algorithm 1 uses a finite set of candidates XN ⊂ X and n < N, its
erformance satisfies

hX (Xn) ≤ (2/αn) h∗
n , ∀n ≥ 1 ,

q(Xn) ≥ (αn/2) q∗
n , ∀n ≥ 2 ,

MRX (Xn) ≤ 2/αn , ∀n ≥ 2 ,

(3.1)

ith αn = 1 − hX (XN )/hX (Xn).

roof. Denote ϵ = hX (XN ), so that Lemma 3.8 gives hXN (Xn) ≤ hX (Xn) ≤ hXN (Xn) + ϵ.
t step 3 of Algorithm 1, we have

min
xi ∈Xn

∥xn+1 − xi∥ = hXN (Xn) ≥ hX (Xn) − ϵ = αn hX (Xn),

ith αn = 1 − ϵ/hX (Xn). Since hX (Xn) is non-increasing with n, αn is non-increasing too
it reaches zero when Xn has exhausted XN , that is, when k = N ). Theorem 3.6 with αn

ubstituted for a implies (3.1). □

As we do not know hX (Xn) and thus αn , we can use the inequality hX (Xn) ≥ hXN (Xn),
hich gives αn ≥ an = 1 − hX (XN )/hXN (Xn). The inequalities (3.1) then remain true with

n substituted for αn , as long as an > 0.
A result similar to Theorem 3.9 holds when the performance of Algorithm 1 is evaluated

n a finite set XN ′ ⊃ XN instead of X : we simply substitute XN ′ for X and αn =

− h ′ (X )/h ′ (X ) is evaluated easily.
XN N XN n

9
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3.4. Boundary-phobic greedy packing

Versions of the greedy packing algorithm that enforce boundary avoidance have been
roposed in [13,17]. There, at iteration n ≥ 2, the next point xn+1 is chosen in Arg maxx∈X

Dβ(x, Xn, X ), where

Dβ(x, Xn, X ) = min
{

min
xi ∈Xn

∥x − xi∥, β d(x, ∂X )
}

, β ∈ (0, ∞) , (3.2)

with d(x, ∂X ) the distance from X to the boundary of X . Note that this quantity is easily
determined if X has a simple shape, like a hypercube or a ball, but may be difficult to evaluate
otherwise. For β = ∞, we define D∞(x, Xn, X ) = minxi ∈Xn ∥x − xi∥ by continuity; the
algorithm then coincides with Algorithm 1. For β = 1, xn+1 is the center of (one of) the
largest ball included in X and not intersecting Xn . For β = 2, the algorithm corresponds to
a greedy method for the solution of the traditional packing problem, for which the n balls do
not intersect and are constrained to be fully inside X . For β > 2, the larger β is, the more the
balls are allowed to overshoot X , with their centers remaining inside X . When X = [0, 1]d

and ∥ · ∥ = ∥ · ∥2, the value β = 2
√

2d is recommended in [17], while [13] recommends to let
β depend on the targeted number nmax of design points and suggests taking

β = β(nmax, d) =
d

2 (nmaxVd )−1/d
−

√
d,

ith Vd = πd/2/Γ (d/2 + 1). Both references illustrate the interest of using β < ∞ instead of
Algorithm 1 (where β = ∞) in terms of fill distance h(Xn). As shown below, for X = [0, 1]d

the boundary-phobic version of greedy packing becomes a particular case of Algorithm 2.

Theorem 3.10. For X = [0, 1]d and ∥ · ∥ = ∥ · ∥2, the boundary-phobic algorithm that
hooses xn+1 in Arg maxx∈X Dβ(x, Xn, X ) at iteration n, with Dβ(x, Xn, X ) defined by (3.2)
nd β ∈ (0, ∞), forms a particular instance of Algorithm 2 with αn = a = 1/(1 +

√
d/β).

roof. Let X = [0, 1]d and β ∈ (0, ∞), rn = Dβ(xn+1, Xn, X ) = maxx∈X Dβ(x, Xn, X ).
ny x ∈ X satisfies at least one of the two inequalities

min
xi ∈Xn

∥x − xi∥ ≤ rn , d(x, ∂X ) ≤ rn/β.

his implies that X \ {x ∈ Rd
: d(x, ∂X ) ≤ rn/β} ⊂ ∪

k
i=1B(xi , rn). The inequalities rn ≤

d(xn+1, ∂X ) ≤ β/2 imply that 2 rn/β ≤ 1, and the set X \ {x ∈ Rd
: d(x, ∂X ) ≤ rn/β} is

hypercube Cn with side length 1−2 rn/β. This hypercube is covered by the n balls B(xi , rn),
mplying that

hX (Xn) = sup
x∈X

min
xi ∈Xn

∥x − xi∥

≤ sup
x∈X

[
inf

x′∈Cn

(
∥x − x′

∥ + min
xi ∈Xn

∥x′
− xi∥

)]
≤ sup

x∈X
inf

x′∈Cn
∥x − x′

∥ + rn ≤
√

d (rn/β) + rn .

ince, by definition, r ≤ min ∥x − x ∥, we have
n xi ∈Xn n+1 i

10
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Fig. 2. Designs generated by xn+1 ∈ Arg maxx∈X D4(x, Xn, X ) in X = [0, 1]2 with ∥ · ∥ = ∥ · ∥2 and
1 = (1/2, 1/2). Left: MR(Xn) for n = 2, . . . , 80; the horizontal line indicates the upper bound 2(1 +

√
d/β)

on MR(Xn). Right: X80; the circles have radii h(Xn) = 0.0913.

min
xi ∈Xn

∥xn+1 − xi∥ ≥
hX (Xn)

1 +
√

d/β
,

nd the algorithm is a particular instance of Algorithm 2 with αn = a = 1/(1 +
√

d/β). □

Theorem 3.10 implies that the performance of this algorithm satisfies the bounds indicated
n Theorem 3.6.

xample 3.11. We take X = [0, 1]2, ∥ · ∥ = ∥ · ∥2 and β = 4. The left panel of Fig. 2
hows the evolution of MR(Xn) as a function of n = 2, . . . , 80 when Xn is generated by
n+1 ∈ Arg maxx∈X Dβ(x, Xn, X ) with x1 = (1/2, 1/2); the upper bound 2(1 +

√
d/β) on

R(Xn) is indicated by a horizontal line. The right panel presents X80: comparison with the
ight panel of Fig. 1 shows that boundary avoidance has significantly reduced h(Xn). This
eduction is obtained at the detriment of MR(Xn) for some Xn , as illustrated by the left panels
f the two figures (note, however, that MR(X80) < 2 in Fig. 2).

.5. Connection with kernel-based methods

.5.1. Energy minimization
Consider the Riesz kernel Ks(x, x′) = 1/∥x − x′

∥
s , s > 0, and the discrete energy

EKs (Xn) =
2

n(n − 1)

∑
1≤i< j≤n

Ks(xi , x j )

ssociated with an n-point design Xn = {X1, . . . , xn}. A design X∗
n ⊂ X that minimizes

Ks (Xn) is called a set of s-Fekete points (the original denomination is for X being the sphere
2); see, e.g., [1, Chap. 2] for a thorough exposition of the discrete energy problem and [1,
hap. 4] for the connection with the continuous energy problem. In particular, [1, Prop. 2.1.1]

hows that EKs (X∗
n) is non decreasing in n; its limit is called the transfinite diameter of X

nd coincide with the Wiener constant, i.e., the minimum value of the continuous energy on
[1, Th. 4.2.2]. Next theorem shows the strong connection that exists between greedy energy
inimization for the Riesz kernel and greedy packing.

11
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Theorem 3.12. The designs Xn obtained by greedy minimization of the energy EKs , i.e., such
hat xk+1 ∈ Arg minx∈X EKs (Xk ∪ {x}) for all k ≥ 1, satisfy

h(Xn) ≤
2

n−1/s
h∗

n , q(Xn) ≥
n−1/s

2
q∗

n , MR(Xn) ≤
2

n−1/s
, n ≥ 2 . (3.3)

y letting s = sn vary at each iteration in Ks in such a way that sn/ log n → ∞ as n → ∞,
e get

lim sup
n→∞

h(Xn)
h∗

n
≤ 2 , lim inf

n→∞

q(Xn)
q∗

n
≥

1
2

, lim sup
n→∞

MR(Xn) ≤ 2 . (3.4)

roof. Direct calculation gives xk+1 ∈ Arg minx∈X (1/n)
∑n

i=1 Ks(x, xi ). Since, for x ̸∈ Xn ,

1
n

n∑
i=1

1
∥x − xi∥

s
≤ max

i

1
∥x − xi∥

s
≤

n∑
i=1

1
∥x − xi∥

s
,

we have[
n∑

i=1

1
∥x − xi∥

s

]−1/s

≤

[
max

i

1
∥x − xi∥

s

]−1/s

= min
i

∥x − xi∥ ≤ n1/s

[
n∑

i=1

1
∥x − xi∥

s

]−1/s

and therefore, for x∗
∈ Arg maxx∈X mini ∥x − xi∥,

min
i

∥xn+1 − xi∥ ≥

[
n∑

i=1

1
∥xn+1 − xi∥

s

]−1/s

≥

[
n∑

i=1

1
∥x∗ − xi∥

s

]−1/s

≥ n−1/s min
i

∥x∗
− xi∥ = h(Xn) .

Greedy energy minimization (with the Riesz kernel Ks) thus corresponds to a particular version
of relaxed greedy packing (Algorithm 2), where αn = n−1/s decreases with n, and Theorem 3.6
implies (3.3).

The covering and packing efficiencies of Xn may degrade as n increases, but if we let s = sn
ary at each iteration in Ks in such a way that n1/sn → 1 (or equivalently, sn/ log n → ∞) as
→ ∞, then Theorem 3.7 implies (3.4). □

Similar developments with the isotropic Matérn 1/2 kernel with correlation length ℓ,
K1/2,ℓ(x, x′) = exp(−∥x − x′

∥/ℓ), show that mini ∥xn+1 − xi∥ ≥ h(Xn) − ℓ log n for greedy
nergy minimization. Since h(Xn) ≥ Cn−1/d for some C > 0 from Lemma 2.1, by letting
= ℓn decrease with n in such a way that n1/dℓn log n → 0 as n → ∞, we also get (3.4) from
heorem 3.7.

An advantage of this type of construction over Algorithm 1 is that the choice of xn+1
ccounts for the location of all previous xi , i ≤ n, and hence is generally uniquely defined,
hereas there are often several equivalent choices at step 3 of Algorithm 1 (see for example

he regular patterns explained in Theorems 3.3 and 3.5).

.5.2. Greedy maximum-entropy sampling and the P-greedy algorithm
Consider the kriging framework [19], where an unknown function f on X is considered as a

ealization of a Gaussian random field Zx with zero mean and covariance E{Zx Zx′} = K (x, x′),
ith K a strictly positive definite kernel defining a reproducing kernel Hilbert space HK .
et f be evaluated at the n-point design Xn = {X1, . . . , xn} and consider a linear predictor

⊤ ⊤ n

n(x0) = wn yn of f (x0), with yn = [ f (x1), . . . , f (xn)] and wn ∈ R . Its Mean-Squared

12
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Error (MSE) is E{|Zx0 − wn
⊤yn|

2
} = ρ2

n (x0, wn) = K (x0, x0) − 2 wn
⊤kn(x0) + wn

⊤Knwn ,
here the i th component of the vector kn(x0) equals K (x0, xi ) and the matrix Kn has i, j

lement K (xi , x j ), i, j = 1, . . . , n. The best linear predictor is η∗
n(x0) = kn

⊤(x0)K−1
n yn ,

btained for wn = K−1
n kn(x0); its MSE equals ρ2

n (x0) = K (x0, x0) − kn
⊤(x0)K−1

n kn(x0).
aximum-entropy sampling [18] constructs an n-point design Xn by maximizing det Kn . Since

et Kn+1 = ρ2
n (xn+1) det Kn , a greedy version chooses x1 ∈ Arg maxx∈X K (x, x) and then

n+1 ∈ Arg maxx∈X ρ2
n (x), n ≥ 1.

The interpolation of a function f ∈ HK involves the same quantities η∗
n and ρn: η∗

n(·) is the
rthogonal projection of f onto span{K (·, xi ), i = 1, . . . , n} and Pn(·) = ρn(·) is called the
ower function, with

Pn(x) = sup
∥ f ∥HK =1

| f (x) − η∗

n(x)|.

n this context, the algorithm for greedy maximum-entropy sampling is called the P-greedy
lgorithm [15].

When d = 1, K (x, x ′) = exp(−|x − x ′
|/ℓ) and X is a closed interval [a, b], the Markov

roperty of the Ornstein–Uhlenbeck process implies that the matrix Kn is tridiagonal, and for
ny design point xi ∈ Xn and x, x ′

∈ [a, b] such that x < xi < x ′, the random variables
Zx and Zx ′ are conditionally independent: E{Zx Zx ′ |(x1, Zx1 ), . . . , (x1, Zx1 )} = K (x, x ′) −

n
⊤(x)K−1

n kn(x ′) = 0. Denote by zi , i = 1, . . . , n, the reordered design points at iteration
, so that a ≤ z1 < z2 < · · · < zn ≤ b. Let δ j = z j+1 − z j , i = 1, . . . , n − 1, and Jn =

rg max j=1,...,n−1 δ j be the set of indices of the most distant neighboring pairs; denote δ∗
n = δ j ,

j ∈ Jn . As K (x, x) = 1 for all x , the choice of x1 is arbitrary. When x1 = c = (a + b)/2, the
-greedy algorithm chooses x2 = a and x3 = b (or x2 = b and x3 = a), and then, for every
≥ 4, xn+1 = (z j + z j+1)/2 for an arbitrary j ∈ Jn . It thus coincides with the greedy packing

lgorithm. When x1 < c, the P-greedy algorithm chooses x2 = b and then, for each n, either
i) xn+1 = (z j + z j+1)/2 for an arbitrary j ∈ Jn , or (ii) xn+1 = a. Direct calculation shows
hat case (ii) occurs when x1 − a ≥ ∆∗

n = δ∗
n/2 − (ℓ/2) log 2 + (ℓ/2) log[1 + exp(−δ∗

n/ℓ)] (with
∗
n < δ∗

n/2), which necessarily holds after a finite number of iterations. For all subsequent
terations, the P-greedy algorithm coincides with greedy packing. The case x1 > c is treated
n a similar way.

The connection with greedy packing is more subtle in other situations (d > 1 and/or for
ther kernels K ). Take K isotropic with a small correlation length ℓ. Although it is intuitively
lear that the behavior of the P-greedy algorithm will mimic that of greedy packing as long as
is negligible relative to q(Xn) (so that Kn is close to the identity matrix), a precise analysis

ppears difficult. Theorem 15 of [21] indicates that, when K is translation invariant and has
nite smoothness τ , the designs Xn generated by the P-greedy algorithm satisfy h(Xn) < cn−1/d

or some c > 0 (note that the rate n−1/d is optimal from Lemma 2.1). The same theorem
hows that any relaxation of the P-greedy algorithm that selects an arbitrary xn+1 in the set
x ∈ X : Pn(x) ≥ γ maxx∈X Pn(x)} (γ ∈ (0, 1]) also achieves the rate of decrease n−1/d for

h(Xn), and Theorem 19 in the same paper shows that q(Xn) > c′n−1/d for some c′ > 0 (so that
he rate of decrease of q(Xn) is optimal too) when τ > d/2 + 1 and X satisfies an interior
one condition and has a Lipschitz boundary. As for energy minimization (Section 3.5.1), an
dvantage of this type of construction over Algorithm 1 is that the choice of xn+1 accounts for
he location of all previous x .
i
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4. Conclusion

By introducing a relaxation in the classical greedy-packing algorithm, we have proposed
general class of simple greedy algorithms that generate quasi-uniform sequences of nested

esigns with guaranteed packing and covering performance. We have shown that the value
of the uniformity constant of the greedy-packing algorithm is optimal, and that it can be

ttained by a relaxed algorithm whose relaxation vanishes asymptotically. A connection with
wo kernel-based greedy constructions has been evidenced.
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